

Product Name	U-NET Series	
Model No	ST801-2	
FCC ID.	DoC	

Applicant	EVERSPRING INDUSTRY CO., LTD
Address	7th fl. 609 Wan Shou Road Sec. 1,Kweishan, Taoyuan Hsien
	333, Taiwan, R.O.C.

Date of Receipt	Dec. 26, 2008
Issue Date	Feb. 03, 2009
Report No.	091027R-RFUSP01V02
Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Feb. 03, 2009

Report No.: 091027R-RFUSP01V02

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	U-NET Series		
Applicant	EVERSPRING INDUSTRY CO., LTD		
Address	7th fl. 609 Wan Shou Road Sec. 1,Kweishan, Taoyuan Hsien		
	333,Taiwan, R.O.C.		
Manufacturer	Dong-Guan Li Yuan Electronics Co., Ltd		
Model No.	ST801-2		
FCC ID.	DoC		
Rated Voltage	DC 3V (Power by battery)		
Working Voltage	DC 3V (Power by battery)		
Trade Name	EVERSPRING		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart B: 2008		
	ANSI C63.4: 2003 NVLAP Lab Code: 200533-0		
Test Result	Complied		

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By: Onten Chon

(Senior Engineering Adm. Specialist /

Anita Chou)

Tested By: Dino Chen

(Engineer / Dino Chen)

Approved By :

lac-MRA

0914

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	Description	
1.	GENERAL INFORMATION	2
1.1.	EUT Description	
1.2.	Tested System Details	
1.3.	Configuration of Tested System	
1.4.	EUT Exercise Software	
1.5.	Test Facility	
2.	Conducted Emission	
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Radiated Emission	10
3.1.	Test Equipment	10
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	12
3.5.	Uncertainty	
3.6.	Test Result of Radiated Emission	
4.	EMI Reduction Method During Compliance Testing	10

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	U-NET Series	
Trade Name	EVERSPRING	
Model No.	ST801-2	
FCC ID.	DoC	
Frequency Range	923MHz	
Number of Channels	1	
Type of Modulation	FSK	
Antenna Type	Monopole	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	

Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	EVERSPRING	N/A	-5.37dBi for 923MHz

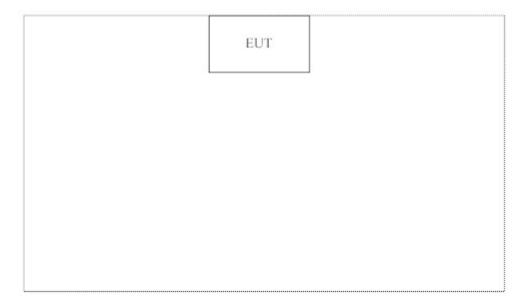
Center Frequency of Each Channel:

Channel	Frequency
Channel 1	923 MHz

Note:

- 1. The EUT is a U-NET Series with a built-in Receiver module
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. These tests are conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart B.
- 4. Part 15 Subpart C compliance for spread spectrum devices is shown on the report no. 091027R-RFUSP07V01 and certified under FCC ID: FU5SR801-2.

Test Mode:	Mode 1: Receiver
------------	------------------


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product	Manufacturer	Model No.	Serial No.	Power Cord
		N/A		

Signal Cable Type	Signal cable Description
	N/A

1.3. Configuration of Tested System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.3
- (2) Open the EUT power.
- (3) Start the continuous receive
- (4) Verify that the EUT works correctly.

1.5. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

Site Description: File on

Federal Communications Commission

FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046

Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation

Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen,

Lin-Kou Shiang, Taipei,

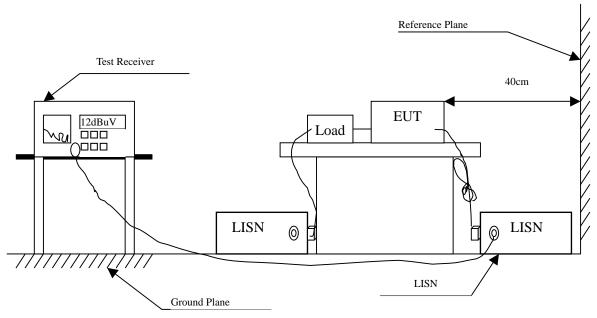
Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail: service@quietek.com

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument Manufacture		Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2008	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2008	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2008	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2008	
5	No.1 Shielded Room	N/A			

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart B Paragraph 15.107 (dBuV) Limit					
Frequency	Limits				
MHz	QP	AVG			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

The EUT is powered by batteries. This test item is not performed.

3. Radiated Emission

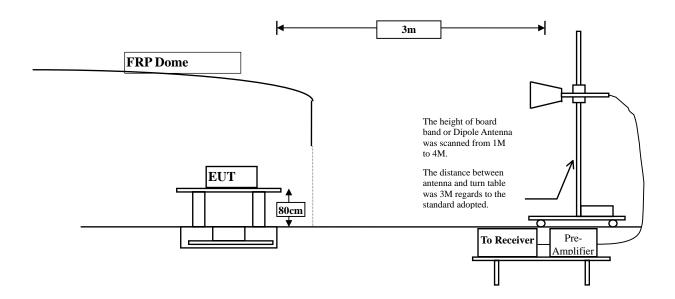
3.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
☐Site # 1		Test Receiver	R & S	ESVS 10 / 834468/003	May, 2008
		Spectrum Analyzer	Advantest	R3162/00803480	May, 2008
		Pre-Amplifier	Advantest	BB525C/ 3307A01812	May, 2008
		Bilog Antenna	SCHAFFNER	CBL6112B / 2697	Sep., 2008
☐Site # 2		Test Receiver	R & S	ESCS 30 / 836858 / 022	May, 2008
		Spectrum Analyzer	Advantest	R3162 / 100803466	May, 2008
		Pre-Amplifier	Advantest	BB525C/3307A01814	May, 2008
		Bilog Antenna	SCHAFFNER	CBL6112B / 2705	May, 2008
		Horn Antenna	ETS	3115 / 0005-6160	Sep., 2008
		Pre-Amplifier	QTK	QTK-AMP-01/0001	May, 2008
Site # 3	X	Test Receiver	R & S	ESI 26 / 838786/004	May, 2008
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2008
	X	Bilog Antenna	SCHAFFNER	CBL6112B / 2697	May, 2008
	X	Horn Antenna	Schwarzbeck	BBHA9120D / 305, 306	July, 2008
	X	Horn Antenna	Schwarzbeck	BBHA9170 / 208, 209	July, 2008
	X	Pre-Amplifier	QTK	QTK-AMP-01 / 0001	July, 2008
	X	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2008
	X	Pre-Amplifier	HP	8449B / 3008A01123	July, 2008


Note: 1. All equipments are calibrated every one year.

^{2.} Test equipments marked by "X" are used to measure the final test results.



3.2. Test Setup

Below 1GHz

Above 1GHz

3.3. Limits

FCC Part 15 Subpart B Paragraph 15.109 Limits					
Frequency MHz	uV/m @3m	dBuV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

- Remarks: 1. RF Voltage $(dBuV) = 20 \log RF Voltage (uV)$
 - 2. In the Above Table, the tighter limit applies at the band edges.
 - 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.4. **Test Procedure**

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to

ANSI C63.4: 2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB beamwidth of the antenna.

The worst radiated emission is measured on the Final Measurement.

The frequency range from 30MHz to 10th harminics is checked.

3.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

Page: 13 of 16

3.6. Test Result of Radiated Emission

Product : U-NET Series

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Receiver (923MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
1504.000	-5.587	30.940	25.353	-48.617	74.000
1906.000	-4.625	33.050	28.425	-45.545	74.000
2278.000	-2.902	33.220	30.318	-43.652	74.000
2572.000	-1.750	33.620	31.871	-42.099	74.000
2962.000	-0.910	33.230	32.320	-41.650	74.000
3340.000	-0.460	38.740	38.280	-35.690	74.000
Average Detector					
Vertical					
Peak Detector					
1378.000	-5.536	30.970	25.434	-48.536	74.000
1666.000	-5.485	31.150	25.664	-48.306	74.000
2044.000	-3.942	32.330	28.388	-45.582	74.000
2458.000	-2.051	32.480	30.429	-43.541	74.000
2740.000	-1.457	32.970	31.513	-42.457	74.000
3202.000	-0.574	37.200	36.627	-37.343	74.000
.					

Note:

Average Detector

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product : U-NET Series

Test Item : General Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Receiver (923MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
652.740	1.666	26.136	27.802	-18.198	46.000
707.060	2.458	31.785	34.243	-11.757	46.000
761.380	3.850	32.675	36.524	-9.476	46.000
788.540	4.611	27.207	31.818	-14.182	46.000
815.700	4.975	32.621	37.596	-8.404	46.000
870.020	4.798	25.986	30.784	-15.216	46.000
Vertical:					
518.880	-1.057	25.564	24.507	-21.493	46.000
707.060	-0.372	25.793	25.421	-20.579	46.000
761.380	1.840	26.065	27.904	-18.096	46.000
815.700	2.925	29.981	32.906	-13.094	46.000
842.860	2.683	24.517	27.200	-18.800	46.000
963.140	7.068	21.546	28.614	-25.386	54.000

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

4. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Page: 16 of 16