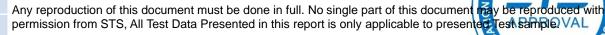


RADIO TEST REPORT

S T S


Report No:STS1908352W02

Issued for

KYE SYSTEMS CORP.

No. 492, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City 24160, Taiwan (R.O.C.)

Product Name:	Wireless mouse		
Brand Name:	Genius		
Model Name:	LuxeMate Q8100/M		
Series Model:	WM01, WM02, WM03, WM04, WM05, WM06, WM07, WM08, WM09, WM10, WM11, WM12, WM13, WM15, WM16, WM17, WM18		
FCC ID:	FSUGMZLV		
Test Standard:	FCC Part 15.247		

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Page 2 of 40

Report No.: STS1908352W02

TEST RESULT CERTIFICATION

• ··· /· •·	
Applicant's Name:	KYE SYSTEMS CORP.
Address	No. 492, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City 24160, Taiwan (R.O.C.)
	Dongguan Kunying Computer Products Co., Ltd
Address:	Baodun Industrial District, Houjie Town, Dongguan City, Guangdong Province, 523961 China
Product Description	
Product Name:	Wireless mouse
Brand Name:	Genius
Model Name:	LuxeMate Q8100/M
Series Model:	WM01, WM02, WM03, WM04, WM05, WM06, WM07, WM08, WM09, WM10, WM11, WM12, WM13, WM15, WM16, WM17, WM18
Test Standards:	FCC Part15.247
Test Procedure:	ANSI C63.10-2013
This device described above ha	is been tested by STS, the test results show that the equipment under

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test:

Test Result:	Pass
Date of Issue:	27 Sept. 2019
Date (s) of performance of tests:	06 Sept. 2019 ~ 26 Sept. 2019

:

Testing Engineer

(Chris Chen)

Technical Manager

day fill

APPROVAL 6

Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1908352W02

Table of Contents

Page 3 of 40

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 TEST PROCEDURE	14
3.3 TEST SETUP	14
3.4 TEST RESULTS	14
4. RADIATED EMISSION MEASUREMENT	15
4.1 RADIATED EMISSION LIMITS	15
4.2 TEST PROCEDURE	16
4.3 TEST SETUP	17
4.4 EUT OPERATING CONDITIONS	17
4.5 FIELD STRENGTH CALCULATION	18
4.6 TEST RESULTS	19
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	26
5.1 LIMIT	26
5.2 TEST PROCEDURE	26
5.3 TEST SETUP	26
5.4 EUT OPERATION CONDITIONS	26
5.5 TEST RESULTS	27
6. POWER SPECTRAL DENSITY TEST	31
6.1 LIMIT	31
6.2 TEST PROCEDURE	31
6.3 TEST SETUP	31
6.4 EUT OPERATION CONDITIONS	31
6.5 TEST RESULTS	32

=#

Page 4 of 40

Report No.: STS1908352W02

Table of Contents

7. BANDWIDTH TEST	34
7.1 LIMIT	34
7.2 TEST PROCEDURE	34
7.3 TEST SETUP	34
7.4 EUT OPERATION CONDITIONS	34
7.5 TEST RESULTS	35
8. PEAK OUTPUT POWER TEST	37
8.1 LIMIT	37
8.2 TEST PROCEDURE	37
8.3 TEST SETUP	37
8.4 EUT OPERATION CONDITIONS	37
8.5 TEST RESULTS	38
9. ANTENNA REQUIREMENT	39
9.1 STANDARD REQUIREMENT	39
9.2 EUT ANTENNA	39
10. EUT TEST PHOTO	40

Page 5 of 40

Report No.: STS1908352W02

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	27 Sept. 2019	STS1908352W02	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	N/A		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)(3)	Output Power	PASS		
15.209	Radiated Spurious Emission PASS			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.205	Restricted Band Edge Emission PASS			
Part 15.247(d)/part 15.209(a)	Band Edge Emission PASS			
15.203	Antenna Requirement PASS			

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District,Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±0.63dB
3	All emissions, radiated 30-200MHz	±3.43dB
4	All emissions, radiated 200MHz-1GHz	±3.57dB
5	All emissions, radiated>1G	±4.13dB
6	Conducted Emission (9KHz-150KHz)	±3.18dB
7	Conducted Emission (150KHz-30MHz)	±2.70dB

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Wireless mouse	Wireless mouse		
Trade Name	Genius			
Model Name	LuxeMate Q8100/M			
Series Model	WM01, WM02, WM03, WM04, WM05, WM06, WM07, WM08, WM09, WM10, WM11, WM12, WM13, WM15, WM16, WM17, WM18			
Model Difference	Product appearance same	e is different, internal PCBA is the		
Product Description	The EUT is a Wireless mouseOperation Frequency:2405~2475 MHzModulation Type:GFSKRadio Technology:2.4GNumber Of Channel:8Antenna Designation:Please see Note 3.Antenna Gain (dBi)0 dBi			
Channel List	Please refer to the Note 2.			
Battery	Rated Voltage: DC 3V , 10mA/ Mouse DC 3V, 50mA			
Hardware version number	V1.0			
Software version number	V1.3			
Connecting I/O Port(s)	Please refer to the User's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel List			
Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2405	04	2457
01	2411	05	2463
02	2417	06	2469
03	2451	07	2475

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Genius	LuxeMate Q8100/M	PCB	N/A	0 dBi	2.4G ANT.

Shenzhen STS Test Services Co., Ltd.

Page 10 of 40 F

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2405MHz)	1 MHz/GFSK
Mode 2	TX CH03(2451MHz)	1 MHz/GFSK
Mode 3	TX CH07(2475MHz)	1 MHz/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.

Shenzhen STS Test Services Co., Ltd.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Note: The EUT use the new battery during the test.

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	g	Necessary acc	essories		
Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A
	1				

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Shenzhen STS Test Services Co., Ltd.

2.5 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY51110105	2019.03.02	2020.03.01
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.1
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier(0.1M-3G Hz)	EM	EM330	060665	2018.10.13	2019.10.12
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10
turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
Test SW	FARAD	E	Z-EMC(Ver.STS	LAB-03A1 RE)	

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY49100060	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10
Test SW FARAD			LZ-RF /L	zRf-3A3	

Page 13 of 40

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

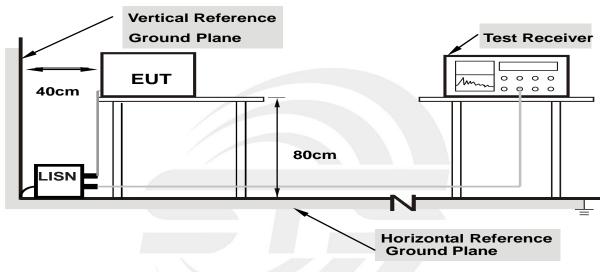
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

3.4 TEST RESULTS

Temperature:	25.1(C)	Relative Humidtity:	63%RH
Test Voltage:	N/A	Phase:	L/N
Test Mode:	N/A		

Note: The EUT only power by battery, So it is not applicable.

Shenzhen STS Test Services Co., Ltd.

Page 15 of 40

Report No.: STS1908352W02

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 2 MHz
band)	1 MHz / 3 MHz

For Band edge

Spectrum Parameter	Setting	
Detector	Peak/AV	
	Lower Band Edge: 2300 to 2403 MHz	
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	1 MHz / 3 MHz	

Shenzhen STS Test Services Co., Ltd.

Page 16 of 40

Report No.: STS1908352W02

490kHz~30MHz / RB 9kHz for QP

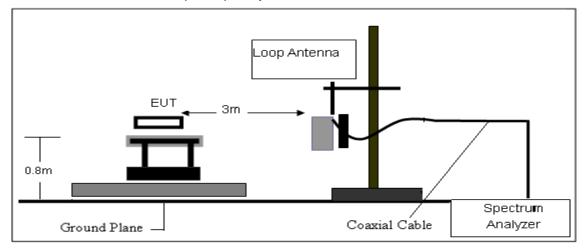
30MHz~1000MHz / RB 120kHz for QP

Ð

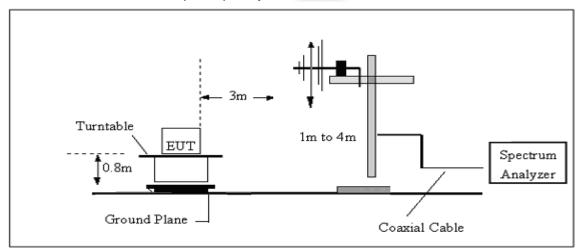
Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV

4.2 TEST PROCEDURE

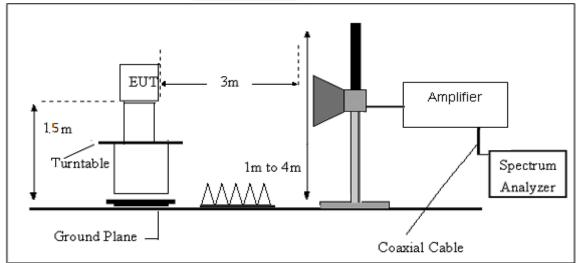
Start ~ Stop Frequency Start ~ Stop Frequency


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	25.1(C)	Relative Humidtity:	63%RH
Test Voltage:	DC 3V	Polarization:	
Test Mode:	TX Mode		

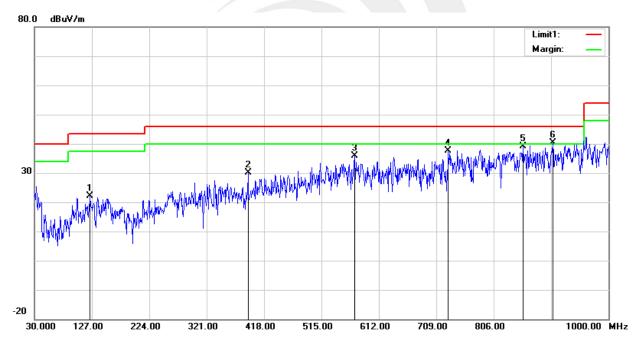
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.

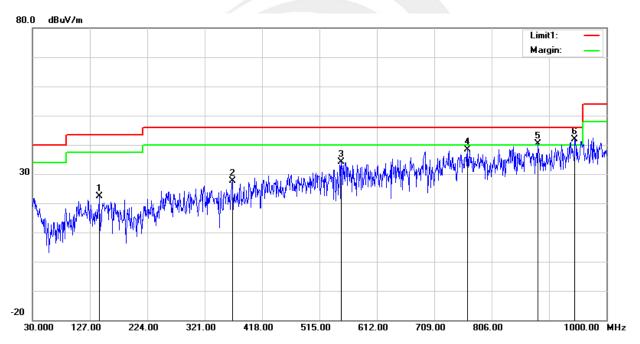

(30MHz -1000MHz)

Temperature:	25.1(C)	Relative Humidity:	63%RH			
Test Voltage:	DC 3V	Phase:	Horizontal			
Test Mode:	Mode 1/2/3 (Mode 2 worst mode)					

No.	Frequenc y	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	124.0900	40.28	-18.24	22.04	43.50	-21.46	peak
2	390.8400	41.72	-11.54	30.18	46.00	-15.82	peak
3	571.2600	41.39	-5.62	35.77	46.00	-10.23	peak
4	729.3700	40.18	-2.52	37.66	46.00	-8.34	peak
5	855.4700	39.78	-0.57	39.21	46.00	-6.79	peak
6	905.9100	40.63	-0.29	40.34	46.00	-5.66	peak

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit


Page 21 of 40 Report No.: STS1908352W02

Temperature:	25.1(C)	Relative Humidity:	63%RH			
Test Voltage:	DC 3V	Phase:	Vertical			
Test Mode:	Mode 1/2/3 (Mode 2 worst mode)					

No.	Frequenc y	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	143.4900	40.63	-18.23	22.40	43.50	-21.10	peak
2	367.5600	40.25	-12.58	27.67	46.00	-18.33	peak
3	551.8600	39.87	-5.72	34.15	46.00	-11.85	peak
4	765.2600	40.74	-2.25	38.49	46.00	-7.51	peak
5	883.6000	41.04	-0.67	40.37	46.00	-5.63	peak
6	946.6500	40.27	1.52	41.79	46.00	-4.21	peak

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Shenzhen STS Test Services Co., Ltd.

Page 22 of 40

Report No.: STS1908352W02

(1GHz-25GHz)Restricted band and Spurious emission Requirements

, ,	,				GFSK	•				
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				Low C	hannel (2405	MHz)				
3268.74	61.81	44.70	6.70	28.20	-9.80	52.01	74.00	-21.99	PK	Vertical
3268.74	51.26	44.70	6.70	28.20	-9.80	41.46	54.00	-12.54	AV	Vertical
3268.89	61.62	44.70	6.70	28.20	-9.80	51.82	74.00	-22.18	PK	Horizontal
3268.89	50.57	44.70	6.70	28.20	-9.80	40.77	54.00	-13.23	AV	Horizontal
4810.50	59.26	44.20	9.04	31.60	-3.56	55.70	74.00	-18.30	PK	Vertical
4810.50	49.47	44.20	9.04	31.60	-3.56	45.91	54.00	-8.09	AV	Vertical
4810.41	59.44	44.20	9.04	31.60	-3.56	55.88	74.00	-18.12	PK	Horizontal
4810.41	49.40	44.20	9.04	31.60	-3.56	45.84	54.00	-8.16	AV	Horizontal
5366.33	48.81	44.20	9.86	32.00	-2.34	46.47	74.00	-27.53	PK	Vertical
5366.33	39.46	44.20	9.86	32.00	-2.34	37.12	54.00	-16.88	AV	Vertical
5366.32	47.41	44.20	9.86	32.00	-2.34	45.07	74.00	-28.93	PK	Horizontal
5366.32	39.23	44.20	9.86	32.00	-2.34	36.89	54.00	-17.11	AV	Horizontal
7214.77	54.87	43.50	11.40	35.50	3.40	58.27	74.00	-15.73	PK	Vertical
7214.77	44.56	43.50	11.40	35.50	3.40	47.96	54.00	-6.04	AV	Vertical
7214.92	54.24	43.50	11.40	35.50	3.40	57.64	74.00	-16.36	PK	Horizontal
7214.92	43.82	43.50	11.40	35.50	3.40	47.22	54.00	-6.78	AV	Horizontal
	•			Middle	Channel (245	1 MHz)		•		
3279.36	61.35	44.70	6.70	28.20	-9.80	51.55	74.00	-22.45	PK	Vertical
3279.36	51.66	44.70	6.70	28.20	-9.80	41.86	54.00	-12.14	AV	Vertical
3279.51	61.69	44.70	6.70	28.20	-9.80	51.89	74.00	-22.11	PK	Horizontal
3279.51	50.64	44.70	6.70	28.20	-9.80	40.84	54.00	-13.16	AV	Horizontal
4902.42	59.09	44.20	9.04	31.60	-3.56	55.53	74.00	-18.47	PK	Vertical
4902.42	50.15	44.20	9.04	31.60	-3.56	46.59	54.00	-7.41	AV	Vertical
4902.56	59.06	44.20	9.04	31.60	-3.56	55.50	74.00	-18.50	PK	Horizontal
4902.56	50.09	44.20	9.04	31.60	-3.56	46.53	54.00	-7.47	AV	Horizontal
5383.97	48.84	44.20	9.86	32.00	-2.34	46.50	74.00	-27.50	PK	Vertical
5383.97	40.40	44.20	9.86	32.00	-2.34	38.06	54.00	-15.94	AV	Vertical
5383.98	48.21	44.20	9.86	32.00	-2.34	45.87	74.00	-28.13	PK	Horizontal
5383.98	38.70	44.20	9.86	32.00	-2.34	36.36	54.00	-17.64	AV	Horizontal
7353.88	54.03	43.50	11.40	35.50	3.40	57.43	74.00	-16.57	PK	Vertical
7353.88	44.64	43.50	11.40	35.50	3.40	48.04	54.00	-5.96	AV	Vertical
7353.87	53.90	43.50	11.40	35.50	3.40	57.30	74.00	-16.70	PK	Horizontal
7353.87	44.73	43.50	11.40	35.50	3.40	48.13	54.00	-5.87	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 23 of 40 Report No.: STS1908352W02

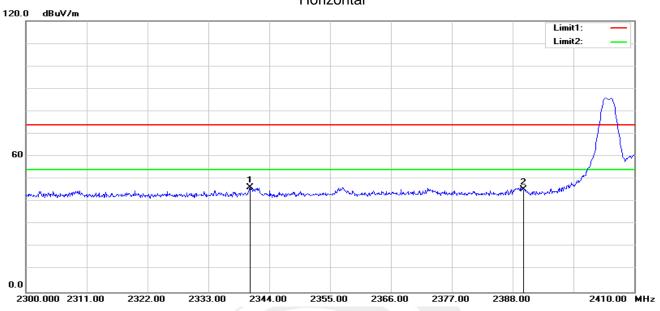
				High C	hannel (247	5 MHz)				
3258.03	60.85	44.70	6.70	28.20	-9.80	51.05	74.00	-22.95	PK	Vertical
3258.03	50.24	44.70	6.70	28.20	-9.80	40.44	54.00	-13.56	AV	Vertical
3258.22	61.48	44.70	6.70	28.20	-9.80	51.68	74.00	-22.32	PK	Horizontal
3258.22	51.16	44.70	6.70	28.20	-9.80	41.36	54.00	-12.64	AV	Horizontal
4950.38	58.16	44.20	9.04	31.60	-3.56	54.60	74.00	-19.40	PK	Vertical
4950.38	49.12	44.20	9.04	31.60	-3.56	45.56	54.00	-8.44	AV	Vertical
4950.52	59.47	44.20	9.04	31.60	-3.56	55.91	74.00	-18.09	PK	Horizontal
4950.52	49.57	44.20	9.04	31.60	-3.56	46.01	54.00	-7.99	AV	Horizontal
5348.79	48.65	44.20	9.86	32.00	-2.34	46.31	74.00	-27.69	PK	Vertical
5348.79	39.48	44.20	9.86	32.00	-2.34	37.14	54.00	-16.86	AV	Vertical
5348.84	47.46	44.20	9.86	32.00	-2.34	45.12	74.00	-28.88	PK	Horizontal
5348.84	38.32	44.20	9.86	32.00	-2.34	35.98	54.00	-18.02	AV	Horizontal
7424.80	54.96	43.50	11.40	35.50	3.40	58.36	74.00	-15.64	PK	Vertical
7424.80	43.97	43.50	11.40	35.50	3.40	47.37	54.00	-6.63	AV	Vertical
7424.84	54.58	43.50	11.40	35.50	3.40	57.98	74.00	-16.02	PK	Horizontal
7424.84	43.81	43.50	11.40	35.50	3.40	47.21	54.00	-6.79	AV	Horizontal

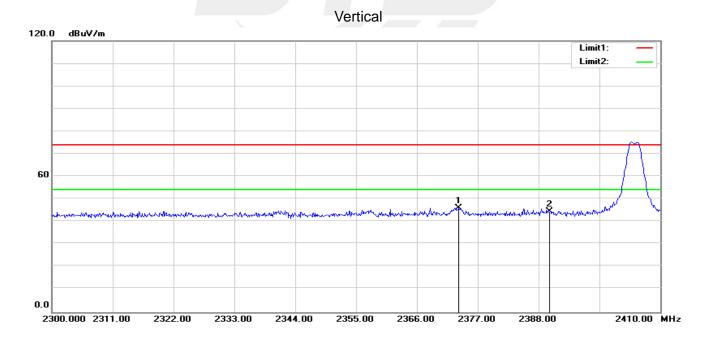
Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor

The frequency emission of peak points that did not show above the forms are at least 20dB 2)


below the limit, the frequency emission is mainly from the environment noise.

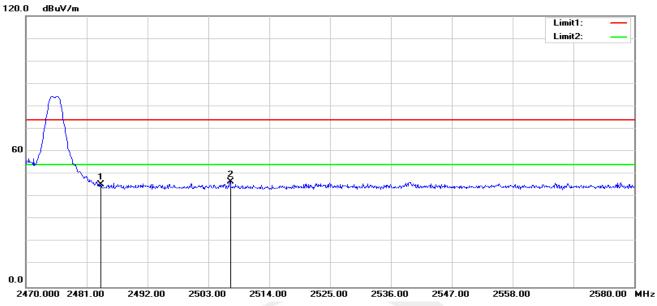

Report No.: STS1908352W02

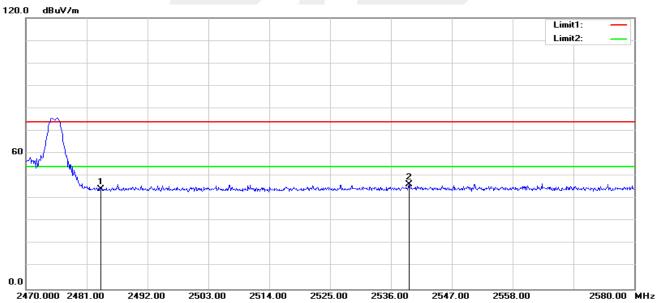
4.6 TEST RESULTS (Restricted Bands Requirements)

GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2340.480	42.55	3.69	46.24	74.00	-27.76	peak
2	2390.000	40.97	4.34	45.31	74.00	-28.69	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2373.590	41.91	4.09	46.00	74.00	-28.00	peak
2	2390.000	40.10	4.34	44.44	74.00	-29.56	peak


Shenzhen STS Test Services Co., Ltd.


Page 25 of 40

Report No.: STS1908352W02

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	40.78	4.60	45.38	74.00	-28.62	peak
2	2506.960	41.87	4.70	46.57	74.00	-27.43	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.64	4.60	44.24	74.00	-29.76	peak
2	2539.300	41.49	4.91	46.40	74.00	-27.60	peak

Vertical

Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Start/Stap Eraguapay	Lower Band Edge: 2300 – 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

5.3 TEST SETUP

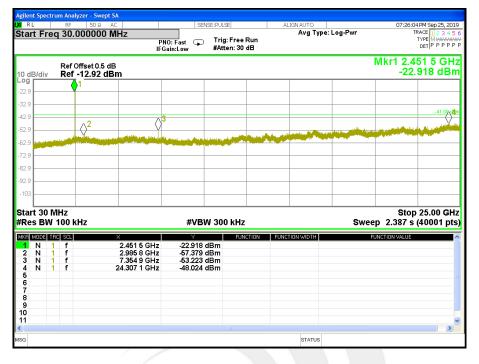
The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 3V		TX Mode /CH00, CH03, CH07


00 CH

RL	RF	50 Ω		SE	NSE:PULSE	4	ALIGN AUTO		07:08	:49 PM Sep 25, 20:
art Fre	eq 30.	000000	Р	NO: Fast 🖵 Gain:Low	Trig: Free R #Atten: 30 d		Avg Type	: Log-Pwr		TYPE MWWWW DET P P P P
dB/div		Offset 0.5 d -11.96 d								405 3 GH 1.958 dBi
2.0		1								
.0										-39.71 d
.0		2	\Diamond) Q
		hay harak				And	a successive			
.0	and denoted									
.0										
10										
art 30 I tes BW		Hz		#VB	W 300 kHz			Swe	Sto eep 2.387	op 25.00 GH s (40001 pt
R MODE T	RC SCL		× 2.405 3 GHz	Y -21.958	d R m	TION FUN	CTION WIDTH		FUNCTION VALUE	
N '	f f		3.186 2 GHz 7.214 5 GHz	-56.824	dBm					
	1 f		24.439 4 GHz	-48.274						
, ,										
3										
)										

Shenzhen STS Test Services Co., Ltd.

03 CH

07 CH

lent Spect	trum Ana	alyzer - Swept SA		_					
RL	RF	50 Ω AC		SENSE:PUL	Æ	ALIGN AUTO		07:14:58	3 PM Sep 25, 20
art Fre	əq 30	.000000 MHz	PNO: F IFGain:] ast 😱 Trig	g: Free Run ten: 30 dB	Avg Type:	Log-Pwr	TI	RACE 1 2 3 4 TYPE MWWW DET P P P P
dB/div		Offset 0.5 dB -13.85 dBm						Mkr1 2.4 -23.	74 6 GH 850 dB
9	(1							
9									-41.26
		\Diamond^2	$\langle \rangle^3$					سابية فالعامين الرو	No. of the West
	لصماميته	Water the second second second	and a started low down	an an a far an an an an an				and the second second second	
and a strength of	a barran barran								
í									
, L									
1									
\$ 									
rt 30 I es BW		kHz		#VBW 30	0 kHz		Swee	Stop 2.387 s	25.00 G (40001 p
MODE T				Y	FUNCTION	FUNCTION WIDTH	:	UNCTION VALUE	
1.4	1 f 1 f		16 GHz 8 GHz	-23.850 dBm -57.557 dBm					
	1 f 1 f	7.427	4 GHz 0 GHz	-55.186 dBm -48.421 dBm					
IN	1 1	24.293	O GHZ	-48.421 aBm					
									>

For Band edge

00 CH

	rum Analyzer -							
RL tart Fre				:PULSE Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: I		TF	ACE 1 2 3 4 5 TYPE MWWWW DET P P P P
dB/div	Ref Offset Ref 10.5					M	(r1 2.405 -19.	364 GH 714 dBr
50								
.5								
.5								
1.5								-39.71 c
1.5								$\langle \rangle$
.5 	the second s	and a strategy of the strange and	Marine and a construction of the second s	monther the second of the	and and the second s	ala safata da anga anga anga anga anga anga anga	and the stand of the second	wyna, ² i' f
1.5								
	0000 GHz / 100 kHz		#VBW	300 kHz		Sweep	Stop 2. 10.13 ms	40600 Gi (1001 pi
R MODE T		×	Y	FUNCTION	FUNCTION WIDTH	FL	JNCTION VALUE	
2 N 1	1 f 1 f 1 f	2.405 364 GHz 2.399 216 GHz 2.401 124 GHz	-19.714 dB -57.759 dB -53.784 dB	m				
3								
5 7 3 9								
5 5 7 3 9 0								>

03 CH

07 CH

	um Analyzer -							
tart Free		ο Ω AC 000000 GHz	PNO: Fast	NSE:PULSE) Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Typ	e: Log-Pwr		7 PM Sep 25, 201 RACE 1 2 3 4 5 TYPE MWWWW DET P P P P P
0 dB/div	Ref Offset Ref 10.5					Μ	lkr1 2.474 -21.	676 GH 260 dBn
.500								
9.50								
29.5	~							
9.5	\rightarrow	$\wedge^2 \wedge^3$						-41.26 dB
9.5		X. Jam	My company and	and the state of t	adadeast in a substance	malen and and a	- Marcarly Arthread	
9.5								
9.5								
	400 GHz 100 kHz		#VB	W 300 kHz		Swee	Stop 2 p 2.533 m	.50000 GH s (1001 pt
r mode tr <mark>1</mark> N 1	f	× 2.474 676 0			FUNCTION WIDTH		FUNCTION VALUE	
2 N 1 3 N 1 4		2.477 978 0 2.479 044 0						
5								
7 3 9								
9 D 1								
					STATUS			>
					STATUS			

Shenzhen STS Test Services Co., Ltd.

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS		

6.2 TEST PROCEDURE

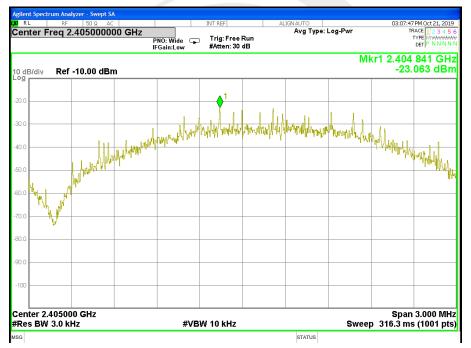
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

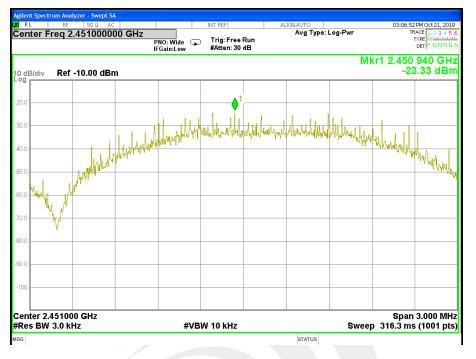
6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Lest Minde'	TX Mode /CH00, CH03, CH07


Fraguanay	Power Density	Limit (dBm/3KHz)	Booult	
Frequency	(dBm/3kHz)		Result	
2405 MHz	-23.06	≤8	PASS	
2451 MHz	-23.33	≤8	PASS	
2475 MHz	-22.43	≤8	PASS	

TX CH 00

TX CH 03

TX CH 07

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Item Limit Frequency Range (MHz) Res			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Lest Mode.	TX Mode /CH00, CH03, CH07

Frequency	6dB Bandwidth (KHz)	Channel Separation (KHz)	Result
2405 MHz	1401	≥500KHz	PASS
2451 MHz	1434	≥500KHz	PASS
2475 MHz	1445	≥500KHz	PASS

TX CH 00

RL RF 50 Q AC	s	ENSE:PULSE	ALIGNAUTO	06:55:40 PM Sep 25, 201
enter Freq 2.40500000	GHz	Center Freq: 2.4050000		Radio Std: None
	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
dB/div Ref -3.00 dBm				
g				
0				
0			mon	
	- Martin			M. marine
	V			
)				
0				
0				
nter 2.405 GHz es BW 100 kHz		#VBW 300 k		Span 5 MH
es BW 100 KHZ		#VBW 300K	ΠZ	Sweep 1 m
Occupied Bandwidt	า	Total Power	-10.1 dBm	
=	8195 MHz			
Ζ.,				
Transmit Freq Error	188.78 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.401 MHz	x dB	-6.00 dB	
	1.401 10112	A GD	-0.00 08	
			STATUS	

Shenzhen STS Test Services Co., Ltd.

TX CH 03

	rum Analyzer - Occupied B\	N			
(XIRL)	RF 50 Ω AC reg 2.451000000		ENSE:PULSE Center Freq: 2.451000	ALIGNAUTO	06:56:13 PM Sep 25, 2019 Radio Std: None
Center F	req 2.45100000	GHZ	Trig: Free Run	Avg Hold:>10/10	
		#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
10 dB/div	Ref -3.00 dBm				
-13.0					
-13.0					
-33.0		- Andrew			~~
-43.0	m				The man
-53.0		~~			
-63.0	·				+
-73.0					
-83.0					
-93.0					
Center 2			<i></i>		Span 5 MHz
#Res BW	100 KHZ		#VBW 300 k	(HZ	Sweep 1 ms
Occur	pied Bandwidt	h	Total Power	-12.2 dBm	
	2.	3560 MHz			
Transı	mit Freq Error	191.67 kHz	OBW Power	99.00 %	
A dB P	Bandwidth	1.434 MHz	x dB	-6.00 dB	
				5.00 GB	

TX CH 07

STATUS

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C					
Section Test Item Limit Frequency Range (MHz)			Result		
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3V	Test Mode:	TX Mode /CH00, CH03, CH07

Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
(MHz)	(dBm)	(dBm)	dBm
2405	-18.24	-18.74	30
2451	-18.97	-19.46	30
2475	-18.48	-18.98	30

Shenzhen STS Test Services Co., Ltd.

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

Page 40 of 40

Report No.: STS1908352W02

10. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.