

CFR 47 FCC PART 15 SUBPART C ISED RSS-210 ISSUE 10

TEST REPORT

For

TOY Transmitter

MODEL NUMBER: 615HA

FCC ID: G6D615HA

IC: 9650A-615HA

REPORT NUMBER: 4790379435-1

ISSUE DATE: April 26 2022

Prepared for

NEW BRIGHT INDUSTRIAL CO., LTD 9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD, KOWLOON BAY, KOWLOON,HONG KONG

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	04/26/2022	Initial Issue	

Summary of Test Results					
Clause	Clause Test Items FCC/ISED Rules				
1	20dB Bandwidth and 99% Occupied Bandwidth	CFR 47 FCC §15.215 (c) ISED RSS-Gen Clause 6.7	Pass		
2	Radiated Emission	CFR 47 FCC §15.249 (a)(d)(e) ISED RSS-210 Annex B B.10 CFR 47 FCC §15.205 and §15.209 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass		
3	Conducted Emission Test for AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	N/A (see note 3)		
4	4 Antenna Requirement CFR 47 FCC §15.203 RSS-GEN Clause 6.8 Pass				
Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China. Note 2: The measurement result for the sample received is <pass> according to < CFR 47 FCC PART 15 SUBPART C, ISED RSS-210 Issue 10 and ISED RSS-GEN Issue 5 > when <accuracy method=""> decision rule is applied. Note 3: The EUT was power by battery.</accuracy></pass>					

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	7
4	.1.	MEASURING INSTRUMENT CALIBRATION	7
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EQI	JIPMENT UNDER TEST	8
5	.1.	DESCRIPTION OF EUT	8
5	.2.	MAXIMUM FIELD STRENGTH	8
5	.3.	CHANNEL LIST	8
5	.4.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5	.5.	TEST CHANNEL CONFIGURATION	9
5	.6.	THE WORSE CASE POWER SETTING PARAMETER	9
5	.7.	TEST ENVIRONMENT	9
5	.8.	DESCRIPTION OF TEST SETUP1	0
5	.9.	MEASURING INSTRUMENT AND SOFTWARE USED1	1
6.	ANT	ENNA PORT TEST RESULTS1	2
6	.1.	ON TIME AND DUTY CYCLE1	2
6	.2.	20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH1	4
7.	RA	DIATED TEST RESULTS1	8
7	.1.	LIMITS AND PROCEDURE1	8
7	.2.	RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS 25	;
7	.3.	SPURIOUS EMISSIONS (1 ~ 3 GHz)	81
7	.4.	SPURIOUS EMISSIONS (3 ~ 18 GHz)	}7
7	.5.	SPURIOUS EMISSIONS (18 ~ 26 GHz)4	13
7	.6.	SPURIOUS EMISSIONS BELOW 30 MHz4	¹ 5
7	.7.	SPURIOUS EMISSIONS BELOW 1 GHz AND ABOVE 30 MHz4	8
8.	ANT	ENNA REQUIREMENTS5	0

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	NEW BRIGHT INDUSTRIAL CO., LTD
Address:	9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD,
	KOWLOON BAY, KOWLOON,HONG KONG.

Manufacturer Information

Company Name:	NEW BRIGHT INDUSTRIAL CO., LTD
Address:	9/F., NEW BRIGHT BUILDING, 11 SHEUNG YUET ROAD,
	KOWLOON BAY, KOWLOON,HONG KONG.

EUT Information

EUT Name:	TOY Transmitter
Model:	615HA
Sample ID:	4881478
Sample Received Date:	April 19,2022
Sample Status:	Normal
Date of Tested:	April 19,2022~ April 24,2022

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-210 Issue 10	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:

Checked By:

Dean Hua

Shemy les

Dean Hua Project Engineer

Approved By:

Aephenbuo

Stephen Guo Laboratory Manager

Shawn Wen Laboratory Leader

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 Issue 10 and RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:

Note:

- All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiation Emission test (include Fundamental emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiation Emission test (include Fundamental emission) (30 MHz ~ 1 GHz)	4.00 dB		
Radiation Emission test	5.78 dB (1 GHz ~ 18 GHz)		
(1 GHz ~ 26 GHz) (include Fundamental emission)	5.23 dB (18 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	TOY Transmitter			
EUT Description	The EUT is a wireless remote control.			
Model	615HA			
Draduct Deceriation	Operation Frequency 2410 MHz ~ 2473 MHz			
Product Description	Modulation Type GFSK			
Battery	DC 3V			

5.2. MAXIMUM FIELD STRENGTH

Frequency	Channel Number	Max Peak field strength	Max AVG field strength	
(MHz)		(dBµV/m)	(dBµV/m)	
2442	32[32]	100.36	68.76	

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2410	11	2429	21	2450	31	2469
2	2414	12	2430	22	2452	32	2473
3	2415	13	2431	23	2454	/	/
4	2416	14	2433	24	2456	/	/
5	2417	15	2434	25	2458	/	/
6	2418	16	2439	26	2462	/	/
7	2419	17	2441	27	2464	/	/
8	2421	18	2442	28	2465	/	/
9	2426	19	2444	29	2466	/	/
10	2428	20	2446	30	2467	/	/

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2410 ~ 2473	Copper Onboard Antenna	1
_			

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX	Antenna 1 can be used as transmitting antenna.

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 1(Low Channel), CH 18(MID Channel), CH 32(High Channel)	2410 MHz, 2442 MHz, 2473 MHz

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2410 MHz ~ 2473 MHz Band					
Test Soft	ware Version	/			
Modulation Type	Transmit Antenna	Test Channel			
	Number	CH 1	CH 18	CH 32	
GFSK	1	Default	Default	Default	

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	55 ~ 65 %		
Atmospheric Pressure:	1025 Pa		
Temperature	TN	22 ~ 28 °C	
	VL	/	
Voltage:	VN	DC 3 V	
	VH	/	

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

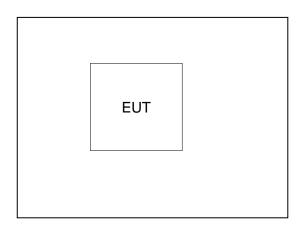
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
/	/	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/


ACCESSORY

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
/	/	/	/	/	/

TEST SETUP

The EUT have the engineer mode inside.

SETUP DIAGRAM FOR TEST

Note: New battery was used during all tests.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.9. MEASURING INSTRUMENT AND SOFTWARE USED

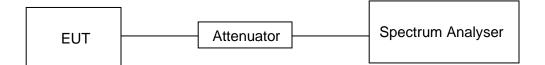
Conducted Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	R&S	ESR3 101961		Oct.30, 2021	Oct.29, 2022	
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.30, 2021	Oct.29, 2022	
		So	ftware			
[Description		Manufacturer	Name	Version	
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1	

		Radiated	Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.30, 2021	Oct.29, 2022
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.30, 2021	Oct.29, 2022
EMI Measurement Receiver	R&S	ESR26	101377	Oct.30, 2021	Oct.29, 2022
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.30, 2021	Oct.29, 2022
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.31, 2021	Oct.30, 2022
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.31, 2021	Oct.30, 2022
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.31, 2021	Oct.30, 2022
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.31, 2021	Oct.30, 2022
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.31, 2021	Oct.30, 2022
Signal Analyzer	R&S	FSV40	101118	Oct.30, 2021	Oct.29, 2022
	•	So	ftware		
[Description		Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

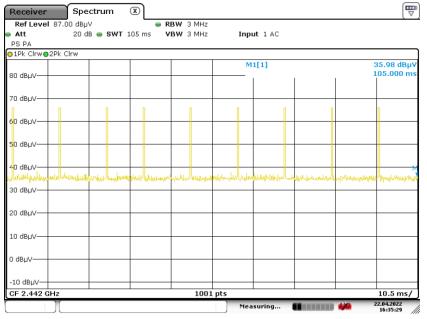
PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1 °C	Relative Humidity	57 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V


RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)
GFSK	2.6325	100	0.026325	2.6325	-31.6

Note: Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle

ON TIME AND DUTY CYCLE MID CH PLOT-1

Date: 22.APR.2022 16:35:29

ON TIME AND DUTY CYCLE MID CH PLOT-2

Receiver		Spectrum	×							
Ref Level	87.00	dBµ∨		BRBW 3 MHz						
Att 🗧		20 dB 👄 SWT	16.5 ms	VBW 3 MHz	Inp	ut 1 A	С			
SGL PS PA										
⊖1Pk Clrw⊝	2Pk Clr	N								
so dBuV					D	2[1]				0.06 dB
						1[1]				12.0075 ms 65.90 dBµV
29. фВµ∨—					191	1111	D2			оз.90 ивру 219.0 µs
YA I						1		ר ו		
60 dвµV—				-		<u> </u>				
50 dBµV										
40 dBµV										
	سابعارزوا	distribution and the	un marine	the program with	unununu	Monamelly	a Balantasha	diana	متاليك محمد المرالية	houghillestonesting
30 dBµV		and form on only in		and all a little to shall be				a matha	ante ano telle.	
20 dBµV										
10 dBµV-										
0 dBµV						<u> </u>				
-10 dBµV				1001						1.65 ms/
GF 2.442 G Marker	ΠZ			1001	pts					1.03 ms/
	Trc	X-val		Y-value	Func	tion		Euro	tion Result	
Type Ref M1	11		ue 219.0 μs	65.90 dBµ\		aon		runc	con Resul	
D1 M			292.5 µs	-0.02 di						
D2 M	1 1	12	.0075 ms	0.06 di	3					
						teady			-	22.04.2022

Date: 22.APR.2022 16:36:06

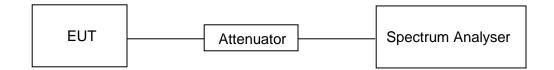
Note: All the modes had been tested, but only the worst duty cycle recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.2. 20 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

		t15 (15.249) Subpart C Gen Issue 5	
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.215 (c)	20dB Bandwidth	for reporting purposes only	2400-2483.5
ISED RSS-Gen Clause 6.7 Issue 5	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5

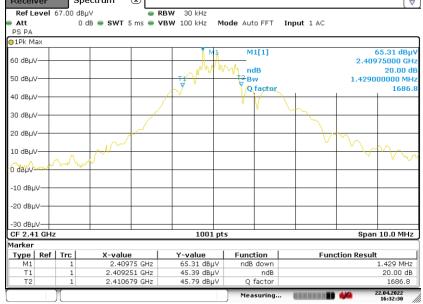

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

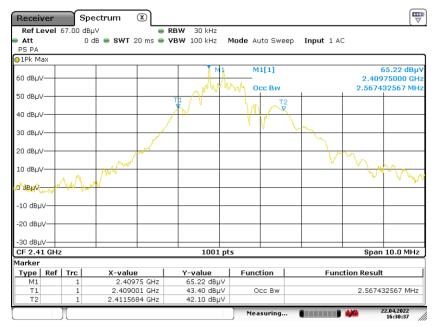
Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	Above 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP


TEST ENVIRONMENT

Temperature	22.1 °C	Relative Humidity	57 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Frequency (MHz)	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
2410	1.4290	2.5674	PASS
Receive	sr Spectrum 🛞	ſ	Ħ

Date: 22.APR.2022 16:32:30

Date: 22.APR.2022 16:30:36

Frequency (MHz)	20dB bandw (MHz)	vidth	999	% bandv (MHz)		Result
2442	2.4414			2.1978	3	PASS
Att PS PA O 1Pk Max	vel 67.00 dBµ∀ ● RB\ 0 dB ● SWT 5 ms ● VB\		Auto FFT In	put 1 AC	20.00	
50 dBµV- -40 dBµV-	D1 60.710 dBµV	Mz	M1[1]		370.00 k 40.72 dB 2.44138100 G	μV
30 dBµV- 20 dBµV- 10 dBµV-					-	
[•] 0 dВµV∽ -10 dВµV -20 dВµV			F2			
-30 dBµV CF 2.443		F1 1001 pts			Span 10.0 MH	z
Date: 24.AF	M1 1 370.0 kHz	20.00 dB	Measuring		24.04.2022 13:46:33	
	vel 67.00 dBµV ● RBV 0 dB ● SWT 5 ms ● VBV		Auto FFT In	put 1 AC	(
60 dBµV- 50 dBµV-		and have	M1[1] Occ Bw		65.83 dB 2.44175000 G 2.197802198 M	Hz
40 dBµV- 30 dBµV- 20 dBµV-						_
10 dBµV- Ю́́dBµV- -10 dBµV				W 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~
-20 dBµV -30 dBµV CF 2.44: Marker		1001 pts			Span 10.0 MH	IZ
	Ref Trc X-value 1 2.44175 GHz 1 1 2.4411908 GHz 1 1 2.4433886 GHz 1	65.83 dBµV 44.11 dBµV 43.17 dBµV	Occ Bw		2.197802198 MH	z
Data: 22 AE	R.2022 16:34:08		Measuring		22.04.2022 16:34:08	lin

Date: 22.APR.2022 16:34:08

ency z)	20	dB bandw (MHz)	vidth	99	% bandwidth (MHz)	ו	Resul
3		2.4680			1.9980		PASS
Receiv	ver Spectru	um 🔊					
Ref L	evel 67.00 dBµ∨	■ RBN ■ SWT 5 ms ■ VBN				[\[]	
Att PS PA 01Pk M		5 WI 5 ms - 4B	W 100 KHZ MIOO	e Auto FFT In	put 1 AC		
60 dBµ\			1 MI	M1[1]		56.38 dBµ¥ 800000 GHz	
50 dBµ\			pro how	ndB		20.00 dB 00000 MHz	
40 dBµ\			N	Ofactor	2.4000	1002.2	
30 dBµ\			7				
20 dBµ\							
10 dBµ\		\sim			Mas	n	
O dBJV-	mm	√~ V			~	V VV	
-10 dBµ	v						
-20 dBµ							
-30 dBµ							
	73 GHz		1001 pts		Spar	10.0 MHz	
		2.473 GHz	Y-value 56.38 dBµV	Function ndB down	Function Result	2.468 MHz	
	1						
T1 T2	1	2.472051 GHz	36.33 dBµV	ndB		20.00 dB	
T2	1 1 APR.2022 16:38:29	2.472051 GHz 2.474518 GHz					
Date: 22.4	1 APR.2022 16:38:29 ver Spectra evel 67.00 dBµV	2.474518 GHz	36.33 dBµV 36.52 dBµV	ndB Q factor Measuring		20.00 dB 1002.2	
Date: 22.4 Recei Refil Att PS PA	1 APR 2022 16:38:29 Ver Spectru evel 67.00 dBμV 0 dB •	2.474518 GHz	36.33 dBµV 36.52 dBµV	ndB Q factor Measuring	mput 1 AC	20.00 dB 1002.2 22.04.2022 16:38:28	
Date: 22.4 Receir Ref L Att PS PA O 1Pk M	1 APR.2022 16:38:29 ver Spectra evel 67.00 dBμV 0 dB • ax	2.474518 GHz	36.33 dBµV 36.52 dBµV	ndB Q factor Measuring	nput 1 AC	20.00 dB 1002.2 2204.2022 16:39:28	
Date: 22.4 Receir Ref Li PS PA 1Pk M 60 dBµA	1 APR 2022 16:38:29 Ver Spectru evel 67:00 dBµV 0 dB ax /	2.474518 GHz	36.33 dBµV 36.52 dBµV	ndB Q factor Measuring Đ Auto FFT Ir	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28	
Date: 22.4 Receir Ref Li Att PS PA O 1Pk M 60 dBµA 50 dBµA	1 APR 2022 16:38:29 ver Spectru evel 67.00 dBμV 0 dB ax	2.474518 GHz	36.33 dBµV 36.52 dBµV	ndB Q factor Measuring e Auto FFT Ir M1[1]	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
T2 Date: 22.4 Receir Ref Li Att PS PA ● 1Pk M 60 dBµA 50 dBµA	1 APR.2022 16:38:29 Ver Spectri evel 67:00 dBµV 0 dB ax /	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
T2 Date: 22.4 Receir Ref Li ● Att ● S PA ● 1Pk M 60 dBµA 50 dBµA 30 dBµA	1 APR 2022 16:38:29 ver Spectru evel 67:00 dB ax /	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
Т2 Date: 22.4 Receir Ref L • Att • S PA • 1Pk M 60 dBµA 50 dBµA 30 dBµA 20 dBµA	1 APR 2022 16:38:29 ver Spectru evel 67:00 dBµV 0 dB 0 ах /	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
T2 Date: 22.4 Receir Ref Li Att PS PA 0 1Pk M 60 dBµA 50 dBµA 40 dBµA 30 dBµA 10 dBµA	1 APR.2022 16:38:29 Ver Spectri evel 67:00 dBµV 0 dB ax /	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
T2 Date: 22.4 Receir Ref Li Att PS PA 1Pk M 60 dBµA 50 dBµA 30 dBµA 20 dBµA 10 dBµA 0 dBµA	1 APR 2022 16:38:29 Ver Spectru evel 67:00 dBµV 0 dB ax	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
Т2 Date: 22.4 Receir Ref L Att PS PA ● 1Pk M 60 dBµA 50 dBµA 30 dBµA 20 dBµA 10 dBµA -10 dBµ	1 APR 2022 16:38:29 ver Spectru evel 67:00 dBµV 0 dB ах /	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
T2 Date: 22.4 Receir Ref Li Att PS PA 0 1Pk M 60 dBµA 50 dBµA 40 dBµA 30 dBµA 10 dBµA -10 dBµ -20 dBµA	1 APR.2022 16.38:29 ver Spectru evel 67.00 dBµV 0 dB 3X / - /	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	1put 1 AC 2.473	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
Т2 Date: 22.4 Receir Ref L • Att • PS PA • 1Pk M 6 0 dBµA 5 0 dBµA 3 0 dBµA 3 0 dBµA 1 0 dBµA 1 0 dBµA • 10 dBµA 	1 APR.2022 16.38:29 ver Spectru evel 67.00 dBµV 0 dB 3X / - /	2.474518 GHz	36.33 dbµV 36.52 dbµV V 30 kHz V 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	2.472 1.9980	20.00 dB 1002.2 16:38:28 €5.87 dBµV 76000 GHz	
T2 Date: 22.4 Receir Ref Li Att PS PA ● 1Pk M 60 dBµA 50 dBµA 20 dBµA 10 dBµA -10 dBµ -20 dBµ -20 dBµ -30 dBµA	1 ver Spectru evel 67.00 dBµV 0 dB 3X /	2.474518 GHz	36.33 dbµV 36.52 dbµV 36.52 dbµV 100 kHz Mode 100 kHz Mode 100 kHz Mode	ndB Q factor Measuring e Auto FFT In M1[1] Occ Bw T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	2.472 1.9980	20.00 dB 1002.2 16:38:28	
T2 Date: 22.4 Receir Ref Li Att PS PA ● 1Pk M 60 dBµA 50 dBµA 20 dBµA 10 dBµA -10 dBµ -20 dBµ -20 dBµ -30 dBµA	1 ver Spectru evel 67.00 dBµV 0 dB ax - /- -	2.474518 GHz	36.33 dbµV 36.52 dbµV 36.52 dbµV 100 kHz Mode 100 kHz Mode 100 kHz Mode	ndB Q factor Measuring B Auto FFT Ir M1[1] Occ Bw	2.472 1.9980	20.00 dB 1002.2 16:38:28	

Date: 22.APR.2022 16:37:42

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

CFR 47 FCC §15.205 and §15.209

CFR 47 FCC §15.249 (a)(d)(c)(e)

ISED RSS-210 Issue 10 Annex B B.10

RSS-GEN Clause 8.9

The field strength of em	nissions from intentional	radiators operated within	these frequency bands
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)
902 - 928	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3
2400 – 2483.5	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3
5725 – 5875	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3

Emissions radi	ated outside of the specified frequer	ncy bands above 3	80MHz
Frequency Range	Field Strength Limit	Field Stre	ngth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m	n) at 3 m
(11112)		Quasi	-Peak
30 - 88	100	4	0
88 - 216	150	43	3.5
216 - 960	200	4	6
Above 960	500	5	4
Above 1000	500	Peak	Average
	500	74	54

FCC Emissi	ons radiated outside of the specified free	equency bands below 30MHz
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz				
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)		
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300		
490 - 1705 kHz	63.7/F (F in kHz)	30		
1.705 - 30 MHz	0.08	30		

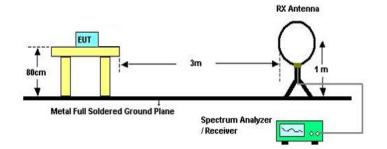
Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10

Hz	MHz	GHz
90 - 0.110	149.9 - 150.05	9.0 - 9.2
95 - 0.505	156.52475 - 156.52525	9.3 - 9.5
735 - 2.1905	156.7 - 156.9	10.6 - 12.7
20 - 3.026	162.0125 - 167.17	13.25 - 13.4
25 - 4.128	167.72 - 173.2	14.47 - 14.5
7725 - 4.17775	240 - 285	15.35 - 16.2
0725 - 4.20775	322 - 335.4	17.7 - 21.4
177 - 5.683	399.9 - 410	22.01 - 23.12
215 - 6.218	608 - 614	23.6 - 24.0
26775 - 6.26825	960 - 1427	31.2 - 31.8
1175 - 6.31225	1435 - 1626.5	36.43 - 36.5
91 - 8.294	1645.5 - 1646.5	Above 38.6
362 - 8.366	1660 - 1710	
7625 - 8.38675	1718.8 - 1722.2	
11425 - 8.41475	2200 - 2300	
29 - 12.293	2310 - 2390	
51975 - 12.52025	2483.5 - 2500	
57675 - 12.57725	2655 - 2900	
36 - 13,41	3260 - 3267	
42 - 16.423	3332 - 3339	
69475 - 16.69525	3345.8 - 3358	
80425 - 16.80475	3500 - 4400	
5 - 25.67	4500 - 5150	
5 - 38.25	5350 - 5460	
- 74.6	7250 - 7750	
8 - 75.2	8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

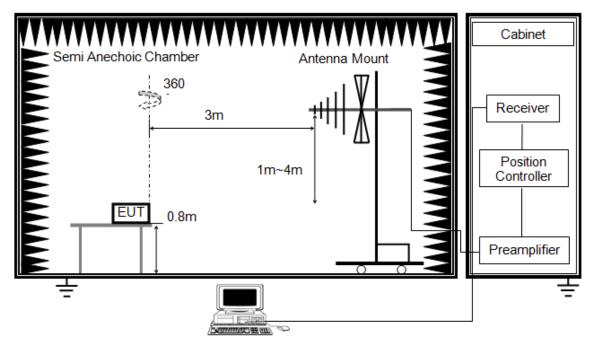
1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

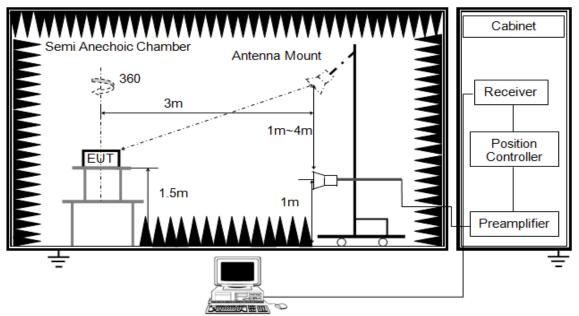
Below 1 GHz and Above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured

Above 1 GHz

The setting of the spectrum analyser. (For Bandedge and Field strength)

RBW	≥ OBW (2 MHz)
	PEAK: ≥ 3×RBW AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

The setting of the spectrum analyser. (For Spurious emissions)

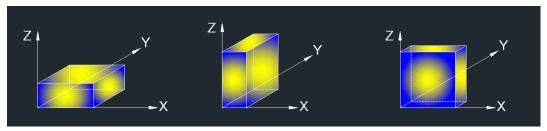
RBW	1 MHz
IV BW	PEAK: 3 MHz AVG: see note 5
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter or band reject filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 150cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

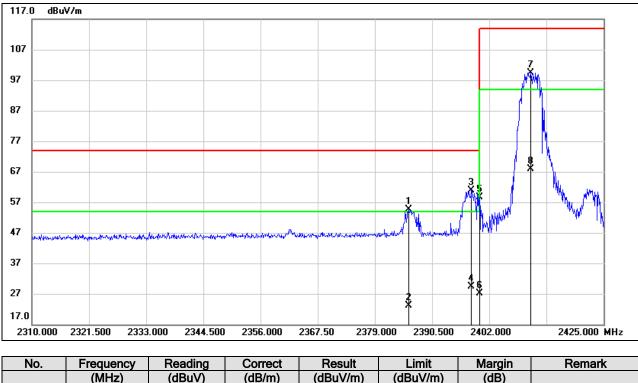

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. Where necessary, average emission are determined by applying the Duty Cycle Correction Factor to the peak measurements. For the Duty Cycle and Correction Factor please refer to clause 6.1. ON TIME AND DUTY CYCLE.

6. For measurements Bandedge above 1 GHz, the resolution bandwidth is set to 2 MHz, then the video bandwidth is set to $\ge 3 \times RBW$ for peak measurements. This test results are worse than using 1 MHz resolution bandwidth, so if the result is pass, the test is considered to meet the standard requirements.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

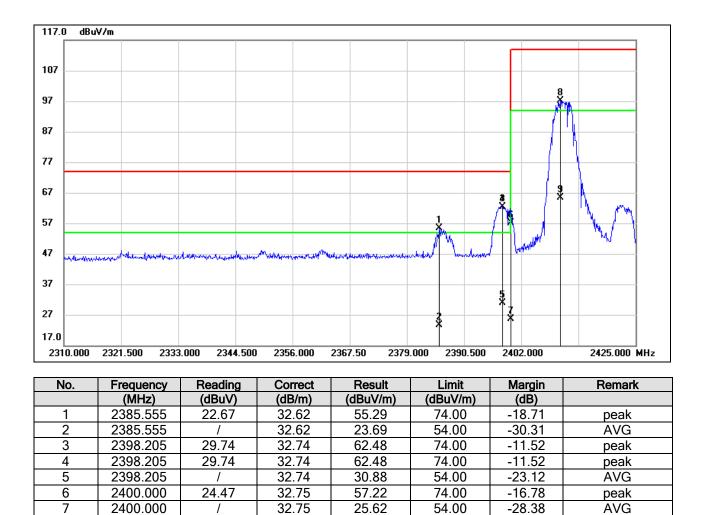

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

7.2. RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2385.785	22.05	32.63	54.68	74.00	-19.32	peak
2	2385.785	/	32.63	23.08	54.00	-30.92	AVG
3	2398.435	28.20	32.74	60.94	74.00	-13.06	peak
4	2398.435	/	32.74	29.34	54.00	-24.66	AVG
5	2400.000	25.96	32.75	58.71	74.00	-15.29	peak
6	2400.000	/	32.75	27.11	54.00	-26.89	AVG
7	2410.280	66.65	32.80	99.45	114.00	-14.55	peak
8	2410.280	/	32.80	67.85	94.00	-26.15	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

64.27

1

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

97.06

65.46

114.00

94.00

-16.94

-28.54

peak

AVG

3. Peak: Peak detector.

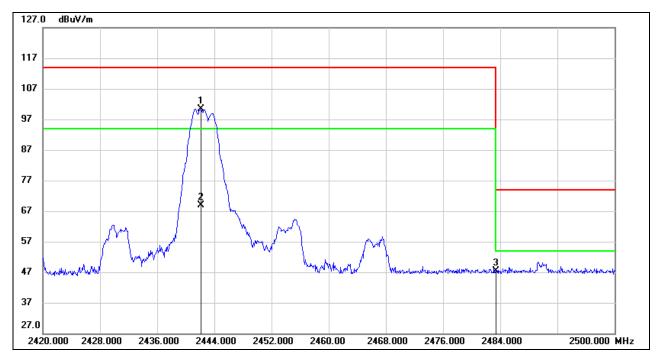
2409.820

2409.820

8

9

4. AVG Result=Peak Result + Duty Cycle Correction Factor.


32.79

32.79

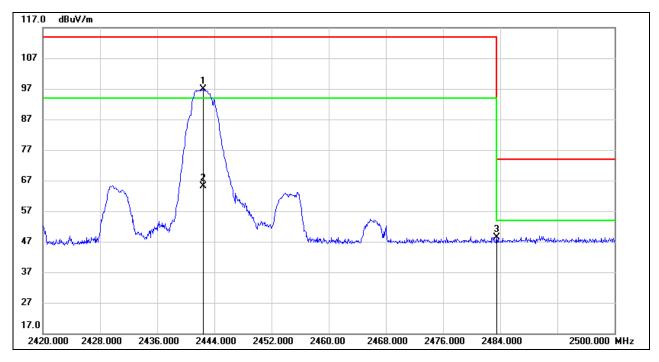
5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2442.080	67.44	32.92	100.36	114.00	-13.64	peak
2	2442.080	/	32.92	68.76	94.00	-25.24	AVG
3	2483.500	14.18	33.10	47.28	74.00	-26.72	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

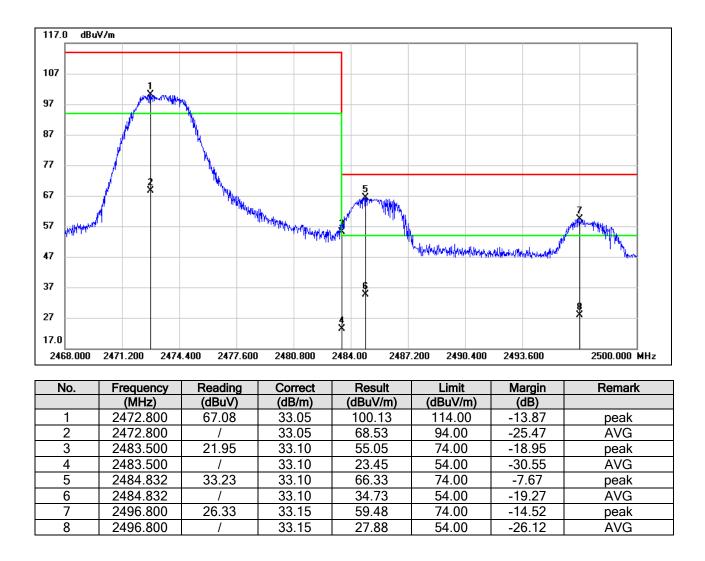
5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

FIELD STRENGTH OF INTENTIONAL EMISSIONS (MIDDLE CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2442.480	63.88	32.92	96.80	114.00	-17.20	peak
2	2442.480	/	32.92	65.20	94.00	-28.80	AVG
3	2483.500	15.39	33.10	48.49	74.00	-25.51	peak

Note: 1. Measurement = Reading Level + Correct Factor.

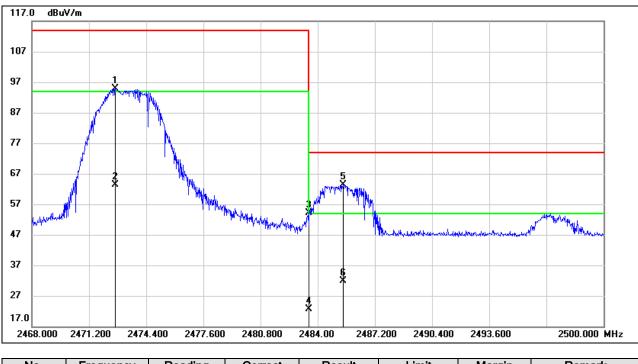
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

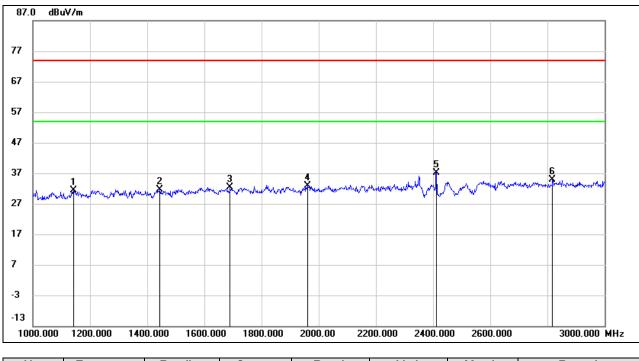
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO.: 10-SL-F0058 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

RESTRICTED BANDEDGE AND FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2472.672	61.85	33.05	94.90	114.00	-19.10	peak
2	2472.672	/	33.05	63.30	94.00	-30.70	AVG
3	2483.500	21.12	33.10	54.22	74.00	-19.78	peak
4	2483.500	/	33.10	22.62	54.00	-31.38	AVG
5	2485.440	30.32	33.10	63.42	74.00	-10.58	peak
6	2485.440	/	33.10	31.82	54.00	-22.18	AVG

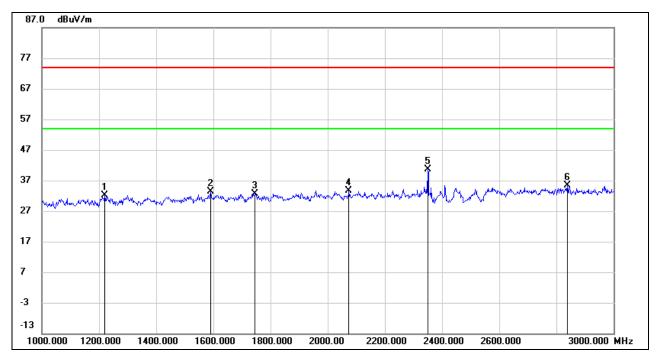
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

7.3. SPURIOUS EMISSIONS (1 ~ 3 GHz)

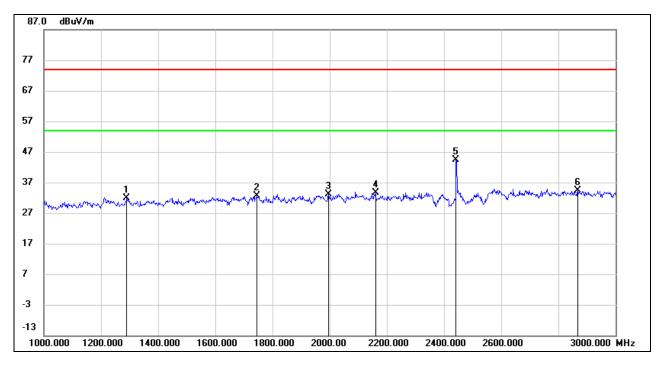
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1142.000	46.16	-14.67	31.49	74.00	-42.51	peak
2	1444.000	45.09	-13.38	31.71	74.00	-42.29	peak
3	1690.000	44.75	-12.41	32.34	74.00	-41.66	peak
4	1960.000	44.74	-11.74	33.00	74.00	-41.00	peak
5	2410.000	47.48	-10.23	37.25	/	/	Fundamental
6	2818.000	43.61	-8.83	34.78	74.00	-39.22	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

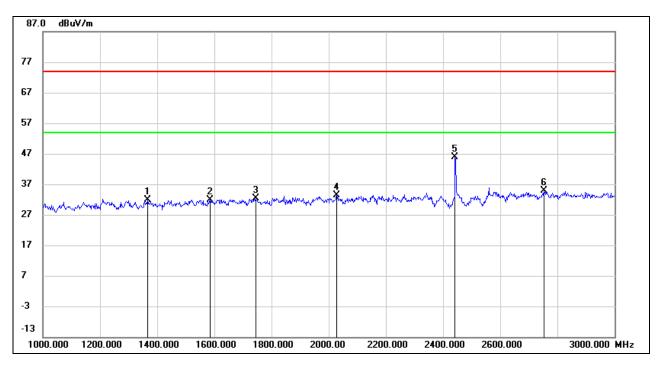
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1220.000	46.17	-13.97	32.20	74.00	-41.80	peak
2	1590.000	46.23	-12.80	33.43	74.00	-40.57	peak
3	1746.000	45.01	-12.26	32.75	74.00	-41.25	peak
4	2074.000	44.95	-11.35	33.60	74.00	-40.40	peak
5	2350.000	51.13	-10.45	40.68	74.00	-33.32	peak
6	2838.000	44.20	-8.76	35.44	74.00	-38.56	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

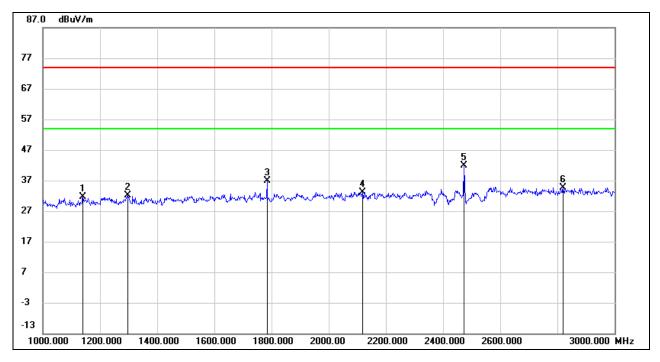
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1290.000	45.51	-13.62	31.89	74.00	-42.11	peak
2	1744.000	44.86	-12.26	32.60	74.00	-41.40	peak
3	1996.000	44.76	-11.64	33.12	74.00	-40.88	peak
4	2160.000	44.69	-11.03	33.66	74.00	-40.34	peak
5	2442.000	54.58	-10.12	44.46	/	/	Fundamental
6	2868.000	42.93	-8.66	34.27	74.00	-39.73	peak

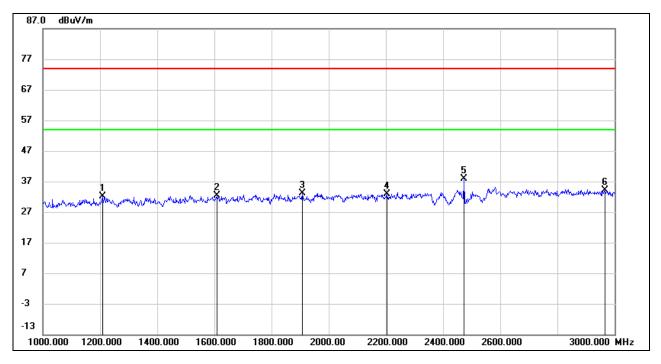
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1366.000	45.42	-13.55	31.87	74.00	-42.13	peak
2	1584.000	44.79	-12.83	31.96	74.00	-42.04	peak
3	1746.000	44.61	-12.26	32.35	74.00	-41.65	peak
4	2028.000	44.95	-11.53	33.42	74.00	-40.58	peak
5	2442.000	56.09	-10.12	45.97	/	/	Fundamental
6	2752.000	43.91	-9.06	34.85	74.00	-39.15	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

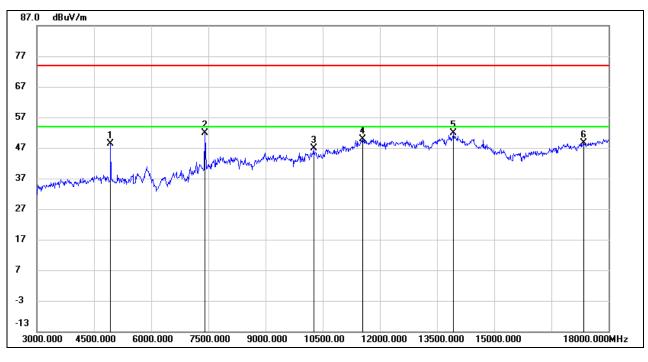
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1140.000	46.26	-14.68	31.58	74.00	-42.42	peak
2	1296.000	45.75	-13.59	32.16	74.00	-41.84	peak
3	1784.000	48.97	-12.16	36.81	74.00	-37.19	peak
4	2118.000	44.32	-11.18	33.14	74.00	-40.86	peak
5	2473.000	51.84	-10.00	41.84	/	/	Fundamental
6	2820.000	43.33	-8.82	34.51	74.00	-39.49	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1208.000	46.15	-14.03	32.12	74.00	-41.88	peak
2	1610.000	45.05	-12.73	32.32	74.00	-41.68	peak
3	1908.000	44.88	-11.87	33.01	74.00	-40.99	peak
4	2204.000	43.78	-10.88	32.90	74.00	-41.10	peak
5	2473.000	47.95	-10.00	37.95	/	/	Fundamental
6	2966.000	42.41	-8.35	34.06	74.00	-39.94	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.4. SPURIOUS EMISSIONS (3 ~ 18 GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

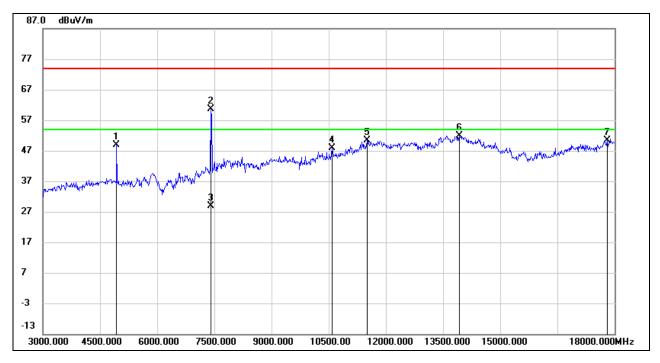
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4935.000	50.60	-2.33	48.27	74.00	-25.73	peak
2	7410.000	47.22	4.58	51.80	74.00	-22.20	peak
3	10260.000	36.31	10.48	46.79	74.00	-27.21	peak
4	11550.000	35.00	14.80	49.80	74.00	-24.20	peak
5	13935.000	32.61	19.36	51.97	74.00	-22.03	peak
6	17355.000	29.47	19.23	48.70	74.00	-25.30	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.


5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.

6. The High Pass filter loss factor already add into the correct factor.

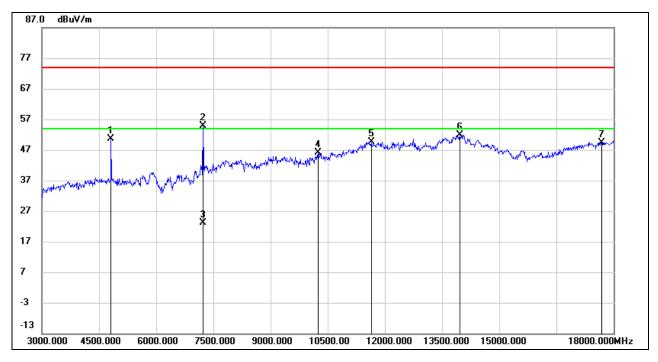
7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4935.000	51.33	-2.33	49.00	74.00	-25.00	peak
2	7410.000	55.95	4.58	60.53	74.00	-13.47	peak
3	7410.000	/	4.58	28.93	54.00	-25.07	AVG
4	10590.000	36.00	11.77	47.77	74.00	-26.23	peak
5	11505.000	35.62	14.75	50.37	74.00	-23.63	peak
6	13935.000	32.62	19.36	51.98	74.00	-22.02	peak
7	17805.000	28.71	21.71	50.42	74.00	-23.58	peak

Note: 1. Measurement = Reading Level + Correct Factor.

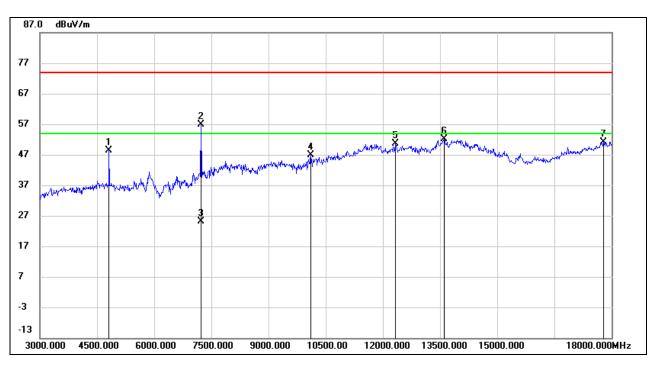
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	53.24	-2.58	50.66	74.00	-23.34	peak
2	7230.000	50.80	3.98	54.78	74.00	-19.22	peak
3	7230.000	/	3.98	23.18	54.00	-30.82	AVG
4	10245.000	35.82	10.37	46.19	74.00	-27.81	peak
5	11640.000	34.95	14.75	49.70	74.00	-24.30	peak
6	13965.000	32.48	19.43	51.91	74.00	-22.09	peak
7	17685.000	29.01	20.42	49.43	74.00	-24.57	peak

Note: 1. Measurement = Reading Level + Correct Factor.

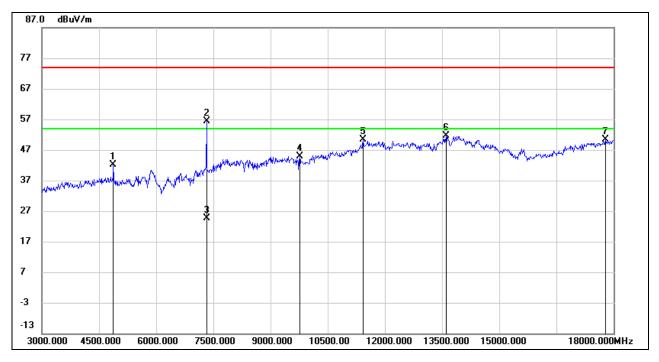
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
- 6. The High Pass filter loss factor already add into the correct factor.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	50.95	-2.58	48.37	74.00	-25.63	peak
2	7230.000	52.81	3.98	56.79	74.00	-17.21	peak
3	7230.000	/	3.98	25.19	54.00	-28.81	AVG
4	10110.000	36.58	10.33	46.91	74.00	-27.09	peak
5	12330.000	35.05	15.53	50.58	74.00	-23.42	peak
6	13605.000	33.37	18.79	52.16	74.00	-21.84	peak
7	17790.000	29.54	21.58	51.12	74.00	-22.88	peak

Note: 1. Measurement = Reading Level + Correct Factor.

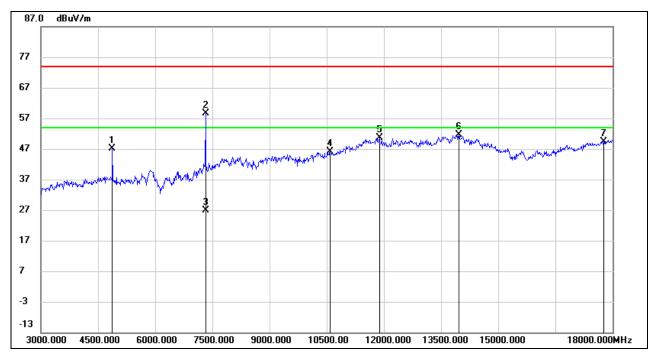
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

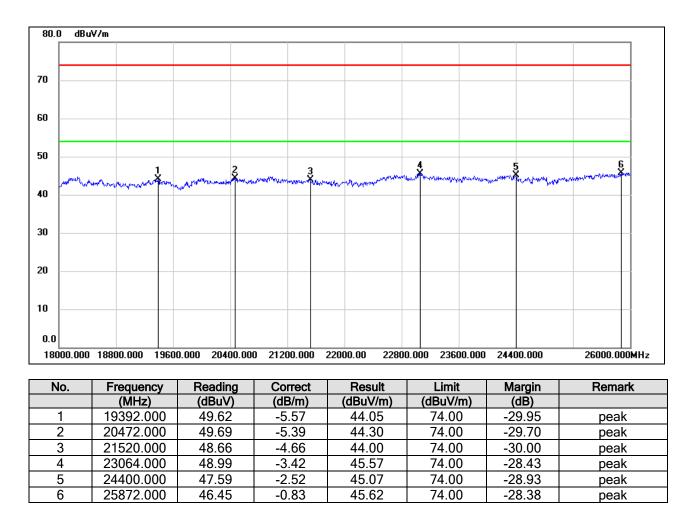

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	44.65	-2.55	42.10	74.00	-31.90	peak
2	7320.000	51.96	4.30	56.26	74.00	-17.74	peak
3	7320.000	/	4.30	24.66	54.00	-29.34	AVG
4	9765.000	35.77	9.20	44.97	74.00	-29.03	peak
5	11430.000	36.34	14.04	50.38	74.00	-23.62	peak
6	13605.000	32.73	18.79	51.52	74.00	-22.48	peak
7	17790.000	28.91	21.58	50.49	74.00	-23.51	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
- 6. The High Pass filter loss factor already add into the correct factor.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

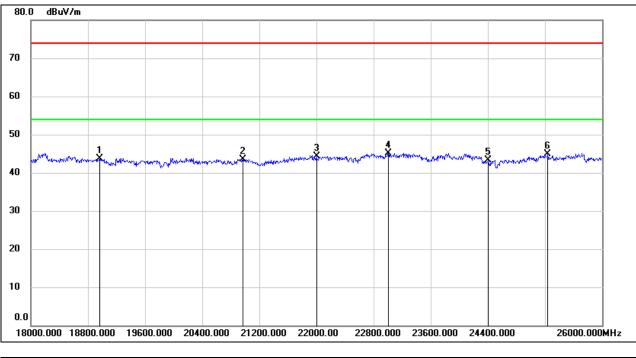
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	49.75	-2.55	47.20	74.00	-26.80	peak
2	7320.000	54.24	4.30	58.54	74.00	-15.46	peak
3	7320.000	/	4.30	26.94	54.00	-27.06	AVG
4	10590.000	34.42	11.77	46.19	74.00	-27.81	peak
5	11880.000	35.33	15.21	50.54	74.00	-23.46	peak
6	13965.000	32.30	19.43	51.73	74.00	-22.27	peak
7	17775.000	28.06	21.41	49.47	74.00	-24.53	peak


Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG Result=Peak Result + Duty Cycle Correction Factor.
- 5. For the Duty Cycle and Correction Factor, please refer to clause 6.1.
- 6. The High Pass filter loss factor already add into the correct factor.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.5. SPURIOUS EMISSIONS (18 ~ 26 GHz)

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

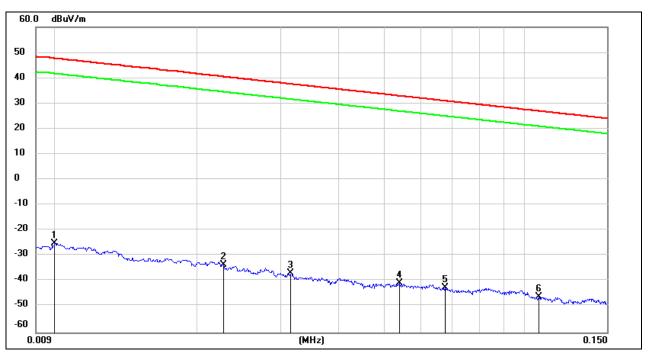

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18960.000	49.01	-5.25	43.76	74.00	-30.24	peak
2	20968.000	48.46	-4.91	43.55	74.00	-30.45	peak
3	22000.000	48.75	-4.48	44.27	74.00	-29.73	peak
4	23008.000	48.60	-3.44	45.16	74.00	-28.84	peak
5	24408.000	45.89	-2.51	43.38	74.00	-30.62	peak
6	25240.000	46.67	-1.68	44.99	74.00	-29.01	peak


Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

Note: All test modes had been tested, only the worst data record in the report.

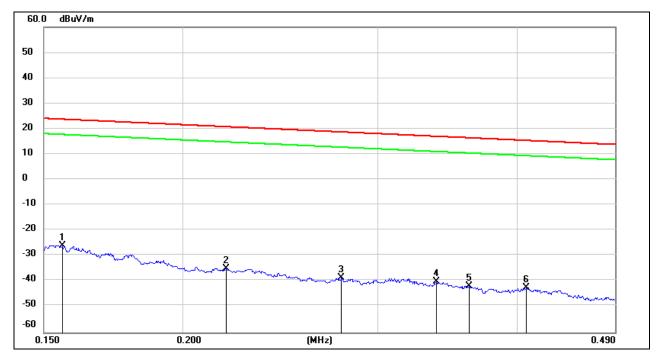
7.6. SPURIOUS EMISSIONS BELOW 30 MHz

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz ~ 150 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit		Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)		(dB)	
1	0.0100	76.22	-101.40	-25.18	47.60		-72.78	peak
2	0.0227	67.80	-101.36	-33.56	40.48		-74.04	peak
3	0.0316	64.74	-101.40	-36.66	37.61		-74.27	peak
4	0.0539	60.76	-101.50	-40.74	32.97		-73.71	peak
5	0.0675	59.14	-101.56	-42.42	31.02		-73.44	peak
6	0.1073	55.80	-101.77	-45.97	26.99		-72.96	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

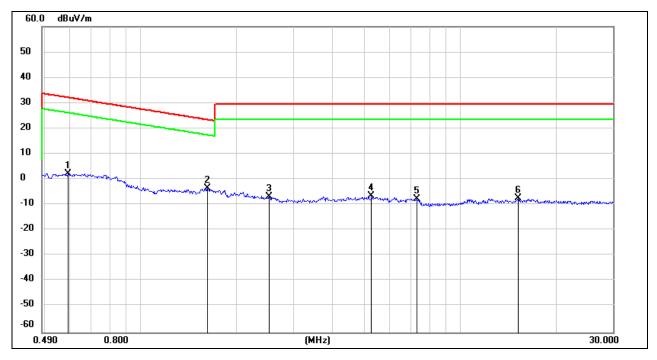
3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. $dBuA/m = dBuV/m - 20log10(120\pi) = dBuV/m - 51.5$.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1559	75.65	-101.65	-26.00	23.74	-49.74	peak
2	0.2190	66.77	-101.75	-34.98	20.79	-55.77	peak
3	0.2782	63.29	-101.83	-38.54	18.71	-57.25	peak
4	0.3382	61.73	-101.90	-40.17	17.02	-57.19	peak
5	0.3623	59.93	-101.92	-41.99	16.42	-58.41	peak
6	0.4081	59.58	-101.97	-42.39	15.39	-57.78	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. $dBuA/m = dBuV/m - 20log10(120\pi) = dBuV/m - 51.5$.

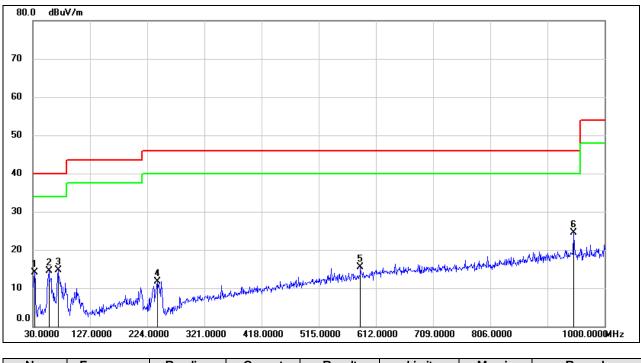
<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5917	64.24	-62.08	2.16	32.16	-30.00	peak
2	1.6149	58.62	-62.00	-3.38	23.44	-26.82	peak
3	2.5261	54.91	-61.69	-6.78	29.54	-36.32	peak
4	5.2705	55.04	-61.45	-6.41	29.54	-35.95	peak
5	7.3361	53.58	-61.17	-7.59	29.54	-37.13	peak
6	15.1859	53.55	-61.01	-7.46	29.54	-37.00	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

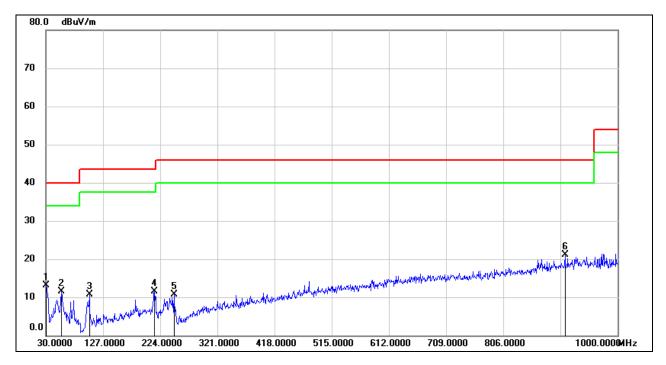

4. $dBuA/m = dBuV/m - 20log10(120\pi) = dBuV/m - 51.5$.

Note: All test modes had been tested, only the worst data record in the report.

7.7. SPURIOUS EMISSIONS BELOW 1 GHz AND ABOVE 30 MHz

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	32.9100	33.34	-19.22	14.12	40.00	-25.88	QP
2	57.1600	35.06	-20.58	14.48	40.00	-25.52	QP
3	72.6800	35.37	-20.76	14.61	40.00	-25.39	QP
4	241.4600	30.82	-19.14	11.68	46.00	-34.32	QP
5	585.8100	25.32	-9.89	15.43	46.00	-30.57	QP
6	947.6200	28.93	-4.43	24.50	46.00	-21.50	QP


Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	32.16	-19.04	13.12	40.00	-26.88	QP
2	56.1900	32.08	-20.61	11.47	40.00	-28.53	QP
3	103.7200	31.47	-20.84	10.63	43.50	-32.87	QP
4	214.3000	29.19	-17.66	11.53	43.50	-31.97	QP
5	247.2800	29.61	-18.99	10.62	46.00	-35.38	QP
6	910.7600	26.04	-4.97	21.07	46.00	-24.93	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the channels have been tested, only the worst data was recorded in the report.

8. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS Complies

END OF REPORT