

CFR 47 FCC PART 15 SUBPART C ISED RSS-310 Issue 4

CERTIFICATION TEST REPORT

For

TOY Transmitter

MODEL NUMBER: GF21H1RR

FCC ID: G6DGF21H1RR

REPORT NUMBER: 4788949778.1-1

ISSUE DATE: May 16, 2019

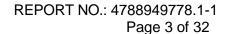
Prepared for

NEW BRIGHT INDUSTRIAL CO., LTD 9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD, KOWLOON BAY, KOWLOON, HONG KONG.

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch
Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake HiTech Development Zone Dongguan, People's Republic of China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com


The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Page 2 of 32

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	05/16/2019	Initial Issue	

Summary of Test Results Clause Test Items **FCC Rules Test Results** CFR 47 FCC 15.215 (c) 20dB Bandwidth & 99% 1 **PASS** RSS-Gen Clause 6.7 Occupied Bandwidth CFR 47 FCC 15.227 (a) and (b)/ 15.205/15.209 ISED RSS-310 Issue 4 Clause 3.8 Radiated 2 **PASS RSS-GEN Clause 7.3 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10** FCC Part 15.203 3 Antenna Requirement **Pass RSS-GEN Clause 8.3**

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAI	LIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	TEST CHANNEL CONFIGURATION	8
	5.3.	TEST ENVIRONMENT	8
	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	9
	5.5.	WORST-CASE CONFIGURATIONS	9
	5.6.	DESCRIPTION OF TEST SETUP	10
	5.7.	MEASURING INSTRUMENT AND SOFTWARE USED	11
6.	AN ⁻	TENNA PORT TEST RESULTS	12
	6.1.	ON TIME AND DUTY CYCLE	12
	6.2.	20dB BANDWIDTH & 99% OCCUPIED BANDWIDTH	15
	<i>6.3.</i> 9.3. 9.3.		25
7	ΔN	TENNA PEOLIDEMENTS	32

Page 5 of 32

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: NEW BRIGHT INDUSTRIAL CO., LTD

Address: 9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD,

KOWLOON BAY, KOWLOON, HONG KONG.

Manufacturer Information

Company Name: NEW BRIGHT INDUSTRIAL CO., LTD

Address: 9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD,

KOWLOON BAY, KOWLOON, HONG KONG.

EUT Description

EUT Name: TOY Transmitter Model: GF21H1RR

Brand Name:

Sample Status: Normal

Date of Tested: April 25, 2019 ~ May 15, 2019

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-310 Issue 4	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:

Checked By:

Denny Huang Project Engineer Approved By: Shawn Wen Laboratory Leader

Shemy les

Stephen Guo

Laboratory Manager

REPORT NO.: 4788949778.1-1 Page 6 of 32

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, CFR 47 FCC Part 2, CFR 47 FCC Part 15, KDB414788 D01 Radiated Test Site v01r01, ISED RSS-310 Issue 4 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
A	IC(Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note:

- 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

Page 7 of 32

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62dB	
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB	
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB	
Radiation Emission test	5.78dB (1GHz-18Gz)	
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	TOY Transmitter
EUT Description	The EUT is controller.
Model	GF21H1RR
Model Difference	/
Operation Frequency	27.145MHz
Modulation Type	AM
Battery	DC 3.0V

5.2. TEST CHANNEL CONFIGURATION

Test Mode	Frequency
AM	27.145MHz

5.3. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	55 ~ 65%		
Atmospheric Pressure:	1025Pa		
Temperature	TN	23 ~ 28°C	
	VL	/	
Voltage :	VN	DC 3.0V	
	VH	/	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage, DC 3V via Battery

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	
27.145MHz	Wire antenna	2.5	

5.5. WORST-CASE CONFIGURATIONS

Mode
AM

Page 10 of 32

5.6. DESCRIPTION OF TEST SETUP

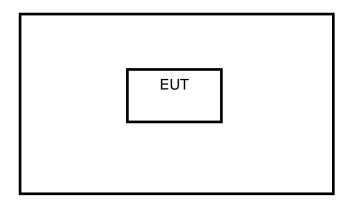
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	/	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	/	/	/	/	/

ACCESSORY


Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	1

TEST SETUP

A fully charged battery was used for all tests.

The test sample can be into a transmission mode through the power on.

SETUP DIAGRAM FOR TEST

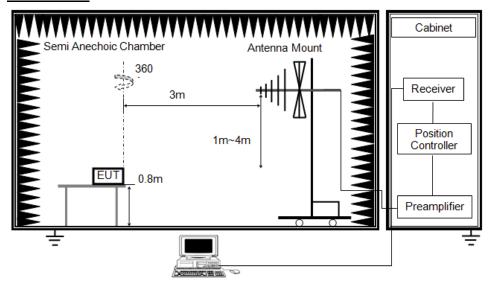
Page 11 of 32

5.7. MEASURING INSTRUMENT AND SOFTWARE USED

	Radiated Emissions							
	Instrument							
Used	Equipment	Manufacturer	М	odel No.	Ser	rial No.	Last Cal.	Next Cal.
$\overline{\mathbf{V}}$	MXE EMI Receiver	KESIGHT	Ν	19038A	MY5	6400036	Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HL	P-3003C	13	30960	Sep.17,2018	Sep.17,2021
\checkmark	Preamplifier	HP	8	8447D	2944	A09099	Dec.10,2018	Dec.10,2019
V	EMI Measurement Receiver	R&S	E	ESR26	10)1377	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HF	RN-0118	13	30939	Sep.17,2018	Sep.17,2021
V	High Gain Horn Antenna	Schwarzbeck	ВВ	HA-9170)	691	Aug.18,2018	Aug.18,2021
V	Preamplifier	TDK	PA	-02-0118	2	S-305- 0066	Dec.10,2018	Dec.10,2019
V	Preamplifier	TDK	Ρ	A-02-2		S-307- 0003	Dec.10,2018	Dec.10,2019
$\overline{\checkmark}$	Loop antenna	Schwarzbeck	,	1519B	0	8000	Jan.17, 2019	Jan.17,2022
			S	Software				
Used	Descr	iption		Manufa	acturer		Name	Version
V	Test Software for Ra	adiated disturba	nce	nce Farad		EZ-EMC		Ver. UL-3A1
	Other instruments							
Used	Equipment	Manufacturer	Model No.		Seria	ıl No.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N9	020A	MY491	00060	Dec.10,2018	Dec.10,2019

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

FCC Reference:	CFR 47 Part 15.35(c)
Test Method Used:	ANSI C63.10 Section 7.5

TEST SETUP

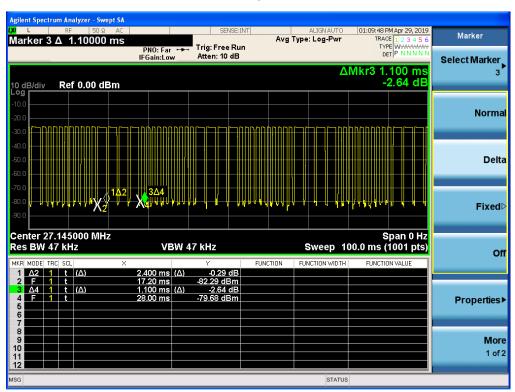
- a. Set RBW of spectrum analyzer to 100KHz and VBW to 300KHz.
- b. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- c. Sweep Time is at least a 100 ms.
- d. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- e. Measure the maximum time duration of one single pulse.

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	66%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

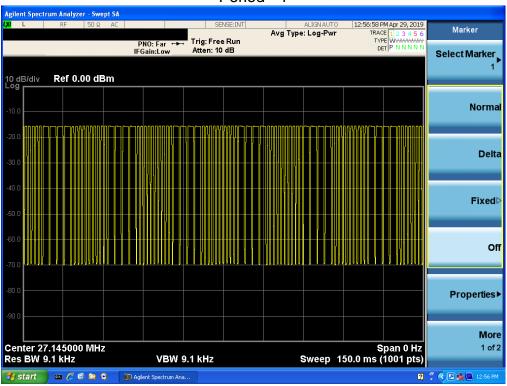
RESULTS

	On Time (ms)	Times	Ton (ms)	Total Ton times (ms)	
Ton 1	2.40	4	9.60	20.60	
Ton 2	1.10	10	11.0	20.60	

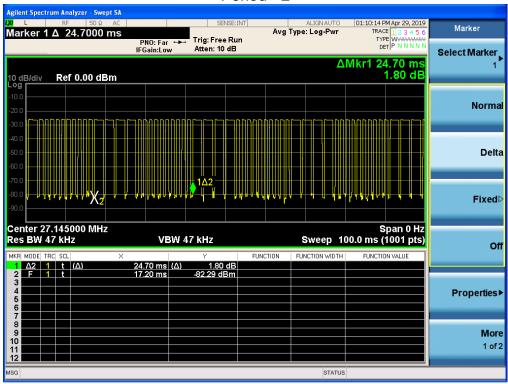

Note: Total Ton times= Ton1*4+Ton2*10

Total Ton times (ms)	Period	Duty Cycle	Duty Cycle
	(ms)	(Linear)	Correction Factor
20.60	24.70	0.83	-1.62

Note: Duty Cycle Correction Factor=20log(x).


Where: x is Duty Cycle

Ton



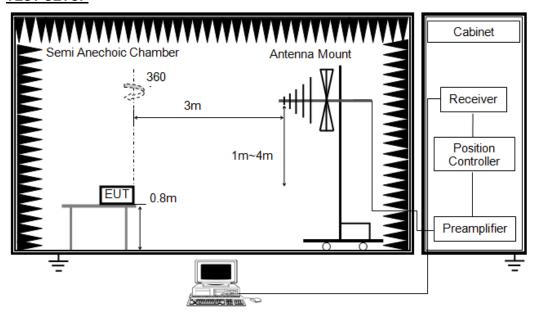
Period - 1

Period - 2

Note: All test mode has been tested, only the worst data record in the report.

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6.2. 20dB BANDWIDTH & 99% OCCUPIED BANDWIDTH


LIMITS

None; for reporting purposes only

TEST PROCEDURE

FCC Reference:	CFR 47 Part 15.215(c) and ISED RSS-Gen Clause 6.7 for 99% Occupied Bandwidth
Test Method Used:	ANSI C63.10 Section 6.9.2

TEST SETUP

- 1. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 2. The EUT was placed on a turntable with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower
- 4. Set the spectrum analyzer in the following setting as:
 The RBW shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.


TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	66%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

RESULTS

20 dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)	Result
7.197	15.635	Pass

Note: All test mode has been tested, only the worst data record in the report.

Page 17 of 32

6.3. RADIATED EMISSION

LIMITS

1. The field strength of any emission within this band shall not exceed 10,000 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply...

- 2. The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in §15.209 or RSS-Gen.
- 3. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

Page 18 of 32

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: (1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements). Note: (2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Restricted bands of operation

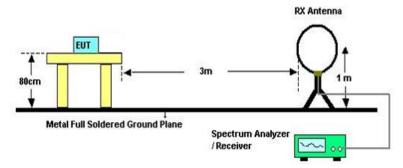
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
1.125 - 4.128	167.72 - 173.2	14.47 - 14.5
.17725 - 4.17775	240 – 285	15.35 - 16.2
1.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
3.215 - 6.218	608 - 614	23.6 - 24.0
3.26775 - 6.26825	990 - 1427	31.2 - 31.8
3.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
.291 - 8.294	1645.5 - 1646.5	Above 38.6
3.362 - 8.366	1660 - 1710	
3.37625 - 8.38675	1718.8 - 1722.2	
.41425 - 8.41475	2200 - 2300	
2.29 - 12.293	2310 - 2390	
2.51975 - 12.52025	2483.5 - 2500	
2.57675 - 12.57725	2655 - 2900	
3.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
6.69475 - 16.69525	3345.8 - 3358	
6.80425 - 16.80475	3500 - 4400	
5.5 - 25.67	4500 - 5150	
7.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	

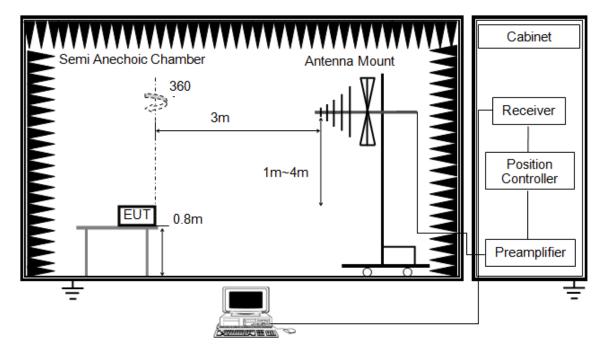
Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.


TEST PROCEDURE

FCC Reference:	CFR 47 Parts 15.231(b) / 15.209
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5

TEST SETUP

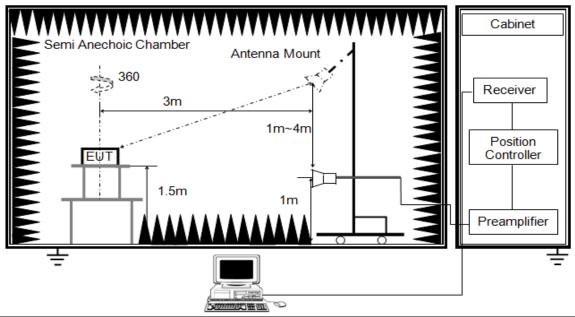
Below 30MHz


The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field sites, adequate comparison measurements were confirmed against 30m open field sites. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Below 1G

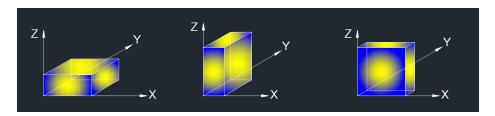

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

ABOVE 1G

RBW	1M
VBW	3M
Sweep	Auto
Detector	Peak For Average see note 6
Trace	Max hold

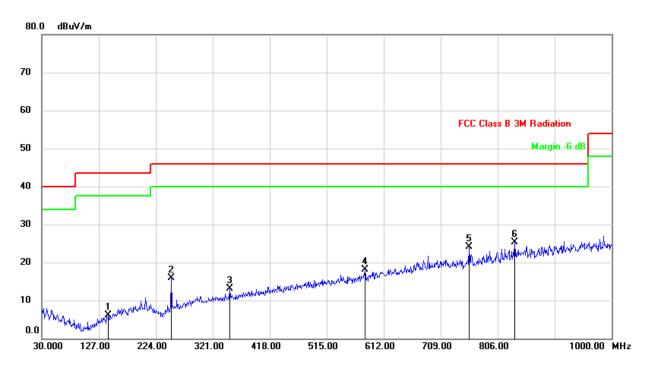

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. Average Value=Peak Value + Duty Correction Factor

For the Duty Cycle and Correction Factor please refer to clause 6.1.ON TIME AND DUTY CYCLE.

RESULTS

X axis, Y axis, Z axis positions:

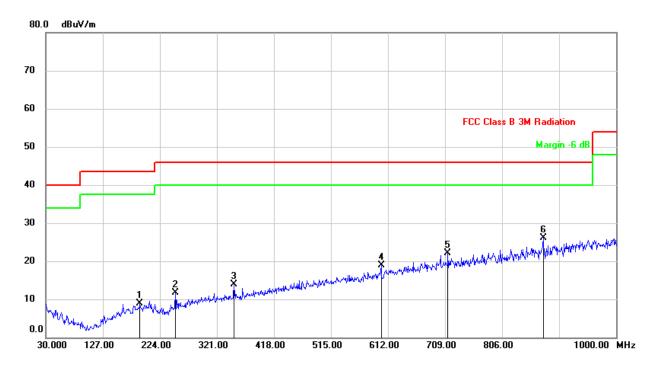
Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.


TEST ENVIRONMENT

Temperature	22.6°C	Relative Humidity	66%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0V

9.3.1. SPURIOUS EMISSIONS BELOW 1G

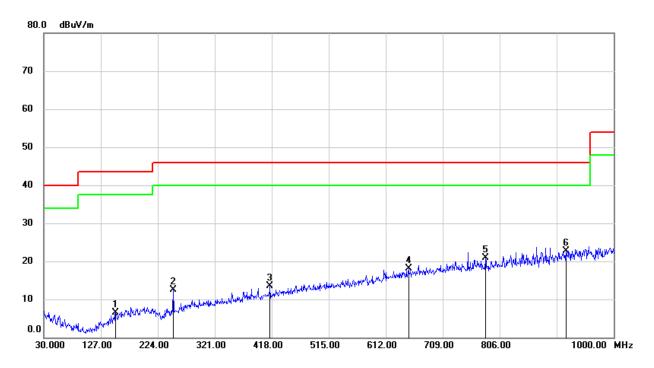
TRANSMITTER SPURIOUS EMISSIONS (HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	143.4900	24.97	-18.86	6.11	43.50	-37.39	peak
2	250.1900	32.01	-16.12	15.89	46.00	-30.11	peak
3	350.1000	26.30	-13.16	13.14	46.00	-32.86	peak
4	579.9900	26.91	-8.71	18.20	46.00	-27.80	peak
5	757.5000	29.91	-5.81	24.10	46.00	-21.90	peak
6	835.1000	30.16	-4.76	25.40	46.00	-20.60	peak

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 4. Peak Result = Reading Level + Correct Factor.

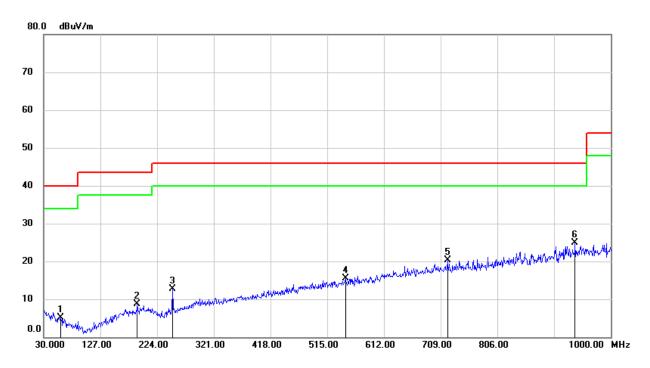
TRANSMITTER SPURIOUS EMISSIONS (VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	190.0500	25.41	-16.47	8.94	43.50	-34.56	peak
2	250.1900	27.91	-16.12	11.79	46.00	-34.21	peak
3	350.1000	27.09	-13.16	13.93	46.00	-32.07	peak
4	600.3600	27.24	-8.42	18.82	46.00	-27.18	peak
5	713.8500	28.41	-6.28	22.13	46.00	-23.87	peak
6	875.8400	30.34	-4.32	26.02	46.00	-19.98	peak

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 4. Peak Result = Reading Level + Correct Factor.

RECEIVER SPURIOUS EMISSIONS (HORIZONTAL)

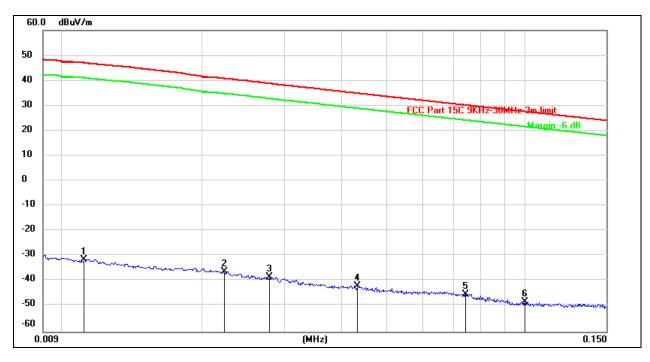


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	152.2200	24.63	-18.14	6.49	43.50	-37.01	peak
2	250.1900	28.61	-16.12	12.49	46.00	-33.51	peak
3	415.0900	25.51	-12.06	13.45	46.00	-32.55	peak
4	650.8000	25.73	-7.58	18.15	46.00	-27.85	peak
5	781.7500	26.44	-5.60	20.84	46.00	-25.16	peak
6	918.5200	26.59	-3.87	22.72	46.00	-23.28	peak

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 4. Peak Result = Reading Level + Correct Factor.

RECEIVER SPURIOUS EMISSIONS (VERTICAL)

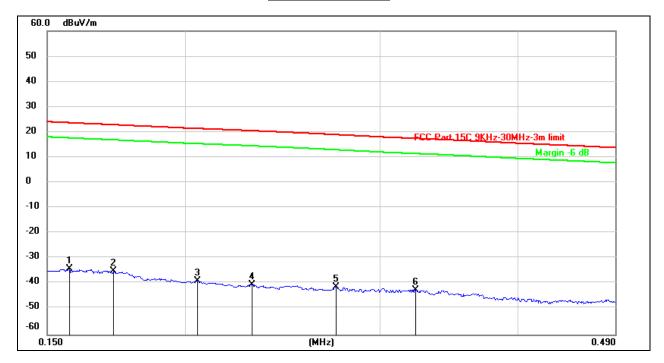
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	59.1000	24.33	-19.30	5.03	40.00	-34.97	peak
2	190.0500	25.22	-16.47	8.75	43.50	-34.75	peak
3	250.1900	28.88	-16.12	12.76	46.00	-33.24	peak
4	546.0400	24.96	-9.51	15.45	46.00	-30.55	peak
5	720.6400	26.38	-6.10	20.28	46.00	-25.72	peak
6	938.8900	28.54	-3.63	24.91	46.00	-21.09	peak


- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 4. Peak Result = Reading Level + Correct Factor.

9.3.2. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (LOOP ANTENNA FACE OFF TO THE EUT, WORST-CASE CONFIGURATION)

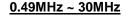
9kHz~ 150kHz

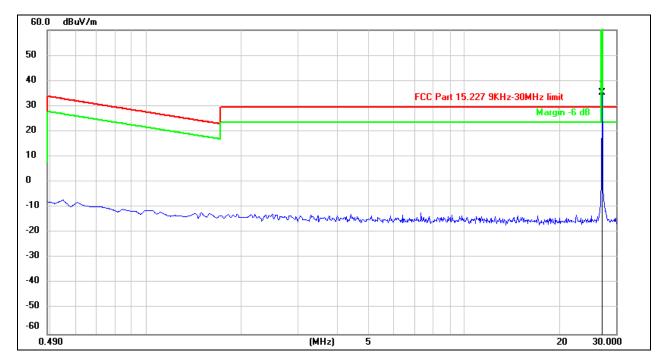

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0111	69.95	-101.39	-31.44	46.94	-78.38	peak
2	0.0223	65.29	-101.35	-36.06	40.77	-76.83	peak
3	0.0279	63.17	-101.38	-38.21	38.80	-77.01	peak
4	0.0432	59.57	-101.45	-41.88	34.94	-76.82	peak
5	0.0743	56.58	-101.59	-45.01	30.20	-75.21	peak
6	0.1000	53.67	-101.80	-48.13	27.60	-75.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

$0.15MHz \sim 0.49MHz$




No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1570	67.53	-101.65	-34.12	23.69	-57.81	peak
2	0.1720	66.69	-101.67	-34.98	22.90	-57.88	peak
3	0.2051	62.81	-101.73	-38.92	21.40	-60.32	peak
4	0.2300	61.53	-101.77	-40.24	20.52	-60.76	peak
5	0.2736	60.58	-101.83	-41.25	18.99	-60.24	peak
6	0.3234	59.48	-101.88	-42.40	17.47	-59.87	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	27.1450	96.32	-61.09	35.23	100.00	-64.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
 - 4. Mark 1 is the fundamental frequency, the AVG of the fundamental frequency limit is 80dBuV/m.
 - 5. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Note: All the modes(Transmitting and Receiving) has been tested, only the worst data record in the report.

Page 32 of 32

7. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT