

TEST REPORT (SPOT CHECK)

CERTIFICATE OF CONFORMITY

Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)
Report No.:	RFCGJR-WTW-P23010147B-5
FCC ID:	G95EWA322T
Referenced FCC ID:	G95EWM322T
Product:	Wireless Access Point
Brand:	Vantiva
Model No.:	EWA322TGFR2
Series Model:	EWA322Tabcn
Received Date:	2023/7/10
Test Date:	2023/7/14 ~ 2023/7/20
Issued Date:	2023/7/28
Applicant:	Vantiva USA LLC
Address:	4855 Peachtree Industrial Blvd. Suite 200 Norcross, Georgia 30092.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration /	723255 / TW2022
Designation Number:	

C

Approved by:

May Chen / Manager

This test report consists of 44 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

2023/7/28

Date:

Prepared by : Vito Lung / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if your require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents

Table of Contents

Rele	elease Control Record4			
1	Certificate	5		
2	Summary of Test Results	6		
2.1 2.2	Measurement Uncertainty Supplementary Information	6 6		
3	General Information	7		
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	 General Description of EUT Antenna Description of EUT Channel List Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Test Program Used and Operation Descriptions Connection Diagram of EUT and Peripheral Devices Configuration of Peripheral Devices and Cable Connections 			
4	Test Instruments	15		
4.1 4.2 4.3 4.4 4.5 4.6	 RF Output Power Power Spectral Density Contention-based Protocol AC Power Conducted Emissions Unwanted Emissions below 1 GHz Unwanted Emissions above 1 GHz 	15 15 15 16 16 17		
5	Limits of Test Items	18		
5.1 5.2 5.3 5.4 5.5 5.6	 Maximum RF Output Power Maximum Power Spectral Density Contention-based Protocol AC Power Conducted Emissions Unwanted Emissions below 1 GHz Unwanted Emissions above 1 GHz 			
6	Test Arrangements	20		
$\begin{array}{c} 6.1\\ 6.2\\ 6.2\\ 6.3\\ 6.3\\ 6.3\\ 6.4\\ 6.4\\ 6.5\\ 6.5\\ 6.6\\ 6.6\\ 6.6\\ 6.6\end{array}$	Maximum RF Output Power 1.1 Test Procedure 2 Maximum Power Spectral Density 2.1 Test Setup 2.2 Test Procedure 2.2 Test Procedure 3.2 Test Setup 3.1 Test Setup 3.2 Test Procedure 3.3 Test Setup 3.4 Test Setup 3.5 Test Procedure 4 AC Power Conducted Emissions 4.1 Test Setup 4.2 Test Procedure 5.1 Test Setup 5.2 Test Procedure 5.3 Test Setup 5.4 Test Setup 5.5 Test Procedure 5.6 Unwanted Emissions above 1 GHz 5.7 Test Setup 5.8 Test Setup 5.1 Test Setup 5.2 Test Procedure 5.3 Test Setup 5.4 Test Setup 5.5 Test Procedure	20 20 21 21 21 22 22 22 22 22 23 23 23 23 23 23 23 23		
7	Test Results of Test Item	27		
7.1 7.2 7.3 7.4 7.5 7.6	 Maximum RF Output Power			

8	Operational Restrictions for 6 GHz U-NII Devices	42
9	· Pictures of Test Arrangements	43
10	Information of the Testing Laboratories	44

Release Control Record

Issue No.	Description	Date Issued	
RFCGJR-WTW-P23010147B-5	Original release.	2023/7/28	

1 Certificate

Product:	Wireless Access Point		
Brand:	Vantiva		
Test Model:	EWA322TGFR2		
Series Model:	EWA322Tabcn		
Sample Status:	Engineering sample		
Applicant:	Vantiva USA LLC		
Test Date:	2023/7/14 ~ 2023/7/20		
Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)		
Measurement	ANSI C63.10-2013		
procedure:	KDB 987594 D02 U-NII 6 GHz EMC Measurement v01v01		
	KDB 789033 D02 General UNII Test Procedure New Rules v02r01		
	KDB 662911 D01 Multiple Transmitter Output v02r01		

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)				
Clause	Test Item	Result	Remark	
15.407(a)(5)	Maximum RF Output Power	Pass	Meet the requirement of limit.	
15.407(a)(5)	Maximum Power Spectral Density	Pass	Meet the requirement of limit.	
15.407(a)(10)	Emission Bandwidth	NA	Refer to Note 1 below	
15.407(a)(10)	Occupied Bandwidth	NA	Refer to Note 1 below	
15.407(b)(9)	AC Power Conducted Emissions	Pass	Minimum passing margin is -19.25 dB at 0.44297 MHz	
15.407(b)(9)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -5.7 dB at 73.70 MHz	
15.407(b)(6) 15.407(b)(10)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -6.5 dB at 18555.00 MHz	
15.407(b)(7)	In-Band Emission Mask	NA	Refer to Note 1 below	
15.407(d)(6)	Contention-based Protocol	Pass	Meet the requirement of limit.	
15.407(g)	Frequency Stability	NA	Refer to Note 1 below	
15.407(d)	Operational restrictions for 6 GHz U-NII devices	Pass	Declaration by applicant.	
15.203	Antenna Requirement	Pass	Antenna connector is ipex(MHF) not a standard connector.	

Notes:

1. RF Output Power, Power Spectral Density, AC Power Conducted Emissions & Unwanted Emissions was performed for this addendum. The others testing data refer to original test report.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)
AC Power Conducted Emissions	150 kHz ~ 30 MHz	1.9 dB
Linuanted Emissions holew 1 CHz	9 kHz ~ 30 MHz	3.1 dB
	30 MHz ~ 1 GHz	5.1 dB
Linuanted Emissions above 1 CHz	1 GHz ~ 18 GHz	5.0 dB
	18 GHz ~ 40 GHz	5.3 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Access Point		
Brand	Vantiva		
Test Model	EWA322TGFR2		
Series Model	EWA322Tabcn		
Status of EUT	Engineering sample		
Power Supply Rating	Refer to Note		
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM 1024QAM for OFDMA in 11ax mode		
Modulation Technology	OFDM, OFDMA		
Transfer Rate	802.11a: up to 54 Mbps 802.11ax: up to 4803.9 Mbps		
Operating Frequency	5.955 ~ 6.415 GHz 6.435 ~ 6.525 GHz 6.535 ~ 6.865 GHz 6.875 ~ 7.095 GHz		
Number of Channel	802.11a, 802.11ax (HE20): 58 802.11ax (HE40): 29 802.11ax (HE80): 14 802.11ax (HE160): 7		
Output Power	6.185 GHz: EIRP: 146.893 mW (21.67 dBm)		
EUT Category	Indoor AP		

Note:

1. FCC ID: G95EWA322T Layout and Firmware are same as FCC ID: G95EWM322T, but Zigbee / BT Chip

(EFR32MG21A020F512), FXS Port are depopulated. But Wi-Fi part no change on the board.					
Model Name Variable		Range of variable	Description		
EWA322TGFR2,	abc	Each character cab be a-z or A-Z	For marketing purpose only(customer abbreviation).		
EWA322Tabcn	n	1-4 or blank	For marketing purpose only(sales territory).		
Note: From the above models, model: EWA322TGFR2 was selected as representative model for the test and its data was					
recorded in this report.					

2. The EUT uses following accessories.

AC Adapter 1					
Brand	Model	Part Number	Specification		
Honor	ADS-42FI-12 12042EPCU-L	6322120A	AC Input : 100-120V, 50/60Hz DC Output : 12V, 3.5A DC Output Cable : 1.8m Plug : US		

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Antenna No.	RF Chain No.	Brand	Model	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type
				5.83	5.925~6.425GHz	Dinala	
601	6G coro 3	Tochnicolor		5.31	6.425~6.525GHz		
001	og cole 3	rechnicolor		5.17	6.525-6.875GHz	Dibole	
				5.48	6.875-7.125GHz		
		2 Technicolor	EWM322T/EWA322T	5.38	5.925~6.425GHz	Dipole	
662	6G core 2			5.38	6.425~6.525GHz		ipex(MHF)
0.02				5.64	6.525-6.875GHz		
				5.51	6.875-7.125GHz		
		6G core 1 Technicolor	icolor EWM322T/EWA322T	5.68	5.925~6.425GHz		
663	6G core 1			5.56	6.425~6.525GHz	Dipole	ipex(MHF)
003				5.76	6.525-6.875GHz		
				5.76	6.875-7.125GHz		
6G4			EWM322T/EWA322T-	6.27	5.925~6.425GHz		
	6G core 0) Technicolor		6.27	6.425~6.525GHz	Dipole	ipex(MHF)
				6.16	6.525-6.875GHz		
				5.79	6.875-7.125GHz		

* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2. The EUT incorporates a MIMO function:

6 GHz Band			
Modulation Mode	TX & RX Configuration		
802.11a	4TX	4RX	
802.11ax (HE20)	4TX	4RX	
802.11ax (HE40)	4TX	4RX	
802.11ax (HE80)	4TX	4RX	
802.11ax (HE160)	4TX	4RX	

Note:

1. All of modulation mode support beamforming function except 802.11a modulation mode.

2. The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.

3.3 Channel List

U-NII-5:

24 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	5955 MHz	5	5975 MHz	9	5995 MHz	13	6015 MHz
17	6035 MHz	21	6055 MHz	25	6075 MHz	29	6095 MHz
33	6115 MHz	37	6135 MHz	41	6155 MHz	45	6175 MHz
49	6195 MHz	53	6215 MHz	57	6235 MHz	61	6255 MHz
65	6275 MHz	69	6295 MHz	73	6315 MHz	77	6335 MHz
81	6355 MHz	85	6375 MHz	89	6395 MHz	93	6415 MHz

12 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
3	5965 MHz	11	6005 MHz	19	6045 MHz	27	6085 MHz
35	6125 MHz	43	6165 MHz	51	6205 MHz	59	6245 MHz
67	6285 MHz	75	6325 MHz	83	6365 MHz	91	6405 MHz

6 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
7	5985 MHz	23	6065 MHz	39	6145 MHz	55	6225 MHz
71	6305 MHz	87	6385 MHz				

3 channels are provided for 802.11ax (HE160):

Channel	Frequency	Channel	Frequency	Channel	Frequency
15	6025 MHz	47	6185 MHz	79	6345 MHz

U-NII-6:

5 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
97	6435 MHz	101	6455 MHz	105	6475 MHz	109	6495 MHz
113	6515 MHz						

3 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
99	6445 MHz	107	6485 MHz	*115	6525 MHz

1 channel is provided for 802.11ax (HE80):

Channel	Frequency
103	6465 MHz

1 channel is provided for 802.11ax (HE160):

Channel	Frequency
*111	6505 MHz

U-NII-7:

17 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
117	6535 MHz	121	6555 MHz	125	6575 MHz	129	6595 MHz
133	6615 MHz	137	6635 MHz	141	6655 MHz	145	6675 MHz
149	6695 MHz	153	6715 MHz	157	6735 MHz	161	6755 MHz
165	6775 MHz	169	6795 MHz	173	6815 MHz	177	6835 MHz
181	6855 MHz						

8 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
123	6565 MHz	131	6605 MHz	139	6645 MHz	147	6685 MHz
155	6725 MHz	163	6765 MHz	171	6805 MHz	179	6845 MHz

5 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
*119	6545 MHz	135	6625 MHz	151	6705 MHz	167	6785 MHz
*183	6865 MHz						

2 channels are provided for 802.11ax (HE160):

Channel	Frequency	Channel	Frequency
143	6665 MHz	175	*6825 MHz

U-NII-8:

12 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
185	6875 MHz	189	6895 MHz	193	6915 MHz	197	6935 MHz
201	6955 MHz	205	6975 MHz	209	6995 MHz	213	7015 MHz
217	7035 MHz	221	7055 MHz	225	7075 MHz	229	7095 MHz

6 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
187	6885 MHz	195	6925 MHz	203	6965 MHz	211	7005 MHz
219	7045 MHz	227	7085 MHz				

2 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency
199	6945 MHz	215	7025 MHz

1 channel is provided for 802.11ax (HE160):

Channel	Frequency
207	6985 MHz

Note: * mean these are straddle channels.

3.4 Test Mode Applicability and Tested Channel Detail

Pre-Scan:	1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Worst Case:	1. Test worst modes are presented in the report as above according to original test report (RFCGJR-WTW-P23010147-5).

Following channel(s) was (were) selected for the final test as listed below:

Test Item	Mode	Signal Mode	Tested Channel	Modulation	Data Rate Parameter
Maximum RF Output Power / Maximum Power Spectral Density	802.11ax (HE160)	CDD	47	BPSK	MCS0
	802.11ax (HE20)		33, 129	BPSK	MCS0
Contention-based Protocol	802.11ax (HE160)		143, 207	BPSK	MCS0
AC Power Conducted Emissions	802.11ax (HE160)	CDD	47	BPSK	MCS0
Unwanted Emissions below 1 GHz	802.11ax (HE160)	CDD	47	BPSK	MCS0
Unwanted Emissions above 1 GHz	802.11ax (HE160)	CDD	47	BPSK	MCS0

Note1: Partial RU (resource unit) mechanism is not supported.

Note2: FCC ID: G95EWA322T Data Re-use from FCC ID: G95EWM322T, and it need spot check for Output power/ PSD / Conducted Emission / Radiated emission – Band edge and Harmonics with worst mode. Also Spot check for CBP (Base on FW same as FCC ID: G95EWM322T)

3.5 Duty Cycle of Test Signal

3.6 Test Program Used and Operation Descriptions

Controlling software (AccessMTool 3.2.1.5) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices

3.8 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	USB Disk	SanDisk	BM181225896Z	N/A	N/A	Provided by Lab
В	Laptop	Lenovo	20U5S01X00 L14	PF-28LKK7	N/A	Provided by Lab
С	Switch	D-Link	DGS-1005D	DR8WC92000523	N/A	Provided by Lab
D	Laptop	Lenovo	20U5S01X00 L14	PF-1ANPYA	N/A	Provided by Lab
Е	Laptop	DELL	E5430	HYV4VY1	DoC	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	RJ45 Cable	1	10	No	0	Provided by Lab
2	RJ45 Cable	2	10	No	0	Provided by Lab
3	RJ45 Cable	1	10	No	0	Provided by Lab
4	RJ45 Cable	1	10	No	0	Provided by Lab
5	DC Cable	1	1.5	No	0	Supplied by applicant

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-2035	2022/11/13	2023/11/12
Pre_Amplifier EMCI	EMC12630SE	980385	2022/8/15	2023/8/14
RF Cable EMCI	EMC104-SM-SM-1300	210205	2023/5/8	2024/5/7
RF Coaxial Cable EMCI	EMC101G-KM-KM-10000	210708	2022/11/4	2023/11/3
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Keysight	N9020B	MY60112410	2023/3/6	2024/3/5
Test Receiver KEYSIGHT	N9038A	MY59050100	2023/6/13	2024/6/12

Notes:

1. The test was performed in 966 Chamber No. 6.

2. Tested Date: 2023/7/20

4.2 Power Spectral Density

Refer to section 4.1 to get information of the instruments.

4.3 Contention-based Protocol

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Frequency Extender Keysight	N5182BX07	MY59360198	2022/10/14	2023/10/13
MXG Vector Signal Generator Keysight	N5182B	MY53052647	2022/11/8	2023/11/7
Power Splitter/Combiner		F698501347_01	2022/12/28	2023/12/27
Mini-Circuits	25830-123-34	F698501347_02	2022/12/15	2023/12/14
PXA Signal Analyzer Keysight	N9030A	MY55410176	2023/6/13	2024/6/12
Signal Analyzer R&S	FSV40	101516	2023/2/10	2024/2/9

Notes:

1. The test was performed in Adaptivity room.

2. Tested Date: 2023/7/14

4.4 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohm terminal resistance	N/A	EMC-01	2022/9/27	2023/9/26
EMI Test Receiver R&S	ESCS 30	847124/029	2022/10/14	2023/10/13
Fixed Attenuator STI	STI02-2200-10	005	2023/7/1	2024/6/30
LISN R&S	ESH3-Z5	848773/004	2022/10/18	2023/10/17
RF Coaxial Cable JYEBAO	5D-FB	COCCAB-001	2023/7/1	2024/6/30
Software BVADT	BVADT_Cond_V7.3.7.4	N/A	N/A	N/A

Notes:

1. The test was performed in Conduction 1

2. Tested Date: 2023/7/19

4.5 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-0942	2022/10/20	2023/10/19
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
Fixed Attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-01	2022/12/28	2023/12/27
Loop Antenna Electro-Metrics	EM-6879	264	2023/2/21	2024/2/20
MXA Signal Analyzer Keysight	N9020B	MY60112410	2023/3/6	2024/3/5
MXE EMI Receiver Keysight	N9038A	MY59050100	2023/6/13	2024/6/12
Preamplifier	EMC330N	980852	2023/2/20	2024/2/19
EMCI	EMC001340	980142	2023/5/8	2024/5/7
RF Coaxial Cable		LOOPCAB-001	2022/12/19	2023/12/18
JYEBAO	DD-FB	LOOPCAB-002	2022/12/19	2023/12/18
		966-6-1	2023/4/6	2024/4/5
	8D	966-6-2	2023/4/6	2024/4/5
		966-6-3	2023/4/6	2024/4/5
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Notes:				

1. The test was performed in 966 Chamber No. 6.

2. Tested Date: 2023/7/17

Unwanted Emissions above 1 GHz 4.6

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
Horn Antenna	BBHA 9120D	9120D-2035	2022/11/13	2023/11/12
Schwarzbeck	BBHA 9170	BBHA9170519	2022/11/13	2023/11/12
MXA Signal Analyzer Keysight	N9020B	MY60112410	2023/3/6	2024/3/5
MXE EMI Receiver Keysight	N9038A	MY59050100	2023/6/13	2024/6/12
Preamplifier	EMC12630SE	980385	2022/8/15	2023/8/14
EMCI	EMC184045SE	980387	2022/12/28	2023/12/27
	EMC-KM-KM-4000	200214	2023/2/20	2024/2/19
RF Coaxial Cable	EMC101G-KM-KM-10000	210708	2022/11/4	2023/11/3
EMCI	EMC102-KM-KM-1200	160924	2022/12/28	2023/12/27
	EMC104-SM-SM-1300	210205	2023/5/8	2024/5/7
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A

Notes:

The test was performed in 966 Chamber No. 6.
 Tested Date: 2023/7/14 ~ 2023/7/19

5 Limits of Test Items

5.1 Maximum RF Output Power

Operation		Limit
Band	EUT Category	Maximum Average Power
U-NII-5		
U-NII-6		
U-NII-7		EIRP 30 dbill
U-NII-8		

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT;

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

For power measurements on all other devices: Array Gain = 10 log(N_{ANT}/N_{SS}) dB.

5.2 Maximum Power Spectral Density

Operation	EUT Cotogon/	Limit
Band	EUT Calegory	Maximum Power Density
U-NII-5		
U-NII-6	Indoor AP	
U-NII-7		
U-NII-8		

5.3 Contention-based Protocol

Unlicensed indoor low-power devices must detect co-channel radio frequency power that is at least -62 dBm (The threshold is referenced to a 0 dBi antenna gain.) or lower. Additionally, indoor low-power devices must detect co-channel energy with 90% or greater certainty.

5.4 AC Power Conducted Emissions

	Conducted	Limit (dBuV)
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.5 Unwanted Emissions below 1 GHz

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

5.6 Unwanted Emissions above 1 GHz

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Frequencies (MHz)	EIRP Limit	Equivalent Field Strength at 3 m
5025 MUZ > E > 7125 MUZ	Peak: -7 (dBm/MHz)	88.2 (dBuV/m)
5925 MHZ > F > / 125 MHZ	Average: -27 (dBm/MHz)	68.2 (dBuV/m)

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$$

6 Test Arrangements

6.1 Maximum RF Output Power

Radiated Measurement Method

6.1.1 Test Procedure

Radiated Measurement Method

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP level.
- Follow ANSI C63.10 section 12.7.3, EIRP Value (dBm) = Field Strength Value (dBuV / m) + Correction Factor @ 3 m.
- f. Correction Factor (dB) @ 3 m = 20log(D) 104.77 = -95.23 dB; where D is the measurement distance @3 m.

Spectrum analyzer setting as below: Method SA-1

- a. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b. Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- c. Sweep points ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- d. Sweep time = auto, trigger set to "free run".
- e. Trace average at least 100 traces in power averaging mode.
- f. Record the max value
- Note: When measuring power, use compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.

6.2 Maximum Power Spectral Density

6.2.1 Test Setup

6.2.2 Test Procedure

- g. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- h. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- i. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- j. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP level.
- k. Follow ANSI C63.10 section 12.7.3, EIRP Value (dBm) = Field Strength Value (dBuV/m) + Correction Factor @ 3 m.
- I. Correction Factor (dB) @ 3 m = 20log(D) 104.77; where D is the measurement distance @3 m = -95.23 dB

Spectrum analyzer setting as below:

Method SA-1

- m. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- n. Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- Sweep points ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- p. Sweep time = auto, trigger set to "free run".
- q. Trace average at least 100 traces in power averaging mode.
- r. Record the max value

6.3 Contention-based Protocol

6.3.1 Test Setup

6.3.2 Test Procedure

- a. Set the signal analyzer center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- b. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters (set as following section 4.7.5 EUT operating condition).

lf	Number of Tests	Placement of Incumbent Transmission
$BW_{EUT} \leq \ BW_{Inc}$	Once	Same as EUT transmission
BW_{Inc} < $BW_{EUT} \leq 2xBW_{Inc}$	Once	Contained within BWEUT
$2xBW_{Inc}$ < $BW_{EUT} \leq 4xBW_{Inc}$	Twice. (Incumbent transmission is contained within BW _{EUT})	Closely to the lower edge and upper edge of the EUT Channel
$BW_{EUT} > 4xBW_{Inc}$	Three times	Closely to the lower edge ,in the middle and upper edge of the EUT Channel

c. Determine number of times detection threshold test as following table,

- d. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use step c table to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- e. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT.
- f. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- g. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
- h. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- i. Refer to step c table to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step d, choose a different center frequency for the AWGN signal and repeat the process.

6.4 AC Power Conducted Emissions

6.4.1 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.4.2 Test Procedure

- a. The EUT was placed on a 0.8 meter to the top of table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.

6.5 Unwanted Emissions below 1 GHz

6.5.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.5.2 Test Procedure

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-peak(QP) detect function, Average(AV) detect function, Peak(PK) detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. Notes:
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP), Average detection (AV), Peak detection (PK) at frequency (30MHz to 1 GHz).
- 2. All modes of operation were investigated and the worst-case emissions are reported.

6.6 Unwanted Emissions above 1 GHz

6.6.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.6.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1 GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 Maximum RF Output Power

Input Power: 120 Vac, 60 Hz Environmental Conditions:	25°C, 60% RH	Tested By:	Katina Lu
--	--------------	------------	-----------

802.11ax (HE160)

Chan.	Chan. Freq. (MHz)	Field Strength (dBuV/m)	Correction Factor (dB)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Test Result
47	6185	116.90	-95.23	146.893	21.67	30	Pass

7.2 Maximum Power Spectral Density

Conditions.	Input Power:	120 Vac, 60 Hz	Environmental Conditions:	25°C, 60% RH	Tested By:	Katina Lu
-------------	--------------	----------------	------------------------------	--------------	------------	-----------

802.11ax (HE160)

Chan.	Chan. Freq. (MHz)	Field Strength (dBuV/m)	Correction Factor (dB)	EIRP PSD (dBm/MHz)	EIRP PSD Limit (dBm/MHz)	Test Result
47	6185	100.22	-95.23	4.99	5	Pass

7.3 Contention-based Protocol

Input Power:	110 Vac,	60 Hz	Environmental Conditions:	25°C,	60% RH	Tested By:	Tobey Chen
Product		Model No.		S	oftware/Firmwa	re Version	
Wireless	Access Point		EWA322TGFF	R2		17.10.251.3	202

Companion Device Information										
Product	Brand	Model No.	Software/Firmware Version							
Wireless-AX6000 Dual Band Gigabit Router	ASUS	RT-AX88U	3.0.0.4.384							

For U-NII-5

	Contention Based Protocol Measurement									
Operation	Channel	Channel	Channel	Injecte (AW	d Signal /GN)	Antenna	Path Loss	Adjusted	Detection	
Mode	Bandwidth (MHz)	Number	Freq. (MHz)	Freq. (MHz)	Power (dBm)	Gain (dBi)	(dB) (Note 3)	Power (dBm)	Limit	Status
					-68.03	5.38	0	-73.41	-62	OFF
802.11ax	20	33	6115	6115	-68.53	5.38	0	-73.91	-62	Minimal
					-76.62	5.38	0	-82	-62	ON

Notes:

1. After investigation (consider antenna gain and path loss), the one representative port (Chain 2) was measured and presented in the report.

- 2. Adjusted Power (dBm) = Injected Signal (AWGN) Power (dBm) Antenna Gain (dBi) + Path Loss (dB)
- 3. Antenna gain values include all the applicable path losses.

	Contention Based Protocol Detection Probability														
Operation Mode	Channel Bandwidth (MHz)	AWGN Signal Freq. (MHz)	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10	Detection Probability	Detection Limit	Test Result
802.11ax	20	6115	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass

Plo	Plots of EUT ceased transmission in the time domain								
MultiView Spectrum • Ref Level 0.00.05m ● RBW 10.104z • Att									
1 Zero Span								M1[1]	• 1Rm Clrw -19.73 dBm 1.00000 s
-30 dBm									
-50 dBm									
-60 dBm -70 dBm									
-80 d8m									
-00 dbm				1000	0 pts				2.0 s/
802.11ax (HE20) / CH33									

For U-NII-7

Contention Based Protocol Measurement											
Operation	Channel	Channol	Channel Freq. (MHz)	Injecte (AV	d Signal /GN)	Antenna	Path Loss	Adjusted	Detection		
Mode	Bandwidth (MHz)	Number		Freq. (MHz)	Power (dBm)	Gain (dBi)	(dB) (Note 3)	Power (dBm)	Limit	Status	
			6595		-67.08	5.17	0	-72.25	-62	OFF	
	20	129		6595	-67.58	5.17	0	-72.75	-62	Minimal	
					-76.83	5.17	0	-82	-62	ON	
					-66	5.17	0	-71.17	-62	OFF	
				6590	-66.5	5.17	0	-71.67	-62	Minimal	
902 11ov					-76.83	5.17	0	-82	-62	ON	
002.11ax					-65.11	5.17	0	-70.28	-62	OFF	
	160	143	6665	6665	-65.61	5.17	0	-70.78	-62	Minimal	
					-76.83	5.17	0	-82	-62	ON	
					-66.1	5.17	0	-71.27	-62	OFF	
				6740	-66.6	5.17	0	-71.77	-62	Minimal	
					-76.83	5.17	0	-82	-62	ON	

Notes:

1. After investigation (consider antenna gain and path loss), the one representative port (Chain 3) was measured and presented in the report.

- 2. Adjusted Power (dBm) = Injected Signal (AWGN) Power (dBm) Antenna Gain (dBi) + Path Loss (dB)
- 3. Antenna gain values include all the applicable path losses.

Contention Based Protocol Detection Probability															
Operation Mode	Channel Bandwidth (MHz)	AWGN Signal Freq. (MHz)	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10	Detection Probability	Detection Limit	Test Result
	20	6595	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
902 11 ov	160	6590	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
802.11ax		6665	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
		6740	v	v	v	v	v	v	v	v	х	v	90%	90%	Pass

For U-NII-8

	Contention Based Protocol Measurement										
Operation	Channel	Channol	Channel	Injecte (AW	d Signal /GN)	Antenna	Path Loss	Adjusted	Detection		
Mode	Bandwidth (MHz)	Number	Freq. (MHz)	req. MHz) (MHz)		Gain (dBi)	(dB) (Note 3)	Power (dBm)	Limit	Status	
					-66.01	5.48	0	-71.49	-62	OFF	
				6910	-66.51	5.48	0	-71.99	-62	Minimal	
					-76.52 5.48 0	0	-82	-62	ON		
					-66.07	5.48	0	-71.55	-62	OFF	
802.11ax	160	207	6985	6985	-66.57	5.48	0	-72.05	-62	Minimal	
					-76.52	5.48	0	-82	-62	ON	
					-66.12	5.48	0	-71.6	-62	OFF	
				7060	-66.62	5.48	0	-72.1	-62	Minimal	
					-76.52	5.48	0	-82	-62	ON	

Notes:

1. After investigation (consider antenna gain and path loss), the one representative port (Chain 3) was measured and presented in the report.

- 2. Adjusted Power (dBm) = Injected Signal (AWGN) Power (dBm) Antenna Gain (dBi) + Path Loss (dB)
- 3. Antenna gain values include all the applicable path losses.

Contention Based Protocol Detection Probability															
Operation Mode	Channel Bandwidth (MHz)	AWGN Signal Freq. (MHz)	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10	Detection Probability	Detection Limit	Test Result
		6910	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
802.11ax	160	6985	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
		7060	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass

7.4 AC Power Conducted Emissions

RF Mode	802.11ax (HE160)	Channel	CH 47:6185 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	24°C, 70% RH
Tested By	Sampson Chen		

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Readin (dB	g Value suV)	Emissic (dB	on Level uV)	Liı (dB	nit uV)	Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.96	32.81	20.16	42.77	30.12	66.00	56.00	-23.23	-25.88	
2	0.21250	9.95	22.01	13.76	31.96	23.71	63.11	53.11	-31.15	-29.40	
3	0.44297	9.96	21.40	14.91	31.36	24.87	57.01	47.01	-25.65	-22.14	
4	2.10938	10.05	17.15	11.41	27.20	21.46	56.00	46.00	-28.80	-24.54	
5	10.85938	10.70	23.96	18.01	34.66	28.71	60.00	50.00	-25.34	-21.29	
6	18.11328	11.11	18.70	12.54	29.81	23.65	60.00	50.00	-30.19	-26.35	

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

RF Mode	802.11ax (HE160)	Channel	CH 47:6185 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	24°C, 70% RH
Tested By	Sampson Chen		

Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.00	33.65	20.39	43.65	30.39	66.00	56.00	-22.35	-25.61
2	0.16953	10.00	30.90	19.92	40.90	29.92	64.98	54.98	-24.08	-25.06
3	0.44297	10.01	23.45	17.75	33.46	27.76	57.01	47.01	-23.55	-19.25
4	0.93516	10.05	19.59	12.76	29.64	22.81	56.00	46.00	-26.36	-23.19
5	1.89844	10.09	18.96	13.23	29.05	23.32	56.00	46.00	-26.95	-22.68
6	10.80078	10.68	16.89	10.91	27.57	21.59	60.00	50.00	-32.43	-28.41

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

7.5 Unwanted Emissions below 1 GHz

RF Mode	Mode 802.11ax (HE160) Channel		CH 47:6185 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	Quasi-Peak (QP), RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 64% RH
Tested By	Nick Tsou		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	73.70	25.6 QP	40.0	-14.4	3.00 H	122	41.2	-15.6		
2	122.88	31.3 QP	43.5	-12.2	1.50 H	132	45.6	-14.3		
3	178.81	33.8 QP	43.5	-9.7	1.50 H	205	47.7	-13.9		
4	221.15	37.5 QP	46.0	-8.5	1.50 H	202	53.7	-16.2		
5	473.75	30.1 QP	46.0	-15.9	2.00 H	360	38.0	-7.9		
6	755.35	28.5 QP	46.0	-17.5	1.00 H	267	31.2	-2.7		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

RF Mode	802.11ax (HE160)	Channel	CH 47:6185 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	Quasi-Peak (QP), RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 64% RH
Tested By	Nick Tsou		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	34.37	20.8 QP	40.0	-19.2	3.00 V	88	34.3	-13.5		
2	73.70	34.3 QP	40.0	-5.7	3.00 V	84	49.9	-15.6		
3	122.88	34.3 QP	43.5	-9.2	1.00 V	313	48.6	-14.3		
4	221.15	36.7 QP	46.0	-9.3	1.00 V	195	52.9	-16.2		
5	473.75	30.4 QP	46.0	-15.6	1.00 V	64	38.3	-7.9		
6	902.85	28.5 QP	46.0	-17.5	1.50 V	211	29.3	-0.8		

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

7.6 Unwanted Emissions above 1 GHz

RF Mode	802.11ax (HE160)	Channel	CH 47:6185 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	Peak (PK), RB = 1 MHz, VB = 3 MHz Peak (AV), RB = 1 MHz, VB = 10 Hz
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 62% RH
Tested By	Nick Tsou		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*6185.00	107.5 PK			1.34 H	338	102.3	5.2		
2	*6185.00	94.9 AV			1.34 H	338	89.7	5.2		
3	12370.00	47.0 PK	74.0	-27.0	2.44 H	138	32.8	14.2		
4	12370.00	34.5 AV	54.0	-19.5	2.44 H	138	20.3	14.2		
5	18555.00	60.9 PK	74.0	-13.1	1.45 H	291	66.9	-6.0		
6	18555.00	47.4 AV	54.0	-6.6	1.45 H	291	53.4	-6.0		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

RF Mode	802.11ax (HE160)	Channel	CH 47:6185 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	Peak (PK), RB = 1 MHz, VB = 3 MHz Peak (AV), RB = 1 MHz, VB = 10 Hz
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 62% RH
Tested By	Nick Tsou		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*6185.00	107.5 PK			2.32 V	231	102.3	5.2		
2	*6185.00	96.6 AV			2.32 V	231	91.4	5.2		
3	12370.00	47.2 PK	74.0	-26.8	1.50 V	281	33.0	14.2		
4	12370.00	34.4 AV	54.0	-19.6	1.50 V	281	20.2	14.2		
5	18555.00	61.3 PK	74.0	-12.7	1.33 V	224	67.3	-6.0		
6	18555.00	47.5 AV	54.0	-6.5	1.33 V	224	53.5	-6.0		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Plot of Band Edge

8 Operational Restrictions for 6 GHz U-NII Devices

- (1) Operation of indoor access points in the 5.925-7.125 GHz band is prohibited on oil platforms, cars, trains, boats, and aircraft, except that indoor access points are permitted to operate in the 5.925-6.425 GHz bands in large aircraft while flying above 10,000 feet.
- (2) Operation of transmitters in the 5.925-7.125 GHz band is prohibited for control of or communications with unmanned aircraft systems.
- (3) Transmitters operating under indoor access points are limited to indoor locations.
- (4) In the 5.925-7.125 GHz band, indoor access points must bear the following statement in a conspicuous location on the device and in the user's manual: FCC regulations restrict operation of this device to indoor use only. The operation of this device is prohibited on oil platforms, cars, trains, boats, and aircraft, except that operation of this device is permitted in large aircraft while flying above 10,000 feet.
- (5) In the 5.925-7.125 GHz band, Access points may connect to other access points or subordinate devices.
- (6) Indoor access points, operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

Device is a Indoor AP, all restrictions are meet the §15.407 (d) requirements. Please refer to the Attestation letter exhibit supplied within this application.

9 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

10 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> Web Site: <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ---