

FCC Radio Test Report

FCC ID: G950WM7111

This report concerns: Original Grant

Project No. : 2406C089B Equipment : loT gateway Brand Name : Vantiva

Test Model : OWM7111IOT
Series Model : OWM7111IOT1
Applicant : Vantiva USA LLC

Address : 4855 Peachtree Industrial Blvd. Suite 200 Norcross, Georgia 30092

Manufacturer : Vantiva USA LLC

Address : 4855 Peachtree Industrial Blvd. Suite 200 Norcross, Georgia 30092
Factory : FUHONG PRECISION COMPONENT (BAC GIANG) COMPANY

LIMITED

Address : Dinh Tram Industrial Zone.Nenh Ward Viet Yen Town.Bac Giang

Province. Vietnam

Date of Receipt : Jun. 25, 2024

Date of Test : Jun. 25, 2024 ~ Aug. 21, 2024

Issued Date : Sep. 27, 2024

Report Version : R00

Test Sample : Engineering Sample No.: DG2024062512 for raidiated and AC

conducted power line emission, DG2024062515 for others.

Standard(s) : FCC CFR Title 47, Part 15, Subpart C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by

Antony Liano

Approved by : _____ Chay Cai

Room 108, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1 . APPLICABLE STANDARDS	7
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
2.3 TEST ENVIRONMENT CONDITIONS	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	12
3.3 PARAMETERS OF TEST SOFTWARE	14
3.4 DUTY CYCLE	15
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	17
3.6 SUPPORT UNITS	17
3.7 CUSTOMER INFORMATION DESCRIPTION	17
4 . AC POWER LINE CONDUCTED EMISSIONS	18
4.1 LIMIT	18
4.2 TEST PROCEDURE	18
4.3 DEVIATION FROM TEST STANDARD	18
4.4 TEST SETUP	19
4.5 EUT OPERATION CONDITIONS	19
4.6 TEST RESULTS	19
5 . RADIATED EMISSIONS	20
5.1 LIMIT	20
5.2 TEST PROCEDURE	21
5.3 DEVIATION FROM TEST STANDARD	22
5.4 TEST SETUP	22
5.5 EUT OPERATION CONDITIONS	24
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ	24
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	24
5.8 TEST RESULTS - ABOVE 1000 MHZ	24
6 . BANDWIDTH	25
6.1 LIMIT	25
6.2 TEST PROCEDURE	25

Table of Contents	Page
6.3 DEVIATION FROM STANDARD	25
6.4 TEST SETUP	25
6.5 EUT OPERATION CONDITIONS	25
6.6 TEST RESULTS	25
7 . MAXIMUM OUTPUT POWER	26
7.1 LIMIT	26
7.2 TEST PROCEDURE	26
7.3 DEVIATION FROM STANDARD	26
7.4 TEST SETUP	26
7.5 EUT OPERATION CONDITIONS	26
7.6 TEST RESULTS	26
8 . CONDUCTED SPURIOUS EMISSIONS	27
8.1 LIMIT	27
8.2 TEST PROCEDURE	27
8.3 DEVIATION FROM STANDARD	27
8.4 TEST SETUP	27
8.5 EUT OPERATION CONDITIONS	27
8.6 TEST RESULTS	27
9 . POWER SPECTRAL DENSITY	28
9.1 LIMIT	28
9.2 TEST PROCEDURE	28
9.3 DEVIATION FROM STANDARD	28
9.4 TEST SETUP	28
9.5 EUT OPERATION CONDITIONS	28
9.6 TEST RESULTS	28
10 . MEASUREMENT INSTRUMENTS LIST	29
11 . EUT TEST PHOTO	31
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	37
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	40
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	45
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	48
APPENDIX E - BANDWIDTH	111
APPENDIX F - MAXIMUM OUTPUT POWER	118

Table of Contents	Page
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS	129
APPENDIX H - POWER SPECTRAL DENSITY	142

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2406C089B	R00	Original Report.	Sep. 27, 2024	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of A2LA:

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C					
Standard(s) Section Test Item		Test Result	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247(a)(2)	Bandwidth	APPENDIX E	PASS		
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS		
15.247(d)	Conducted Spurious Emissions	APPENDIX G	PASS		
15.247(e)	Power Spectral Density	APPENDIX H	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Dalang, Dongguan City, Guangdong People's Republic of China.

BTL's Registration Number for FCC: 747969 BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.88

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
DG-CB03 (3m)		30MHz ~ 200MHz	V	4.40
	CISPR	30MHz ~ 200MHz	Н	3.62
		200MHz ~ 1,000MHz	V	4.58
		200MHz ~ 1,000MHz	Н	3.98

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03	303 CISPR	1GHz ~ 6GHz	4.08
(3m)	CIOPK	6GHz ~ 18GHz	4.62

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03 (1m)	CISPR	18 ~ 26.5 GHz	3.36

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	0.90 %
Maximum Output Power	1.3 dB
Conducted Spurious Emission	1.9 dB
Power Spectral Density	1.4 dB
Temperature	0.8 °C
Humidity	2.2 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By	Test Date
AC Power Line Conducted Emissions	25°C	60%	AC 120V/60Hz	Hayden Chen	Jul. 17, 2024
Radiated Emissions-9kHz to 30 MHz	23°C	46%	AC 120V/60Hz	Hayden Chen	Aug. 05, 2024
Radiated Emissions-30MHz to 1000MHz	26°C	56%	AC 120V/60Hz	Allen Tong	Jul. 17, 2024
Radiated Emissions-Above	25°C	53%	AC 120V/60Hz	Chen Mo	Jul. 27, 2024 Aug. 01, 2024
1000MHz	25°C	56%	AC 120V/60Hz	Allen Tong	Jul. 18, 2024
Bandwidth	23°C	58%	PoE 54V	Parker Yang	Jul. 20, 2024
Maximum Output Power	22-25°C	48-60%	PoE 54V	Steve Zhou	Jul. 12, 2024 ~ Aug. 02, 2024
Conducted Spurious Emissions	23°C	58%	PoE 54V	Parker Yang	Jul. 20, 2024
Power Spectral Density	23°C	58%	PoE 54V	Parker Yang	Jul. 20, 2024

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

IoT gateway
Vantiva
OWM7111IOT
OWM7111IOT1
Indoor access point device model: OWM7111IOT Outdoor access point device model : OWM7111IOT1
5043_OWM7111IOT_FSW_V07
FGR
DC Voltage supplied from PoE Power Supply. Model: ADP-46PH-54-2- 54046EPCU
INPUT: 100-240V~ 50/60Hz OUTPUT: 54.0V===0.85A
2412 MHz ~ 2462 MHz
IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA
IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 300 Mbps IEEE 802.11ax: up to 573.6 Mbps
IEEE 802.11b: 29.27 dBm (0.8453 W)
IEEE 802.11ax(HE20): 27.91 dBm (0.6180 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 -	CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20), IEEE 802.11ax(HE20)						
CH03 - CH09 for IEEE 802.11n(HT40), IEEE 802.11ax(HE40) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)							
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Antenna Specification:

Ant.	Brand	IPN	Antenna Type	Connector	Gain (dBi)
1	Vantiva	6338351C	РСВ	IPEX	5.4
2	Vantiva	6338352C	PCB	IPEX	6.1

Note:

1) For CDD: Directional gain=4.82 dBi.

$$Directional Gain = 10 \cdot \log \left[\frac{\sum\limits_{j=1}^{N_{SS}} \left\{ \sum\limits_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

 $N_{\rm SS}$ = the number of independent spatial streams of data; $N_{\rm ANT}$ = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna.

2) For TXBF: Directional gain=6.28 dBi. So, the output power limit is 30-(6.28-6)=29.72

4. Table for Antenna Configuration:

For Non Beamforming:

Operating Mode	2TX
TX Mode	21/\
IEEE 802.11b	V(Ant. 1 + Ant. 2)
IEEE 802.11g	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT20)	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT40)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE20)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE40)	V(Ant. 1 + Ant. 2)

For Beamforming:

Operating Mode TX Mode	2TX
IEEE 802.11n(HT20)	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT40)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE20)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE40)	V(Ant. 1 + Ant. 2)

3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3	TX N(HT20) Mode Channel 01/06/11
Mode 4	TX N(HT40) Mode Channel 03/06/09
Mode 5	TX AX(HE20) Mode Channel 01/06/11
Mode 6	TX AX(HE40) Mode Channel 03/06/09
Mode 7	TX B Mode Channel 06
Mode 8	TX B Mode Channel 01/02/06/10/11
Mode 9	TX G Mode Channel 01/02/06/10/11
Mode 10	TX N(HT20) Mode Channel 01/02/06/10/11
Mode 11	TX N(HT40) Mode Channel 03/04/06/08/09
Mode 12	TX AX(HE20) Mode Channel 01/02/06/10/11
Mode 13	TX AX(HE40) Mode Channel 03/04/06/08/09

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test		
Final Test Mode Description		
Mode 7	TX B Mode Channel 06	

Radiated emissions test - Below 1GHz		
Final Test Mode Description		
Mode 7	TX B Mode Channel 06	

Radiated emissions test- Above 1GHz_Non Beamforming		
Final Test Mode	Description	
Mode 8	TX B Mode Channel 01/02/06/10/11	
Mode 9	TX G Mode Channel 01/02/06/10/11	
Mode 10	TX N(HT20) Mode Channel 01/02/06/10/11	
Mode 11	TX N(HT40) Mode Channel 03/04/06/08/09	
Mode 12	TX AX(HE20) Mode Channel 01/02/06/10/11	
Mode 13	TX AX(HE40) Mode Channel 03/04/06/08/09	

Maximum Output Power test_Non Beamforming		
Final Test Mode	Description	
Mode 8	TX B Mode Channel 01/02/06/10/11	
Mode 9	TX G Mode Channel 01/02/06/10/11	
Mode 10	TX N(HT20) Mode Channel 01/02/06/10/11	
Mode 11	TX N(HT40) Mode Channel 03/04/06/08/09	
Mode 12	TX AX(HE20) Mode Channel 01/02/06/10/11	
Mode 13	TX AX(HE40) Mode Channel 03/04/06/08/09	

Maximum Output Power test_Beamforming		
Final Test Mode	Description	
Mode 10	TX N(HT20) Mode Channel 01/02/06/10/11	
Mode 11	TX N(HT40) Mode Channel 03/04/06/08/09	
Mode 12	TX AX(HE20) Mode Channel 01/02/06/10/11	
Mode 13	TX AX(HE40) Mode Channel 03/04/06/08/09	

Other Conducted test		
Final Test Mode	Description	
Mode 1	TX B Mode Channel 01/06/11	
Mode 2	TX G Mode Channel 01/06/11	
Mode 3	TX N(HT20) Mode Channel 01/06/11	
Mode 4	TX N(HT40) Mode Channel 03/06/09	
Mode 5	TX AX(HE20) Mode Channel 01/06/11	
Mode 6	TX AX(HE40) Mode Channel 03/06/09	

NOTE:

- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX B Mode Channel 06 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (4) For radiated emission Harmonic 18-26.5GHz test, only tested the worst case and recorded.
- (5) The measurements for Output Power are tested, the Non Beamforming and Beamforming are recorded in the report. The worst case is Non Beamforming and only the worst case is documented for other test items.
- (6) IEEE 802.11ax mode only supports full RU, so only the full RU is evaluated and measured inside report.
- (7) For radiated emission above 1 GHz test: The polarization of Vertical and Horizontal are evaluated, the worst case is Vertical and recorded.

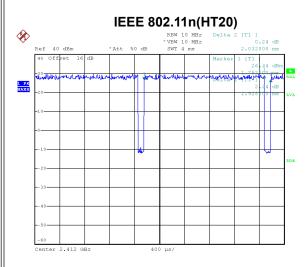
3.3 PARAMETERS OF TEST SOFTWARE

Non Beamforming

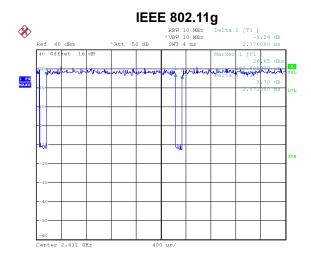
Test Software Version	accessMTool_REL_3_2_0_0				
Frequency (MHz)	2412	2417	2437	2457	2462
IEEE 802.11b	100	99	98	100	99
IEEE 802.11g	87	87	100	86	80
IEEE 802.11n(HT20)	83	87	97	85	75
IEEE 802.11ax(HE20)	76	85	96	81	72
Frequency (MHz)	2422	2427	2437	2447	2452
IEEE 802.11n(HT40)	72	75	86	79	75
IEEE 802.11ax(HE40)	70	73	84	77	74


Beamforming

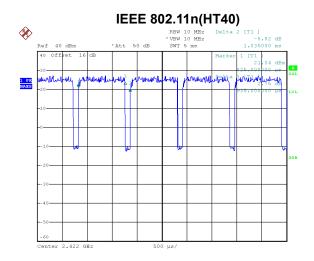
Test Software Version	accessMTool_REL_3_2_0_0				
Frequency (MHz)	2412	2412 2417 2437 2457 2462			
IEEE 802.11n(HT20)	82	86	96	84	74
IEEE 802.11ax(HE20)	75	84	95	80	71
Frequency (MHz)	2422	2427	2437	2447	2452
IEEE 802.11n(HT40)	71	74	85	78	74
IEEE 802.11ax(HE40)	69	72	83	76	73


3.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.

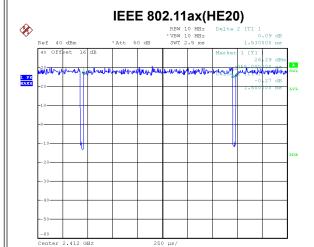

Date: 20.JUL.2024 13:25:19

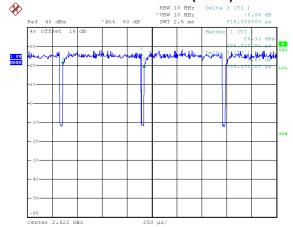
Duty cycle = 12.414 ms / 13.121 ms = 94.61% Duty Factor = 10 log(1/Duty cycle) = 0.24


Date: 20.JUL.2024 13:28:10

Duty cycle = 1.928 ms / 2.032 ms = 94.88% Duty Factor = 10 log(1/Duty cycle) = 0.23

Date: 20.JUL.2024 13:26:49


Duty cycle = 2.072 ms / 2.176 ms = 95.22% Duty Factor = 10 log(1/Duty cycle) = 0.21


Date: 20.JUL.2024 13:29:40

Duty cycle = 0.935 ms / 1.035 ms = 90.34% Duty Factor = 10 log(1/Duty cycle) = 0.44

IEEE 802.11ax(HE40)

Date: 20.JUL.2024 13:31:36

Duty cycle = 1.500 ms / 1.530 ms = 98.04% Duty Factor = 10 log(1/Duty cycle) = 0.00 Date: 20.JUL.2024 13:32:04

Duty cycle = 0.785 ms / 0.815 ms = 96.32% Duty Factor = 10 log(1/Duty cycle) = 0.16

NOTE:

For IEEE 802.11b:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 81 Hz.

For IEEE 802.11g:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 483 Hz.

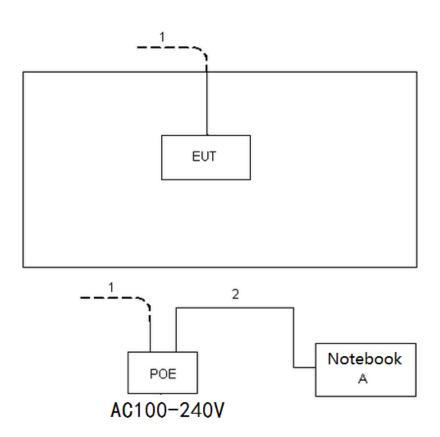
For IEEE 802.11n(HT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 519 Hz.

For IEEE 802.11n(HT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1070 Hz.

For IEEE 802.11ax(HE20):


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11ax(HE40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1274 Hz.

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
Α	Notebook	Dell	Inspiron 15-7559	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	RJ45 Cable	NO	NO	10m
2	RJ45 Cable	NO	NO	1m

3.7 CUSTOMER INFORMATION DESCRIPTION

- 1) The antenna gain and beamforming gain are provided by the manufacturer.
- 2) Except for AC power line conducted emissions and radiated emissions, the results of all test items include cable losses. All cable losses are provided by the testing laboratory.

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)		
Frequency of Emission (MHZ)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

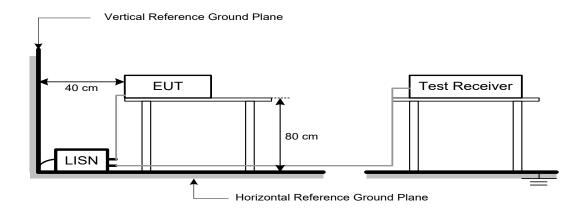
Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

4.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS

Please refer to the APPENDIX A.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Band edge/ Harmonic at 3m (dBµV/m)		Harmonic at 1m (dBµV/m)	
1 3 ()	Peak	Average	Peak	Average
Above 1000	74	54	83.5 (Note 4)	63.5 (Note 4)

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

(4)

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

 $20log (d_{limit}/d_{measure})=20log (3/1)=9.5 dB.$

FS_{limit}: Harmonic at 3m Peak and Average limit.

FS_{max}: Harmonic at 1m Peak and Average Maximum value.

d_{limit}: Harmonic at 3m test distance. d_{measure}: Harmonic Actual test distance.

5.2 TEST PROCEDURE

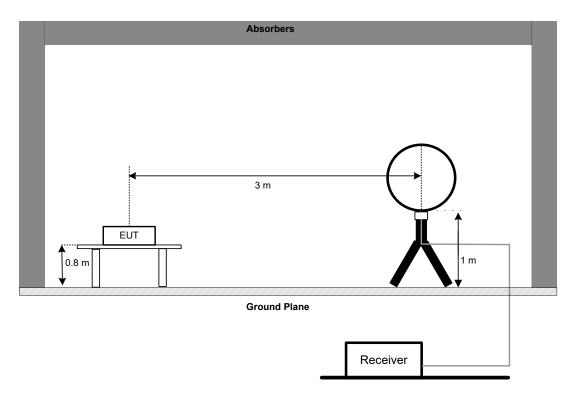
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m or 1m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

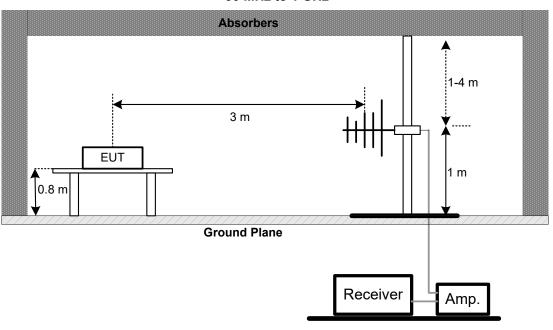
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value

Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

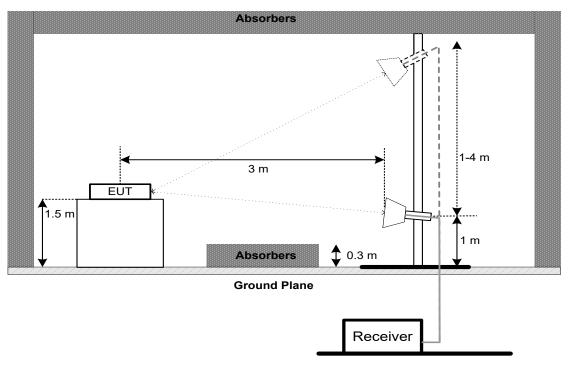


5.3 DEVIATION FROM TEST STANDARD

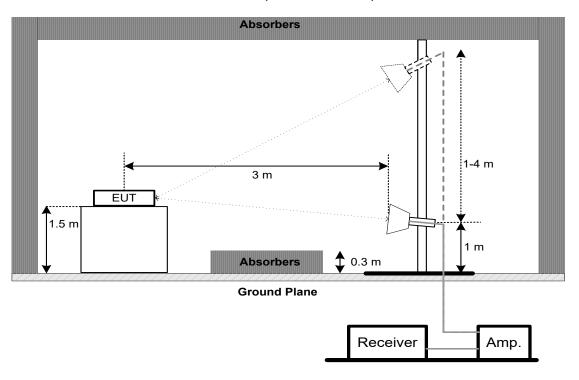

No deviation.

5.4 TEST SETUP

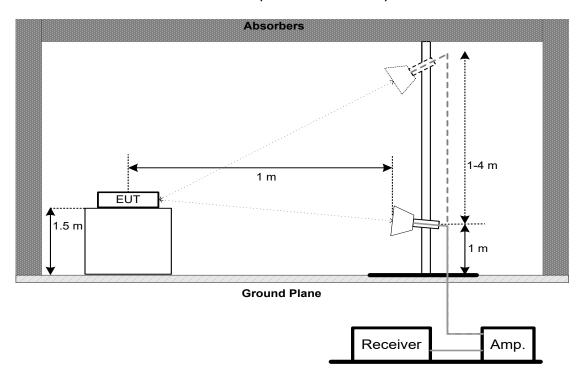
9 kHz to 30 MHz



30 MHz to 1 GHz



Above 1 GHz Band edge



Harmonic(1 GHz to 18 GHz)

Harmonic(18 GHz to 26.5 GHz)

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. BANDWIDTH

6.1 LIMIT

Section	Test Item	Limit
ECC 15 247(a)(2)	6 dB Bandwidth	Minimum 500 kHz
FCC 15.247(a)(2)	99% Emission Bandwidth	-

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

TOT O GE BUITAWIGHT.	
Spectrum Parameters	Setting
Span Frequency	> Measurement Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99% Emission Bandwidth:

Spectrum Parameters	Setting				
Span Frequency	Between 1.5 times and 5.0 times the OBW				
RBW	300 kHz For 20MHz 1 MHz For 40MHz				
VBW	1 MHz For 20MHz 3 MHz For 40MHz				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

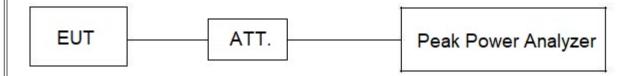
6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. MAXIMUM OUTPUT POWER

7.1 LIMIT

Section	Test Item	Limit	
FCC 15.247(b)(3)	Maximum Output Power	1.0000 Watt or 30.00 dBm	


7.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.2.3.1 of ANSI C63.10-2013 and FCC KDB 662911 D01 v02r01 Multiple Transmitter Output.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. CONDUCTED SPURIOUS EMISSIONS

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9. POWER SPECTRAL DENSITY

9.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting		
Span Frequency	25 MHz (20 MHz) / 60 MHz (40 MHz)		
RBW	3 kHz		
VBW	10 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EMI TEST RECEIVER	R&S	ESCI	100382	Dec. 22, 2024		
2	TWO-LINE V-NETWORK	R&S	ENV216	101447	Dec. 22, 2024		
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
4	Cable	N/A	SFT205-NMNM-9M -001	9M	Nov. 27, 2024		
5	643 Shield Room	ETS	6*4*3	N/A	N/A		

	Radiated Emissions - 9 kHz to 30 MHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60 B-034	Mar. 30, 2025		
2	MXE EMI Receiver	Keysight	N9038A	MY56400091	Dec. 22, 2024		
3	Cable	N/A	RW2350-3.8A-NMB M-1.5M	N/A	Jun. 09, 2025		
4	Cable	N/A	RG 213/U	N/A	Jun. 09, 2025		
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
6	966 Chamber room	ETS	9*6*6	N/A	May 16, 2025		

	Radiated Emissions - 30 MHz to 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	1462	Dec. 13, 2024	
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06009	Dec. 13, 2024	
3	Preamplifier	EMC INSTRUMENT	EMC001330	980998	Nov. 17, 2024	
4	Cable	RegalWay	LMR400-NMNM-12 .5m	N/A	Jun. 06, 2025	
5	Cable	RegalWay	LMR400-NMNM-3 m	N/A	Jun. 06, 2025	
6	Cable	RegalWay	LMR400-NMNM-0. 5m	N/A	Jun. 06, 2025	
7	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024	
8	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A	
9	Positioning Controller	MF	MF-7802	N/A	N/A	
10	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
11	966 Chamber room	CM	9*6*6	N/A	May 16, 2025	

	Radiated Emissions - Above 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	MXA Signal Analyzer	KEYSIGHT	N9020B	MY63380204	Nov. 17, 2024	
2	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024	
3	Double Ridged Guide Antenna	ETS	3115	75789	Jun. 15, 2025	
4	Cable	RegalWay	RWLP50-4.0A-SMS M-12.5M	N/A	Jul. 03, 2025	
5	Cable	RegalWay	RWLP50-4.0A-NM RASM-2.5M	N/A	Jul. 03, 2025	
6	Cable	RegalWay	RWLP50-4.0A-NM RASMRA-0.8M	N/A	Jul. 03, 2025	
7	Preamplifier	EMC INSTRUME NT	EMC184045SE	980905	Nov. 19, 2024	
8	Cable	RegalWay	RWLP50-2.6A-2.92 M2.92M-1.1M	N/A	Jul. 26, 2024	
9	Cable	Tonscend	HF160-KMKM-3M	N/A	Jul. 26, 2024	
10	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170(3m)	9170-319	Jun.16,2025	
11	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A	
12	Filter	STI	STI15-9912	N/A	May 31, 2025	
13	966 Chamber room	CM	9*6*6	N/A	May 19, 2025	
14	Positioning Controller	MF	MF-7802	N/A	N/A	
15	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	

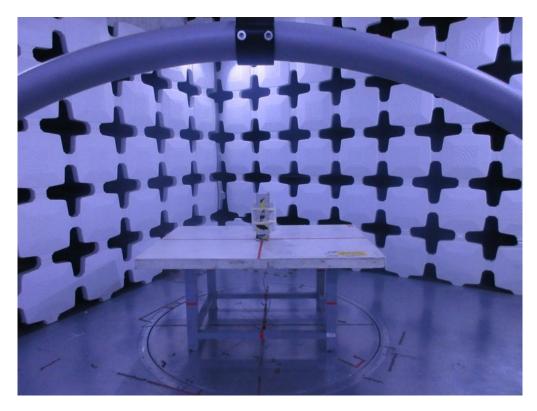
Bandwidth & Conducted Spurious Emissions & Power Spectral Density							
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated until						
1	Spectrum Analyzer	R&S	FSP38	100852	May 31, 2025		
2	Measurement BTI Conducted						
3	Isolation attenuator	Z-Link	ASMA-16-18-2W	N/A	N/A		

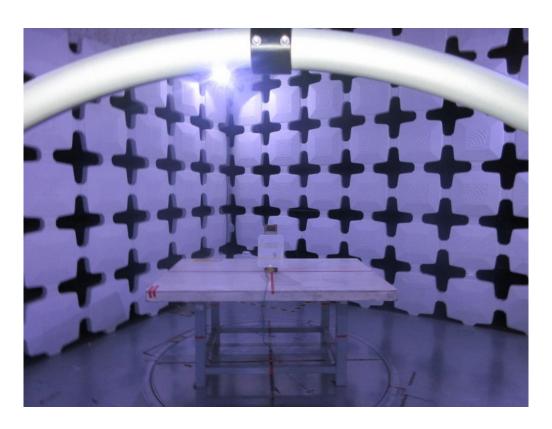
	Maximum Output Power					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Peak Power Analyzer	Keysight	8990B	MY51000506	May 31, 2025	
2	Wideband power sensor	Keysight	N1923A	MY58310004	May 31, 2025	
3	Isolation attenuator	Z-Link	ASMA-10-18-2W	N/A	N/A	

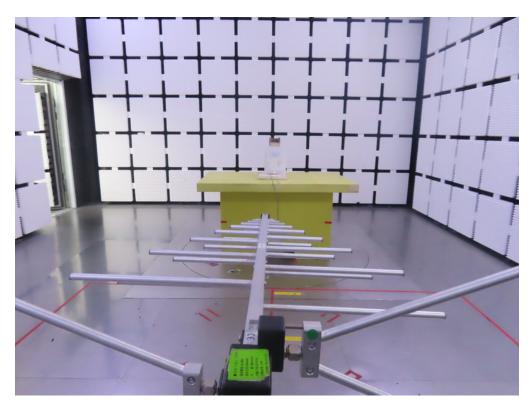
Remark: "N/A" denotes no model name, serial no. or calibration specified.

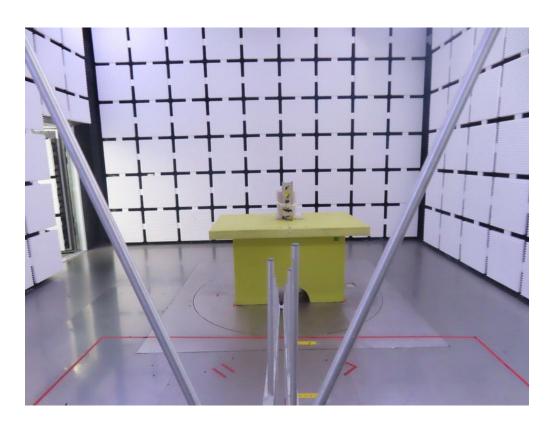
All calibration period of equipment list is one year.

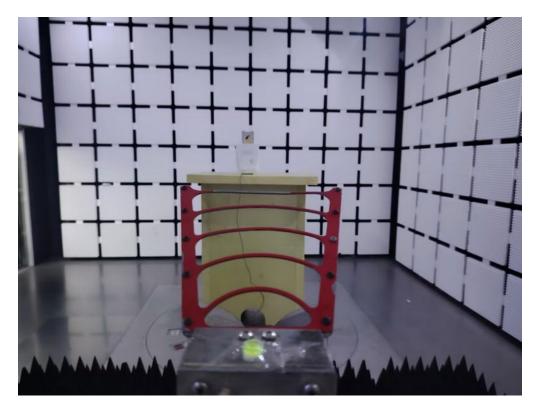
11. EUT TEST PHOTO

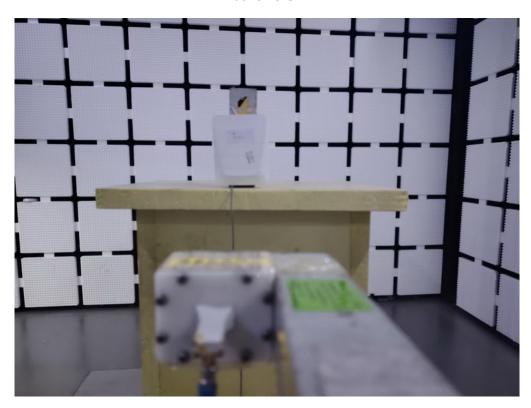


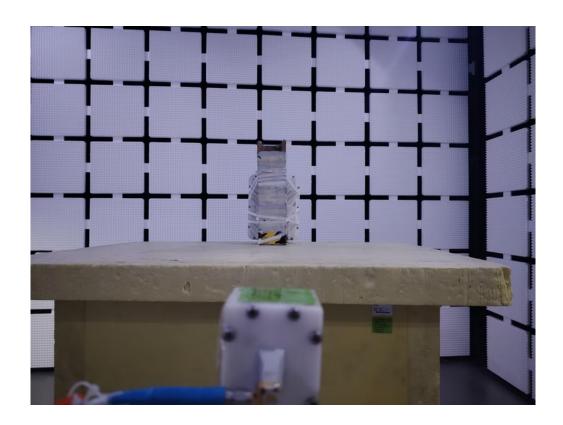


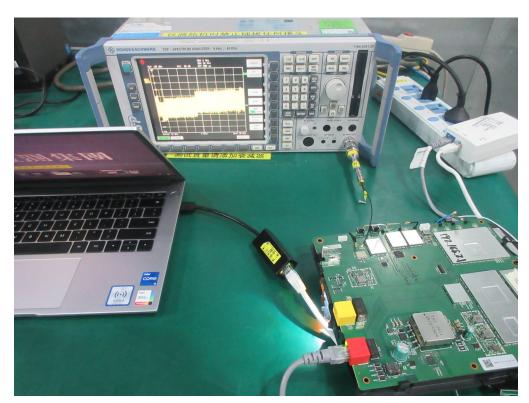

9 kHz to 30 MHz



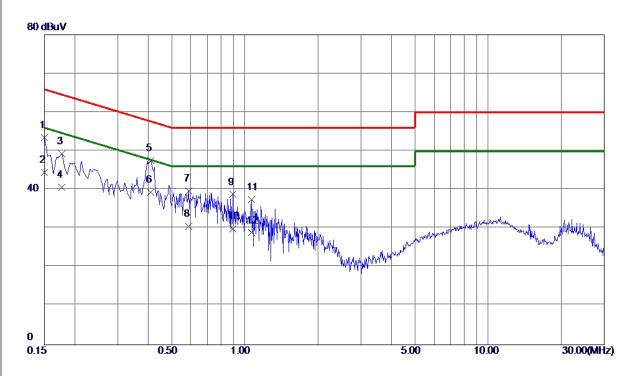

30 MHz to 1 GHz


1 GHz to 18 GHz

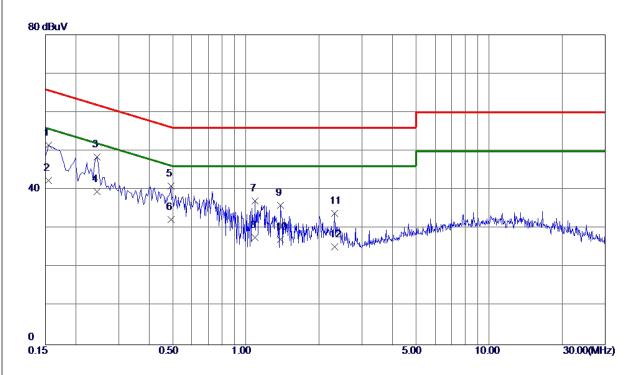



Above 18 GHz

Conducted Test Photos



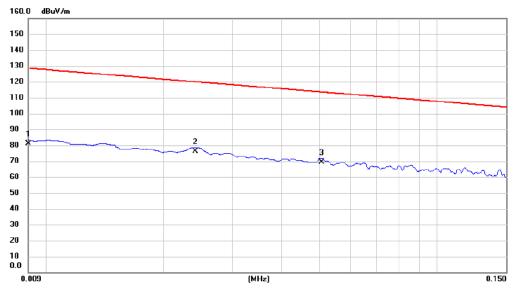
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS



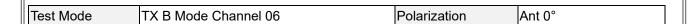
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0. 1500	43. 55	9. 96	53. 51	66. 00	-12. 49	QP	
2	0. 1500	34. 50	9. 96	44. 46	56.00	-11. 54	AVG	
3	0. 1770	39. 30	9. 97	49. 27	64. 63	-15. 36	QP	
4	0. 1770	30. 60	9. 97	40. 57	54. 63	-14. 06	AVG	
5	0. 4110	37. 04	10. 43	47. 47	57. 63	-10. 16	QP	
6 *	0. 4110	28. 89	10. 43	39. 32	47. 63	-8. 31	AVG	
7	0. 5865	28. 95	10. 80	39. 75	56. 00	-16. 25	QP	
8	0. 5865	19. 80	10. 80	30. 60	46. 00	-15. 40	AVG	
9	0.8925	27. 61	11. 19	38. 80	56. 00	-17. 20	QP	
10	0.8925	18. 70	11. 19	29. 89	46. 00	-16. 11	AVG	
11	1. 0635	26. 21	11. 28	37. 49	56. 00	-18. 51	QP	
12	1. 0635	17. 60	11. 28	28. 88	46. 00	-17. 12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0. 1545	41.64	9. 93	51. 57	65. 75	-14. 18	QP	
2	0. 1545	32. 51	9. 93	42. 44	55. 75	-13. 31	AVG	
3	0. 2445	38. 41	10.02	48. 43	61. 94	-13. 51	QP	
4 *	0. 2445	29. 49	10.02	39. 51	51. 94	-12. 43	AVG	
5	0.4920	30. 34	10. 57	40. 91	56. 13	-15. 22	QP	
6	0.4920	21. 80	10. 57	32. 37	46. 13	-13. 76	AVG	
7	1. 0905	25. 84	11. 24	37. 08	56. 00	-18. 92	QP	
8	1.0905	16. 40	11. 24	27. 64	46.00	-18. 36	AVG	
9	1. 3920	24. 81	11. 24	36. 05	56. 00	-19. 95	QP	
10	1. 3920	15. 90	11. 24	27. 14	46.00	-18. 86	AVG	
11	2. 3190	23. 25	10. 68	33. 93	56. 00	-22. 07	QP	
12	2. 3190	14. 61	10. 68	25. 29	46. 00	-20. 71	AVG	

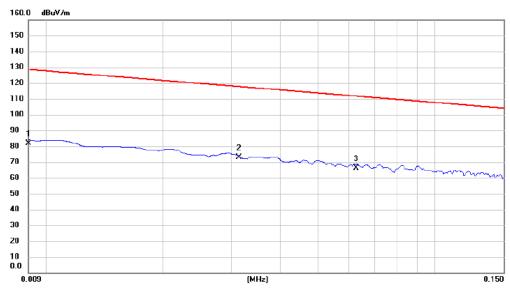

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ



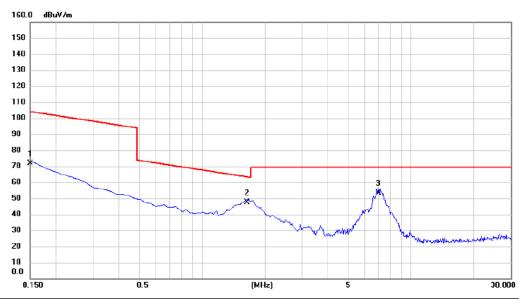
No. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0090	60.78	20.40	81.18	128.52	-47.34	AVG	
2 *	0.0241	55.12	20.92	76.04	119.96	-43.92	AVG	
3	0.0507	48.26	21.20	69.46	113.50	-44.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No. Mk.	Freq.			Measure- ment		Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.1500	50.32	21.27	71.59	104.09	-32.50	AVG	
2	1.6425	26.78	21.14	47.92	63.29	-15.37	QP	
3 *	6.8662	33.12	21.19	54.31	69.54	-15.23	QP	

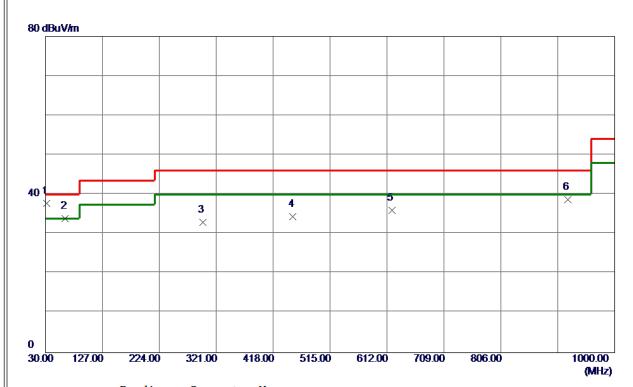
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



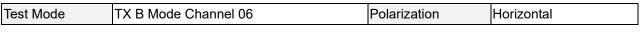
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0090	61.32	20.40	81.72	128.52	-46.80	AVG	
2 *	0.0313	51.79	21.11	72.90	117.69	-44.79	AVG	
3	0.0627	45.15	21.24	66.39	111.66	-45.27	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

No. Mk.	Freq.			Measure- ment		Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.1500	50.36	21.27	71.63	104.09	-32.46	AVG	
2 *	1.6425	26.45	21.14	47.59	63.29	-15.70	QP	
3	6.9856	32.14	21.19	53.33	69.54	-16.21	QP	


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

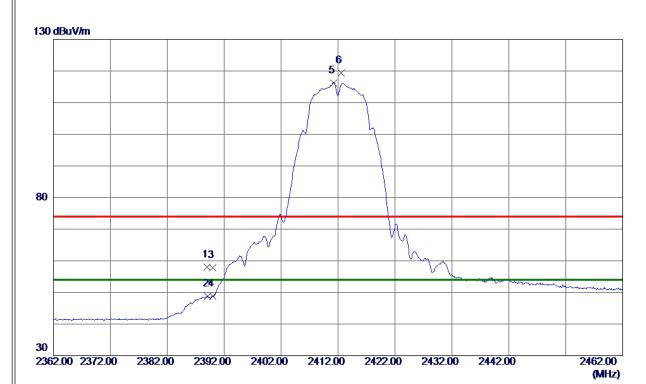




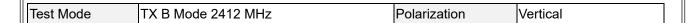
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 1 * 32.4250 50.48 -12.66 37.82 40.00 -2.18 QP 2 63.9500 46.50 -12.52 33.98 40.00 -6.02 Peak 3 298.2049 43.51 -10.62 32.89 46.00 -13.11 Peak 4 451.9500 41.12 -6.75 34.37 46.00 -11.63 Peak 5 620.7300 39.33 -3.28 36.05 46.00 -9.95 Peak 6 919.9750 38.26 0.39 38.65 46.00 -7.35 Peak	No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
2 63. 9500 46. 50 -12. 52 33. 98 40. 00 -6. 02 Peak 3 298. 2049 43. 51 -10. 62 32. 89 46. 00 -13. 11 Peak 4 451. 9500 41. 12 -6. 75 34. 37 46. 00 -11. 63 Peak 5 620. 7300 39. 33 -3. 28 36. 05 46. 00 -9. 95 Peak		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
3 298. 2049 43. 51 -10. 62 32. 89 46. 00 -13. 11 Peak 4 451. 9500 41. 12 -6. 75 34. 37 46. 00 -11. 63 Peak 5 620. 7300 39. 33 -3. 28 36. 05 46. 00 -9. 95 Peak	1 *	32. 4250	50. 48	-12. 66	37. 82	40.00	-2. 18	QP	
4 451. 9500 41. 12 -6. 75 34. 37 46. 00 -11. 63 Peak 5 620. 7300 39. 33 -3. 28 36. 05 46. 00 -9. 95 Peak	2	63. 9500	46. 50	-12. 52	33. 98	40.00	-6. 02	Peak	
5 620. 7300 39. 33 -3. 28 36. 05 46. 00 -9. 95 Peak	3	298. 2049	43. 51	-10.62	32. 89	46.00	-13. 11	Peak	
	4	451. 9500	41. 12	-6. 75	34. 37	46.00	-11. 63	Peak	
6 919 9750 38 26 0 39 38 65 46 00 -7 35 Peak	5	620. 7300	39. 33	-3. 28	36. 05	46.00	-9. 95	Peak	
0 01010100 00120 0100 10100 1100 10001	6	919. 9750	38. 26	0. 39	38. 65	46.00	-7. 35	Peak	

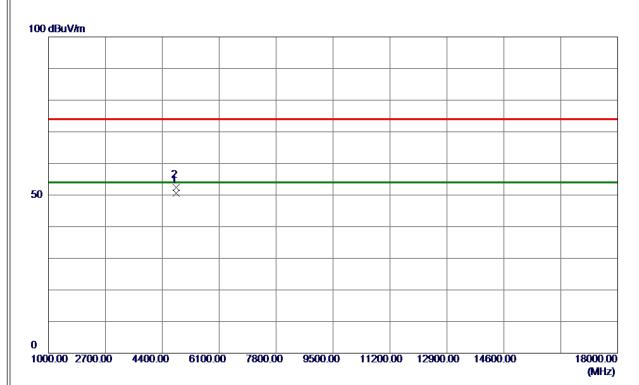
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	107. 1150	44. 45	-14. 74	29. 71	43. 50	-13. 79	Peak	
2	150. 2800	41.82	-11. 16	30. 66	43. 50	-12.84	Peak	
3	296. 2650	44. 87	-10. 64	34. 23	46.00	-11. 77	Peak	
4	359. 8000	43. 93	-9. 38	34. 55	46.00	-11. 45	Peak	
5	380. 6550	42. 39	-8. 62	33. 77	46.00	-12. 23	Peak	
6 *	912. 2150	38. 56	0. 36	38. 92	46. 00	-7. 08	Peak	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

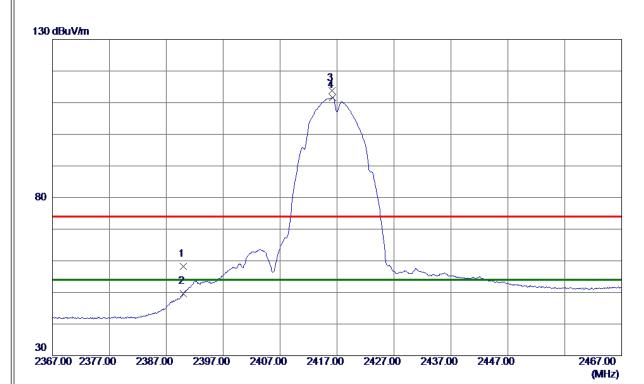
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ





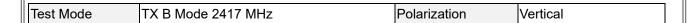
mment
Limit
Limit
_

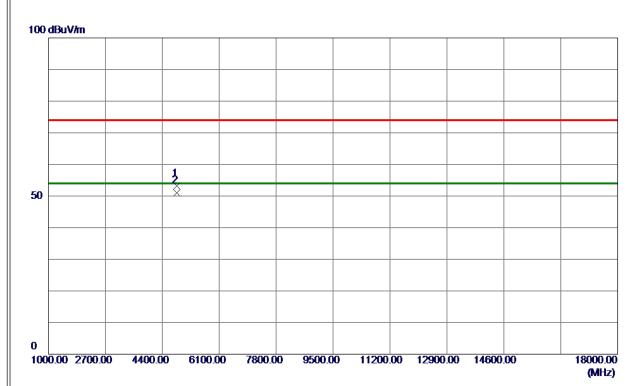
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4823. 9900	47. 77	2.84	50. 61	54.00	-3. 39	AVG	
2	4824. 0400	49. 58	2.84	52. 42	74.00	-21. 58	Peak	

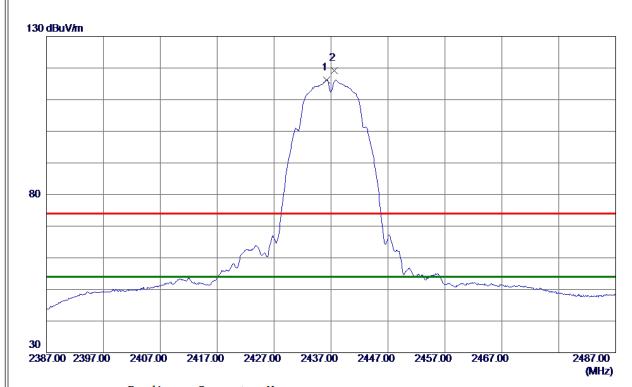
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





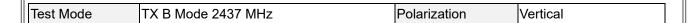
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	50. 59	7. 70	58. 29	74.00	-15. 71	Peak	
2	2390. 0000	41. 93	7. 70	49. 63	54.00	-4. 37	AVG	
3	2416. 1500	106. 03	7. 73	113. 76	74.00	39. 76	Peak	No Limit
4 *	2416. 2000	103.82	7. 73	111. 55	54. 00	57. 55	AVG	No Limit

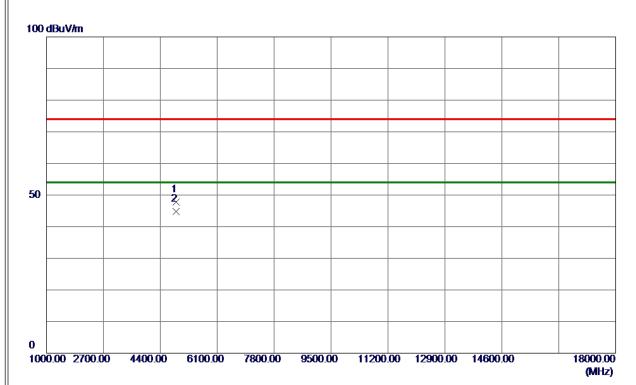
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4833. 9950	50. 26	2. 86	53. 12	74.00	-20.88	Peak	
2 *	4834. 0000	48. 11	2. 86	50. 97	54. 00	-3. 03	AVG	

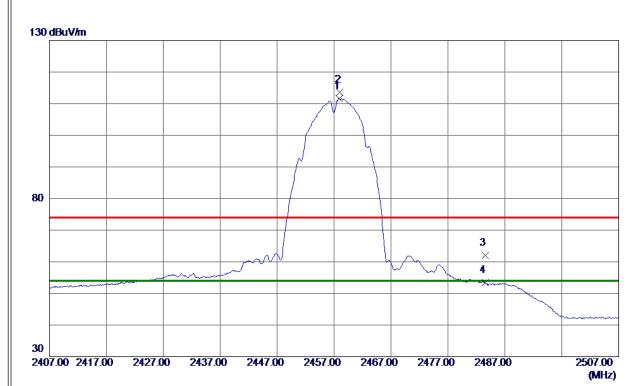
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





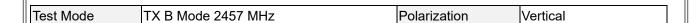
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2436. 2000	108. 51	7. 75	116. 26	54.00	62. 26	AVG	No Limit
2	2437. 5500	111. 40	7. 75	119. 15	74.00	45. 15	Peak	No Limit

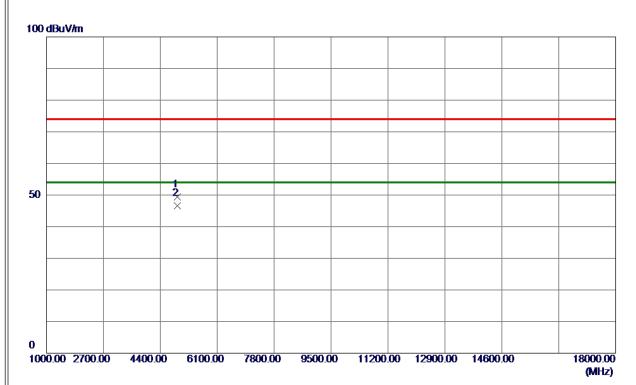
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4873. 9800	44. 77	2. 96	47. 73	74.00	-26. 27	Peak	
2 *	4874. 0099	41. 91	2. 96	44. 87	54.00	-9. 13	AVG	

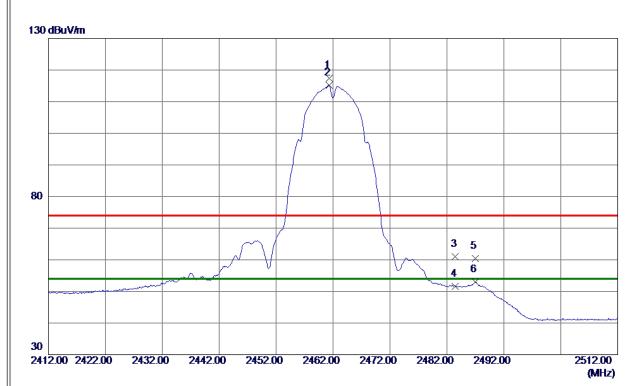
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





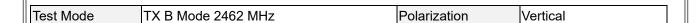
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2457. 8500	103.84	7. 78	111.62	54.00	57. 62	AVG	No Limit
2	2457. 9500	105. 89	7. 78	113. 67	74.00	39. 67	Peak	No Limit
3	2483. 5000	54. 25	7. 81	62. 06	74.00	-11. 94	Peak	
4	2483. 5000	45. 51	7. 81	53. 32	54. 00	-0. 68	AVG	

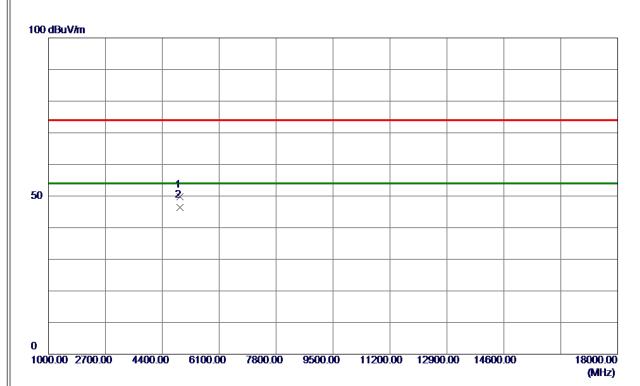
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4914. 0250	46. 32	3. 05	49. 37	74.00	-24. 63	Peak	
2 *	4914. 0250	43. 47	3. 05	46. 52	54.00	−7. 48	AVG	

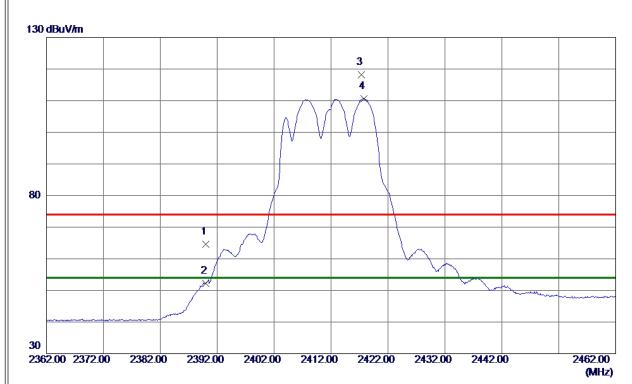
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





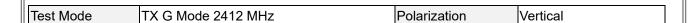
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2461. 3000	109. 72	7. 78	117. 50	74.00	43. 50	Peak	No Limit
2 *	2461. 3000	107. 38	7. 78	115. 16	54.00	61. 16	AVG	No Limit
3	2483. 5000	53. 11	7. 81	60. 92	74.00	-13.08	Peak	
4	2483. 5000	43.86	7. 81	51. 67	54.00	-2. 33	AVG	
5	2487. 0500	52. 56	7. 81	60. 37	74.00	-13. 63	Peak	
6	2487. 0500	45. 10	7. 81	52. 91	54. 00	-1.09	AVG	

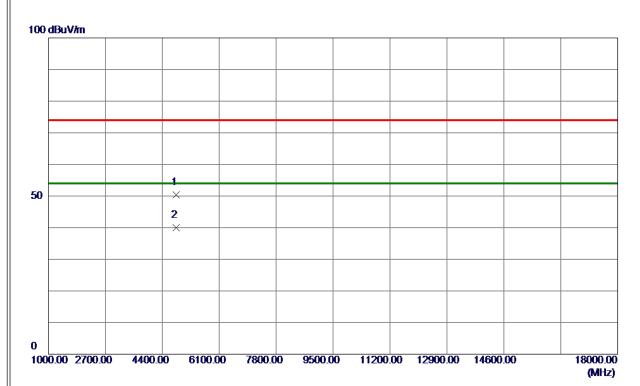
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4923. 9100	46. 63	3. 07	49. 70	74.00	-24. 30	Peak	
2 *	4924. 0200	43. 28	3. 07	46. 35	54. 00	-7. 65	AVG	

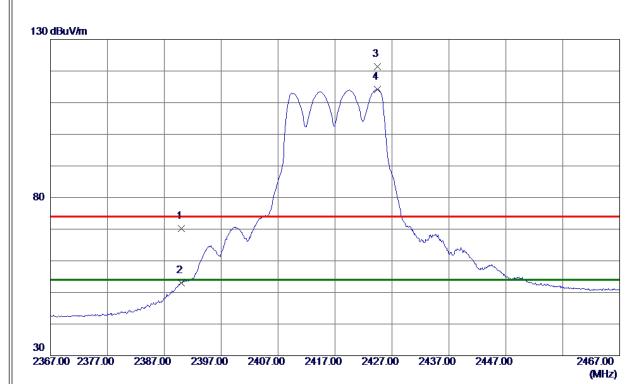
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





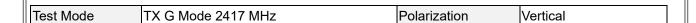
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	56. 87	7. 70	64. 57	74.00	-9. 43	Peak	
2	2390. 0000	44. 41	7. 70	52. 11	54.00	-1.89	AVG	
3	2417. 3000	110. 45	7. 73	118. 18	74.00	44. 18	Peak	No Limit
4 *	2417. 8000	102. 92	7. 73	110.65	54.00	56. 65	AVG	No Limit

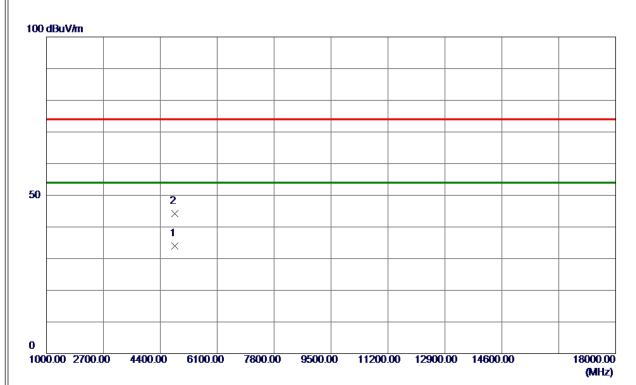
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4820. 3000	47. 51	2. 83	50. 34	74.00	-23. 66	Peak	
2 *	4824. 7500	37. 13	2. 84	39. 97	54. 00	-14. 03	AVG	

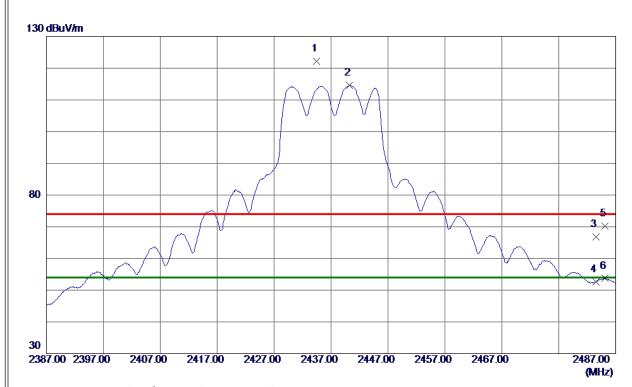
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





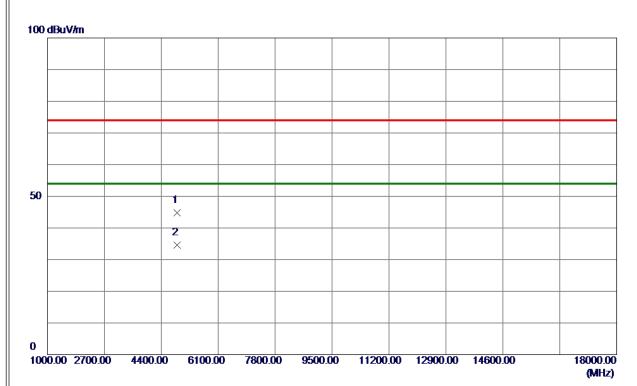
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	62. 43	7. 70	70. 13	74.00	-3.87	Peak	
2	2390. 0000	45. 24	7. 70	52. 94	54.00	-1.06	AVG	
3	2424. 4000	113. 70	7. 74	121. 44	74.00	47. 44	Peak	No Limit
4 *	2424. 4500	106. 53	7. 74	114. 27	54.00	60. 27	AVG	No Limit

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



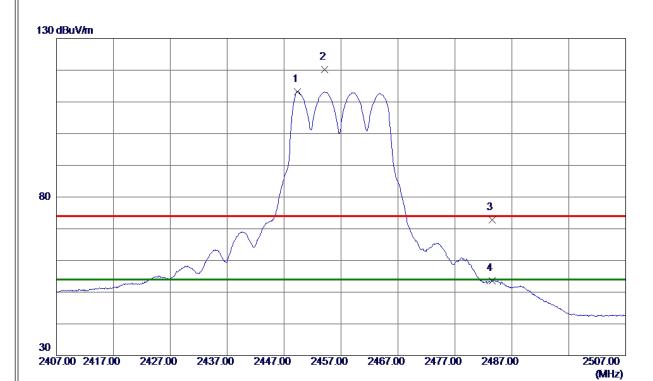
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4835. 0200	31. 10	2. 87	33. 97	54.00	-20.03	AVG	
2	4835, 1100	41. 33	2. 87	44. 20	74. 00	-29. 80	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



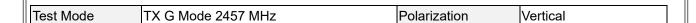
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2434. 4500	114. 47	7. 75	122. 22	74.00	48. 22	Peak	No Limit
2 *	2440. 2000	106.82	7. 76	114. 58	54.00	60. 58	AVG	No Limit
3	2483. 5000	59. 03	7. 81	66. 84	74.00	-7. 16	Peak	
4	2483. 5000	44. 88	7. 81	52. 69	54.00	-1. 31	AVG	
5	2485. 1000	62. 46	7. 81	70. 27	74.00	-3. 73	Peak	
6	2485. 1000	45. 89	7. 81	53. 70	54.00	-0. 30	AVG	

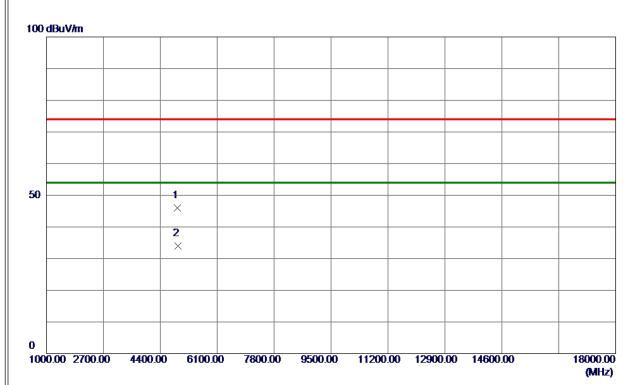
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4874. 1000	41.81	2. 96	44. 77	74.00	-29. 23	Peak	
2 *	4874, 5750	31. 67	2. 96	34. 63	54. 00	-19. 37	AVG	

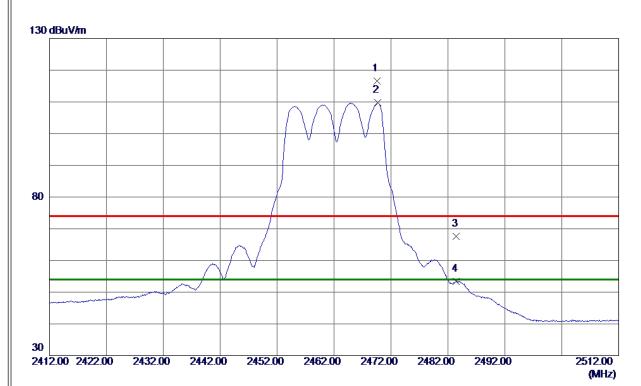
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.





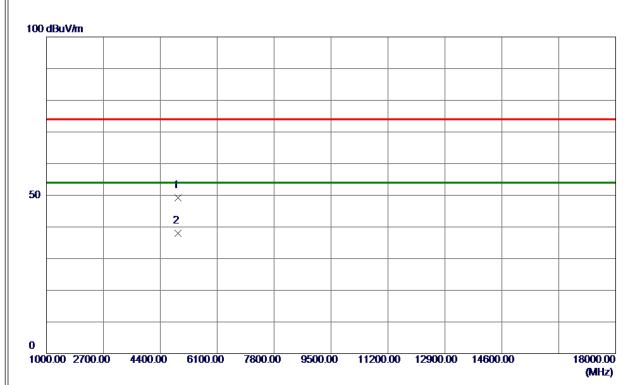
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2449. 3000	105. 43	7. 77	113. 20	54.00	59. 20	AVG	No Limit
2	2454. 1500	112. 51	7. 77	120. 28	74.00	46. 28	Peak	No Limit
3	2483. 5000	65. 03	7. 81	72.84	74.00	-1. 16	Peak	
4	2483. 5000	45.82	7. 81	53. 63	54.00	-0. 37	AVG	
l .								

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



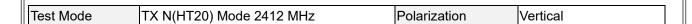
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4909. 5400	42. 91	3. 04	45. 95	74.00	-28.05	Peak	
2 *	4920, 1300	31. 01	3. 06	34. 07	54. 00	-19. 93	AVG	

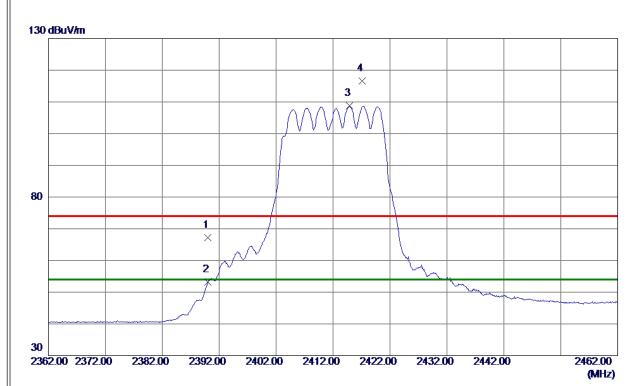
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2469. 6000	108. 87	7. 79	116. 66	74.00	42.66	Peak	No Limit
2 *	2469. 7000	101. 94	7. 79	109. 73	54.00	55. 73	AVG	No Limit
3	2483. 5000	59. 85	7. 81	67. 66	74.00	-6. 34	Peak	
4	2483. 5000	45. 59	7. 81	53. 40	54.00	-0. 60	AVG	
1								

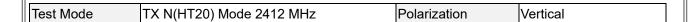
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

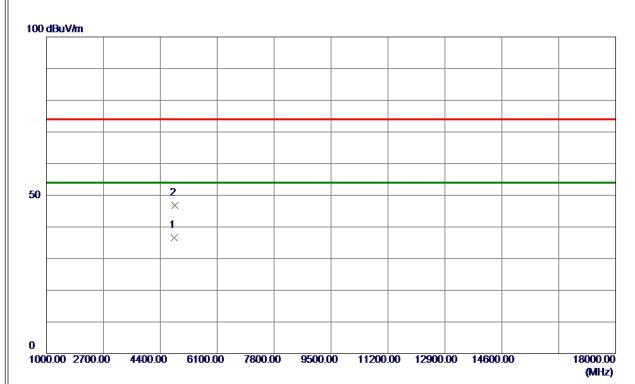




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4922. 4250	46. 16	3. 07	49. 23	74.00	-24. 77	Peak	
2 *	4923. 1750	34. 90	3. 07	37. 97	54. 00	-16. 03	AVG	

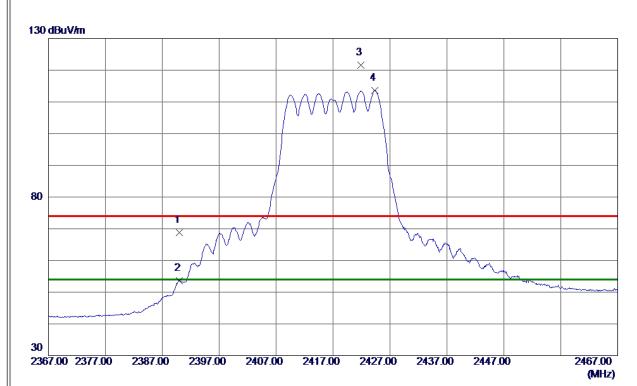
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.





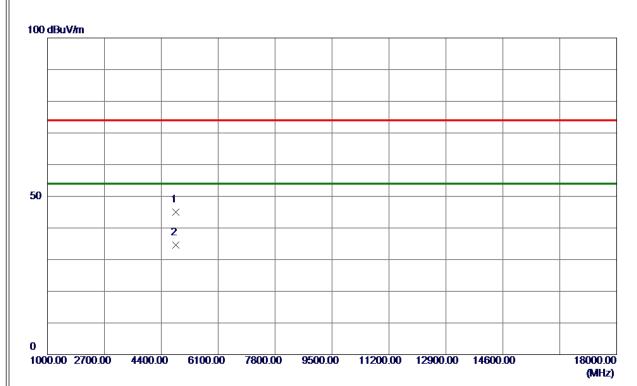
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	59. 52	7. 70	67. 22	74.00	-6. 78	Peak	
2	2390. 0000	45. 46	7. 70	53. 16	54.00	-0.84	AVG	
3 *	2414. 9000	100. 98	7. 73	108. 71	54. 00	54. 71	AVG	No Limit
4	2417. 1500	108. 89	7. 73	116. 62	74. 00	42. 62	Peak	No Limit

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



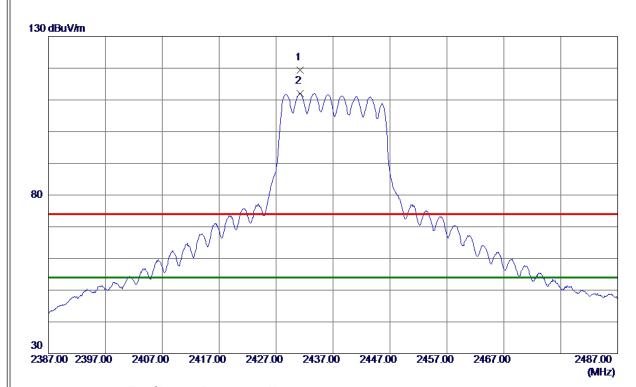
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4824. 8910	33. 73	2.84	36. 57	54.00	-17. 43	AVG	
2	4825. 8320	43. 93	2. 84	46. 77	74. 00	-27. 23	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



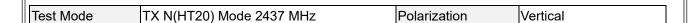
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	61. 18	7. 70	68. 88	74.00	-5. 12	Peak	
2	2390. 0000	45. 81	7. 70	53. 51	54.00	-0. 49	AVG	
3	2421. 8500	113. 79	7. 74	121. 53	74.00	47. 53	Peak	No Limit
4 *	2424. 3500	105. 92	7. 74	113. 66	54. 00	59. 66	AVG	No Limit

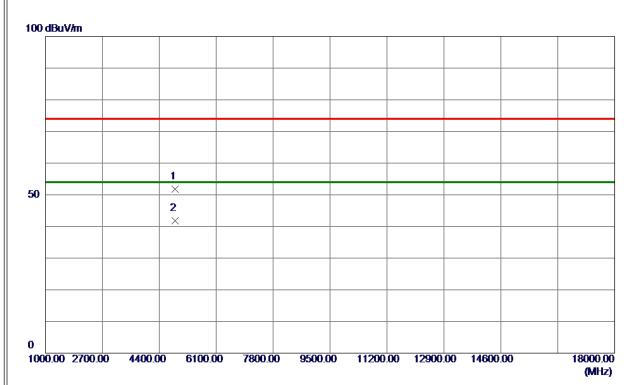
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4831. 9320	42.06	2. 86	44. 92	74.00	−29. 08	Peak	
2 *	4832, 1450	31. 65	2. 86	34. 51	54. 00	-19. 49	AVG	

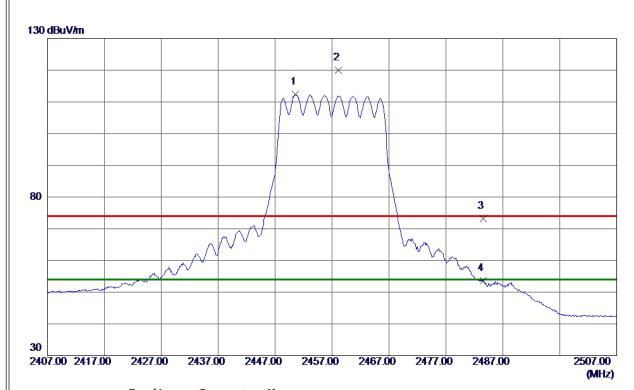
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.





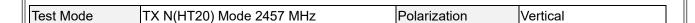
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2431. 2000	111. 61	7. 75	119. 36	74.00	45. 36	Peak	No Limit
2 *	2431. 2500	104. 30	7. 75	112. 05	54. 00	58. 05	AVG	No Limit

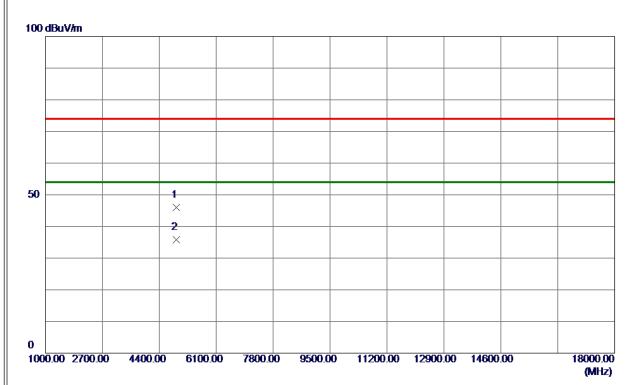
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4872. 1669	48. 77	2. 95	51. 72	74.00	-22. 28	Peak	
2 *	4874. 6450	38. 81	2. 96	41.77	54. 00	-12. 23	AVG	

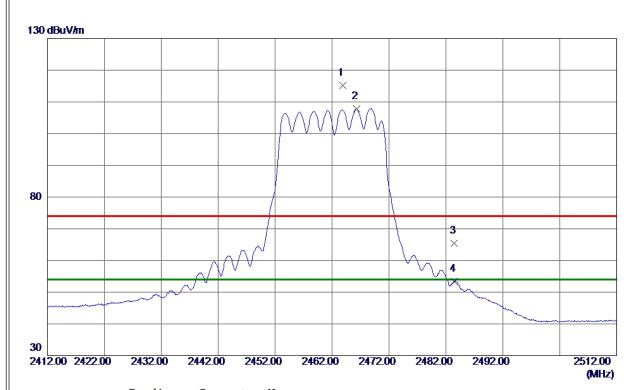
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





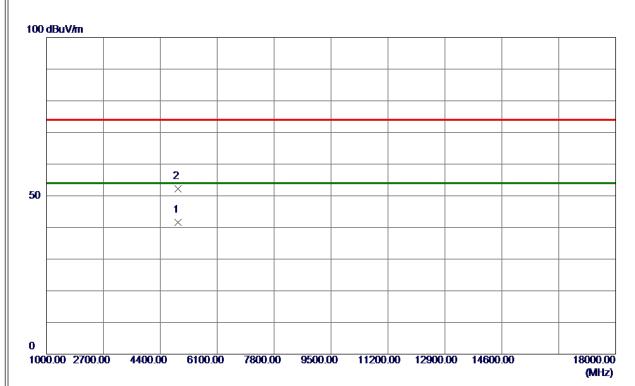
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2450. 5500	104. 60	7. 77	112. 37	54.00	58. 37	AVG	No Limit
2	2458. 1000	112. 17	7. 78	119. 95	74.00	45. 95	Peak	No Limit
3	2483. 5000	65. 48	7. 81	73. 29	74.00	-0. 71	Peak	
4	2483. 5000	45. 76	7. 81	53. 57	54. 00	-0. 43	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



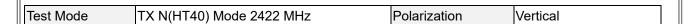
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4914. 3200	42.89	3. 05	45. 94	74.00	−28. 06	Peak	
2 *	4914. 3849	32. 77	3. 05	35. 82	54. 00	-18. 18	AVG	

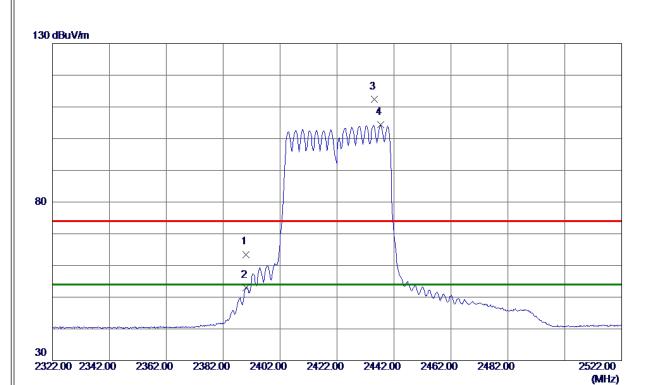
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



N	o.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2463.9000	107. 50	7. 79	115. 29	74.00	41. 29	Peak	No Limit
2	*	2466. 3500	99. 99	7. 79	107. 78	54.00	53. 78	AVG	No Limit
3		2483. 5000	57. 54	7. 81	65. 35	74.00	-8. 65	Peak	
4		2483. 5000	45. 54	7. 81	53. 35	54.00	-0. 65	AVG	
11									

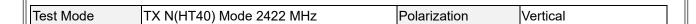
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

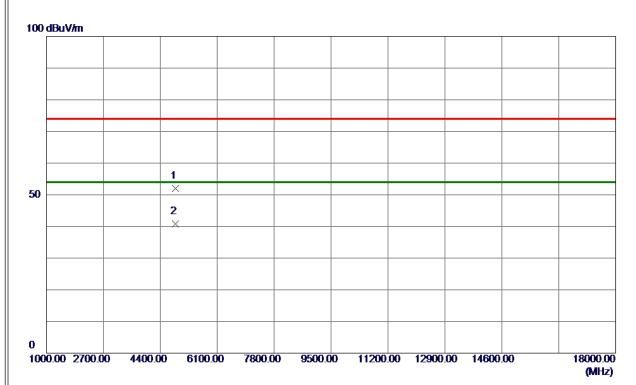

Test Mode	TX N(HT20) Mode 2462 MHz	lPolarization	lVertical



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4922. 1980	38. 53	3. 07	41.60	54.00	-12. 40	AVG	
2	4925. 9880	49. 04	3. 08	52. 12	74. 00	-21. 88	Peak	

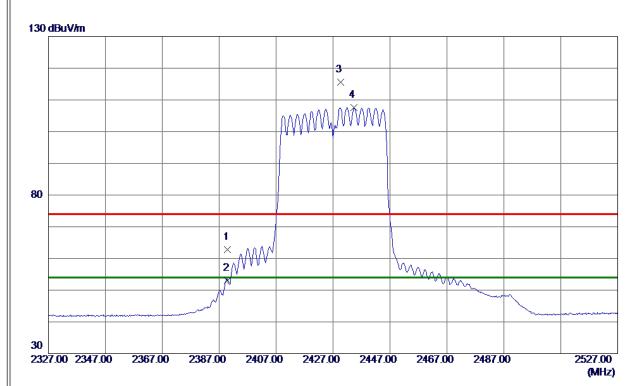
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





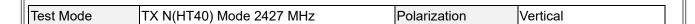
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	55. 80	7. 70	63. 50	74.00	-10. 50	Peak	
2	2390. 0000	45. 38	7. 70	53. 08	54.00	-0.92	AVG	
3	2435. 1000	104. 65	7. 75	112. 40	74.00	38. 40	Peak	No Limit
4 *	2437. 3000	96. 58	7. 75	104. 33	54.00	50. 33	AVG	No Limit

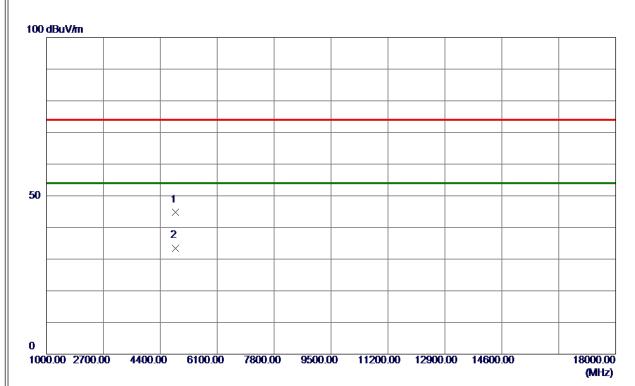
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4844. 1930	49. 02	2. 89	51. 91	74.00	-22.09	Peak	
2 *	4845. 6850	38. 00	2. 89	40. 89	54. 00	-13. 11	AVG	

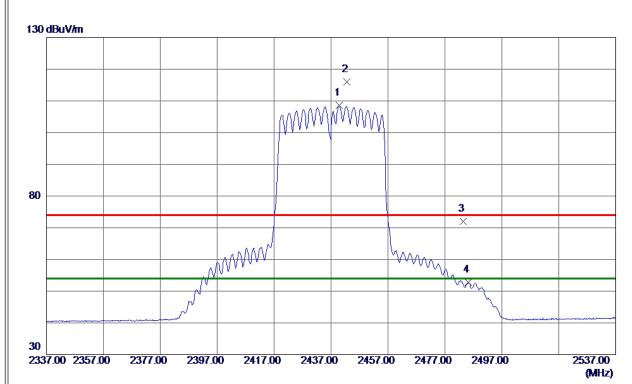
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





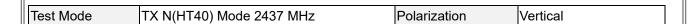
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	55. 16	7. 70	62. 86	74.00	-11. 14	Peak	
2	2390. 0000	45. 38	7. 70	53. 08	54.00	-0.92	AVG	
3	2429. 7000	107. 77	7. 75	115. 52	74.00	41. 52	Peak	No Limit
4 *	2434. 4000	99. 79	7. 75	107. 54	54.00	53. 54	AVG	No Limit

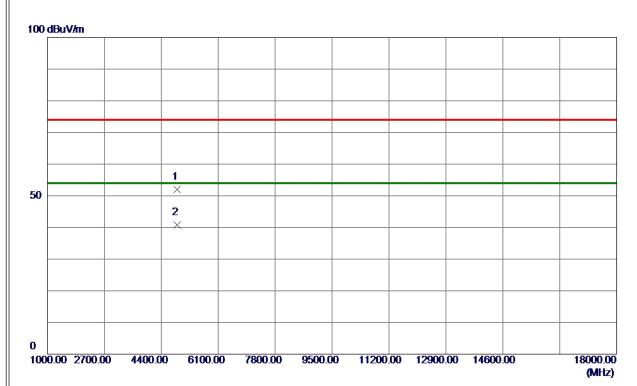
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4854. 2000	41. 93	2. 91	44. 84	74.00	-29. 16	Peak	
2 *	4854. 3769	30. 59	2. 91	33. 50	54. 00	-20. 50	AVG	

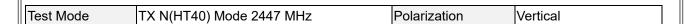
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

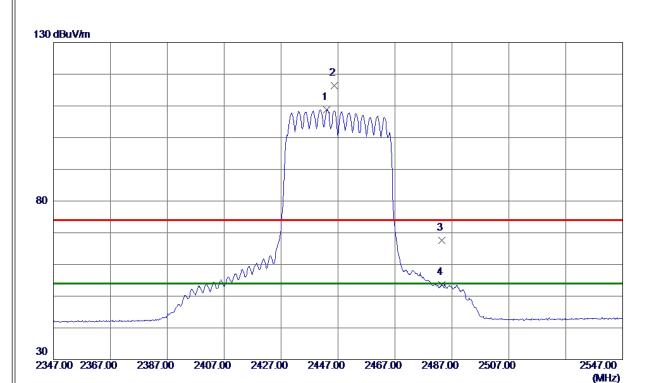




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2439. 9000	100.77	7. 76	108. 53	54.00	54. 53	AVG	No Limit
2	2442. 5000	108. 14	7. 76	115. 90	74.00	41.90	Peak	No Limit
3	2483. 5000	64. 26	7. 81	72. 07	74.00	-1. 93	Peak	
4	2485. 3000	44. 90	7. 81	52. 71	54. 00	-1. 29	AVG	

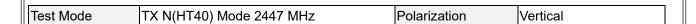
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

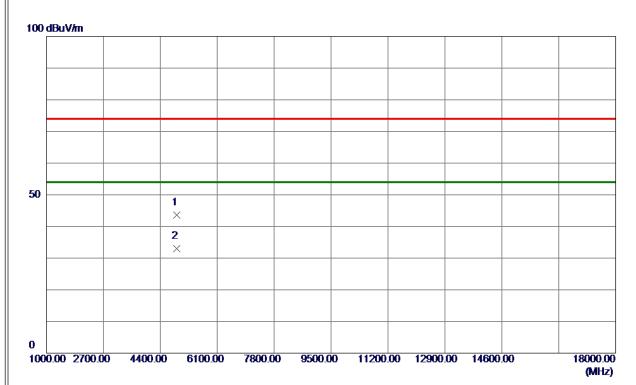




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4875. 2170	48. 95	2. 96	51. 91	74.00	-22. 09	Peak	
2 *	4875. 9169	37. 90	2. 96	40. 86	54. 00	-13. 14	AVG	

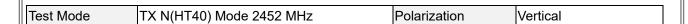
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

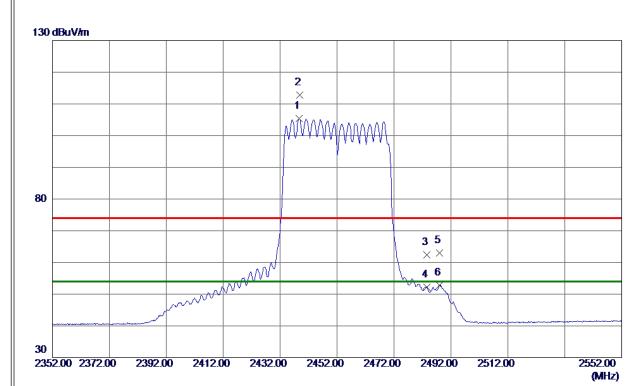




1	No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
]	*	2443. 1000	101. 02	7. 76	108. 78	54.00	54. 78	AVG	No Limit
2	2	2445. 7000	108. 60	7. 76	116. 36	74.00	42. 36	Peak	No Limit
3	3	2483. 5000	59. 88	7. 81	67. 69	74.00	-6. 31	Peak	
4	1	2483. 5000	45. 84	7. 81	53. 65	54. 00	-0. 35	AVG	
-		2100.0000	10.01	1.01	00.00	01.00	0. 00	1110	

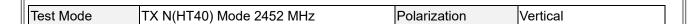
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

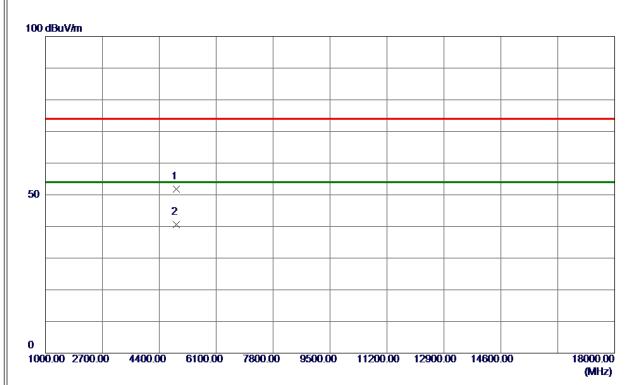




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4892. 5450	40.62	3. 00	43.62	74.00	-30. 38	Peak	
2 *	4895. 3820	30. 03	3. 01	33. 04	54. 00	-20. 96	AVG	

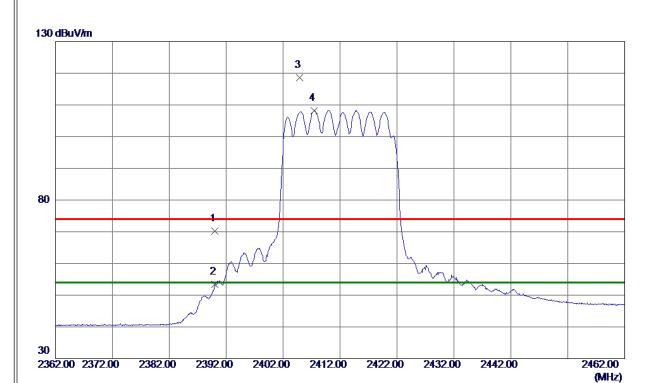
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





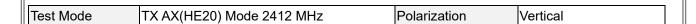
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2438. 7000	97. 64	7. 76	105. 40	54.00	51. 40	AVG	No Limit
2	2438. 9000	105. 13	7. 76	112.89	74.00	38. 89	Peak	No Limit
3	2483. 5000	54. 56	7. 81	62. 37	74.00	-11. 63	Peak	
4	2483. 5000	44. 41	7. 81	52. 22	54.00	-1. 78	AVG	
5	2488. 0000	55. 13	7. 82	62. 95	74. 00	-11. 05	Peak	
6	2488. 0000	45. 00	7. 82	52. 82	54.00	-1. 18	AVG	

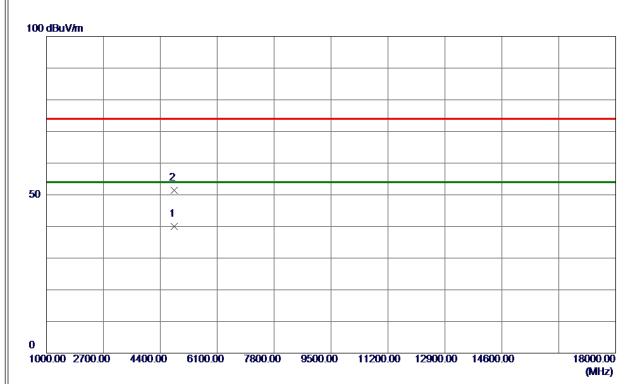
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4901. 6580	48. 78	3. 02	51. 80	74.00	-22. 20	Peak	
2 *	4905. 7250	37. 59	3. 03	40.62	54. 00	-13. 38	AVG	

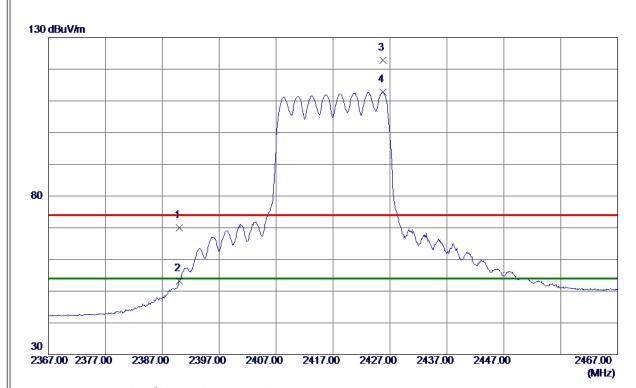
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





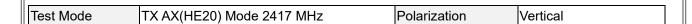
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	62. 48	7. 70	70. 18	74.00	-3.82	Peak	
2	2390. 0000	45. 68	7. 70	53. 38	54.00	-0.62	AVG	
3	2404. 9000	110.88	7. 72	118. 60	74.00	44. 60	Peak	No Limit
4 *	2407. 4500	100. 53	7. 72	108. 25	54. 00	54. 25	AVG	No Limit

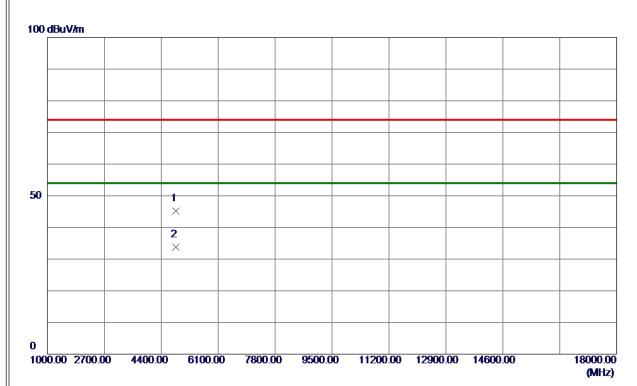
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4824. 3250	37. 13	2. 84	39. 97	54.00	-14. 03	AVG	
2	4824. 7120	48. 48	2. 84	51. 32	74. 00	-22. 68	Peak	

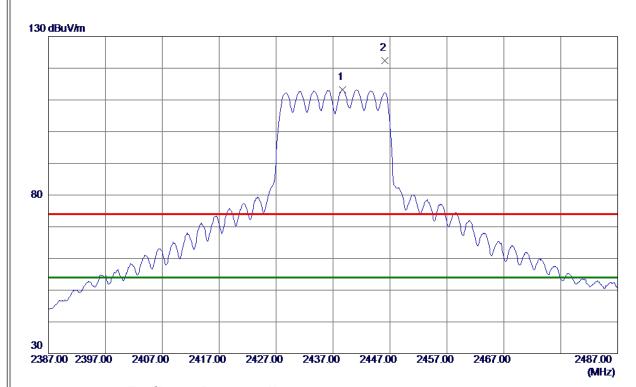
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





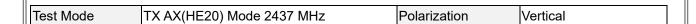
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
2390.0000	62. 21	7. 70	69. 91	74.00	-4. 09	Peak	
2390.0000	45. 42	7. 70	53. 12	54.00	-0.88	AVG	
2425. 8000	115. 07	7. 74	122.81	74.00	48. 81	Peak	No Limit
2425. 8000	105. 08	7. 74	112. 82	54.00	58. 82	AVG	No Limit
	MHz 2390. 0000 2390. 0000 2425. 8000	Freq. Level	Hreq. Level Factor MHz dBuV/m dB 2390.0000 62.21 7.70 2390.0000 45.42 7.70 2425.8000 115.07 7.74	Hereq. Level Factor ment MHz dBuV/m dB dBuV/m 2390.0000 62.21 7.70 69.91 2390.0000 45.42 7.70 53.12 2425.8000 115.07 7.74 122.81	Hereq. Level Factor ment Limit MHz dBuV/m dB dBuV/m dBuV/m 2390.0000 62.21 7.70 69.91 74.00 2390.0000 45.42 7.70 53.12 54.00 2425.8000 115.07 7.74 122.81 74.00	Hreq. Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB 2390.0000 62.21 7.70 69.91 74.00 -4.09 2390.0000 45.42 7.70 53.12 54.00 -0.88 2425.8000 115.07 7.74 122.81 74.00 48.81	MHz dBuV/m dB dBuV/m dB uV/m dB uV/m </th

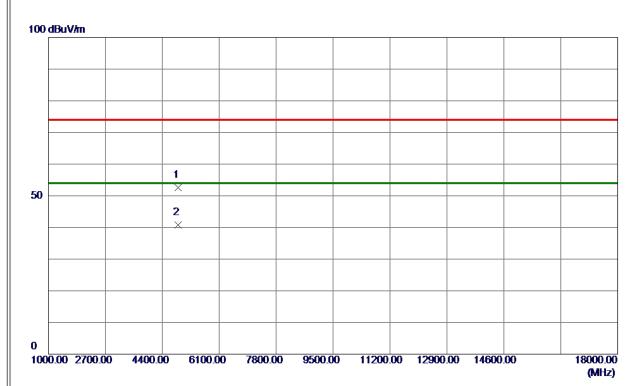
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4831. 6269	42. 34	2. 86	45. 20	74.00	-28.80	Peak	
2 *	4834. 3769	30. 91	2. 86	33. 77	54. 00	-20. 23	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

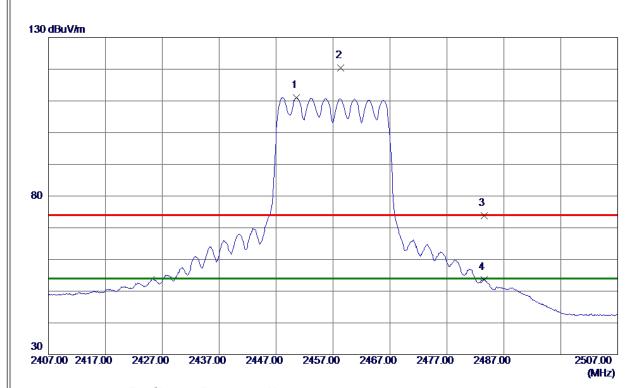




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2438. 7000	105. 44	7. 76	113. 20	54.00	59. 20	AVG	No Limit
2	2446. 1500	114. 60	7. 77	122. 37	74.00	48. 37	Peak	No Limit

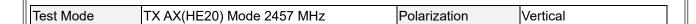
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

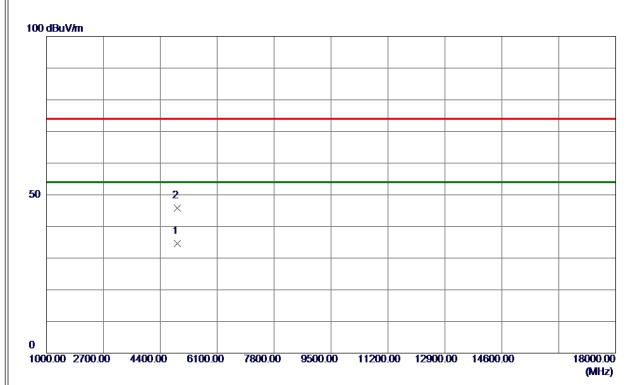




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4873. 7250	49. 67	2. 96	52. 63	74.00	-21. 37	Peak	
2 *	4874. 1750	37. 92	2. 96	40. 88	54. 00	-13. 12	AVG	

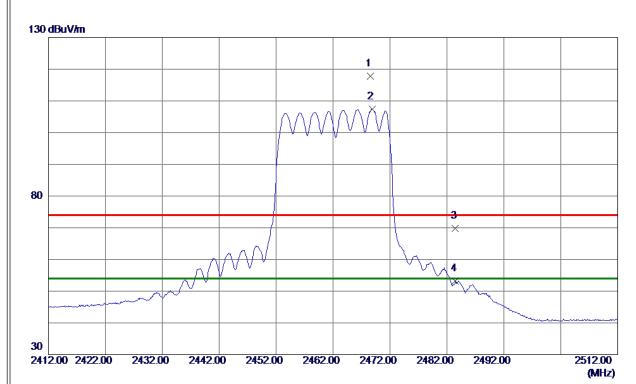
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





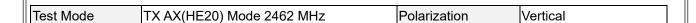
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
2450. 5500	103. 18	7. 77	110. 95	54.00	56. 95	AVG	No Limit
2458. 3000	112.65	7. 78	120. 43	74.00	46. 43	Peak	No Limit
2483. 5000	66. 07	7. 81	73. 88	74.00	-0. 12	Peak	
2483. 5000	45. 71	7. 81	53. 52	54.00	-0. 48	AVG	
	MHz 2450. 5500 2458. 3000 2483. 5000	Freq. Level	MHz dBuV/m dB 2450.5500 103.18 7.77 2458.3000 112.65 7.78 2483.5000 66.07 7.81	MHz dBuV/m dB dBuV/m 2450.5500 103.18 7.77 110.95 2458.3000 112.65 7.78 120.43 2483.5000 66.07 7.81 73.88	MHz dBuV/m dB dBuV/m dBuV/m 2450. 5500 103. 18 7. 77 110. 95 54. 00 2458. 3000 112. 65 7. 78 120. 43 74. 00 2483. 5000 66. 07 7. 81 73. 88 74. 00	MHz dBuV/m dB dBuV/m dB dW/m dB dW/m dB dB dW/m dB dB dW/m dB dB dW/m dB dB </th <th>MHz dBuV/m dB dBuV/m dBuV/m dB Detector 2450.5500 103.18 7.77 110.95 54.00 56.95 AVG 2458.3000 112.65 7.78 120.43 74.00 46.43 Peak 2483.5000 66.07 7.81 73.88 74.00 -0.12 Peak</th>	MHz dBuV/m dB dBuV/m dBuV/m dB Detector 2450.5500 103.18 7.77 110.95 54.00 56.95 AVG 2458.3000 112.65 7.78 120.43 74.00 46.43 Peak 2483.5000 66.07 7.81 73.88 74.00 -0.12 Peak

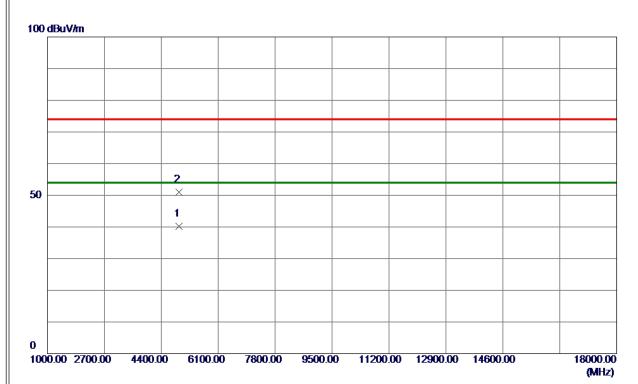
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4914. 5950	31. 64	3. 05	34. 69	54.00	-19. 31	AVG	
2	4916. 4720	42.67	3. 06	45. 73	74.00	-28. 27	Peak	

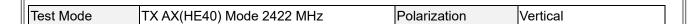
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

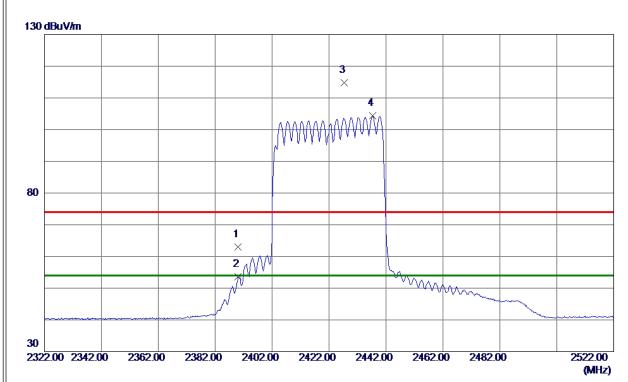




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2468. 6000	110.07	7. 79	117. 86	74.00	43.86	Peak	No Limit
2 *	2468. 8500	99. 67	7. 79	107. 46	54.00	53. 46	AVG	No Limit
3	2483. 5000	61. 97	7. 81	69. 78	74.00	-4. 22	Peak	
4	2483. 5000	45. 30	7. 81	53. 11	54. 00	-0. 89	AVG	

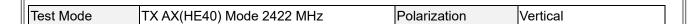
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

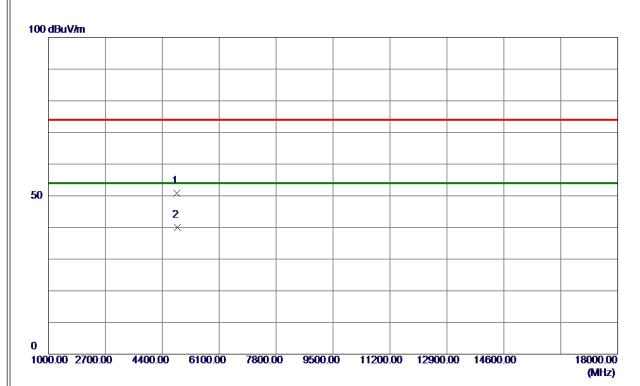




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4923. 7000	37. 21	3. 07	40. 28	54.00	-13. 72	AVG	
2	4925, 8849	48. 01	3. 08	51. 09	74. 00	-22. 91	Peak	

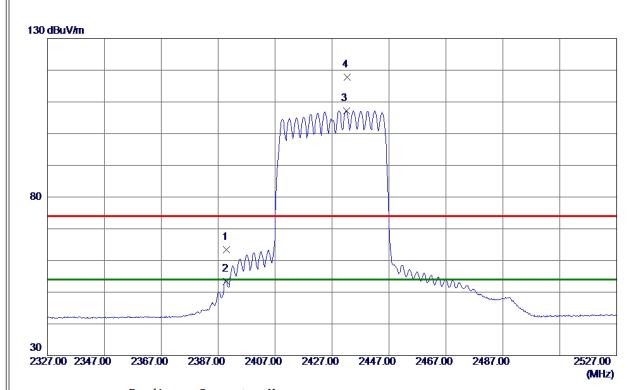
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.





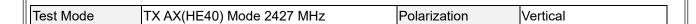
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390. 0000	55. 22	7. 70	62. 92	74.00	-11. 08	Peak	
2	2390. 0000	45. 94	7. 70	53. 64	54.00	-0. 36	AVG	
3	2427. 4000	107. 12	7. 74	114. 86	74.00	40.86	Peak	No Limit
4 *	2437. 4000	96. 65	7. 75	104. 40	54. 00	50. 40	AVG	No Limit

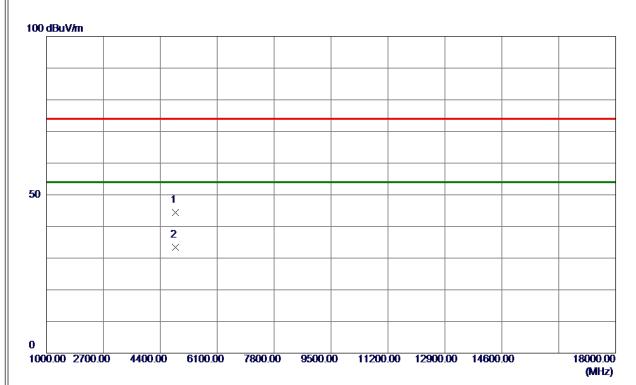
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4841. 4350	48. 01	2. 88	50. 89	74.00	-23. 11	Peak	
2 *	4845. 1850	37. 06	2. 89	39. 95	54. 00	-14. 05	AVG	

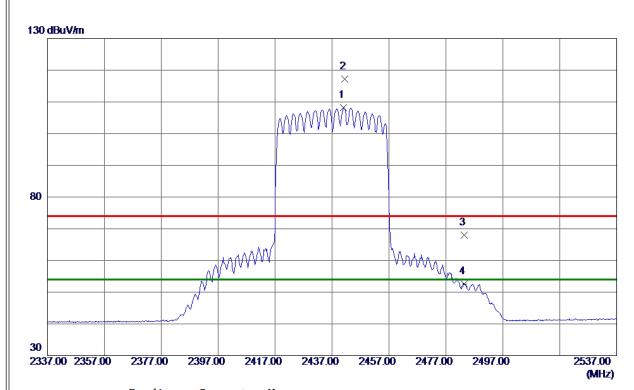
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





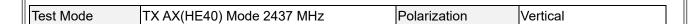
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
2390. 0000	55. 76	7. 70	63. 46	74.00	-10.54	Peak	
2390. 0000	45. 71	7. 70	53. 41	54.00	-0. 59	AVG	
2432. 0000	99. 50	7. 75	107. 25	54.00	53. 25	AVG	No Limit
2432. 3000	109. 97	7. 75	117. 72	74. 00	43. 72	Peak	No Limit
	MHz 2390. 0000 2390. 0000 2432. 0000	Freq. Level	MHz dBuV/m dB 2390.0000 55.76 7.70 2390.0000 45.71 7.70 2432.0000 99.50 7.75	MHz dBuV/m dB dBuV/m 2390.0000 55.76 7.70 63.46 2390.0000 45.71 7.70 53.41 2432.0000 99.50 7.75 107.25	MHz dBuV/m dB dBuV/m dBuV/m 2390.0000 55.76 7.70 63.46 74.00 2390.0000 45.71 7.70 53.41 54.00 2432.0000 99.50 7.75 107.25 54.00	MHz dBuV/m dB dBuV/m dB dBuV/m dB dBuV/m dB 2390.0000 55.76 7.70 63.46 74.00 -10.54 2390.0000 45.71 7.70 53.41 54.00 -0.59 2432.0000 99.50 7.75 107.25 54.00 53.25	MHz dBuV/m dB dBuV/m dB uV/m dB uV/m </th

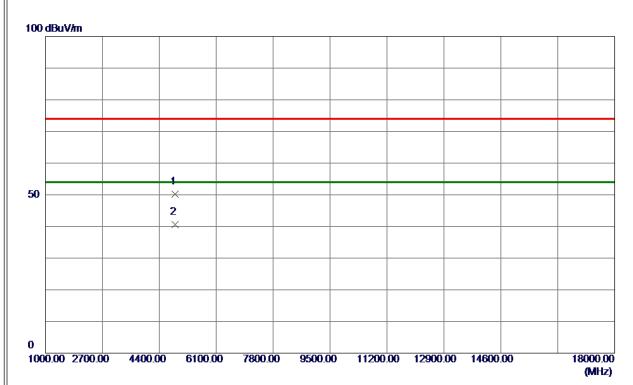
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4854. 1980	41. 57	2. 91	44. 48	74.00	-29. 52	Peak	
2 *	4854. 6349	30. 49	2. 91	33. 40	54. 00	-20. 60	AVG	

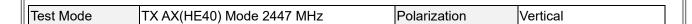
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

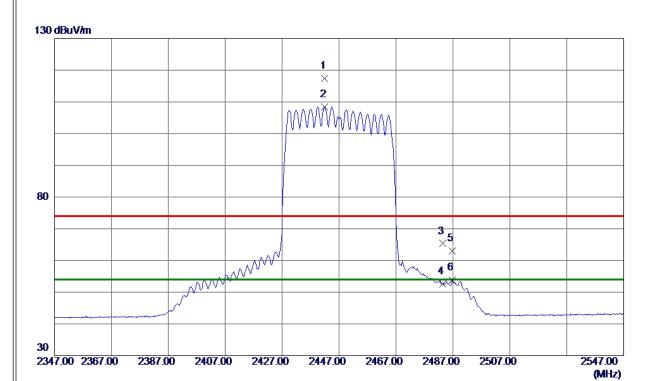




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2441. 1000	100. 47	7. 76	108. 23	54.00	54. 23	AVG	No Limit
2	2441. 5000	109. 42	7. 76	117. 18	74.00	43. 18	Peak	No Limit
3	2483. 5000	60. 14	7. 81	67. 95	74.00	-6. 05	Peak	
4	2483. 5000	44. 82	7. 81	52. 63	54. 00	-1. 37	AVG	

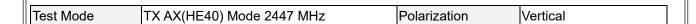
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

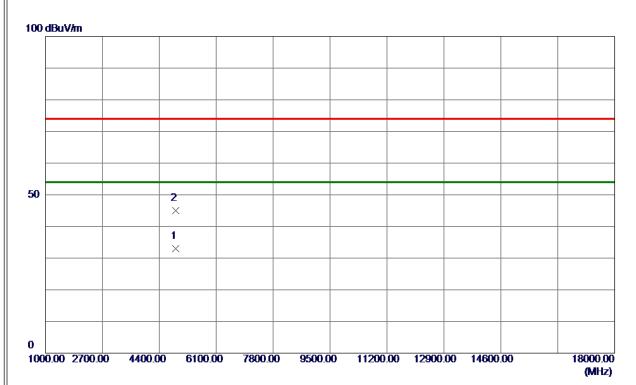




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4876. 0600	47. 16	2. 96	50. 12	74.00	-23.88	Peak	
2 *	4876. 4650	37. 70	2. 96	40. 66	54. 00	-13. 34	AVG	

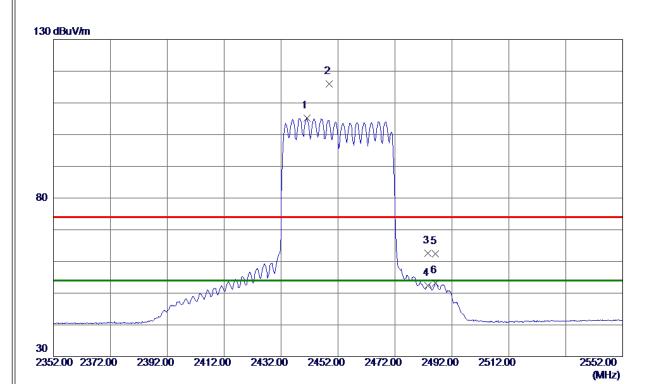
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





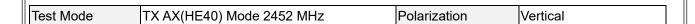
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2442. 0000	109. 63	7. 76	117. 39	74.00	43. 39	Peak	No Limit
2 *	2442. 0000	100.71	7. 76	108. 47	54.00	54. 47	AVG	No Limit
3	2483. 5000	57. 49	7. 81	65. 30	74.00	-8. 70	Peak	
4	2483. 5000	44. 73	7. 81	52. 54	54. 00	-1. 46	AVG	
5	2486. 7000	55. 24	7. 81	63. 05	74.00	-10. 95	Peak	
6	2486. 7000	45. 96	7. 81	53. 77	54. 00	-0. 23	AVG	

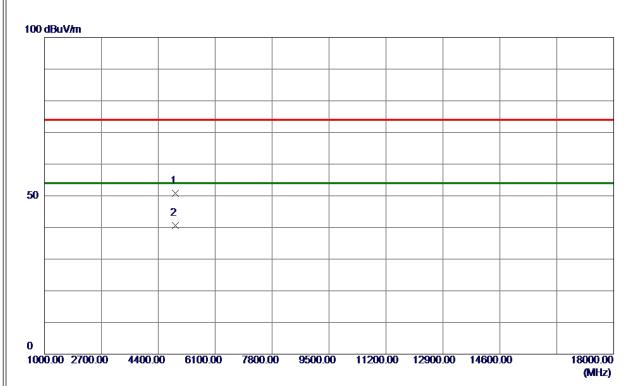
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	4895. 6629	30. 04	3. 01	33. 05	54.00	-20. 95	AVG	
2	4896. 2970	41. 95	3. 01	44. 96	74. 00	-29. 04	Peak	

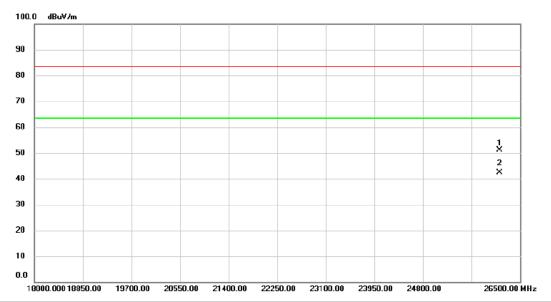
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





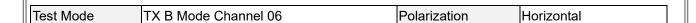
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	2441. 0000	97. 36	7. 76	105. 12	54.00	51. 12	AVG	No Limit
2	2448. 8000	108. 15	7. 77	115. 92	74.00	41. 92	Peak	No Limit
3	2483. 5000	54. 72	7. 81	62. 53	74.00	-11. 47	Peak	
4	2483. 5000	44. 52	7. 81	52. 33	54.00	-1. 67	AVG	
5	2486. 3000	54. 63	7. 81	62. 44	74.00	-11. 56	Peak	
6	2486. 3000	45. 4 2	7. 81	53. 23	54. 00	-0. 77	AVG	

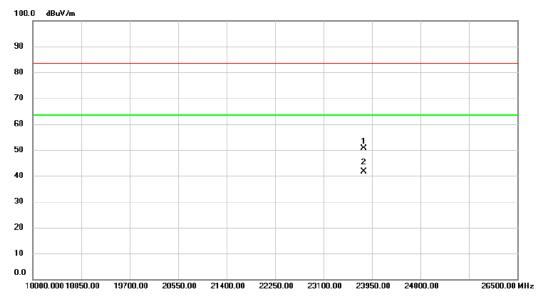
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	4903. 6629	47. 70	3. 03	50. 73	74.00	-23. 27	Peak	
2 *	4906. 1020	37. 48	3. 03	40. 51	54. 00	-13. 49	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



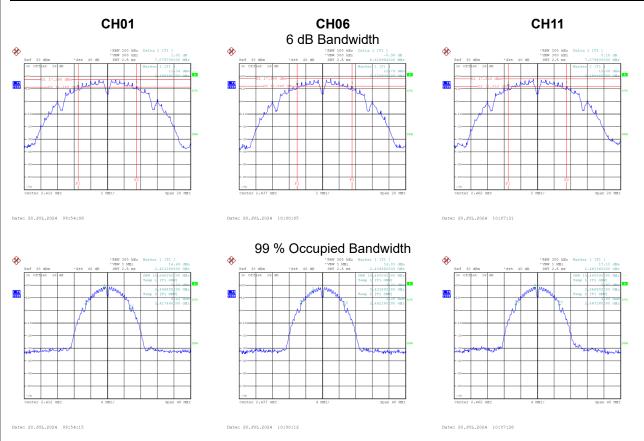


No.	Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		26147.25	52.63	-1.45	51.18	83.50	-32.32	peak	
2	*	26147.25	43.82	-1.45	42.37	63.50	-21.13	AVG	

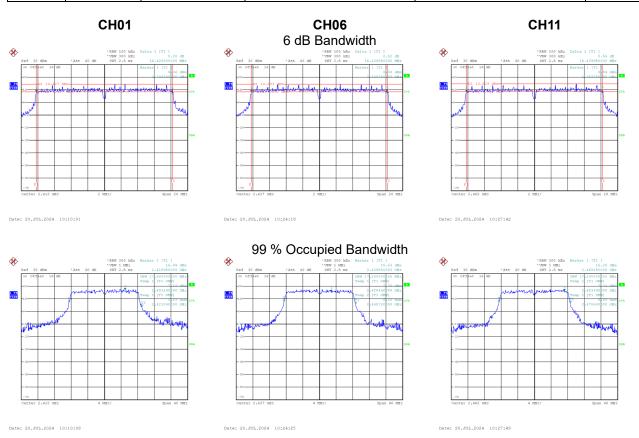
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

No.	MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		23809.75	53.47	-2.92	50.55	83.50	-32.95	peak	
2	*	23809.75	44.50	-2.92	41.58	63.50	-21.92	AVG	

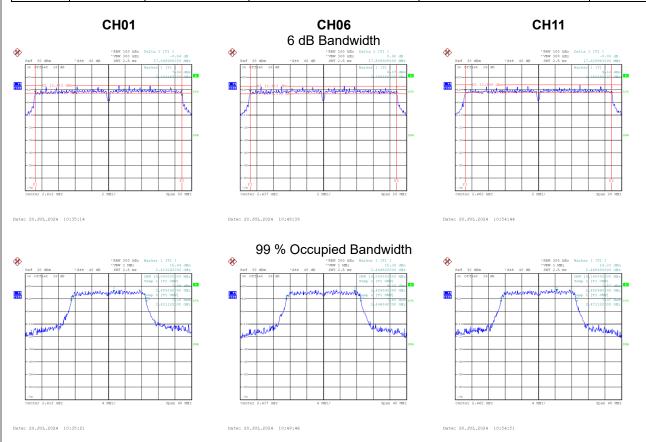
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



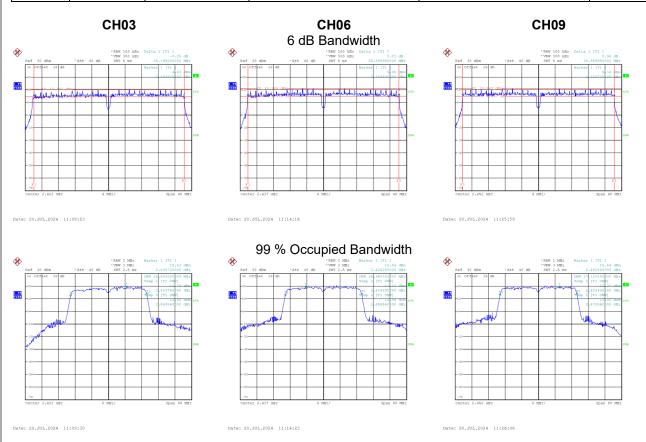
APPENDIX E - BANDWIDTH	


Test Mode	ITX B Mode
TEST MODE	

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	7.080	10.640	0.5	Complies
06	2437	6.620	10.480	0.5	Complies
11	2462	7.080	10.480	0.5	Complies


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	16.420	17.600	0.5	Complies
06	2437	16.440	17.280	0.5	Complies
11	2462	16.440	17.200	0.5	Complies

Test Mode	TX N(HT20) Mode
-----------	-----------------


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
01	2412	17.650	18.080	0.5	Complies
06	2437	17.640	18.000	0.5	Complies
11	2462	17.630	18.160	0.5	Complies

Test Mode	TX N(HT40) Mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
03	2422	36.199	36.800	0.5	Complies
06	2437	36.400	36.960	0.5	Complies
09	2452	36.560	37.120	0.5	Complies

