

CFR 47 FCC PART 15 SUBPART C ISED RSS-210 ISSUE 10

TEST REPORT

For

TOY Receiver

MODEL NUMBER: GF96N1RR

FCC ID: G6DGF96N1RR

IC: 9650A-GF96N1RR

REPORT NUMBER: 4789454016-1

ISSUE DATE: April 30, 2020

Prepared for

NEW BRIGHT INDUSTRIAL CO., LTD 9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD, KOWLOON BAY, KOWLOON, HONG KONG.

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By	
V0	04/30/2020	Initial Issue		

Summary of Test Results					
Clause	ause Test Items FCC/ISED Rules				
1	20dB Bandwidth and 99% Occupied Bandwidth	CFR 47 FCC §15.215 (c) ISED RSS-Gen Clause 6.7	Pass		
2	Radiated Emission	CFR 47 FCC §15.249 (a)(d)(e) ISED RSS-210 Annex B B.10 CFR 47 FCC §15.205 and §15.209 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass		
3	3 Antenna Requirement CFR 47 FCC §15.203 ISED RSS-Gen Clause 6.3 Pass				
Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China. Note 2: The measurement result for the sample received is <pass> according to <</pass>					

CFR 47 FCC PART 15 SUBPART C, ISED RSS-210 Issue 10 and ISED RSS-GEN Issue 5 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	7
4	.1.	MEASURING INSTRUMENT CALIBRATION	7
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EQI	JIPMENT UNDER TEST	8
5	.1.	DESCRIPTION OF EUT	8
5	.2.	MAXIMUM FIELD STRENGTH	8
5	.3.	CHANNEL LIST	8
5	.4.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5	.5.	TEST CHANNEL CONFIGURATION	9
5	.6.	THE WORSE CASE POWER SETTING PARAMETER	9
5	.7.	TEST ENVIRONMENT	9
5	.8.	DESCRIPTION OF TEST SETUP	10
5	.9.	MEASURING INSTRUMENT AND SOFTWARE USED	11
6.	ANT	ENNA PORT TEST RESULTS	2
6	.1.	ON TIME AND DUTY CYCLE	12
6	.2.	20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	14
7.	RAD	DIATED TEST RESULTS	8
7	.1.	LIMITS AND PROCEDURE	18
7	.2.	RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS 25	3
7	.3.	SPURIOUS EMISSIONS (1~3GHz)	31
7	.4.	SPURIOUS EMISSIONS (3~18GHz)	37
7	.5.	SPURIOUS EMISSIONS (18~26GHz)	43
7	.6.	SPURIOUS EMISSIONS BELOW 30MHz	45
7	.7.	SPURIOUS EMISSIONS BELOW 1GHz AND ABOVE 30MHz	48
8.	ANT	ENNA REQUIREMENTS	50

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	NEW BRIGHT INDUSTRIAL CO., LTD
Address:	9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD,
	KOWLOON BAY, KOWLOON, HONG KONG.

Manufacturer Information

Company Name:	NEW BRIGHT INDUSTRIAL CO., LTD
Address:	9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD,
	KOWLOON BAY, KOWLOON, HONG KONG,

EUT Information

EUT Name:	TOY Receiver
Model:	GF96N1RR
Sample Received Date:	April 10, 2020
Sample Status:	Normal
Date of Tested:	April 15, 2020~ April 28, 2020

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-210 Issue 10	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:

Mick Zhong

Checked By:

Shemmy les

Mick Zhang Project Engineer

Shawn Wen Laboratory Leader

Approved By:

ephentus

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 Issue 10 and RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)			
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.			
	has been assessed and proved to be in compliance with A2LA.			
	FCC (FCC Designation No.: CN1187)			
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.			
	Has been recognized to perform compliance testing on equipment subject to			
	the Commission's Declaration of Conformity (DoC) and Certification rules.			
	ISED (Company No.: 21320)			
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.			
Certificate	has been registered and fully described in a report filed with ISED. The			
	Company Number is 21320.			
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)			
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.			
	has been assessed and proved to be in compliance with VCCI, the			
	Membership No. is 3793.			
	Facility Name:			
	Chamber D, the VCCI registration No. is G-20019 and R-20004			
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011			

Note:

- All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test (include Fundamental emission) (9KHz-30MHz)	2.2dB		
Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test	5.78dB (1GHz-18GHz)		
(1GHz to 26GHz) (include Fundamental emission)	5.23dB (18GHz-26GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name TOY Receiver			
EUT Description	The EUT is a wireless remote controlled toy car.		
Model	GF96N1RR		
Dreduct Deceription	Operation Frequency	2410 MHz ~ 2470 MHz	
Product Description	Modulation Type	GFSK	
Battery	DC 9.6V		
Rating Input	DC 9.6V		

5.2. MAXIMUM FIELD STRENGTH

Frequency (MHz)	Channel Number	Max Peak field strength (dBµV/m)		
2470	32[32]	93.17		

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2410	11	2429	21	2450	31	2469
2	2414	12	2430	22	2452	32	2470
3	2415	13	2431	23	2454	/	/
4	2416	14	2433	24	2456	/	/
5	2417	15	2434	25	2458	/	/
6	2418	16	2439	26	2462	/	/
7	2419	17	2441	27	2464	/	/
8	2421	18	2442	28	2465	/	/
9	2426	19	2444	29	2466	/	/
10	2428	20	2446	30	2467	/	/

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2410~ 2470	Wire Antenna	0

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 1(Low Channel), CH 18(MID Channel), CH 32(High Channel)	2410MHz, 2442MHz, 2470MHz

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2410 MHz ~ 2470 MHz Band								
Test Soft	ware Version	/						
Modulation Type	Transmit Antenna	Test Channel						
Modulation Type	Number	CH 1	CH 18	CH 32				
GFSK	1	Default	Default	Default				

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	55	5 ~ 65%			
Atmospheric Pressure:	1025Pa				
Temperature	TN	22 ~ 28°C			
	VL	/			
Voltage:	VN	DC 9.6V			
	VH	/			

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N	
/	/	/	/	/	

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT have the engineer mode inside.

SETUP DIAGRAM FOR TEST

EUT

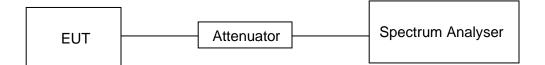
Note: New battery was used during all tests.

	Radiated Emissions										
				nstrumen	ıt						
Used	Equipment	Manufacturer	Мо	del No.	Serial No.		Last Cal.	Next Cal.			
V	MXE EMI Receiver	KESIGHT	N	9038A	MY564	400036	Dec. 6, 2019	Dec. 6, 2020			
V	Hybrid Log Periodic Antenna	TDK	HLF	P-3003C	130	959	Sept.17, 2018	Sept.17,2021			
\checkmark	Preamplifier	HP	8	447D	2944A	09099	Dec. 5, 2019	Dec. 5, 2020			
V	EMI Measurement Receiver	R&S	E	SR26	101	377	Dec. 05, 2019	Dec.05, 2020			
\checkmark	Horn Antenna	TDK	HR	N-0118	130	939	Sept. 17, 2018	Sept.17,2021			
V	Preamplifier	TDK	PA-	02-0118	TRS-305- 00067		Dec. 05, 2019	Dec.05, 2020			
\checkmark	Loop antenna	Schwarzbeck	1	519B	00008		Jan.17, 2019	Jan.17, 2022			
V	Preamplifier	TDK		02-001- 3000	TRS-302- 00050		Dec. 05, 2019	Dec.05, 2020			
V	High Gain Horn Antenna	Schwarzbeck	BBH	HA-9170	691		Aug.11,2018	Aug.11,2021			
V	Preamplifier	TDK	P/	4-02-2	TRS-307- 00003		Dec. 05, 2019	Dec.05, 2020			
				Software							
Used	Descr			Manufa	cturer		Name	Version			
V	Test Software disturl			Fara	ad		EZ-EMC	Ver. UL-3A1			
				r instrun	nents						
Used	Equipment	Manufacturer	Model No.		Seria	al No.	Last Cal.	Next Cal.			
\checkmark	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		2	23	Dec. 05, 2019	Dec.05, 2020			
V	Band Reject Filter	Wainwright	235 24	RCJV8- 0-2400- 483.5- 3.5-40SS	2400- 3.5-		Dec. 05, 2019	Dec.05, 2020			

5.9. MEASURING INSTRUMENT AND SOFTWARE USED

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

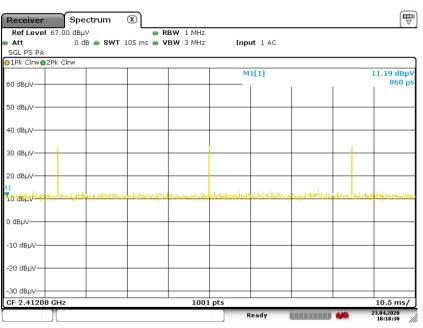
TEST SETUP

TEST ENVIRONMENT

Temperature	23.3°C	Relative Humidity	57%	
Atmosphere Pressure	101kPa	Test Voltage	DC 9.6V	

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)
GFSK	0.69	100	0.0069	0.69	-43.22


Note: Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle

ON TIME AND DUTY CYCLE MID CH PLOT

Receiv	ver	s	pectrum	×									
Ref L	evel	67.00 c	lΒµ∨	_	RBW	1 MHz							
🖷 Att			o db 👄 SWT	46 ms	VBW	3 MHz		Input	t 1 AC				
SGL PS													
<mark>⊙</mark> 1Pk Cl	lrw o 2	Pk Clrw											
60 dBµ\								D	2[1]				-0.71 dB
00 ubµ\	°T												88.6400 ms
50 dBµ\	/							IVI.	1[1]				31.42 dBµV 1.2880 ms
									1	1		1	1.2000 1113
40 dBµ\	v—			_									
NDD												D2	
30 двни	v——			-								1	
20 dBµ\													
20 0001													
ad daps	, Janual and	hanherland and a start of the s	energy allow a start of the second	di ning	ومصلوهها	يشانيها والمعاد والمعا	depdor	باستويباياتك	بالهليتيا بالمالية	, թարհերաներ	الإجاريك	լ ծեղ հեն կարերու է կ անար	الغابه النبيه بهايعا س
			ſ										
0 dBµV-				-									
-10 dBu													
-10 uBµ													
-20 dBµ	N-			_						_			
-30 dBµ	N			_									
CF 2.4	1208	GHz				1001	l pts						4.6 ms/
Marker													
Туре	Ref		X-valı			r-value		Func	tion		Fund	tion Result	
M1		1		288 ms		31.42 dB							
D1 D2	M1 M1	1		230.0 µs 18.64 ms		1.69 -0.71							
	INIT			0.04 11	2	0.71		_					3.04.2020
L		Л						R	leady			444	10:20:26

Date: 23.APR.2020 10:20:26

ON TIME AND DUTY CYCLE MID CH PLOT-2

Date: 23.APR.2020 10:18:30

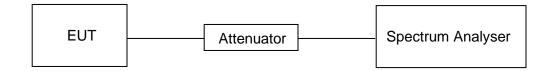
Note: All the modes had been tested, but only the worst duty cycle recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.2. 20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.249) Subpart C RSS-Gen Issue 5				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.215 20dB Bandwidth for reporting purposes only 2400-2483.5				
ISED RSS-Gen Clause 6.7 Issue 5	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5	


TEST PROCEDURE

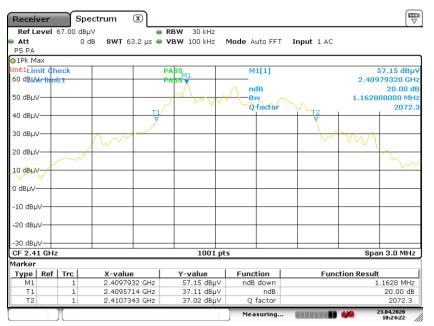
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

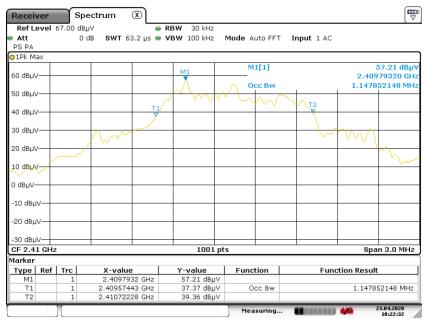
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT


Temperature	23.3°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 9.6V

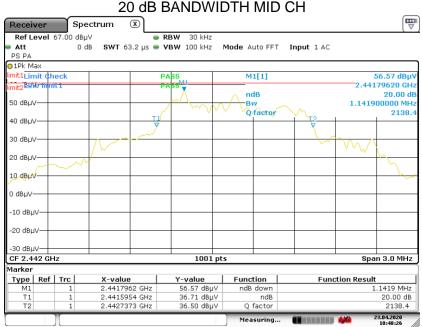
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Frequency	20dB bandwidth	99% bandwidth	Result
(MHz)	(MHz)	(MHz)	
2410	1.1628	1.1479	PASS

20 dB BANDWIDTH LOW CH

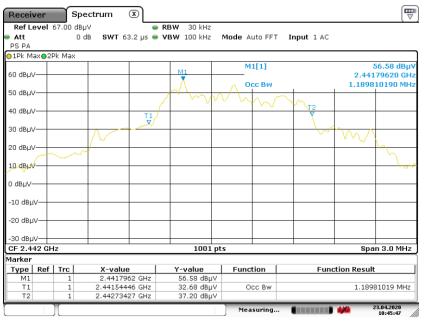
Date: 23.APR.2020 10:24:22

99% OCCUPIED BANDWIDTH LOW CH



Date: 23.APR.2020 10:22:32

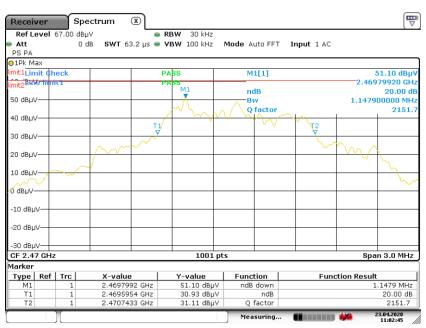
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Frequency	20dB bandwidth	99% bandwidth	Result
(MHz)	(MHz)	(MHz)	
2442	1.1419	1.1898	PASS

20 dB BANDWIDTH MID CH

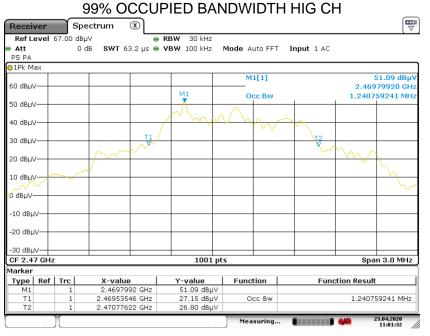
Date: 23.APR.2020 10:48:26

99% OCCUPIED BANDWIDTH MID CH



Date: 23.APR.2020 10:45:47

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO.: 10-SL-F0058 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



Frequency	20dB bandwidth	99% bandwidth	Result
(MHz)	(MHz)	(MHz)	
2470	1.1479	1.2408	PASS

20 dB BANDWIDTH HIG CH

Date: 23.APR.2020 11:02:44

Date: 23.APR.2020 11:01:32

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

CFR 47 FCC §15.205 and §15.209

CFR 47 FCC §15.249 (a)(d)(c)(e)

ISED RSS-210 Issue 10 Annex B B.10

RSS-GEN Clause 8.9

The field strength of emissions from intentional radiators operated within these frequency bands				
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)	
902 - 928	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3	
2400 - 2483.5	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3	
5725 – 5875	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3	

Emissions radiated outside of the specified frequency bands above 30MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m	n) at 3 m
(11112)		Quasi	-Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	E00	Peak	Average
	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30MHz			
Frequency (MHz)) Field strength (microvolts/meter) Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0 30 30			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

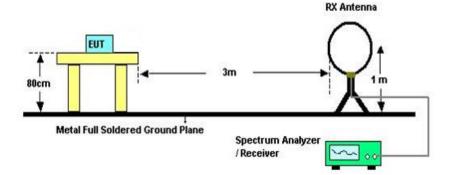
ISED Emissions radiated outside of the specified frequency bands below 30MHz				
Frequency (MHz) Magnetic field strength (H-Field) (µA/m) Measurement distance (meters)				
0.009-0.490	6.37/F(kHz)	300		
0.490-1.705	63.7/F(kHz)	30		
1.705-30.0	0.08	30		

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 · 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 · 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

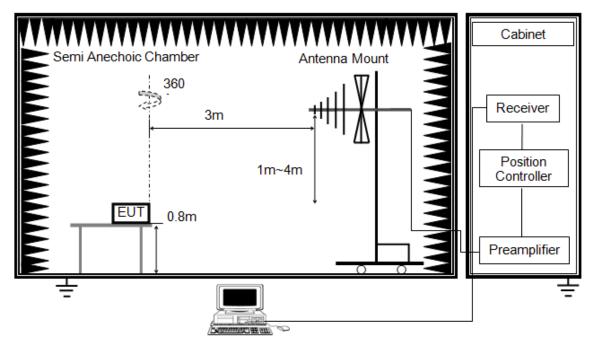
The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

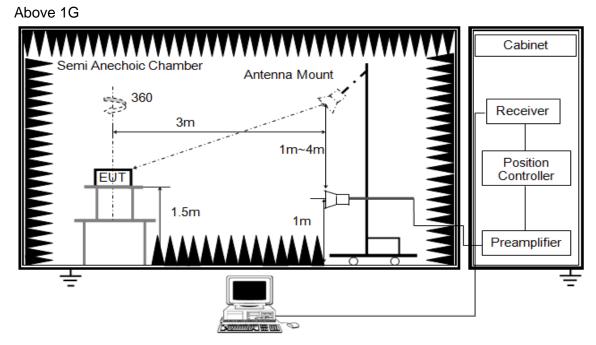
6. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open field site. Therefore, the sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured

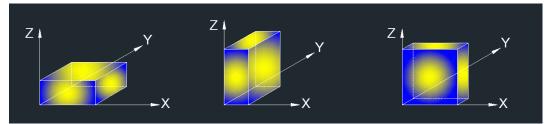
The setting of the spectrum analyser

RBW	1M
IV B W	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter or band reject filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

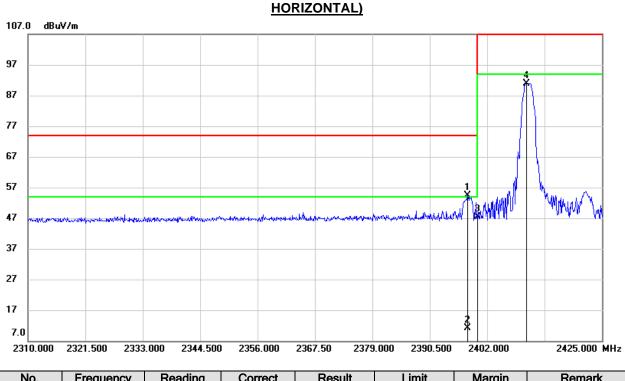
3. The EUT was placed on a turntable with 1.5m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. Where necessary, average emission are determined by applying the Duty Cycle Correction Factor to the peak measurements. For the Duty Cycle and Correction Factor please refer to clause 6.1. ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

X axis, Y axis, Z axis positions:


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 9.6V

7.2. RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS

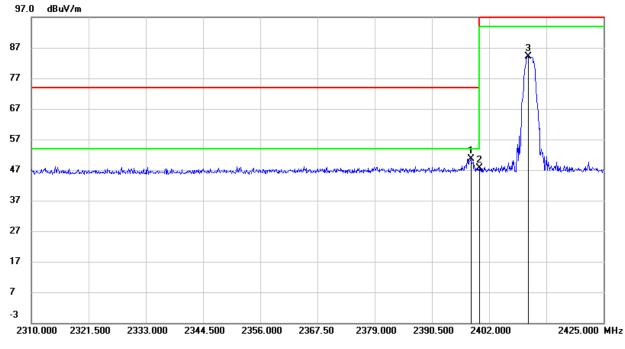
RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL,

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2398.090	21.34	32.98	54.32	74.00	-19.68	peak
2	2398.090	-21.88	32.98	11.10	54.00	-42.90	AVG
3	2400.000	14.50	32.98	47.48	74.00	-26.52	peak
4	2409.820	57.85	33.05	90.90	114.00	-23.10	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG Result=Peak Result + Duty Correction Factor.

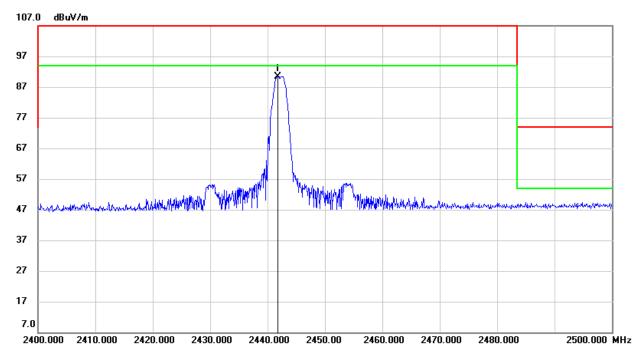
5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2398.320	17.67	32.98	50.65	74.00	-23.35	peak
2	2400.000	14.54	32.98	47.52	74.00	-26.48	peak
3	2409.820	51.05	33.05	84.10	114.00	-29.90	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

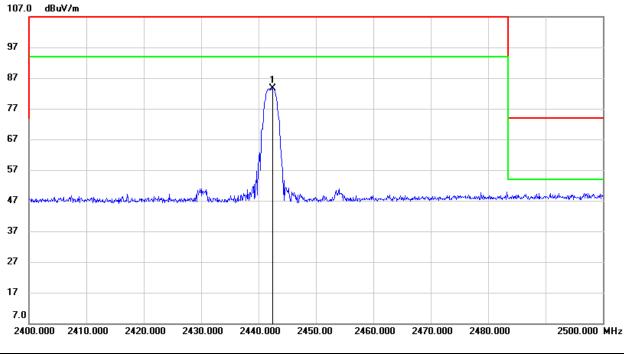
3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2441.800	57.15	33.29	90.44	114.00	-23.56	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

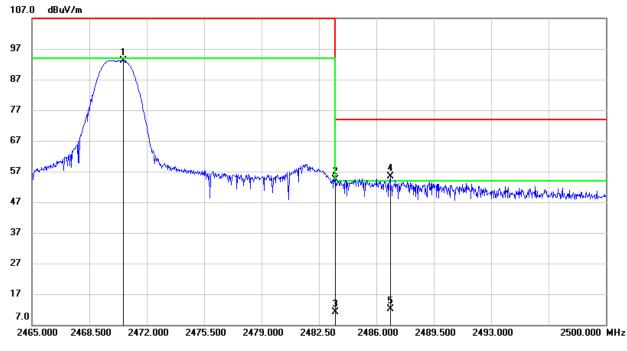
3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2442.500	50.26	33.29	83.55	114.00	-30.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

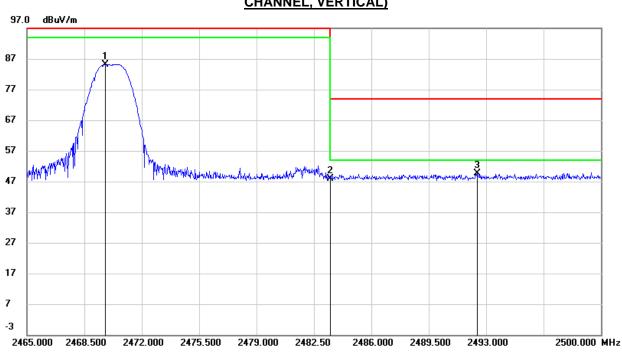
4. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2470.565	59.68	33.49	93.17	114.00	-20.83	peak
2	2483.500	20.79	33.58	54.37	74.00	-19.63	peak
3	2483.500	-22.43	33.58	11.15	54.00	-42.85	AVG
4	2486.840	21.68	33.61	55.29	74.00	-18.71	peak
5	2486.840	-21.54	33.61	12.07	54.00	-41.93	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Correction Factor.

5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

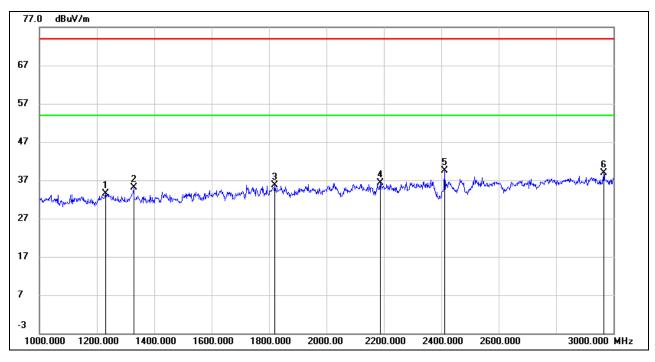
6. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH
CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2469.795	51.68	33.49	85.17	114.00	-28.83	peak
2	2483.500	14.29	33.58	47.87	74.00	-26.13	peak
3	2492.440	16.02	33.65	49.67	74.00	-24.33	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7.3. SPURIOUS EMISSIONS (1~3GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1230.000	46.09	-12.58	33.51	74.00	-40.49	peak
2	1328.000	47.55	-12.36	35.19	74.00	-38.81	peak
3	1820.000	45.55	-9.92	35.63	74.00	-38.37	peak
4	2188.000	45.05	-8.72	36.33	74.00	-37.67	peak
5	2412.000	47.34	-7.77	39.57	74.00	-34.43	peak
6	2966.000	44.27	-5.38	38.89	74.00	-35.11	peak

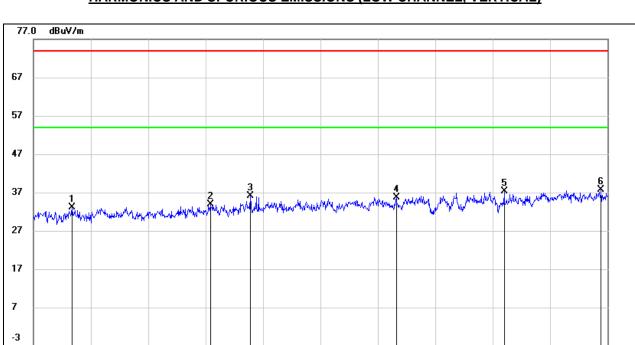
Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

Ized band was not corrected for Band Reject Filter losses.



1000.000

1200.000

1400.000

3000.000 MHz

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1134.000	46.28	-13.23	33.05	74.00	-40.95	peak
2	1616.000	45.29	-11.32	33.97	74.00	-40.03	peak
3	1756.000	46.45	-10.36	36.09	74.00	-37.91	peak
4	2264.000	44.14	-8.36	35.78	74.00	-38.22	peak
5	2640.000	44.74	-7.48	37.26	74.00	-36.74	peak
6	2978.000	43.00	-5.35	37.65	74.00	-36.35	peak

2000.00

2200.000

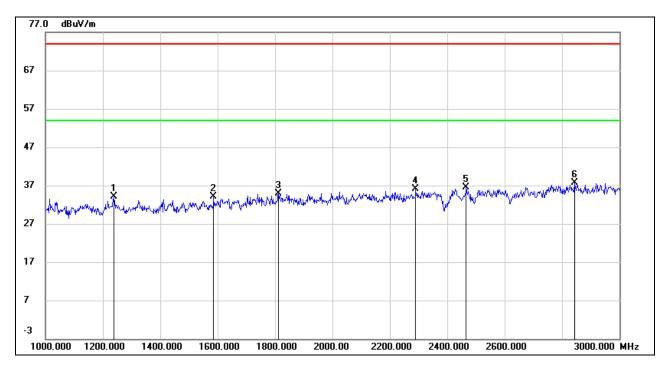
2400.000

2600.000

Note: 1. Peak Result = Reading Level + Correct Factor.

1600.000

1800.000

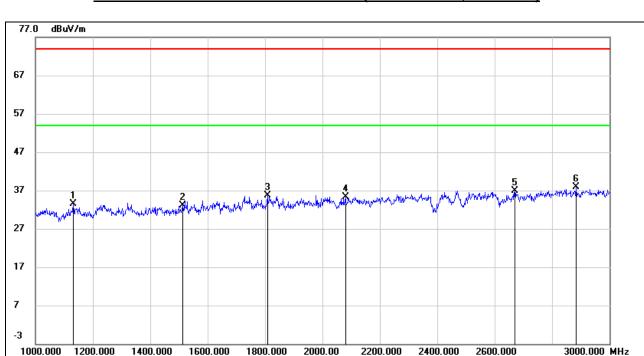

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1238.000	46.61	-12.55	34.06	74.00	-39.94	peak
2	1586.000	45.52	-11.51	34.01	74.00	-39.99	peak
3	1812.000	44.91	-9.92	34.99	74.00	-39.01	peak
4	2290.000	44.44	-8.24	36.20	74.00	-37.80	peak
5	2466.000	43.89	-7.40	36.49	74.00	-37.51	peak
6	2844.000	43.60	-5.82	37.78	74.00	-36.22	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

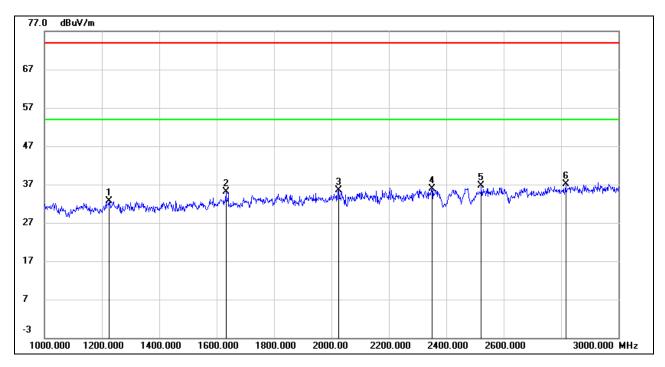
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1132.000	46.76	-13.24	33.52	74.00	-40.48	peak
2	1514.000	45.15	-12.10	33.05	74.00	-40.95	peak
3	1808.000	45.53	-9.92	35.61	74.00	-38.39	peak
4	2080.000	44.70	-9.30	35.40	74.00	-38.60	peak
5	2670.000	44.28	-7.30	36.98	74.00	-37.02	peak
6	2884.000	43.47	-5.61	37.86	74.00	-36.14	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

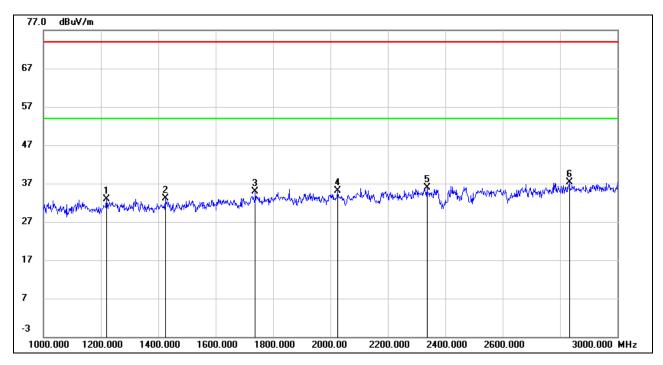

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the

authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1224.000	45.35	-12.60	32.75	74.00	-41.25	peak
2	1632.000	46.37	-11.24	35.13	74.00	-38.87	peak
3	2026.000	45.19	-9.65	35.54	74.00	-38.46	peak
4	2350.000	43.97	-8.02	35.95	74.00	-38.05	peak
5	2522.000	44.08	-7.28	36.80	74.00	-37.20	peak
6	2816.000	43.15	-5.97	37.18	74.00	-36.82	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

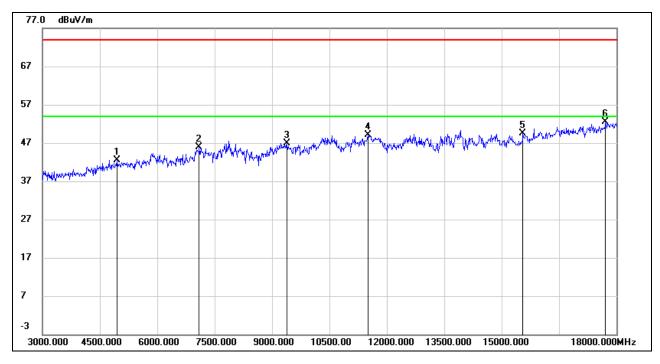
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1220.000	45.43	-12.61	32.82	74.00	-41.18	peak
2	1424.000	45.39	-12.35	33.04	74.00	-40.96	peak
3	1738.000	45.39	-10.53	34.86	74.00	-39.14	peak
4	2026.000	44.82	-9.65	35.17	74.00	-38.83	peak
5	2336.000	43.98	-8.07	35.91	74.00	-38.09	peak
6	2832.000	43.25	-5.88	37.37	74.00	-36.63	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

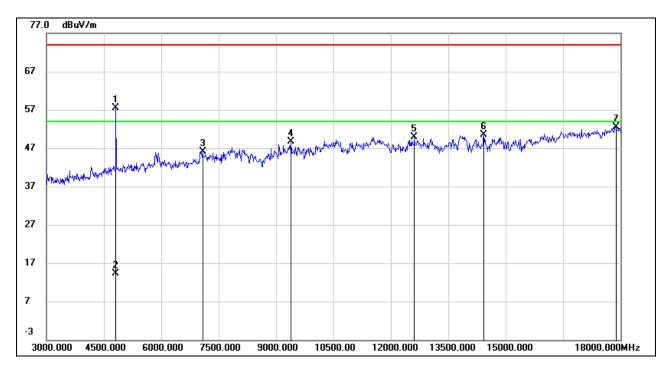
7.4. SPURIOUS EMISSIONS (3~18GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	41.47	1.13	42.60	74.00	-31.40	peak
2	7095.000	40.07	5.91	45.98	74.00	-28.02	peak
3	9390.000	37.40	9.53	46.93	74.00	-27.07	peak
4	11505.000	35.75	13.42	49.17	74.00	-24.83	peak
5	15555.000	32.81	16.66	49.47	74.00	-24.53	peak
6	17715.000	29.95	22.56	52.51	74.00	-21.49	peak

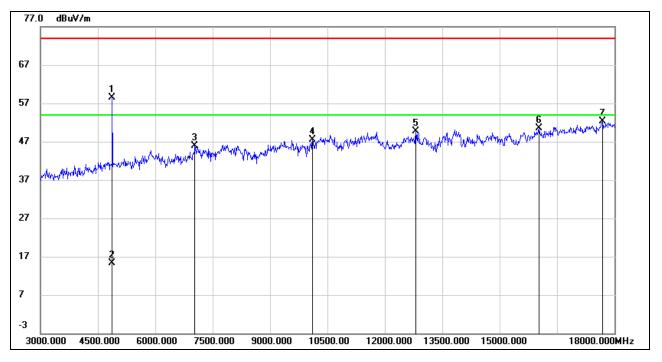
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

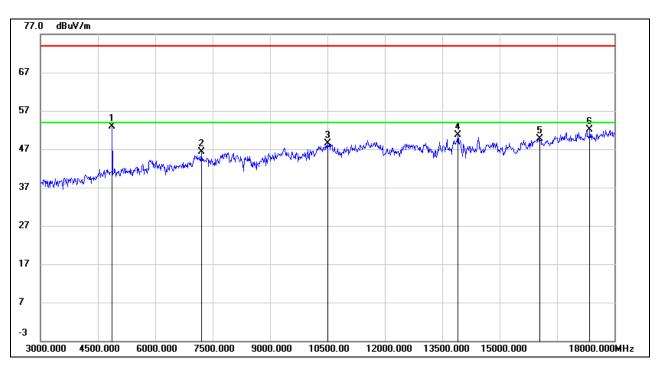
4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	56.98	0.51	57.49	74.00	-16.51	peak
2	4815.000	13.76	0.51	14.27	54.00	-39.73	AVG
3	7080.000	40.30	5.89	46.19	74.00	-27.81	peak
4	9390.000	39.17	9.53	48.70	74.00	-25.30	peak
5	12615.000	35.78	14.03	49.81	74.00	-24.19	peak
6	14430.000	34.06	16.35	50.41	74.00	-23.59	peak
7	17880.000	29.13	23.34	52.47	74.00	-21.53	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
- 6. The High Pass filter loss factor already add into the correct factor.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.



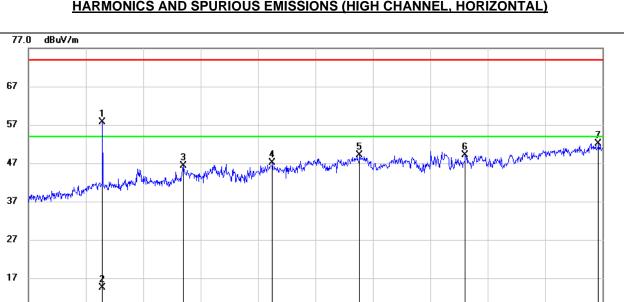
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	57.72	0.76	58.48	74.00	-15.52	peak
2	4875.000	14.50	0.76	15.26	54.00	-38.74	AVG
3	7035.000	40.09	5.81	45.90	74.00	-28.10	peak
4	10110.000	36.99	10.53	47.52	74.00	-26.48	peak
5	12810.000	34.11	15.59	49.70	74.00	-24.30	peak
6	16035.000	32.73	17.85	50.58	74.00	-23.42	peak
7	17685.000	29.90	22.33	52.23	74.00	-21.77	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
- 6. The High Pass filter loss factor already add into the correct factor.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	52.06	0.76	52.82	74.00	-21.18	peak
2	7200.000	40.47	5.82	46.29	74.00	-27.71	peak
3	10500.000	37.08	11.38	48.46	74.00	-25.54	peak
4	13905.000	34.54	16.20	50.74	74.00	-23.26	peak
5	16050.000	31.78	17.91	49.69	74.00	-24.31	peak
6	17355.000	30.46	21.56	52.02	74.00	-21.98	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
- 6. The High Pass filter loss factor already add into the correct factor.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.


7

-3

3000.000

4500.000

18000.000MHz

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4935.000	56.67	1.05	57.72	74.00	-16.28	peak
2	4935.000	13.45	1.05	14.50	54.00	-39.50	AVG
3	7050.000	40.41	5.84	46.25	74.00	-27.75	peak
4	9375.000	37.67	9.45	47.12	74.00	-26.88	peak
5	11655.000	36.03	13.06	49.09	74.00	-24.91	peak
6	14415.000	32.67	16.35	49.02	74.00	-24.98	peak
7	17895.000	28.84	23.34	52.18	74.00	-21.82	peak

10500.00

13500.000

12000.000

15000.000

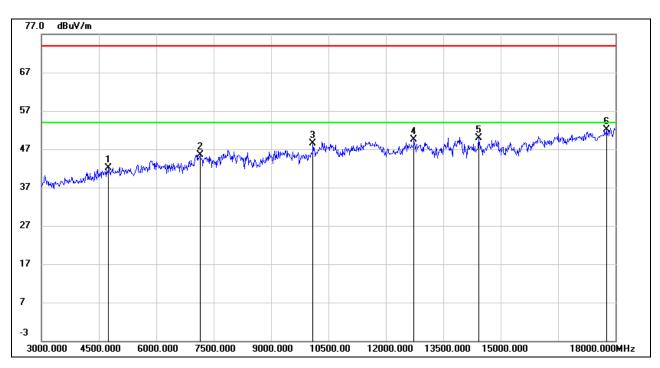
Note: 1. Measurement = Reading Level + Correct Factor.

7500.000

9000.000

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

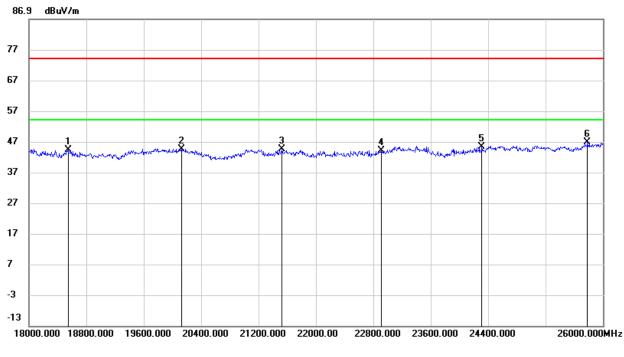
3. Peak: Peak detector.


6000.000

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
- 6. The High Pass filter loss factor already add into the correct factor.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

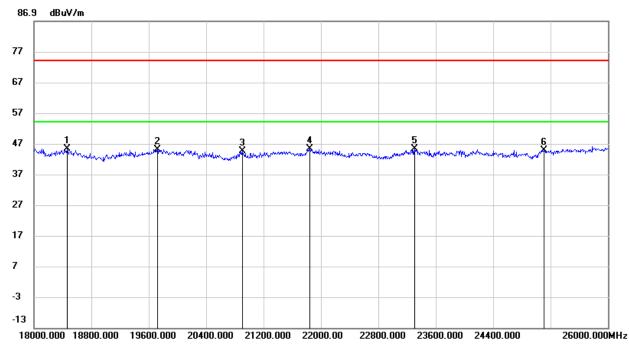

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4755.000	41.70	0.34	42.04	74.00	-31.96	peak
2	7140.000	39.56	5.87	45.43	74.00	-28.57	peak
3	10095.000	38.05	10.55	48.60	74.00	-25.40	peak
4	12735.000	34.67	14.77	49.44	74.00	-24.56	peak
5	14430.000	33.61	16.35	49.96	74.00	-24.04	peak
6	17760.000	29.23	22.95	52.18	74.00	-21.82	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. The High Pass filter loss factor already add into the correct factor.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.5. SPURIOUS EMISSIONS (18~26GHz)

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18544.000	48.76	-4.46	44.30	74.00	-29.70	peak
2	20128.000	49.26	-4.64	44.62	74.00	-29.38	peak
3	21528.000	50.42	-5.78	44.64	74.00	-29.36	peak
4	22912.000	49.74	-5.66	44.08	74.00	-29.92	peak
5	24312.000	48.60	-3.35	45.25	74.00	-28.75	peak
6	25784.000	48.23	-1.49	46.74	74.00	-27.26	peak


Note: 1. Measurement = Reading Level + Correct Factor.

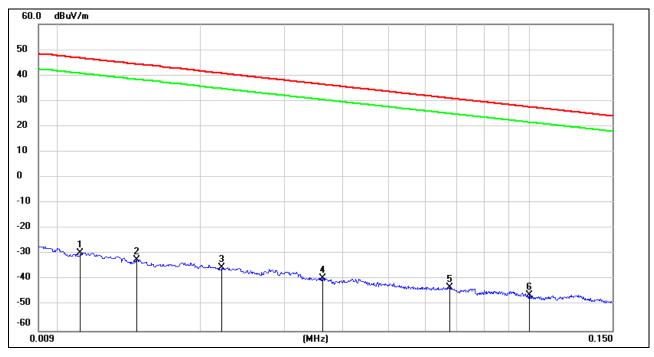
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18464.000	49.70	-4.39	45.31	74.00	-28.69	peak
2	19720.000	49.50	-4.39	45.11	74.00	-28.89	peak
3	20904.000	49.66	-5.21	44.45	74.00	-29.55	peak
4	21848.000	51.26	-5.95	45.31	74.00	-28.69	peak
5	23304.000	50.37	-5.16	45.21	74.00	-28.79	peak
6	25104.000	46.02	-1.12	44.90	74.00	-29.10	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

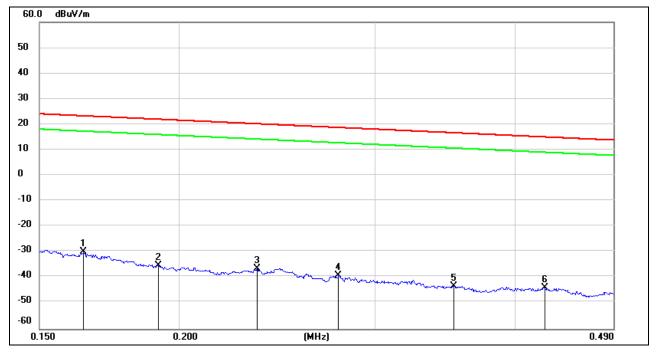
Note: All test modes had been tested, only the worst data record in the report.

7.6. SPURIOUS EMISSIONS BELOW 30MHz

SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9kHz~ 150kHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0111	71.95	-101.39	-29.44	46.69	-80.94	-4.81	-76.13	peak
2	0.0146	69.14	-101.37	-32.23	44.31	-83.73	-7.19	-76.54	peak
3	0.0221	66.13	-101.35	-35.22	40.71	-86.72	-10.79	-75.93	peak
4	0.0362	62.01	-101.42	-39.41	36.43	-90.91	-15.07	-75.84	peak
5	0.0675	58.64	-101.56	-42.92	31.02	-94.42	-20.48	-73.94	peak
6	0.1000	55.67	-101.80	-46.13	27.60	-97.63	-23.9	-73.73	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

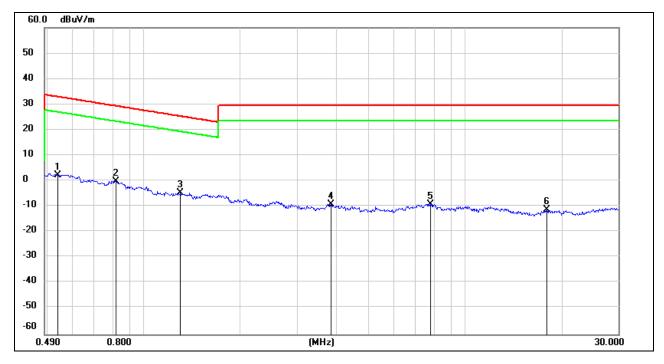
3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. $dBuA/m = dBuV/m - 20log10(120\pi) = dBuV/m - 51.5$.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1643	71.67	-101.65	-29.98	23.29	-81.48	-28.21	-53.27	peak
2	0.1917	66.54	-101.70	-35.16	21.95	-86.66	-29.55	-57.11	peak
3	0.2348	65.43	-101.77	-36.34	20.19	-87.84	-31.31	-56.53	peak
4	0.2782	62.79	-101.83	-39.04	18.71	-90.54	-32.79	-57.75	peak
5	0.3526	58.51	-101.91	-43.40	16.66	-94.9	-34.84	-60.06	peak
6	0.4248	58.09	-101.99	-43.90	15.04	-95.4	-36.46	-58.94	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

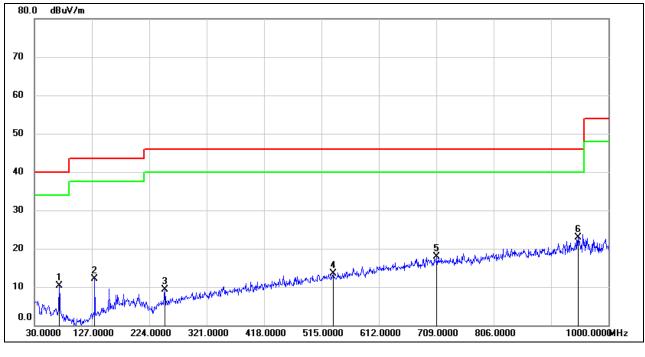
4. $dBuA/m = dBuV/m - 20log10(120\pi) = dBuV/m - 51.5$.

<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5383	64.44	-62.08	2.36	32.98	-49.14	-18.52	-30.62	peak
2	0.8162	62.07	-62.16	-0.09	29.37	-51.59	-22.13	-29.46	peak
3	1.2983	57.41	-62.14	-4.73	25.34	-56.23	-26.16	-30.07	peak
4	3.8246	52.20	-61.38	-9.18	29.54	-60.68	-21.96	-38.72	peak
5	7.8085	52.05	-61.10	-9.05	29.54	-60.55	-21.96	-38.59	peak
6	17.9893	49.59	-60.91	-11.32	29.54	-62.82	-21.96	-40.86	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

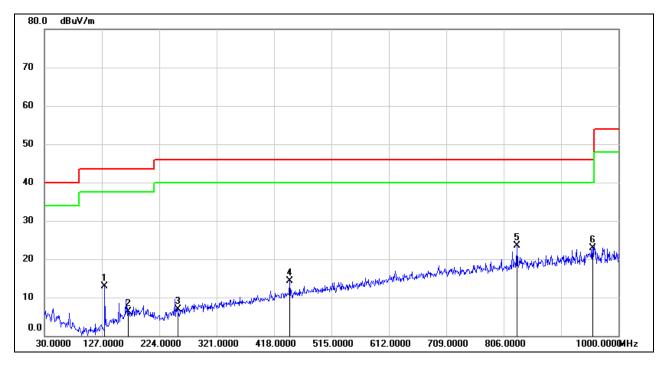

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. $dBuA/m = dBuV/m - 20log10(120\pi) = dBuV/m - 51.5$.

Note: All test modes had been tested, only the worst data record in the report.

7.7. SPURIOUS EMISSIONS BELOW 1GHz AND ABOVE 30MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	71.7100	30.32	-19.94	10.38	40.00	-29.62	QP
2	131.8500	31.62	-19.54	12.08	43.50	-31.42	QP
3	250.1900	25.69	-16.34	9.35	46.00	-36.65	QP
4	534.4000	23.70	-10.14	13.56	46.00	-32.44	QP
5	709.9699	24.78	-6.78	18.00	46.00	-28.00	QP
6	948.5900	26.42	-3.45	22.97	46.00	-23.03	QP


Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	131.8500	32.35	-19.54	12.81	43.50	-30.69	QP
2	171.6200	23.14	-16.80	6.34	43.50	-37.16	QP
3	256.0100	23.06	-16.19	6.87	46.00	-39.13	QP
4	444.1900	26.14	-11.93	14.21	46.00	-31.79	QP
5	828.3100	28.58	-5.11	23.47	46.00	-22.53	QP
6	956.3500	26.42	-3.48	22.94	46.00	-23.06	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All test modes had been tested, only the worst data record in the report.

8. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS Complies

END OF REPORT