

Product Name	Z-wave Series
Model No.	SP814-2
FCC ID.	FU5TR003-02

Applicant	EVERSPRING INDUSTRY CO., LTD
Address	7th fl. 609 Wan Shou Road Sec. 1,Kweishan, Taoyuan Hsien
	333, Taiwan, R.O.C.

Date of Receipt	Mar. 19, 2009
Issued Date	Apr. 03, 2009
Report No.	093314R-RFUSP07V01
Report Version	V1.0

The Test Results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issued Date: Apr. 03, 2009 Report No. : 093314R-RFUSP07V01

Product Name	Z-wave Series	
Applicant	EVERSPRING INDUSTRY CO., LTD	
Address	7th fl. 609 Wan Shou Road Sec. 1, Kweishan, Taoyuan Hsien 333, Taiwan, R.O.C.	
Manufacturer	Dong-Guan Li Yuan Electronics Co., Ltd	
Model No.	SP814-2	
FCC ID.	FU5TR003-02	
Rated Voltage	DC 4.5V (Power by Battery)	
Working Voltage	DC 4.5V (Power by Battery)	
Trade Name	EVERSPRING	
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2008	
	ANSI C63.4: 2003 NVLAP Lab Code: 200533-0	
Test Result	Complied	

The Test Results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Loven Huang

(Adm. Specialist / Leven Huang)

Tested By

Dino Chen

(Engineer / Dino Chen)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

	Description	Page
1.	GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Operation Description	5
1.3.	Tested System Details	6
1.4.	Configuration of Test System	
1.5.	EUT Exercise Software	6
1.6.	Test Facility	7
2.	Conducted Emission	8
2.1.	Test Equipment	8
2.2.	Test Setup	8
2.3.	Limits	8
2.4.	Test Procedure	9
2.5.	Uncertainty	9
2.6.	Test Result of Conducted Emission	10
3.	Radiated Emission	
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Radiated Emission	15
4.	Band Edge	20
4.1.	Test Equipment	20
4.2.	Test Setup	
4.3.	Limit	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Band Edge	
5.	Duty Cycle	25
5.1.	Test Equipment	25
5.2.	Test Setup	
5.3.	Uncertainty	
5.4.	Test Result of Duty Cycle	
6.	EMI Reduction Method During Compliance Testing	27
Attac	chment 1: EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Z-wave Series	
Trade Name	EVERSPRING	
FCC ID.	FU5TR003-02	
Model No.	SP814-2	
Frequency Range	908.42MHz	
Type of Modulation	FSK	
Number of Channels	1	
Channel Control	Auto	
Antenna Type	Monopole	
Antenna Gain	Refer to the table "Antenna List"	

Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	EVERSPRING	N/A	-5.98dBi for 923MHz

Center Frequency of Each Channel:

Channel	Frequency
Channel 1	908.42MHz

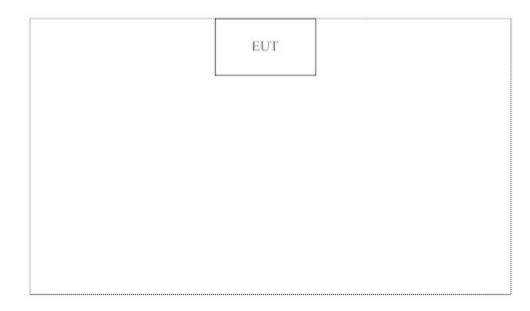
- 1. The EUT is a Z-wave Series with a built-in transceiver module.
- 2. These tests are conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.249.
- 3. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode	Mode 1: Transmitter
-----------	---------------------

1.2. Operation Description

The EUT is a Z-wave Series with a built-in transceiver module. The EUT operation frequency is 908.42MHz. The signals modulated by FSK are transmitted from the Monopole Antenna of the EUT.

The Motion Detector is designed with dual detecting mode: Security Mode and Home Automation Mode. In security mode, the detector can be used as a security device to detect movements only in protected area by detecting changes in infra-red radiation levels (e.g. when a person moves within or across the devices field of vision, a trigger radio signal will be transmitted). In home automation mode, the detector can be used to detect movements in protected area as well as darkness in ambient illumination by detecting changes in percentage of lux level (e.g. once night falls, the percentage of ambient illumination is lower than preset value, and a person moves within or across the devices field of vision, a trigger radio signal will be transmitted).


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Produc	et Manufa	cturer Model No	. Serial No.	Power Cord
N/A				

Signal Cable Type	Signal cable Description
	N/A

1.4. Configuration of Test System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4.
- (2) Open the EUT power.
- (3) Start the continuous transmits.
- (4) Verify that the EUT works correctly.

1.6. Test Facility

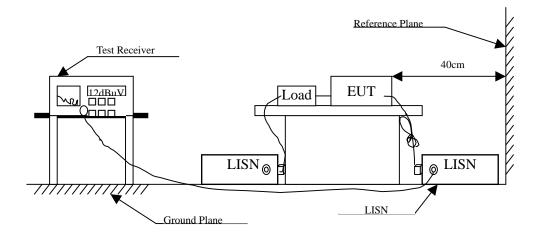
Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: <u>http://tw.quietek.com/modules/myalbum/</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description:	File on	
	Federal Communications Commission	
	FCC Engineering Laboratory	
	7435 Oakland Mills Road	
	Columbia, MD 21046	
	Registration Number: 92195	
	Accreditation on NVLAP	
	NVLAP Lab Code: 200533-0	RIVUAN
Site Name:	Quietek Corporation	NVLAP Lab Code: 200533-0 🗸
Site Address:	No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789	
	E-Mail : <u>service@quietek.com</u>	

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2008	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2008	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2008	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2008	
5	No.1 Shielded Room	m	N/A		
NT (A 11 · /	1.1 / 1			

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AV				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

The EUT is powered by batteries. This test item is not performed.

3. **Radiated Emission**

3.1. **Test Equipment**

The follow	ving t	est equipment are used	l during the radiat	ed emission test:	
Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 1		Test Receiver	R & S	ESVS 10 / 834468/003	May, 2008
		Spectrum Analyzer	Advantest	R3162/00803480	May, 2008
		Pre-Amplifier	Advantest	BB525C/ 3307A01812	May, 2008
		Bilog Antenna	SCHAFFNER	CBL6112B / 2697	Sep., 2008
Site # 2		Test Receiver	R & S	ESCS 30 / 836858 / 022	May, 2008
		Spectrum Analyzer	Advantest	R3162 / 100803466	May, 2008
		Pre-Amplifier	Advantest	BB525C/3307A01814	May, 2008
		Bilog Antenna	SCHAFFNER	CBL6112B / 2705	May, 2008
		Horn Antenna	ETS	3115 / 0005-6160	Sep., 2008
		Pre-Amplifier	QTK	QTK-AMP-01/0001	May, 2008
Site # 3	Х	Test Receiver	R & S	ESI 26 / 838786/004	May, 2008
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2008
	Х	Bilog Antenna	SCHAFFNER	CBL6112B / 2697	May, 2008
	Х	Horn Antenna	Schwarzbeck	BBHA9120D / 305, 306	July, 2008
	Х	Horn Antenna	Schwarzbeck	BBHA9170 / 208, 209	July, 2008
	Х	Pre-Amplifier	QTK	QTK-AMP-01 / 0001	July, 2008
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2008

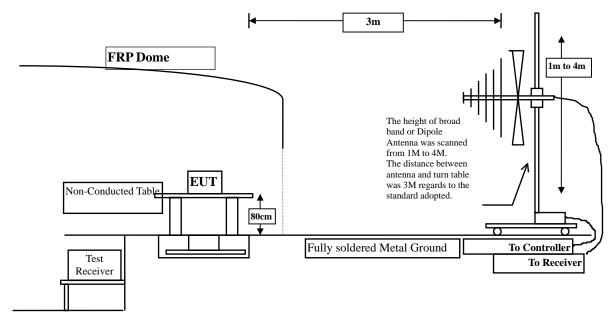
11 d duri - 41 diatad • • . . .

1. All equipments are calibrated every one year. Note:

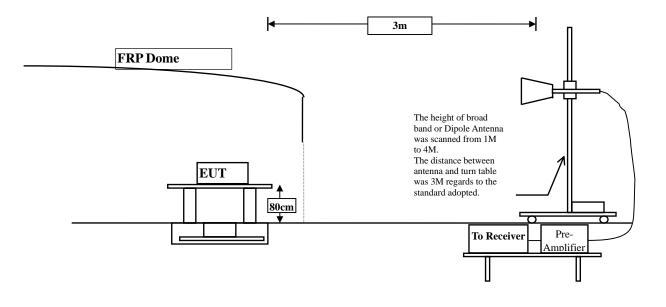
Pre-Amplifier

Х

2. Test equipments marked by "X" are used to measure the final test results.


8449B / 3008A01123

July, 2008


HP

3.2. Test Setup

Below 1GHz

Above 1GHz

3.3. Limits

FCC Part 15 Subpart C Paragraph 15.249 Limits							
Frequency	Field Strength	of Fundamental	Field Strength of Harmonics				
MHz	(mV/m @3m) (dBuV/m @3m)		(uV/m @3m)	(dBuV/m @3m)			
902-928	50	94	500	54			
2400-2483.5	50	94	500	54			
5725-5875	50	94	500	54			

> Fundamental and Harmonics Emission Limits

Remarks : 1. RF Voltage $(dBuV/m) = 20 \log RF$ Voltage (uV/m)

2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	uV/m@3m dBuV/m@3m					
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks : 1. RF Voltage $(dBuV/m) = 20 \log RF$ Voltage (uV/m)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Report No. 093314R-RFUSP07V01

3.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB beamwidth of the antenna. The worst radiated emission is measured on the Final Measurement.

The frequency range from 30MHz to 10th harminics is checked.

3.5. Uncertainty

- ± 3.9 dB above 1GHz
- \pm 3.8 dB below 1GHz

3.6. Test Result of Radiated Emission

Product	:	Z-wave Series							
Test Item	:	Fundamenta	Fundamental Radiated Emission						
Test Site	:	No.3OATS	No.3OATS						
Test Mode	:	Mode 1: Transmitter (908.42MHz)							
Frequency		Correct	Reading	Measurement	Margin	Limit			
		Factor	Level	Level					
MHz		dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal									
Peak Detector:									
908.400		5.522	91.030	96.552	-17.448	114.000			

Note:

- 1. Measurement Level = Reading Level + Correct Factor.
- 2. Correct Factor = Antenna Factor + Cable Loss PreAMP.

Frequency	Peak	Duty Cycle	Measurement	Margin	Limit
	Measurement	Factor	Level		
MHz	dBuV/m	dB	dBuV/m	dB	dBuV/m
Horizontal					
Average Detector:					
908.4	96.552	-9.924	86.628	-7.372	94.000

- 1. AVG Measurement=Peak Measurement + Duty Cycle
- 2. The Duty Cycle is refer to section 5.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

Product Test Item Test Site	: : :	Z-wave Series Fundamental Radiated Emission No.3OATS					
Test Mode	:	Mode 1: Tra	Mode 1: Transmitter (908.42MHz)				
Frequency		Correct Factor	Reading Level	Measurement Level	Margin	Limit	
MHz		dB	dBuV	dBuV/m	dB	dBuV/m	
Vertical Peak Detector:							
908.400		2.035	82.030	84.065	-29.935	114.000	

- 1. Measurement Level = Reading Level + Correct Factor.
- 2. Correct Factor = Antenna Factor + Cable Loss PreAMP.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Frequency	Peak	Duty Cycle	Measurement	Margin	Limit
	Measurement	Factor	Level		
MHz	dBuV/m	dB	dBuV/m	dB	dBuV/m
Vertical					
Average Detector:					
					94.000

- 1. AVG Measurement=Peak Measurement + Duty Cycle
- 2. The Duty Cycle is refer to section 5.
- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

Product Test Item Test Site Test Mode	: Harmon : No.3 Oz	Z-wave Series Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmitter (908.42MHz)					
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
1816.600	-4.045	50.520	46.475	-27.525	74.000		
2724.900	0.542	43.560	44.102	-29.898	74.000		
3633.200	0.000	44.810	44.810	-29.190	74.000		
4541.500	2.171	43.370	45.541	-28.459	74.000		
5449.800	3.142	42.190	45.332	-28.668	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Average Detector:

Frequency	Peak	Duty Cycle	Measurement	Margin	Limit
	Measurement	Factor	Level		
MHz	dBuV/m	dB	dBuV/m	dB	dBuV/m
Horizontal					
					54.000

Note:

1. AVG Measurement=Peak Measurement + Duty Cycle

2. The Duty Cycle is refer to section 5.

3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product	: Z-wave	Z-wave Series				
Test Item	: Harmon	ic Radiated Emiss	sion Data			
Test Site	: No.3 OA	ATS				
Test Mode	: Mode 1	Transmitter (908	.42MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Vertical						
Peak Detector:						
1816.600	-3.043	49.000	45.957	-28.043	74.000	
2724.900	0.004	43.500	43.504	-30.496	74.000	
3633.200	0.127	45.190	45.317	-28.683	74.000	
4541.500	2.915	43.170	46.085	-27.915	74.000	
5449.800	4.506	42.870	47.376	-26.624	74.000	

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Average Detector:

Frequency	Peak	Duty Cycle	Measurement	Margin	Limit
	Measurement	Factor	Level		
MHz	dBuV/m	dB	dBuV/m	dB	dBuV/m
Vertical					
					54.000

Note:

1. AVG Measurement=Peak Measurement + Duty Cycle

2. The Duty Cycle is refer to section 5.

- 3. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product	:	Z-wave Series
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (908.42MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
379.200	-1.608	28.989	27.381	-18.619	46.000
460.680	1.131	28.257	29.388	-16.612	46.000
544.100	2.992	29.838	32.830	-13.170	46.000
689.600	3.184	28.725	31.909	-14.091	46.000
823.460	5.829	28.877	34.706	-11.294	46.000
930.160	6.700	28.933	35.633	-10.367	46.000
Vertical					
381.140	-2.176	29.321	27.145	-18.855	46.000
501.420	-1.290	30.201	28.912	-17.088	46.000
615.880	-2.388	29.022	26.634	-19.366	46.000
691.540	1.975	28.610	30.585	-15.415	46.000
815.700	2.925	29.633	32.558	-13.442	46.000
968.960	7.666	28.634	36.300	-17.700	54.000

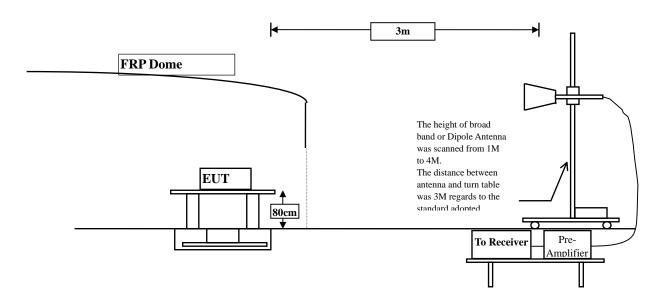
- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. """ means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

4. Band Edge

4.1. Test Equipment

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Test Receiver	R & S	ESI 26 / 838786/004	May, 2008
Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2008
Х	Bilog Antenna	SCHAFFNER	CBL6112B / 2697	May, 2008
Х	Horn Antenna	Schwarzbeck	BBHA9120D / 305, 306	July, 2008
Х	Horn Antenna	Schwarzbeck	BBHA9170 / 208, 209	July, 2008
Х	Pre-Amplifier	QTK	QTK-AMP-01 / 0001	July, 2008
Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2008
Х	Pre-Amplifier	HP	8449B / 3008A01123	July, 2008
OAT	S No.3			


Note: 1. All equipments are calibrated every one year.

2. The test equipments marked by "X" are used to measure the final test results.

4.2. Test Setup

RF Radiated Measurement:

Above 1GHz

4.3. Limit

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

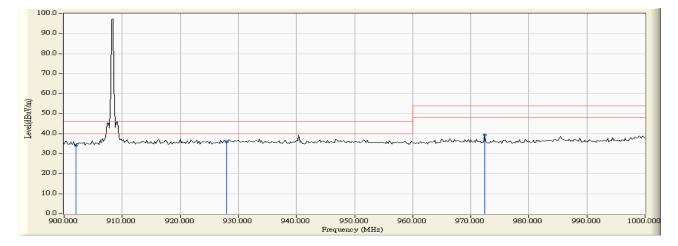
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2003 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30)is 120 kHz, above 1GHz are 1 MHz.

4.5. Uncertainty

Conducted is \pm 1.27 dB Radiated is \pm 3.9 dB.

4.6. Test Result of Band Edge


Product	:	Z-wave Series
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (908.42MHz)

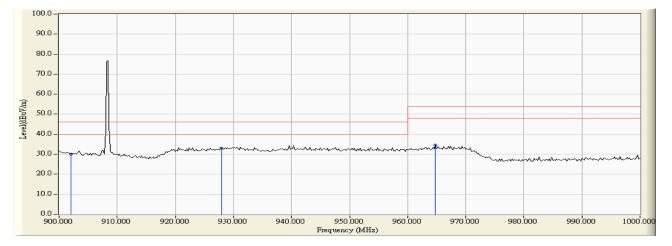
RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Quasi-Peak Limit (dBuV/m)	Result
01(Quasi-Peak)	902.000	5.635	28.426	34.061	46.000	Pass
01(Quasi-Peak)	928.000	6.945	28.922	35.867	46.000	Pass
01(Quasi-Peak)	972.400	7.029	32.485	39.514	54.000	Pass

Figure Channel 01:

Horizontal (Quasi-Peak)

- 1. Quasi-Peak measurements: RBW=100kHz,VBW=1MHz,Sweep: Auto.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.


Product	:	Z-wave Series
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (908.42MHz)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Quasi-Peak Limit (dBuV/m)	Result
01(Quasi-Peak)	902.000	1.373	28.574	29.947	46.000	Pass
01(Quasi-Peak)	928.000	3.366	29.506	32.872	46.000	Pass
01(Quasi-Peak)	964.800	3.605	31.016	34.622	54.000	Pass

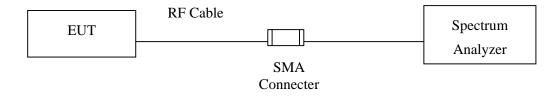
Figure Channel 01:

Vertical (Quasi-Peak)

- 1. Quasi-Peak measurements: RBW=100kHz,VBW=1MHz,Sweep: Auto.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

5. Duty Cycle

5.1. Test Equipment


The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr, 2009

Note: 1. All equipments are calibrated every one year.

2. The test equipments marked by "X" are used to measure the final test results.

5.2. Test Setup

5.3. Uncertainty

 \pm 150Hz

5.4. Test Result of Duty Cycle

Product	:	Z-wave Series
Test Item	:	Duty Cycle Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (908.42MHz)

🛙 Agilent Spectrum Analyzer - Swept	SA			
α <u>50 Ω</u> Marker 1 Δ 31.9000 ms	AC SENSE	INT ALIGNAUTO Avg Type: Log-Pwr	05:09:30 PM Mar 30, 2009 TRACE 1 2 3 4 5 6	Save As
Input: RI	PNO: Fast Trig: Video IFGain:Low Atten: 20 dE	Avg Hold: 1/100	DET P N N N N	
Ref Offset 16.15 d IO dB/div Ref 26.15 dBm	В	Δ	Mkr1 31.90 ms -48.430 dB	Save
_og				File/Folde
16.2				Lis
6.15				
3.85	VRAPP VEL ULI			Filename
13.9				Save A
23.9			TRIG LVL	type
33,9				
				Dp On
43.9	122	which and the second shall be an includence of	พหางสะสมเฉาใหญ่สุดและเหตุ	
53.9	26-3			Create Nev Folde
63.9				. 010
				Canc
Center 868.400000 MHz Res BW 1.0 MHz	#VBW 1.0 MHz	Sweep 1	Span 0 Hz 00.0 ms (1001 pts)	
SG		STATUS		

Time on of 100ms= 31.900msec Duty Cycle= 31.9 / 100msec= 0.319 Duty Cycle correction factor= 20 LOG 0.319 = -9.924 dB

Duty Cycle correction factor	-9.924	dB
------------------------------	--------	----

Remark: If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

6. EMI Reduction Method During Compliance Testing

No modification was made during testing.