FCC Test Report **Report No.:** RF190628E02 FCC ID: G95TCHU1AL0 Test Model: TCHU1AL0 PN: APZ0001COM Received Date: June 28, 2019 Test Date: June 28 to July 10, 2019 Issued Date: July 23, 2019 Applicant: Technicolor Connected Home USA LLC Address: 5030 Sugarloaf Parkway, Building 6, Lawrenceville, GA 30044 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. FCC Registration / 723255 / TW2022 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. # **Table of Contents** | R | Release Control Record4 | | | | | | | | | |---|----------------------------|--|-----|--|--|--|--|--|--| | 1 | Certificate of Conformity5 | | | | | | | | | | 2 | | Summary of Test Results | . 6 | | | | | | | | | 2.1 | Measurement Uncertainty | . 6 | | | | | | | | | 2.2 | Modification Record | | | | | | | | | 3 | | General Information | . 7 | | | | | | | | | 3.1 | General Description of EUT | 7 | | | | | | | | | 3.2 | Description of Test Modes | | | | | | | | | | 3.2.1 | · | | | | | | | | | | 3.3 | Duty Cycle of Test Signal | | | | | | | | | | 3.4 | Description of Support Units | | | | | | | | | | 3.4.1 | | | | | | | | | | | 3.5 | General Description of Applied Standards | | | | | | | | | 4 | | Test Types and Results | | | | | | | | | | 4.1 | Radiated Emission and Bandedge Measurement | | | | | | | | | | | Limits of Radiated Emission and Bandedge Measurement | | | | | | | | | | | ? Test Instruments | | | | | | | | | | | Test Procedures | | | | | | | | | | | Test Setup | | | | | | | | | | | EUT Operating Conditions | | | | | | | | | | | Test Results (Bandedge) | | | | | | | | | | | 3 Test Results (Spurious Émission) | | | | | | | | | | 4.2 | Conducted Emission Measurement | | | | | | | | | | | Limits of Conducted Emission Measurement | | | | | | | | | | | ? Test Instruments | | | | | | | | | | | Test Procedures | | | | | | | | | | | Test Setup | | | | | | | | | | | EUT Operating Conditions | | | | | | | | | | | ' Test Results | | | | | | | | | | 4.3 | 6dB Bandwidth Measurement | | | | | | | | | | 4.3.1 | Limits of 6dB Bandwidth Measurement | 35 | | | | | | | | | | ? Test Setup | | | | | | | | | | | 3 Test Instruments | | | | | | | | | | | Test Procedure | | | | | | | | | | | EUT Operating Conditions | | | | | | | | | | | Test Result | | | | | | | | | | 4.4 | Conducted Output Power Measurement | | | | | | | | | | 4.4.1 | | | | | | | | | | | 4.4.2 | ? Test Setup | | | | | | | | | | 4.4.3 | | | | | | | | | | | | Test Procedures | | | | | | | | | | 4.4.5 | | | | | | | | | | | | EUT Operating Conditions Test Results | | | | | | | | | | 4.4.7 | Power Spectral Density Measurement | | | | | | | | | | 4.5.1 | | | | | | | | | | | 4.5.2 | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | 4.5.3 | Test Instruments | | | | | | | | | | | Test Procedure | | | | | | | | | | 4.5.5 | 5.5 Deviation from Test Standard | | | | | | | | | 4.5.6 I | EUT Operating Condition | 39 | |---------|--|----| | | Test Results | | | 4.6 | Conducted Out of Band Emission Measurement | 41 | | 4.6.1 I | Limits of Conducted Out of Band Emission Measurement | 41 | | 4.6.2 | Test Setup | 41 | | | Test Instruments | | | 4.6.4 | Test Procedure | 41 | | | Deviation from Test Standard | | | 4.6.6 l | EUT Operating Condition | 41 | | 4.6.7 | Test Results | 41 | | 5 Pic | ctures of Test Arrangements | 43 | | Appendi | x – Information of the Testing Laboratories | 44 | # **Release Control Record** | Issue No. | Description | Date Issued | |-------------|-------------------|---------------| | RF190628E02 | Original release. | July 23, 2019 | ### **Certificate of Conformity** 1 Product: LTE Power Supply Brand: Technicolor Test Model: TCHU1AL0 Sample Status: LAB2b Applicant: Technicolor Connected Home USA LLC Test Date: June 28 to July 10, 2019 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10: 2013 The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Phoenix Huang / Specialist Date: Approved by : July 23, 2019 Date: May Chen / Manager ### 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (Section 15.247) | | | | | |--|---|--------|--|--| | FCC
Clause | Test Item | Result | Remarks | | | 15.207 | AC Power Conducted Emission | PASS | Meet the requirement of limit. Minimum passing margin is -12.84dB at 0.18516MHz. | | | 15.205 /
15.209 /
15.247(d) | 15.209 / Radiated Emissions and Band Edge Measurement | | Meet the requirement of limit. Minimum passing margin is -4.6dB at 4950.00MHz. | | | 15.247(d) | Antenna Port Emission | PASS | Meet the requirement of limit. | | | 15.247(a)(2) | 6dB bandwidth | PASS | Meet the requirement of limit. | | | 15.247(b) | Conducted power | PASS | Meet the requirement of limit. | | | 15.247(e) | Power Spectral Density | PASS | Meet the requirement of limit. | | | 15.203 | Antenna Requirement | PASS | Antenna connector is Morata not a standard connector. | | ### Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.7 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz | 5.1 dB | | | 1GHz ~ 6GHz | 5.1 dB | | Radiated Emissions above 1 GHz | 6GHz ~ 18GHz | 5.0 dB | | | 18GHz ~ 40GHz | 5.2 dB | ### 2.2 Modification Record There were no modifications required for compliance. # 3 General Information # 3.1 General Description of EUT | Product | LTE Power Supply | |-----------------------|---------------------| | Brand | Technicolor | | Test Model | TCHU1AL0 | | Status of EUT | LAB2b | | Davis Commbo Dating | 90~135Vac or | | Power Supply Rating | 3.6Vdc from battery | | Modulation Type | O-QPSK | | Modulation Technology | DSSS | | Transfer Rate | 250kbps | | Operating Frequency | 2405 ~ 2475 MHz | | Number of Channel | 15 | | Output Power | 142.561 mW | | Antenna Type | Refer to Note | | Antenna Connector | Refer to Note | | Accessory Device | NA | | Data Cable Supplied | NA | ### Note: 1. The EUT inside has one LTE module which FCC ID: QIPEMS31-X. 2. Simultaneously transmission condition. | Condition | Technology | | | |--|------------|------|--| | 1 | Zigbee | WWAN | | | Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found. | | | | 3. The EUT power needs to be supplied from one battery and the following different models could be chosen: | No. | Brand | Model | Rating | Min. Capacity | Charging Voltage | |---|----------|-----------------|-----------------------|---------------|------------------| | 1 | NuEnergy | INR-18500 -1S1P | 3.6Vdc, 1.6Ah, 5.76Wh | 1600mAh | 4.2Vdc | | 2 | Getac | APZ0001-1S1P-BP | 3.6Vdc, 1.0Ah, 4.53Wh | 1260mAh | 4.15Vdc | | Note: For radiated emissions test, the FUT was pre-tested with above batteries, the worst case was found in | | | | | | Note: For radiated emissions test, the EUT was pre-tested with above batteries, the worst case was found in Battery 1 and its data was recorded in this report. 4. The antennas provided to the EUT, please refer to the following table: | Zigbee | | | | | | |---------|-----------------|--------------------------|-----------------|-------------------|--| | Ant. No | Ant. Gain (dBi) | Frequency Range
(GHz) | Antenna
Type | Antenna
Connector | | | 1 | 3.9 | 2.4~2.4835 | PCB | Morata | | | | WWAN | | | | | | Ant. No | Ant. Gain (dBi) | Frequency Range
(MHz) | Antenna
Type | Antenna Connector | | | 2 | 2.9 | 700~787 | PCB | Morata | | | 2 | 3.1 | 1710~2200 | PCB | Morata | | 5. For radiated emissions, the EUT was pre-tested under the following modes: | Test Mode | Description | | | | |------------------------------|--|--|--|--| | Mode A Power from AC power | | | | | | Mode B Power from Battery | | | | | | | From the above modes, the worst case was found in Mode A . Therefore only the test data of the mode | | | | | vas recorded in this report. | | | | | | 6. | The above EUT information is declared by manufacturer and for more detailed features description, | |----|---| | | please refer to the manufacturer's specifications or user's manual. | | | | # 3.2 Description of Test Modes 15 channels are provided to this EUT: | Channel | Frequency (MHz) | Channel | Frequency (MHz) | |---------|-----------------|---------|-----------------| | 11 | 2405 | 19 | 2445 | | 12 | 2410 | 20 | 2450 | | 13 | 2415 | 21 | 2455 | | 14 | 2420 | 22 | 2460 | | 15 | 2425 | 23 | 2465 | | 16 | 2430 | 24 | 2470 | | 17 | 2435 | 25 | 2475 | | 18 | 2440 | | | ### 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT | | APPLICA | DESCRIPTION | | | |-------------------|-------|--------------|--------------|------|-------------| | CONFIGURE
MODE | RE≥1G | RE<1G | PLC | APCM | DESCRIPTION | | - | √ | \checkmark | \checkmark | √ | - | Where **RE≥1G:** Radiated Emission above 1GHz & Bandedge Measurement RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission **APCM:** Antenna Port Conducted Measurement Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane. ### Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | DATA RATE (kbps) | |----------------------|----------------|--------------------------|-----------------|------------------| | 11 to 25 | 11, 19, 25 | DSSS | O-QPSK | 250 | ### Radiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | DATA RATE (kbps) | |-------------------|----------------|--------------------------|-----------------|------------------| | 11 to 25 | 19 | DSSS | O-QPSK | 250 | ### **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | DATA RATE (kbps) | |----------------------|----------------|--------------------------|-----------------|------------------| | 11 to 25 | 19 | DSSS | O-QPSK | 250 | ### **Antenna Port Conducted Measurement:** This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | DATA RATE (kbps) | |----------------------|----------------|--------------------------|-----------------|------------------| | 11 to 25 | 11, 19, 25 | DSSS | O-QPSK | 250 | # **Test Condition:** | APPLICABLE TO | ENVIRONMENTAL CONDITIONS | INPUT POWER | TESTED BY | | |---------------------|--------------------------|--------------|---------------|--| | RE≥1G | 24deg. C, 68%RH, | 120Vaa 60Hz | Andy Ho | | | RE21G | 22deg. C, 68%RH | 120Vac, 60Hz | | | | RE<1G | 23deg. C, 74%RH | 120Vac, 60Hz | Andy Ho | | | PLC 25deg. C, 75%RH | | 120Vac, 60Hz | Andy Ho | | | APCM | 25deg. C, 60%RH | 120Vac, 60Hz | Anderson Chen | | # 3.3 Duty Cycle of Test Signal Duty cycle of test signal is 100 %, duty factor is not required. # 3.4 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-------------------|-------------|-----------|------------|--------|--------------------| | A. | Integrated Device | Technicolor | TCHT2AA0 | NA | NA | Supplied by client | | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|--------------------| | 1. | DC Cable | 1 | 3 | No | 0 | Supplied by client | # 3.4.1 Configuration of System under Test Report No.: RF190628E02 Page No. 13 / 44 Report Format Version: 6.1.1 # 3.5 **General Description of Applied Standards** The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: **FCC Part 15, Subpart C (15.247)** KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013 All test items have been performed and recorded as per the above standards. Report No.: RF190628E02 Page No. 14 / 44 Report Format Version: 6.1.1 ### 4 Test Types and Results ## 4.1 Radiated Emission and Bandedge Measurement ### 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power: | Frequencies
(MHz) | Field Strength
(microvolts/meter) | Measurement Distance (meters) | |----------------------|--------------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | ### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$. - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. ### 4.1.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED DATE | CALIBRATED UNTIL | |--------------------------------------|----------------------|---------------|-----------------|------------------| | Test Receiver
Agilent | N9038A | MY50010156 | July 12, 2018 | July 11, 2019 | | Pre-Amplifier
EMCI | EMC001340 | 980142 | Jan. 25, 2019 | Jan. 24, 2020 | | Loop Antenna
Electro-Metrics | EM-6879 | 269 | Sep. 07, 2018 | Sep. 06, 2019 | | RF Cable | NA | LOOPCAB-001 | Jan. 14, 2019 | Jan. 13, 2020 | | RF Cable | NA | LOOPCAB-002 | Jan. 14, 2019 | Jan. 13, 2020 | | Pre-Amplifier
Mini-Circuits | ZFL-1000VH2B | AMP-ZFL-05 | Apr. 30, 2019 | Apr. 29, 2020 | | Trilog Broadband Antenna SCHWARZBECK | VULB 9168 | 9168-361 | Nov. 22, 2018 | Nov. 21, 2019 | | RF Cable | 8D | 966-3-1 | Mar. 18, 2019 | Mar. 17, 2020 | | RF Cable | 8D | 966-3-2 | Mar. 18, 2019 | Mar. 17, 2020 | | RF Cable | 8D | 966-3-3 | Mar. 18, 2019 | Mar. 17, 2020 | | Fixed attenuator Mini-Circuits | UNAT-5+ | PAD-3m-3-01 | Sep. 27, 2018 | Sep. 26, 2019 | | Horn_Antenna
SCHWARZBECK | BBHA9120-D | 9120D-406 | Nov. 25, 2018 | Nov. 24, 2019 | | Pre-Amplifier
EMCI | EMC12630SE | 980384 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | EMC104-SM-SM-1200 | 160922 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | EMC104-SM-SM-2000 | 180601 | June 10, 2019 | June 09, 2020 | | RF Cable | EMC104-SM-SM-6000 | 180602 | June 10, 2019 | June 09, 2020 | | Spectrum Analyzer
Keysight | N9030A | MY54490679 | July 23, 2018 | July 22, 2019 | | Pre-Amplifier
EMCI | EMC184045SE | 980387 | Jan. 28, 2019 | Jan. 27, 2020 | | Horn_Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170519 | Nov. 25, 2018 | Nov. 24, 2019 | | RF Cable | EMC102-KM-KM-1200 | 160924 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | EMC102-KM-KM-1200 | 160925 | Jan. 28, 2019 | Jan. 27, 2020 | | Software | ADT_Radiated_V8.7.08 | NA | NA | NA | | Antenna Tower & Turn Table Max-Full | MF-7802 | MF780208406 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | Spectrum Analyzer
R&S | FSV40 | 100964 | June 04, 2019 | June 03, 2020 | | Power meter
Anritsu | ML2495A | 1014008 | May 13, 2019 | May 12, 2020 | | Power sensor
Anritsu | MA2411B | 0917122 | May 13, 2019 | May 12, 2020 | | Fixed Attenuator
Mini-Circuits | MDCS18N-10 | MDCS18N-10-01 | Apr. 15, 2019 | Apr. 14, 2020 | ### Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in 966 Chamber
No. 3. - 3. Loop antenna was used for all emissions below 30 MHz. - 4. Tested Date: June 28 to July 10, 2019 ### 4.1.3 Test Procedures ### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. ### Note: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. ### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. ### Note: - The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 10Hz (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. ### 4.1.4 Deviation from Test Standard No deviation. # 4.1.5 Test Setup ### For Radiated emission below 30MHz # For Radiated emission 30MHz to 1GHz ### For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions - a. Placed the EUT on the testing table. - b. Controlling software (Telnet pasted APZ Setup SOP(1T)_190524.txt) has been activated to set the EUT under transmission condition continuously. ### 4.1.7 Test Results (Bandedge) ### **Above 1GHz Data:** | CHANNEL | TX Channel 11 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 2390.00 | 55.8 PK | 74.0 | -18.2 | 3.65 H | 84 | 57.8 | -2.0 | | | | 2 | 2390.00 | 42.4 AV | 54.0 | -11.6 | 3.65 H | 84 | 44.4 | -2.0 | | | | 3 | *2405.00 | 116.5 PK | | | 3.65 H | 84 | 118.5 | -2.0 | | | | 4 | *2405.00 | 112.0 AV | | | 3.65 H | 84 | 114.0 | -2.0 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. | CHANNEL | TX Channel 11 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 2390.00 | 55.3 PK | 74.0 | -18.7 | 3.87 V | 12 | 57.3 | -2.0 | | | | 2 | 2390.00 | 42.2 AV | 54.0 | -11.8 | 3.87 V | 12 | 44.2 | -2.0 | | | | 3 | *2405.00 | 110.5 PK | | | 3.87 V | 12 | 112.5 | -2.0 | | | | 4 | *2405.00 | 107.2 AV | | | 3.87 V | 12 | 109.2 | -2.0 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. | CHANNEL | TX Channel 19 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 2390.00 | 54.8 PK | 74.0 | -19.2 | 3.99 H | 84 | 56.8 | -2.0 | | | | 2 | 2390.00 | 41.8 AV | 54.0 | -12.2 | 3.99 H | 84 | 43.8 | -2.0 | | | | 3 | *2445.00 | 117.5 PK | | | 3.39 H | 84 | 119.7 | -2.2 | | | | 4 | *2445.00 | 113.0 AV | | | 3.39 H | 84 | 115.2 | -2.2 | | | | 5 | 2483.50 | 55.1 PK | 74.0 | -18.9 | 3.99 H | 84 | 57.3 | -2.2 | | | | 6 | 2483.50 | 42.0 AV | 54.0 | -12.0 | 3.99 H | 84 | 44.2 | -2.2 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. | CHANNEL | TX Channel 19 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 2390.00 | 56.8 PK | 74.0 | -17.2 | 3.99 V | 32 | 58.8 | -2.0 | | | | 2 | 2390.00 | 42.4 AV | 54.0 | -11.6 | 3.99 V | 32 | 44.4 | -2.0 | | | | 3 | *2445.00 | 113.9 PK | | | 3.99 V | 32 | 116.1 | -2.2 | | | | 4 | *2445.00 | 108.7 AV | | | 3.99 V | 32 | 110.9 | -2.2 | | | | 5 | 2483.50 | 57.1 PK | 74.0 | -16.9 | 3.99 V | 32 | 59.3 | -2.2 | | | | 6 | 2483.50 | 42.5 AV | 54.0 | -11.5 | 3.99 V | 32 | 44.7 | -2.2 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. | CHANNEL | TX Channel 25 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | *2475.00 | 119.2 PK | | | 3.59 H | 76 | 121.4 | -2.2 | | | | 2 | *2475.00 | 114.7 AV | | | 3.59 H | 76 | 116.9 | -2.2 | | | | 3 | 2483.50 | 55.5 PK | 74.0 | -18.5 | 3.59 H | 76 | 57.7 | -2.2 | | | | 4 | 2483.50 | 43.5 AV | 54.0 | -10.5 | 3.59 H | 76 | 45.7 | -2.2 | |
| - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. | CHANNEL | TX Channel 25 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | *2475.00 | 112.2 PK | | | 3.98 V | 31 | 114.4 | -2.2 | | | | 2 | *2475.00 | 107.4 AV | | | 3.98 V | 31 | 109.6 | -2.2 | | | | 3 | 2483.50 | 54.9 PK | 74.0 | -19.1 | 3.98 V | 31 | 57.1 | -2.2 | | | | 4 | 2483.50 | 41.9 AV | 54.0 | -12.1 | 3.98 V | 31 | 44.1 | -2.2 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. # 4.1.8 Test Results (Spurious Emission) ### **Above 1GHz Data:** | CHANNEL | TX Channel 11 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 4810.00 | 57.2 PK | 74.0 | -16.8 | 1.08 H | 306 | 54.9 | 2.3 | | | 2 | 4810.00 | 48.1 AV | 54.0 | -5.9 | 1.08 H | 306 | 45.8 | 2.3 | | | | | ANTENNA | POLARITY | ' & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 4810.00 | 57.6 PK | 74.0 | -16.4 | 2.21 V | 116 | 55.3 | 2.3 | | | 2 | 4810.00 | 48.8 AV | 54.0 | -5.2 | 2.21 V | 116 | 46.5 | 2.3 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. 2.4 8.3 8.3 | CHANNEL | TX Channel 19 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | | 1 | 4890.00 | 56.7 PK | 74.0 | -17.3 | 1.02 H | 308 | 54.3 | 2.4 | | | | | 2 | 4890.00 | 46.7 AV | 54.0 | -7.3 | 1.02 H | 308 | 44.3 | 2.4 | | | | | 3 | 7335.00 | 48.5 PK | 74.0 | -25.5 | 1.50 H | 354 | 40.2 | 8.3 | | | | | 4 | 7335.00 | 36.4 AV | 54.0 | -17.6 | 1.50 H | 354 | 28.1 | 8.3 | | | | | | | ANTENNA | POLARITY | 4 & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | | 1 | 4890.00 | 57.8 PK | 74.0 | -16.2 | 1.00 V | 117 | 55.4 | 2.4 | | | | -5.1 -20.8 -11.9 ### **REMARKS:** 4890.00 7335.00 7335.00 2 4 - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) 1.00 V 3.96 V 3.96 V 117 202 202 46.5 44.9 33.8 3. Margin value = Emission Level - Limit value 48.9 AV 53.2 PK 42.1 AV 4. The other emission levels were very low against the limit. 54.0 74.0 54.0 | CHANNEL | TX Channel 25 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 4950.00 | 57.2 PK | 74.0 | -16.8 | 2.20 H | 41 | 54.7 | 2.5 | | | | 2 | 4950.00 | 48.3 AV | 54.0 | -5.7 | 2.20 H | 41 | 45.8 | 2.5 | | | | 3 | 7425.00 | 51.2 PK | 74.0 | -22.8 | 1.13 H | 358 | 42.8 | 8.4 | | | | 4 | 7425.00 | 41.1 AV | 54.0 | -12.9 | 1.13 H | 358 | 32.7 | 8.4 | | | | | | ANTENNA | POLARITY | 4 & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 4950.00 | 58.6 PK | 74.0 | -15.4 | 2.13 V | 111 | 56.1 | 2.5 | | | | 2 | 4950.00 | 49.4 AV | 54.0 | -4.6 | 2.13 V | 111 | 46.9 | 2.5 | | | 4 7425.00 7425.00 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) -22.7 -11.5 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) 1.87 V 1.87 V 206 206 42.9 34.1 8.4 8.4 3. Margin value = Emission Level - Limit value 51.3 PK 42.5 AV 4. The other emission levels were very low against the limit. 74.0 54.0 ### **Below 1GHz Data:** | CHANNEL | TX Channel 19 | DETECTOR | O | |-----------------|---------------|----------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | | | 1 | 37.52 | 31.2 QP | 40.0 | -8.8 | 1.50 H | 5 | 40.5 | -9.3 | | | | | | 2 | 61.72 | 29.0 QP | 40.0 | -11.0 | 1.00 H | 43 | 38.0 | -9.0 | | | | | | 3 | 150.01 | 33.9 QP | 43.5 | -9.6 | 2.00 H | 72 | 41.5 | -7.6 | | | | | | 4 | 250.00 | 37.2 QP | 46.0 | -8.8 | 1.00 H | 72 | 45.6 | -8.4 | | | | | | 5 | 391.49 | 37.4 QP | 46.0 | -8.6 | 1.00 H | 20 | 41.7 | -4.3 | | | | | | 6 | 450.01 | 34.5 QP | 46.0 | -11.5 | 2.00 H | 18 | 37.5 | -3.0 | | | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | CHANNEL | TX Channel 19 | DETECTOR | Oversi Book (OB) | |-----------------|---------------|----------|------------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | | | 1 | 59.32 | 30.2 QP | 40.0 | -9.8 | 1.50 V | 206 | 38.9 | -8.7 | | | | | | 2 | 95.33 | 26.1 QP | 43.5 | -17.4 | 1.50 V | 360 | 38.9 | -12.8 | | | | | | 3 | 150.01 | 30.7 QP | 43.5 | -12.8 | 1.50 V | 360 | 38.3 | -7.6 | | | | | | 4 | 250.00 | 37.2 QP | 46.0 | -8.8 | 1.00 V | 360 | 45.6 | -8.4 | | | | | | 5 | 391.49 | 30.9 QP | 46.0 | -15.1 | 1.00 V | 123 | 35.2 | -4.3 | | | | | | 6 | 450.01 | 33.8 QP | 46.0 | -12.2 | 1.00 V | 1 | 36.8 | -3.0 | | | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other
emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. ### 4.2 Conducted Emission Measurement ### 4.2.1 Limits of Conducted Emission Measurement | Fragues av (MILIT) | Conducted I | Limit (dBuV) | |--------------------|-------------|--------------| | Frequency (MHz) | Quasi-peak | Average | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | 0.50 - 5.0 | 56 | 46 | | 5.0 - 30.0 | 60 | 50 | Note: 1. The lower limit shall apply at the transition frequencies. # 4.2.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | | CALIBRATED DATE | CALIBRATED UNTIL | |--|-------------------------|------------|-----------------|------------------| | Test Receiver
R&S | ESCS 30 | 847124/029 | Oct. 24, 2018 | Oct. 23, 2019 | | Line-Impedance
Stabilization Network
(for EUT)
R&S | ESH3-Z5 | 848773/004 | Oct. 22, 2018 | Oct. 21, 2019 | | Line-Impedance
Stabilization Network
(for Peripheral)
R&S | ESH3-Z5 | 835239/001 | Mar. 17, 2019 | Mar. 16, 2020 | | 50 ohms Terminator | N/A | 3 | Oct. 22, 2018 | Oct. 21, 2019 | | RF Cable | 5D-FB | COCCAB-001 | Sep. 28, 2018 | Sep. 27, 2019 | | Fixed attenuator EMCI | STI02-2200-10 | 003 | Mar. 14, 2019 | Mar. 13, 2020 | | Software
BVADT | BVADT_Cond_
V7.3.7.4 | NA | NA | NA | ### Note: - 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in Conduction 1. - 3 Tested Date: July 10, 2019 ^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. ### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. # 4.2.4 Deviation from Test Standard No deviation. ### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ### 4.2.6 EUT Operating Conditions Same as 4.1.6. ### 4.2.7 Test Results | Phase | Line (L) | Detector Function | Quasi-Peak (QP) / | |--------|----------|-------------------|-------------------| | Filase | Line (L) | Detector Function | Average (AV) | | | Phase Of Power : Line (L) | | | | | | | | | | | | |----|---------------------------|----------------------|-------|-------------------------|-------|--------------------------|-------|-----------------|--------|----------------|--|--| | No | Frequency | Correction
Factor | | Reading Value
(dBuV) | | Emission Level
(dBuV) | | Limit
(dBuV) | | Margin
(dB) | | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | | 1 | 0.15000 | 9.96 | 42.80 | 26.85 | 52.76 | 36.81 | 66.00 | 56.00 | -13.24 | -19.19 | | | | 2 | 0.16562 | 9.96 | 41.54 | 25.46 | 51.50 | 35.42 | 65.18 | 55.18 | -13.68 | -19.76 | | | | 3 | 0.18516 | 9.97 | 41.44 | 25.12 | 51.41 | 35.09 | 64.25 | 54.25 | -12.84 | -19.16 | | | | 4 | 0.20859 | 9.97 | 40.32 | 25.12 | 50.29 | 35.09 | 63.26 | 53.26 | -12.97 | -18.17 | | | | 5 | 0.23984 | 9.97 | 32.81 | 23.12 | 42.78 | 33.09 | 62.10 | 52.10 | -19.32 | -19.01 | | | | 6 | 0.28281 | 9.98 | 33.46 | 21.49 | 43.44 | 31.47 | 60.73 | 50.73 | -17.29 | -19.26 | | | | 7 | 0.32188 | 9.98 | 26.86 | 15.33 | 36.84 | 25.31 | 59.66 | 49.66 | -22.82 | -24.35 | | | | 8 | 25.58594 | 11.53 | 23.46 | 14.21 | 34.99 | 25.74 | 60.00 | 50.00 | -25.01 | -24.26 | | | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) / | |-------|-------------|-------------------|-------------------| | | ` ′ | | Average (AV) | | Phase Of Power : Neutral (N) | | | | | | | | | | | |------------------------------|-----------|----------------------|-------|----------------|-------|----------------|-------|------------|--------|------------| | No | Frequency | Correction
Factor | | g Value
uV) | | n Level
uV) | | nit
uV) | | rgin
B) | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15391 | 9.94 | 39.69 | 22.22 | 49.63 | 32.16 | 65.79 | 55.79 | -16.16 | -23.63 | | 2 | 0.16172 | 9.94 | 39.65 | 21.92 | 49.59 | 31.86 | 65.38 | 55.38 | -15.79 | -23.52 | | 3 | 0.18125 | 9.95 | 38.14 | 19.69 | 48.09 | 29.64 | 64.43 | 54.43 | -16.34 | -24.79 | | 4 | 0.20859 | 9.95 | 39.69 | 21.66 | 49.64 | 31.61 | 63.26 | 53.26 | -13.62 | -21.65 | | 5 | 0.23984 | 9.96 | 30.07 | 17.29 | 40.03 | 27.25 | 62.10 | 52.10 | -22.07 | -24.85 | | 6 | 0.27500 | 9.96 | 31.38 | 17.40 | 41.34 | 27.36 | 60.97 | 50.97 | -19.63 | -23.61 | | 7 | 19.50000 | 11.06 | 24.83 | 16.83 | 35.89 | 27.89 | 60.00 | 50.00 | -24.11 | -22.11 | | 8 | 25.39063 | 11.20 | 23.73 | 14.89 | 34.93 | 26.09 | 60.00 | 50.00 | -25.07 | -23.91 | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value ### 4.3 6dB Bandwidth Measurement ### 4.3.1 Limits of 6dB Bandwidth Measurement The minimum of 6dB Bandwidth Measurement is 0.5 MHz. ### 4.3.2 Test Setup ### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. ### 4.3.4 Test Procedure - a. Set resolution bandwidth (RBW) = 100kHz - b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak. - c. Trace mode = max hold. - d. Sweep = auto couple. - e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission ### 4.3.5 Deviation from Test Standard No deviation. ### 4.3.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. ### 4.3.7 Test Result | Channel | Frequency
(MHz) | 6dB Bandwidth
(MHz) | Minimum Limit
(MHz) | Pass / Fail | |---------|--------------------|------------------------|------------------------|-------------| | 11 | 2405 | 1.71 | 0.5 | Pass | | 19 | 2445 | 1.66 | 0.5 | Pass | | 25 | 2475 | 1.72 | 0.5 | Pass | ## 4.4 Conducted Output Power Measurement ### 4.4.1 Limits of Conducted Output Power Measurement For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30dBm) ### 4.4.2 Test Setup ### 4.4.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. ### 4.4.4 Test Procedures A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level. Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value. ### 4.4.5 Deviation from Test Standard No deviation. # 4.4.6 EUT Operating Conditions Same as Item 4.3.6. # 4.4.7 Test Results # **FOR PEAK POWER** | Channel | Frequency
(MHz) | Peak Power
(mW) | Peak Power
(dBm) | Limit
(dBm) | Pass/Fail | |---------|--------------------|--------------------|---------------------|----------------|-----------| | 11 | 2405 | 120.504 | 20.81 | 30 | Pass | | 19 | 2445 | 142.561 | 21.54 | 30 | Pass | | 25 | 2475 | 134.276 | 21.28 | 30 | Pass | # **FOR AVERAGE POWER** | Channel | Frequency
(MHz) | Average Power (mW) | Average Power
(dBm) | |---------|--------------------|--------------------|------------------------| | 11 | 2405 | 114.815 | 20.60 | | 19 | 2445 | 135.831 | 21.33 | | 25 | 2475 | 127.938 | 21.07 | # 4.5 Power Spectral Density Measurement ### 4.5.1 Limits of Power Spectral Density Measurement The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz. ### 4.5.2 Test Setup ### 4.5.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. ### 4.5.4 Test Procedure - a. Set analyzer center frequency to DTS channel center frequency. - b. Set the span to 1.5 times the DTS bandwidth. - c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. - d. Set the VBW \geq 3 × RBW. - e. Detector = peak. - f. Sweep time = auto couple. - g. Trace mode = max hold. - h. Allow trace to fully stabilize. - i. Use the peak marker function to determine the maximum amplitude level within the RBW. # 4.5.5 Deviation from Test Standard No deviation. ### 4.5.6 EUT Operating Condition Same as Item 4.3.6 # 4.5.7 Test Results | Channel | Frequency
(MHz) | PSD
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass
/Fail | |---------|--------------------|-------------------|---------------------|---------------| | 11 | 2405 | 4.81 | 8 | Pass | | 19 | 2445 | 5.19 | 8 | Pass | | 25 | 2475 |
5.31 | 8 | Pass | ### 4.6 Conducted Out of Band Emission Measurement ### 4.6.1 Limits of Conducted Out of Band Emission Measurement Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). ### 4.6.2 Test Setup ### 4.6.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. ### 4.6.4 Test Procedure ### **MEASUREMENT PROCEDURE REF** - 1. Set the RBW = 100 kHz. - 2. Set the VBW \geq 300 kHz. - 3. Detector = peak. - 4. Sweep time = auto couple. - 5. Trace mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. ### **MEASUREMENT PROCEDURE OOBE** - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = \max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum amplitude level. ### 4.6.5 Deviation from Test Standard No deviation. # 4.6.6 EUT Operating Condition Same as Item 4.3.6 ### 4.6.7 Test Results The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. | 5 Pictures of Test Arrangements | |---| | Please refer to the attached file (Test Setup Photo). | Report No.: RF190628E02 Page No. 43 / 44 Report Format Version: 6.1.1 ### Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END ---