

Emissions Test Report

EUT Name: Handheld Interrogator

EUT Model: PI900

FCC ID: G8JHHI03

FCC Title 47, Part 15, SubpartC, RSS-210 Issue 7

Prepared for:

John Casaer Elster Integrated Solutions, LLC 208 South Rogers Lane Raleigh, NC 27610 Tel: 919 250-5700 Fax: 919 250-5439

Prepared by:

TUV Rheinland of North America 762 Park Avenue Youngsville, NC 27596 Tel: (919) 554-0901 Fax: (919) 556-2043 http://www.tuv.com/

Report/Issue Date: 02 January 2007 Report Number: 30762512.001

Statement of Compliance

Manufacturer:	Elster Integrated Solutions, LLC
	208 South Rogers Lane
	Raleigh, NC 27610
	919 250-5700
Requester / Applicant:	John Casaer
Name of Equipment:	Handheld Interrogator
Operation Frequency Range	902.8 MHz to 927.6
Type of Equipment:	Intentional Radiator
Application of Regulations:	FCC Title 47, Part 15, SubpartC, RSS-210 Issue 7
Test Dates:	02 November 2006 to 28 November 2007

Guidance Documents:

Emissions: FCC 47 CFR Part 15, RSS-210 Issue 7

Test Methods:

Emissions: ANSI C63.4:2003

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland of North America, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that a sample of one, of the equipment described above, has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report contains data that are not covered by NVLAP accreditation. This report shall not be reproduced except in full, without the written authorization of the laboratory.

1	EX	ECUTIVE SUMMARY	4
	1.1 1.2 1.3 1.4 1.5	SCOPE PURPOSE SUMMARY OF TEST RESULTS SPECIAL ACCESSORIES EQUIPMENT MODIFICATIONS	4 5 6
2	LA	BORATORY INFORMATION	6
	2.1 2.2 2.3 2.4	Accreditations & Endorsements Test Facilities Measurement Uncertainty Calibration Traceability	7 8
3	PR	ODUCT INFORMATION	9
	3.1 3.2	PRODUCT DESCRIPTION EQUIPMENT CONFIGURATION	
4	EM	ISSIONS	10
	4.1 4.2 4.3	CHANNEL SEPARATION PART 15.247(A)(1) PSEUDORANDOM HOPPING ALGORITHM FCC PART 15.247(A)(1) OCCUPIED BANDWIDTH FCC PART 15.247(A)(1)(I)	11
5	EM	ISSIONS	24
	5.1 5.2 5.3 Syste	SPURIOUS EMISSIONS FCC PART 15.247(C) FREQUENCY HOPPING SPREAD SPECTRUM SYSTEMS FCC PART 15.247(G) INCORPORATION OF INTELLIGENCE WITHIN A FREQUENCY HOPPING SPREAD SPECTRUM M FCC PART 15.247(H)	37
6	TES	ST EQUIPMENT USE LIST	38
7	SEC	CONDARY TEST EQUIPMENT USE LIST	38

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Title 47, Part 15, SubpartC, RSS-210 Issue 7 based on the results of testing performed on *02 November* 2006 through 28 November 2007 on the *Handheld Interrogator* Model No. *PI900* manufactured by Elster Integrated Solutions, LLC. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Test	Test Method(s)	Test Parameters	Measurement	Result
Channel Separation	FCC Part 15.247(a)(1)	Minimum of 25 kHz	401.3 kHz	compliant
	RSS-210, Annex 8,	or 20 dB bandwidth		
	Section A8.1 (2)			
Pseudorandom Hopping	RSS-210, Annex 8, Section	n A8.1		compliant
Algorithm				
Time of Occupancy	FCC Part 15.247(a)(1)(i)	=<0.4 sec in 10 sec.	0.202 sec in 10sec	compliant
	RSS-210, Annex 8,			
	Section A8.1 (3)			
Occupied Bandwidth	FCC Part 15.247(a)(1)(i)	=<500kHz	332.5 kHz	compliant
	RSS-210, Annex 8,			
	Section A8.1 (3)			
Peak Output Power	FCC Part 15.247(b)(2)	0.25 Watts	0.211 Watts	compliant
	RSS-210, Annex 8,			
	Section A8.4 (1)			
Spurious Emissions	FCC Part 15.247(C)	Table FCC Part	48.51dBuV/m @	compliant
	RSS-210, Annex 8,	15.209	3meters Average	_
	Section A8.5			
Frequency Hopping	FCC Part 15.247(g)			compliant
Spread Spectrum	RSS-210, Annex 8,			_
Systems	Section A8.1			
Incorporation of	FCC Part 15.247(h)			compliant
Intelligence	RSS-210, Annex 8,			-
-	Section A8.1			
Conducted Emissions	FCC Part 15.207	Table FCC Part	Not Tested. Unit	N/A
		15.207	does not operate	
			in charge mode	

Table 1 - Summary of Test Results

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

No modifications were found to be necessary in order to achieve compliance.

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at the 762 Park Ave. Youngsville, N.C 27596 address is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90552 and 100881). The laboratory scope of accreditation includes: Title 47 CFR Part 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 25 and ISO 9002 (Lab code 200094-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

Registration No. IC3755

2.1.4 Japan - VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at the 762 Park Ave. Youngsville, N.C 27596 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration No. R-1174 and C-1236).

2.1.5 Acceptance By Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland of North America at the 762 Park Ave. Youngsville, N.C 27596 address test results and test reports within the scope of the laboratory NIST / NVLAP accreditation will be accepted by each member country.

2.2 Test Facilities

All of the test facilities are located at 762 Park Ave., Youngsville, North Carolina 27596, USA.

2.2.1 Emission Test Facility

The Open Area Test Site and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2005, at a test distance of 3 and 10 meters. This site has been described in reports dated May 12, 1997, submitted to the FCC, and accepted by letter dated June 25, 1997 (31040/SIT 1300F2). The site is listed with the FCC and accredited by NVLAP (code 200094-0). The 5m semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2005, at a test distance of 3 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7m x 3.7m x 3.175mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6m x 0.8m x 0.8m high non-conductive table with a 3.175mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50cm x 50cm x 3.175mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 7.3m x 3.7m x 3.2m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.9m x 3.7m x 3.175mm thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st addition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

The test system for conducted emissions is defined as the LISN, spectrum analyzer, coaxial cables, and pads. The test system for radiated emissions is defined as the antenna, spectrum analyzer, pre-amplifier, coaxial cables, and pads. The conducted test system has a combined standard uncertainty of \pm 1.2 dB. The radiated test system has a combined standard uncertainty of \pm 1.6 dB. The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Guide 25.

3 Product Information

3.1 Product Description

The EUT is a PCMCIA Transceiver Card for utilies meter reading.

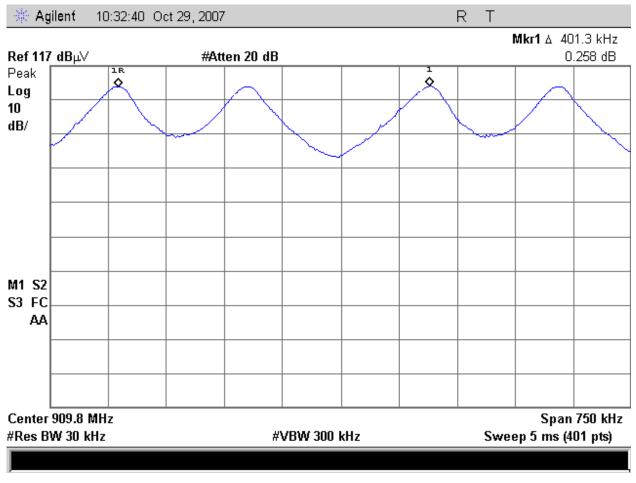
3.2 Equipment Configuration

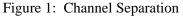
The justification of the equipment configuration is given in the EUT Operational Description. The EUT was tested as described in the EUT Operational Description and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to warm up to normal operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce worse case radiation and place the EUT in the most susceptible state.

4 Emissions


Testing was performed in accordance with 47 CFR Part 15, ANSI C63.4:2003, RSS-210 Issue 7. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.


4.1 Channel Separation Part 15.247(a)(1)

Frequency hopping Systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Bandwidth = 332.5 kHz

Channel Separation = 401.3 kHz

4.2 Pseudorandom Hopping Algorithm FCC Part 15.247(a)(1)

The channel bandwidth for this system is greater than 250 kHz. Therefore the system must use at least 25 channels that are selected at the system hopping rate, from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their transmitters and shall shift frequencies in synchronization with the transmitted signals.

In constant transmit mode, the Hand Held Interrogator sends a packet every 97.3 ms with a delay of 8 to 16 ms between packets. Each packet is sent on the next channel determined by the pseudo-random hop table below. The EUT always distributes its transmissions across all 25 channels, and does not re-use a channel again until a transmission has occurred on each of the other 24 channels.

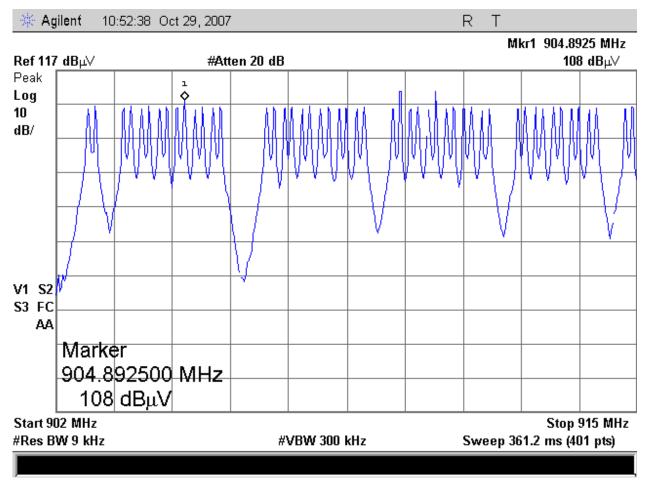


Figure 2: Plot of hopping Channels 902-916 MHz

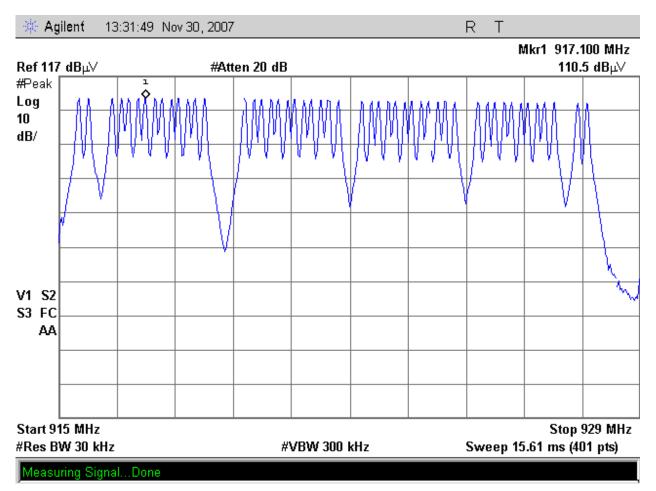


Figure 3: Plot of hopping Channels 915-929 MHz

Time of Occupancy FCC Part 15.247(a)(1)(i)

Frequency Band	20 dB Bandwidth	Number of	Average Time of
(MHz)		Hopping Channels	Occupancy
902.8-914.8	=>250 kHz	25	=<0.4 sec. In 10 sec.

The spectrum analyzer was set as follows:

RBW=120 kHz

VBW=300 kHz

Span=0Hz

LOG dB/div.= 10dB

Sweep = 10 Sec.

Trigger Video

The occupancy time was measured as above. There were 2 hops at .101 seconds per hop for any 10 sec. Period. Time of occupancy equals number of hops multiplied by the duration of one hop.

Time of Occupancy = 0.202 seconds in any 10 second period.

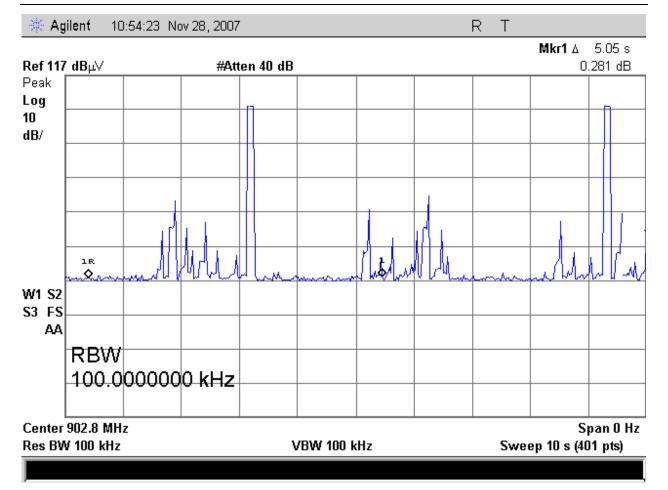


Figure 4: 10 second sweep of 902.8 MHz

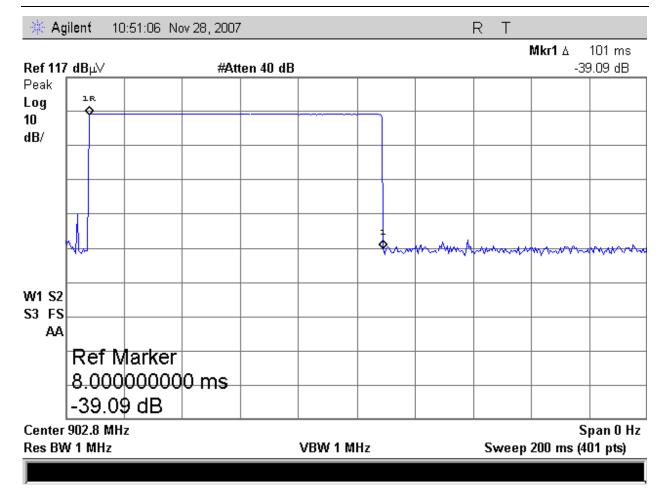


Figure 5: Measurement of 1 hop at 902.8 MHz

4.3 Occupied Bandwidth FCC Part 15.247(a)(1)(i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

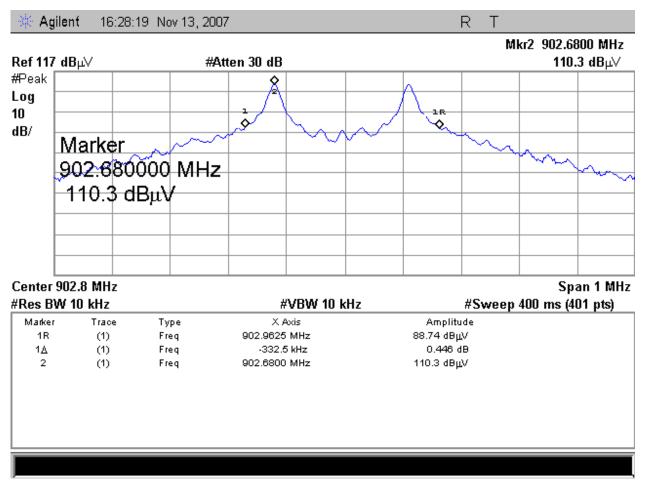


Figure 6: (902.8 MHz) Occupied Bandwidth

*BW = 332.5 kHz

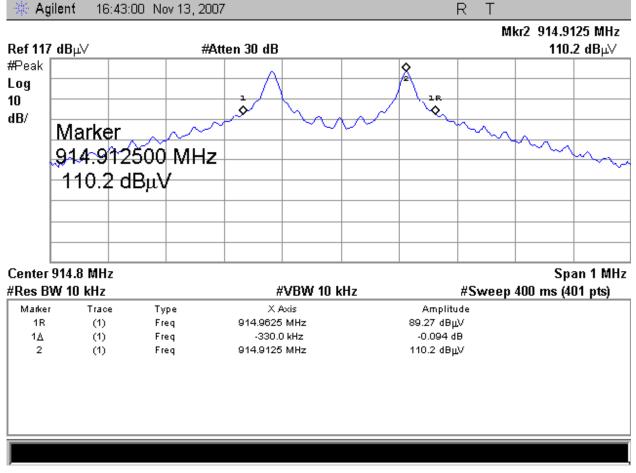


Figure 7: (914.8 MHz) Occupied Bandwidth

*BW = 330.0 kHz

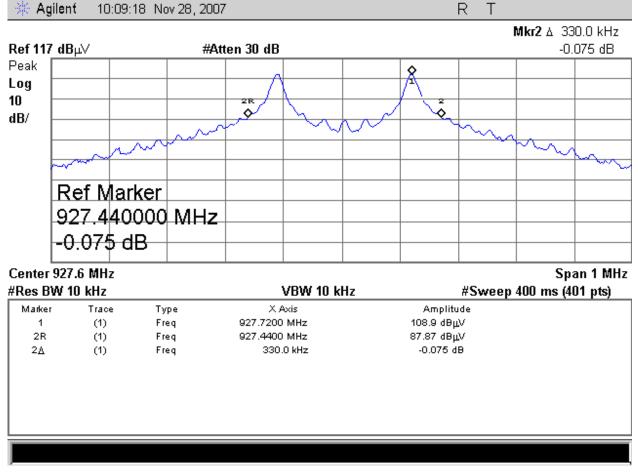
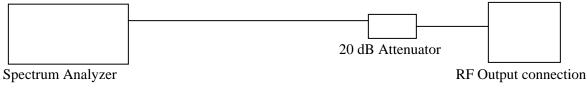


Figure 8: (927.6 MHz) Occupied Bandwidth


*BW = 330.0 kHz

Peak Output Power FCC Part 15.247(b)(2)

The maximum peak output power of the intentional radiator shall not exceed 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels. (Conducted Measurement)

The peak output power was measured at the lowest transmit frequency, the middle transmit frequency, and at the highest transmit frequency. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. After the measurement was made the cable loss and the attenuator was added to the measurement. The spectrum analyzer's resolution bandwidth was greater than the 20dB bandwidth of the modulated carrier and the video bandwidth was equal to the resolution bandwidth.

Test Setup

Peak Power Output

902.8 MHz = 0.211 Watts 914.8 MHz = 0.201 Watts 926.7 MHz = 0.148 Watts

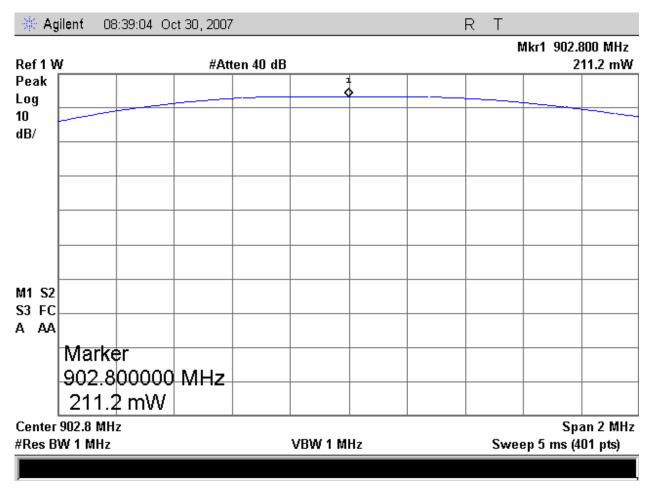


Figure 9: (902.8 MHz) Peak Output Power

🔆 Agilent	00.40.01	Oct 30, 2007				RT	Mkr1 91	4.920 MHz	
Ref 1 W		#Atte	n 40 dB				200.6 mW		
Peak .og						 			
0 B/									
11 S2									
3 FC									
enter 914.8 Res BW 1 N				VBW 1 M	Length Hz	Swi	Seep 5 ms	ipan 2 MH (401 pts)	

г.	10	(014.0	NATE \	D 1	0	D
Figure	10:	(914.8	MHZ)	Реак	Output	Power
0		(-				

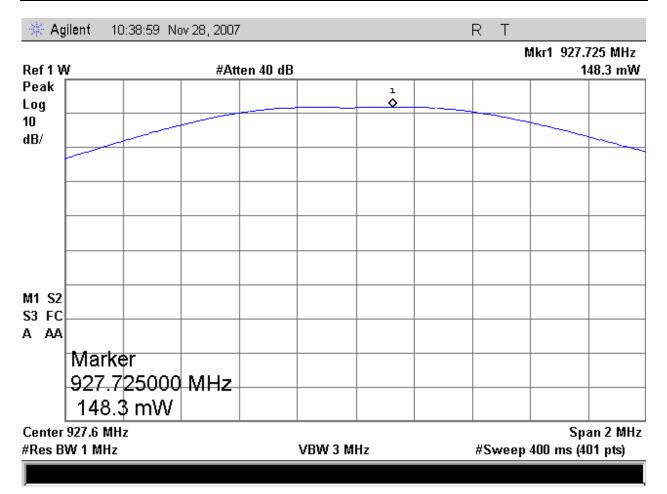


Figure 11: (927.6 MHz) Peak Output Power

Antenna Gain

If peak power output was performed using the conducted method then the antenna gain will be stated.

The measurement was performed with out modulation. The transmitter under test was placed on a nonconductive table 80cm above the ground plane. The spectrum analyzer was tuned to the transmitter carrier frequency and the turntable was rotated 360 degrees about the vertical axis until the highest maximum signal was received. Then the receive antenna was raised and lowered 1 to 4 meters until the maximum signal was detected. Then the substitution dipole antenna and signal generator replaced the transmitter under test and both the receive and substitution antenna were placed in the vertical polarization. The input signal to the substitution antenna was adjusted to the maximum signal received from the transmitter. The receive antenna was then raised and lowered to ensure the maximum signal was still received. The cable to the dipole was then removed and attached to a calibrated power meter to record the power level and added to the substitution antenna gain to obtain the EIRP level. Then the steps above were repeated for the horizontal polarization. The gain of the EUT antenna is the difference between the measured RF power at the RF port and the measured EIRP.

4.3.1.1 Results

Emission	ANT	ANT	Table	Raw	Sig. Gen	Cable	Substitution Ant	Radiated Power	Conducted Power	Gain
Freq	Polar	Pos	Pos	Value	Reading	loss	Gain	Level		Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dBm)	dB	dBi	(dBm)	(dBm)	(dBi)
902.8	Н	1.00	154	110.72	7	2.29	6.2	10.91	23.24	-12.33
902.8	V	2.17	68	113.41	12.6	2.29	7.2	17.51	23.24	-5.73
914.8	Н	1.27	160	109.89	6.2	2.31	6.2	10.09	23.02	-12.93
914.8	V	2.19	66	113.80	13.5	2.31	7.3	18.49	23.02	-4.53
927.6	Н	1.12	148	110.15	9.2	2.33	6.5	13.37	21.71	-8.34
927.6	V	1.01	0	115.30	15.8	2.33	7.3	20.77	21.71	-0.94

Internal Antenna

Freq.	Peak (dBi)
(GHz)	
0.902 - 0.928	-0.94

5 Emissions

5.1 Spurious Emissions FCC Part 15.247(c)

5.1.1 Test Methodology

5.1.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 300 kHz and provide a reading at each frequency for each 6° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

5.1.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m nonconductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

5.1.1.3 Deviations

There were no deviations from this test methodology.

5.1.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

5.1.2.1 Radiated Emissions Outside the Frequency Band

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on radiated measurements.

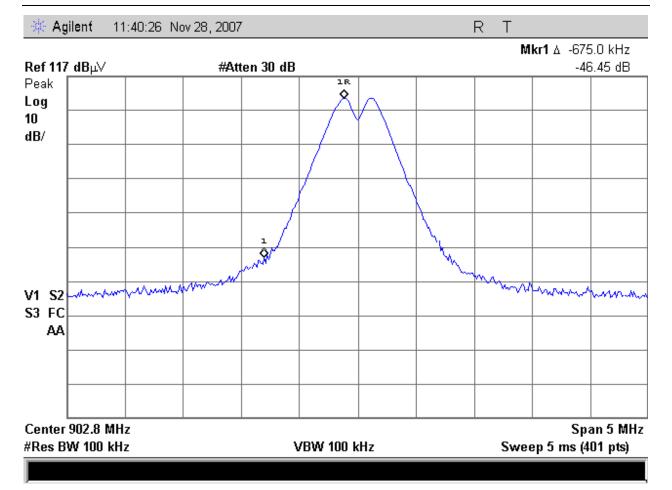


Figure 12: Lower Band Edge Measurement

Note: The delta marker "1" was placed at 902 MHz and is at a level 46.45 dB below the peak. This satisfies the requirement that the emissions at the band edge must be 20 dB below the peak.

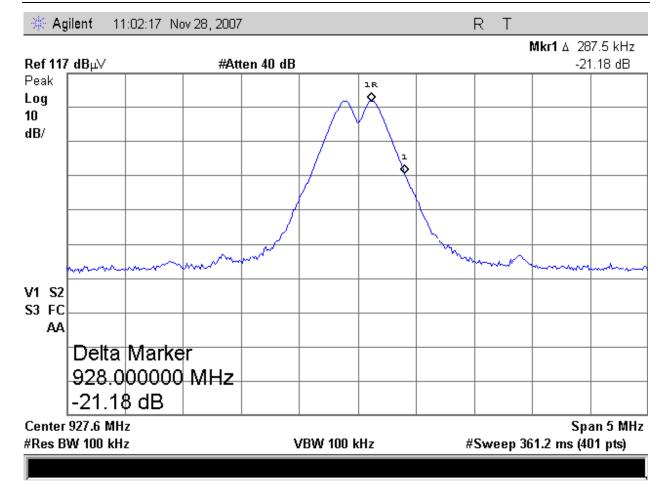


Figure 13: Upper Band Edge Measurement

SOP 1 Radiated Emissions, 15.247cTracking # 30762512.001 Page 1 of 3													
EUT Name	Hand	dheld In	terrogato	r		D	ate	0.	7 November,	2007			
EUT Model	PI90					T	Temp / Hum in 73.4 deg F / 28% rh						
EUT Serial	G07	672 72 ⁻	1			T	emp / Hu	m out N	/A				
Standard	FCC	47 CFF	R Part 15	, RSS-210 I	ssue 7	L	ine AC / I	Freq. B	attery Powere	ed			
Deg/sweep	12			R	BW / VB	N 1	MHz/1MHz						
Dist/Ant Use	d 3 me	eters / 3	115 abov	ve 1 GHz		P	erformed	l by C	hris Eckert				
Configuration													
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec			
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin			
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m	n) (dBuV/m)	(dBuV/m)			
902.80	Н	1.00	154	83.79	0.00	3.33	23.60	110.7					
1805.60	Н	1.08	179	41.51	35.88	6.80	26.63	39.06	90.72	-51.66			
2708.40	Н	1.31	220	44.13	36.06	8.62	29.12	45.81	90.72	-44.91			
3611.20	Н	1.02	0	30.32	35.39	9.77	31.47	36.17	90.72	-54.55			
4514.00	Н	1.00	331	33.93	35.85	9.70	32.18	39.95	90.72	-50.77			
5416.80	н	1.02	0	40.32	35.22	11.09	33.90	50.10	90.72	-40.62			
6319.60	н	1.02	0	34.15	34.62	11.98	34.43	45.95	90.72	-44.77			
7222.40	Н	1.02	0	29.59	35.38	14.39	35.93	44.52	90.72	-46.20			
8125.40	Н	1.02	0	29.59	35.80	17.09	36.99	47.87	90.72	-42.85			
9028.00	Н	1.02	0	30.06	35.90	18.30	37.94	50.40	90.72	-40.32			
902.80	V	2.17	68	87.38	0.00	3.33	22.70	113.4	1 N/A				
1805.60	V	1.01	4	42.77	35.88	6.80	26.59	40.29	93.41	-53.12			
2708.40	V	1.20	183	46.98	36.06	8.62	29.11	48.65	93.41	-44.76			
3611.20	V	1.46	285	39.34	35.39	9.77	31.39	45.11	93.41	-48.30			
4514.00	V	1.34	221	37.54	35.85	9.70	32.17	43.55	93.41	-49.86			
5416.80	V	1.02	183	40.46	35.22	11.09	33.89	50.23	93.41	-43.18			
6319.60	V	1.02	0	41.36	34.62	11.98	34.36	53.09	93.41	-40.32			
7222.40	V	1.02	0	38.57	35.38	14.39	35.80	53.37	93.41	-40.04			
8125.40	V	1.02	0	38.57	35.80	17.09	36.97	56.84	93.41	-36.57			
9028.00	V	1.84	337	39.09	35.90	18.30	37.86	59.34	93.41	-34.07			
Spec Margin =	E-Field	Value - L	imit, E-F	ield Value =	FIM Value -	Amp Gair	n + Cable L	oss + AN	TFactor ± Und	certainty			
Combined Stand								for 95% co					
Nataa													

Notes:

The bandwidth for these measurements was higher than 100 kHz. However, the peak spurious emissions still met the requirements of 15.247(c), even when measured the 1 MHz bandwidth.

SOP 1 Radiated EmissionsTracking # 30762512.001 Page 2 of 3													
EUT Name	Hand	dheld In	terrogato	r		D	ate	07	November,	2007			
EUT Model	PI90		<u>conogato</u>	•			emp / Hu		4 deg F / 28				
EUT Serial		<u> </u>	1					m out N/A	<u> </u>	.,			
Standard				, RSS-210 l	ssue 7		ine AC / I		tery Powere	ed			
Deg/sweep	12			,			BW / VB		Hz/1MHz				
Dist/Ant Use		eters / 3	115 abov	/e 1 GHz			erformed		is Eckert				
Configuratio						· · ·							
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec			
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin			
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuŬ/m)			
				, , ,									
914.80	Н	1.27	160	82.82	0.00	3.37	23.70	109.89	N/A				
1829.60	Н	1.53	197	45.17	35.89	6.90	26.73	42.91	89.89	-46.98			
2744.40	Н	1.04	214	43.56	36.23	8.57	29.24	45.15	89.89	-44.74			
3659.20	Н	1.11	83	38.84	35.59	10.07	31.59	44.9	89.89	-44.99			
4574.00	Н	1.09	330	42.67	35.79	10.00	32.31	49.19	89.89	-40.70			
5488.80	Н	1.00	0	41.24	35.16	10.76	34.03	50.87	89.89	-39.02			
6403.60	Н	1.02	0	42.29	34.27	13.01	34.47	55.5	89.89	-34.39			
7318.40	Н	1.02	0	39.09	35.34	14.27	36.16	54.18	89.89	-35.71			
8233.20	Н	1.02	0	38.57	35.77	17.56	37.11	57.47	89.89	-32.42			
9148.00	Н	1.30	340	40.71	35.81	18.61	38.01	61.52	89.89	-28.37			
914.80	V	2.19	66	87.60	0.00	3.37	22.80	113.77	NA				
1829.60	V	1.63	269	43.16	35.89	6.90	26.73	40.90	93.77	-52.87			
2744.40	V	1.02	183	42.77	36.23	8.57	29.24	44.36	93.77	-49.41			
3659.20	V	1.47	326	39.09	35.59	10.07	31.52	45.09	93.77	-48.68			
4574.00	V	1.33	284	41.36	35.79	10.00	32.30	47.88	93.77	-45.89			
5488.80	V	1.02	0	40.84	35.16	10.76	34.00	50.44	93.77	-43.33			
6403.60	V	1.01	0	41.63	34.27	13.01	34.39	54.76	93.77	-39.01			
7318.40	V	1.02	0	39.25	35.34	14.27	36.05	54.23	93.77	-39.54			
8233.20	V	1.01	0	38.99	35.77	17.56	37.10	57.88	93.77	-35.89			
9148.00	V	1.42	339	40.71	35.81	18.61	37.93	61.44	93.77	-32.33			
Spec Margin =										certainty			
Combined Stand	lard Unce	rtainty U _c	$(y) = \pm 1.60$	dB Expanded	d Uncertainty	$U = ku_c($	y) k = 2	for 95% confi	dence				
Notes:													

The bandwidth for these measurements was higher than 100 kHz. However, the peak spurious emissions still met the requirements of 15.247(c), even when measured the 1 MHz bandwidth.

SOP 1 Radiated EmissionsTracking # 30762512.001 Page 3 of 3													
EUT Name	Hand	dheld In	terrogato	r		D	ate	2	8 November,	2007			
EUT Model	PI90		torrogato	•			Temp / Hum in 70.6 deg F / 31% rh						
EUT Serial		<u> </u>	1				emp / Hu		V	,o			
Standard				, RSS-210 I	ssue 7		ine AC / I		attery Powere	ed			
Deg/sweep	12			,		BW / VB		MHz/1MHz					
Dist/Ant Use		eters / 3	erformed		hris Eckert								
Configuration													
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec			
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value		Margin			
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/n		(dBuV/m)			
, <i>,</i> ,	· · · /		<i>/</i>	,/	, <i>,</i> /	· · · /		``````````````````````````````````````					
927.60	Н	1.01	0	84.05	0.00	3.25	22.85	110.	15				
1855.20	Н	1.09	181	55.19	35.98	7.62	26.84	53.67	90.15	-36.48			
2782.80	Н	1.02	0	48.28	36.60	9.33	29.37	50.39	90.15	-39.76			
3710.40	Н	1.02	0	47.15	35.46	10.97	31.72	54.38	90.15	-35.77			
4638.00	Н	1.01	0	48.08	35.76	13.01	32.43	57.77	90.15	-32.38			
5565.60	Н	1.04	2	47.44	35.19	13.37	34.08	59.7	90.15	-30.45			
6493.20	Н	1.18	22	47.97	34.58	13.75	34.52	61.65	90.15	-28.50			
7420.80	Н	1.22	135	47.82	35.32	17.04	36.40	65.94	90.15	-24.21			
8348.40	Н	1.02	293	47.48	35.71	17.36	37.24	66.37	90.15	-23.78			
9276.00	Н	1.00	347	47.68	35.81	18.19	38.08	68.14	90.15	-22.01			
927.60	V	1.12	148	87.98	0.00	3.25	23.85	115.30					
1855.20	V	1.13	140	54.27	35.98	7.62	26.80	52.70	95.3	-42.60			
2782.80	V	1.02	0	48.18	36.60	9.33	29.37	50.28	95.3	-45.02			
3710.40	V	1.02	0	48.18	35.46	10.97	31.66	55.35	95.3	-39.95			
4638.00	V	1.34	343	48.72	35.76	13.01	32.44	58.42	95.3	-36.88			
5565.60	V	1.02	141	47.21	35.19	13.37	34.05	59.45	95.3	-35.85			
6493.20	V	1.01	280	48.09	34.58	13.75	34.42	61.68	95.3	-33.62			
7420.80	V	1.01	0	48.89	35.32	17.04	36.31	66.91	95.3	-28.39			
8348.40	V	1.02	242	48.66	35.71	17.36	37.23	67.54	95.3	-27.76			
9276.00	V	1.02	151	47.96	35.81	18.19	38.00	68.34	95.3	-26.96			
								loss + AN	T Factor ± Und	ertainty			
Combined Stand	dard Unce	rtainty <i>U_c</i>	<i>(y)</i> = ± 1.60	dB Expande	d Uncertaint	$V U = ku_c(y)$	y) k = 2	for 95% co	nfidence				

Notes:

The bandwidth for these measurements was higher than 100 kHz. However, the peak spurious emissions still met the requirements of 15.247(c), even when measured the 1 MHz bandwidth.

5.1.2.2 Restricted band measurements

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

SOP 1 Rad	diated I	Emissi	ons			Т	racking # 3	307625	12.0	01 Page 1	of 6
EUT Name			terrogato	r			Date		-	November, 2	
EUT Model	PI90						Temp / Hum in 73.4 deg F / 28% rh				
EUT Serial		000037					Temp / Hu				
Standard	FCC	47 CFF	R Part 15	, RSS-210 I	ssue 7		Line AC /			tery Powere	ed
Deg/sweep						RBW / VB	N		Hz/1MHz		
Dist/Ant Use	ed 3 me	eters 1G	ihz -10Gł	Ηz			Performed	l by	Chr	is Eckert	
Configuratio	on 902.	8 MHz S	Spurious	Emissions v	with interna	al anten	na				
Emission Freq	ANT Polar	ANT Pos	Table Pos	FIM Value	Amp Gain	Cable Loss	ANT Factor	E-Fie Valu		Spec Limit	Spec Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBu∖	//m)	(dBuV/m)	(dB)
Peak											
2708.40	Н	1.31	220	44.13	36.06	8.6	2 29.12	45	5.81	74.00	-28.19
3611.20	Н	1.02	0	30.32	35.39	9.7	7 31.47	36	6.17	74.00	-37.83
4514.00	Н	1.00	331	33.93	35.85	9.7	0 32.18	39	9.95	74.00	-34.05
5416.80	Н	1.02	0	40.32	35.22	11.0	9 33.90	50).10	74.00	-23.90
8125.40	Н	1.02	0	29.59	35.80	17.0	9 36.99	47	7.87	74.00	-26.13
9028.00	Н	1.02	0	30.06	35.90	18.3	0 37.94	50).40	74.00	-23.60
Average		1.0.1									10.00
2708.40	Н	1.31	220	35.39	36.06	8.6			7.07	54.00	-16.93
3611.20	H	1.02	0	16.77	35.39	9.7			2.62	54.00	-31.38
4514.00	Н	1.00	331	22.51	35.85	9.7			8.53	54.00	-25.47
5416.80	H	1.02	0	26.93	35.22	11.0			6.71	54.00	-17.29
8125.40	H	1.00	0	24.83	35.80	17.0			3.11	54.00	-10.89
9028.00	Н	1.02	0	16.63	35.90	18.3	0 37.94	36	6.97	54.00	-17.03
Spec Margin =											ertainty
Combined Stand									confic	dence	
Notes: RBW/	/VBW =	1MHz/1	MHz For	trequencies	s between	1GHz a	nd 10 GHz				

SOP 1 Radiated Emissions Tracking # 30762512.001 Page 2 of 6										
EUT Name EUT Model	PI90	0	terrogato	1	Date 07 November, 2007 Temp / Hum in 73.4 deg F / 28% rh					
EUT Serial		000037						m out <u>N/A</u>		
Standard	FCC	47 CFF	R Part 15	, RSS-210 I	ssue 7		Line AC / I		tery Powere	ed
Deg/sweep						F	RBW / VB		Hz/1MHz	
Dist/Ant Use	d 3 me	eters 1G	ihz -10Gł	Ηz		F	Performed	l by Chr	is Eckert	
Configuratio	on 902.8	8 MHz S	Spurious	Emissions v	with interna	al antenn	na			
			-							
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
Peak										
0700.40	V	4.00	100	40.00	20.00	0.00	00.14	40.05	74.00	05.05
2708.40		1.20	183	46.98	36.06	8.62		48.65	74.00	-25.35
3611.20	V V	1.46	285	39.34	35.39	9.77		45.11	74.00	-28.89
4514.00	V	1.34	221	37.54	35.85	9.70		43.55	74.00	-30.45
5416.80		1.02	183	40.46	35.22	11.09		50.23	74.00	-23.77
8125.40	V V	1.02	0	38.57	35.80	17.09		56.84	74.00	-17.16
9028.00	V	1.84	337	39.09	35.90	18.30	37.86	59.34	74.00	-14.66
Average										
2708.40	V	1.20	183	36.10	36.06	8.62	2 29.11	37.77	54.00	-16.23
3611.20	V	1.46	285	27.72	35.39	9.77	31.39	33.49	54.00	-20.51
4514.00	V	1.34	221	24.38	35.85	9.70		30.39	54.00	-23.61
5416.80	V	1.02	183	26.91	35.22	11.09	33.89	36.68	54.00	-17.32
8125.40	V	1.00	0	24.85	35.80	17.09		43.12	54.00	-10.88
9028.00	V	1.84	337	26.26	35.90	18.30	37.86	46.51	54.00	-7.49
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence										

Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz

SOP 1 Radiated Emissions Tracking # 30762512.001 Page 3 of 6										
EUT Name EUT Model	Hand PI90		terrogato		Date 07 November, 2007 Temp / Hum in 73.4 deg F / 28% rh					
EUT Serial	255-0	000037	3648		Temp / Hu	m out N/A				
Standard	FCC	47 CFF	R Part 15	RSS-210 I	ssue 7	I	Line AC / I	Freq. Batt	ery Powere	ed
Deg/sweep						I	RBW / VB	N 1 M	Hz/1MHz	
Dist/Ant Use	d 3 me	ters 1G	hz -10Gł	Ηz		I	Performed	by Chr	is Eckert	
Configuration	n 914.8	3 MHz S	Spurious	Emissions v	with interna			·		
<u>U</u>			1							
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
Peak										
2744.40	Н	1.04	214	43.56	36.23	8.57	29.24	45.15	74.00	-28.85
3659.20	H	1.11	83	43.56 38.84	35.59	0.57 10.07		45.15	74.00	-28.85
4574.00	п Н	1.09	330	42.67	35.59	10.07		44.90	74.00	-29.10
7318.40	H	1.09	<u> </u>	39.09	35.34	14.27		<u>49.19</u> 54.18	74.00	-19.82
8233.20	H	1.02	0	39.09	35.34	14.27		57.47	74.00	-19.82
9148.00	H	1.30	340	40.71	35.81	18.61		61.52	74.00	-12.48
9148.00		1.30	340	40.71	35.01	10.01	30.01	01.52	74.00	-12.40
Average										
2744.40	Н	1.04	214	33.97	36.23	8.57	29.24	35.56	54.00	-18.44
3659.20	Н	1.11	83	26.32	35.59	10.07	31.59	32.38	54.00	-21.62
4574.00	Н	1.09	330	30.34	35.79	10.00) 32.31	36.86	54.00	-17.14
7318.40	Н	1.02	0	25.91	35.34	14.27	36.16	41.00	54.00	-13.00
8233.20	Н	1.02	0	25.39	35.77	17.56	37.11	44.29	54.00	-9.71
9148.00	Н	1.30	340	27.46	35.81	18.61	38.01	48.27	54.00	-5.73
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence										

Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz

SOP 1 Rad	liated E	Emissi	ons			Ti	racking # 3	307625	12.0	01 Page 4	of 6
EUT Name	terrogato	Date 07 November			November, 2	, 2007					
EUT Model	PI90	0			Temp / Hu	m in	73.4	4 deg F / 28	% rh		
EUT Serial	255-	000037	3648				Temp / Hu	m out	N/A		
Standard	FCC	47 CFF	R Part 15	, RSS-210 I	ssue 7		Line AC / I	Freq.	Batt	tery Powere	ed
Deg/sweep							RBW / VB	N	1 M	Hz/1MHz	
Dist/Ant Use	d 3 me	ters 1G	hz -10Gł	Ηz			Performed	l by	Chr	is Eckert	
Configuratio	n 914.	8 MHz S	Spurious	Emissions v	with interna	al anten	na				
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Fie	əld	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu		Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBu∖		(dBuV/m)	(dB)
Peak	· /								,		
2744.40	V	1.02	183	42.77	36.23	8.5	7 29.24	44	1.36	74.00	-29.64
3659.20	V	1.47	326	39.09	35.59	10.0	7 31.52	45	5.09	74.00	-28.91
4574.00	V	1.33	284	41.36	35.79	10.0	0 32.30	47	7.88	74.00	-26.12
5488.80	V	1.02	0	40.84	35.16	10.7	6 34.00	50).44	74.00	-23.56
7318.40	V	1.02	0	39.25	35.34	14.2	7 36.05	54	1.23	74.00	-19.77
8233.20	V	1.01	0	38.99	35.77	17.5	6 37.10	57	88.7	74.00	-16.12
9148.00	V	1.42	339	40.71	35.81	18.6	1 37.93	61	.44	74.00	-12.56
A											
Average 2744.40	V	1.02	183	32.66	36.23	8.5	7 29.24	3	4.25	54.00	-19.75
3659.20	V	1.47	326	27.83	35.59	10.0			4.23 8.83	54.00	-20.17
4574.00	V	1.33	284	29.51	35.79	10.0			6.03	54.00	-17.97
7318.40	V	1.02	0	25.94	35.34	14.2).92	54.00	-13.08
8233.20	V	1.01	0	25.39	35.77	17.5			1.28	54.00	-9.72
9148.00	V	1.42	339	27.78	35.81	18.6			3.51	54.00	-5.49
Spec Margin =											ertainty
Combined Stand Notes: RBW/									confic	dence	

SOP 1 Rad	diated E	Emissi	ons			Tr	acking # 3	307625	12.0	01 Page 5	of 6
EUT Name EUT Model		Date28 November, 28Temp / Hum in70.6 deg F / 31									
EUT Serial	PI90	3648		Temp / Hu				/0 111			
Standard				, RSS-210 I	0010 7		Line AC / I			tery Powere	d
	FUU	47 CFF	T Fall 15	, KSS-2101	Issue /		RBW / VB			Hz/1MHz	u
Deg/sweep			- 4001	1_							
Dist/Ant Use							Performed	ву	Chr	is Eckert	
Configuratio	on 927.	6 MHZ S	Spurious	Emissions V	with intern	al antenr	na				
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Fi∉ Valu (dBu√	le	Spec Limit (dBuV/m)	Spec Margin (dB)
Peak				í í		/		``	,	Ĺ Í	. ,
2782.80	Н	1.02	0	48.28	36.60	9.33	3 29.37	5	0.39	74.00	-23.61
3710.40	Н	1.02	0	47.15	35.46	10.97			4.38		-19.62
4638.00	Н	1.01	0	48.04	35.76	13.01			7.73		-16.27
7420.80	Н	1.22	135	47.82	35.32	17.04			5.94		-8.06
8348.40	Н	1.02	293	47.48	35.37	14.32	2 36.05	5	3.73	74.00	-20.27
Average											
2782.80	Н	1.02	0	26.59	36.60	9.33	3 29.37	2	8.70	54.00	-25.30
3710.40	Н	1.02	0	25.68	35.46	10.97	7 31.72	32	2.91	54.00	-21.09
4638.00	Н	1.87	176	27.47	35.76	13.01	32.43	37	7.16	54.00	-16.84
7420.80	Н	1.22	135	23.67	35.32	17.04	4 36.40	41	.79	54.00	-12.21
8348.40	Н	1.02	293	23.17	35.71	17.36	37.24	42	2.06	54.00	-11.94
Spec Margin =											ertainty
Combined Stand									confic	dence	
Notes: RBW/	VBW =	1MHz/1	MHz For	trequencies	s between	1GHz ai	nd 10 GHz				

SOP 1 Rad	diated I	Emissi	ons			Ti	racking # 3	307625	512.0	01 Page 6	of 6
EUT NameHandheld InterrogatorEUT ModelPI900								m in	28 November, 2007 70.6 deg F / 31% rh		
EUT Serial		000037	3648		Temp / Hu				<u>,,,,,</u>		
Standard				RSS-210 I	ccuo 7		Line AC /			tery Powere	d
	FUU	47 666	rait 15,	K33-2101	SSUE I		RBW / VB			Hz/1MHz	u
Deg/sweep											
Dist/Ant Use							Performed	by	Chr	is Eckert	
Configuratio	on 927.	6 MHz S	Spurious I	Emissions v	with interna	al anten	na				
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Fie Valu (dBu\	Je	Spec Limit (dBuV/m)	Spec Margin (dB)
Peak	(1		(0.09)	((0.2)	(0.2)	(0.2,)	(0.20.1	,,		()
. oun											
2782.80	V	1.02	0	48.18	36.60	9.3	33 29.37	5	0.28	74	-23.72
3710.40	V	1.02	0	48.18	35.46	10.9	97 31.66	5	5.35	74	-18.65
4638.00	V	1.34	343	48.72	35.76	13.0	01 32.44	5	8.42	74	-15.58
7420.80	V	1.01	0	48.89	35.32	17.0	36.31	6	6.91	74	-7.09
8348.40	V	1.02	242	48.66	35.71	17.3			7.54		-6.46
Average											
Average	V	1.02	0	07 70	26.60	0.2	2 20 27	2	0 02	E4.00	04.47
2782.80 3710.40	V	1.02 1.02	0 0	27.73 24.79	36.60 35.46	9.3 10.9			9.83 1.96		-24.17 -22.04
4638.00	V	1.02	343	24.79	35.46	10.9			9.48		-22.04
7420.80	V	1.01	<u> </u>	29.78	35.32	17.0			9.40 1.69		-14.52
8348.40	V	1.01	0	23.67	35.32	17.0			2.05		-12.31
0040.40	v	1.00	0	23.17	JU.71	17.3	50 31.23	4	2.05	34.00	-11.95
		├									
Spee Marrie	E Elatel		imit E E	ald \/clus		Am= 0				Contor I Ur -	ortaint
Spec Margin =											enainty
Combined Stand									confid	dence	
Notes: RBW/	ARAA =	1WHZ/1	IVIHZ FOR	rrequencies	s between	i GHz a	ina 10 GHz				

5.2 Frequency Hopping Spread Spectrum Systems FCC Part 15.247(g)

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The required signal bandwidth is approximately 312 kHz and the average time of occupancy on any frequency is less than 0.4 seconds within any 10 second period. In the worst case burst transmit mode, the PI900 would send sixteen 100msec packets with approximately 10 msec delay between packets, followed by 1,750 msec of off time to yield a 50% duty cycle. Thus, in any 10 second interval, a maximum of packets sent will be 48 with 23 channels being used twice and 2 channels only being used once. The maximum dwell time on any one channel is approximately 200 msec which is less than the 400 msec occupancy requirement. The EUT always distributes its transmissions across all 25 channels, and does not re-use a channel again until a transmission has occurred on each of the other 24 channels.

5.3 Incorporation of Intelligence within a Frequency Hopping Spread Spectrum System FCC Part 15.247(h)

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The EUT does not attempt to recognize other users or interferers within the spectrum band and then attempt to select which channels to use. The EUT always distributes its transmissions across the same 25 channels. A channel is not re-used until a transmission has occurred on each of the other 24 channels.

6 Test Equipment Use List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	
SOP 1 - Radiated Emis	sions (5 Meter Chambe	r)			
Amplifier, preamp	Agilent Technologies	8449B	3008A01480	10-Oct-2007	10-Oct-2008
Amplifier, preamp	Hewlett Packard	8447D	2944A10139	08-Oct-2007	08-Oct-2008
Ant. BiconiLog	EMCO	3142	1006	2-May-2006	2-May2008
Antenna Horn 1-18GHz	EMCO	3115	2236	25-Jan-2007	25-Jan-2009
Ant. BiconiLog	Chase	CBL6140A	1108	16-May- 2006	16-May- 2008
Receiver, EMI	Rohde & Schwarz	ESIB40	100043	12-Jul-2007	12-Jul-2008
Spectrum Analyzer	Agilent Tec.	E7405A	US39440161	29-Jun-2007	29-Jun-2008
Cable, Coax	Andrew	FSJ1-50A	036	14-Mar- 2007	14-Mar-2008
Cable, Coax	Andrew	FSJ1-50A	030	1-Nov-2007	1-Nov-2008

* Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

7 Secondary Test Equipment Use List

The following test equipment was used during additional testing

Equipment	Manufacturer Model #		Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy						
SOP 1 - Radiated Emissions (5 Meter Chamber)											
Spectrum Analyzer	Agilent Tec.	E7405A	US39440157	19-Apr-07	19-Apr-08						
Cable, Coax	Andrew	FSJ1-50A	036	14-Mar-07	14-Mar-08						
Cable, Coax	Andrew	FSJ1-50A	030	24-Jan-2007	24-Jan-2008						
Cable, Coax	Andrew	FSJ1-50A	045	24-Jan-07	24-Jan-08						
Ant. BiconiLog	Chase	CBL6140A	1108	16-May-2006	16-May-2008						
DBL Ridge Horn ANT	EMCO	3115	2236	25-Jan-07	25-Jan-09						