Date of Issue: Jan.20.,2011 Report No:F0D2901

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

FOR

Product Name: Mouse

Model: GM-100006/M

Trade Name: Genius

Issued to KYE SYSTEMS CORP.

No.492, Sec. 5, Chongxin Rd. Sanchong Dist., New Taipei City 24160 Taiwan (R.O.C.)

Issued by

Global Certification Corp.

EMC	Sijhih office	No. 146. Sec.2. Siangjhang Rd. Sijhih City. Taipei
Test Site	and Lab	County 221, Taiwan(R.O.C.)

Note: This test refers exclusively to the test presented test model and sample. This report shall not be reproduced except in full, without the written approval of Global Certification Corporation. This document may be altered or revised by Global Certification Corporation. Personnel only, and shall be noted in the revision section of the document.

Date of Issue: Jan.20.,2011 Report No:F0D2901

TABI	LE OF CONTENTS	2
1. G	GENERAL INFORMATION	3
1.1 I	DESCRIPTION OF THE TESTED SAMPLES	4
2. T	TEST METHODOLOGY	5
	GENERAL TEST PROCEDURES	
2.1 C	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	5 5
2.3 I	DESCRIPTION OF TEST MODES	6
2.4 I	DESCRIPTION OF THE SUPPORT EQUIPMENTS	7
3. T	EST AND MEASUREMENT EQUIPMENT	9
3.1	CALIBRATION	
3.2	EQUIPMENT	9
4. S	ECTION 15.209 REQUIREMENTS FOR 197kHZ (FUNDAMENTAL/ HARMONICS)	10
4.1	Test Setup	10
4.2	Limit	
4.3	TEST PROCEDURE	
4.4	RESULT: PASSED	
4.5	TEST DATA:	12
5. 20	0dB BANKWIDTH	
5.1	TEST SETUP	
5.2	TEST PROCEDURE	
5.3	TEST DATA:	
6. S	ECTION 15.209 REQUIREMENTS (GENERAL RADIATED EMISSION)	21
6.1	TEST SETUP	
6.2	Limit	
6.3	TEST PROCEDURE	
6.4	TEST SPECIFICATION	
6.5 6.6	TEST DATA;	
	ECTION 15.207 REQUIREMENTS (POWERLINE CONDUCTED EMISSIONS)	
7.1	TEST SETUP	
7.2 7.3	LIMIT	
7.3 7.4	TEST PROCEDURE	
7.5	TEST PROCEDURE TEST SPECIFICATION	
7.6	RESULT: NOT AVAILABLE, BECAUSE THE EUT IS POWERED BY THE BATTERY	28
7.7	TEST DATA: N/A	28

APPENDIX 1

PHOTOS OF TEST CONFIGURATION

APPENDIX 3

PHOTOS OF EUT

Date of Issue: Jan.20.,2011 Report No:F0D2901

1. GENERAL INFORMATION

Applicant : **KYE SYSTEMS CORP.**

Address : No.492, Sec. 5, Chongxin Rd. Sanchong Dist., New Taipei City 24160

Taiwan (R.O.C.)

Manufacturer : KYE SYSTEMS CORP.

Address : No.492, Sec. 5, Chongxin Rd. Sanchong Dist., New Taipei City 24160

Taiwan (R.O.C.)

EUT : Mouse

Model Name : GM-100006/M

Model Differences : N/A

Is here with confirmed to comply with the requirements set out in the FCC Rules and Regulations Part 15 Subpart C and the measurement procedures were according to ANSI C63.4-2003. The said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

FCC part 15 subpart C

Receipt Date: 12/29/2010 Final Test Date: 01/20/2011

Taipei, Taiwan Jan. 20, 2011 Alex Chou / Manager

(Place) (Date) (Signature) Designation Number: TW1030

Date of Issue: Jan.20.,2011 Report No:F0D2901

1.1 DESCRIPTION OF THE TESTED SAMPLES

EUT Name : Mouse

Model Number : GM-100006/M FCC ID : FSUGMZJI

Input Voltage : 1.5Vdc

Power From ☐Inside ☐Outside

□Adaptor ☑BATTERY □AC Power Source □DC Power Source

□Support Unit PC

Operate Frequency : 197kHz

Modulation Technique : N/A

Number of Channels : 1(197kHz)

Antenna Type : ☑integral antenna: Component antenna (197kHz)

Date of Issue: Jan.20.,2011 Report No:F0D2901

2. TEST METHODOLOGY

All testing as described bellowed were performed in accordance with ANSI C63.4:2003 and FCC CFR 47 Part 15 Subpart C.

2.1 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.4:2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors.

Radiated Emissions

The EUT is a placed on a turn table, which is 0.8 m above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

2.2 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz		MHz	GHz
	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0
8.37625 - 8.38675	156.52475 - 156.52525	2483.5 - 2500 2655 - 2900	17.7 - 21.4

Date of Issue: Jan.20.,2011 Report No:F0D2901

- 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.
- 2 Above 38.6
- (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

2.3 DESCRIPTION OF TEST MODES

The EUT was tested under following modes:

Modes:

- 1. Continuous transmitting
- 2. Normal mode

Channels:

1. 197kHz

Date of Issue: Jan.20.,2011 Report No:F0D2901

2.4 DESCRIPTION OF THE SUPPORT EQUIPMENTS

Setup Diagram

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

EUT

Date of Issue: Jan.20.,2011 Report No:F0D2901

Support Equipment

Peripherals Devices:

	OUTSIDE SUPPORT EQUIPMENT								
No.	Equipment	Model	Serial No.	FCC ID/ BSMI ID	Trade name	Data Cable	Power Cord		
	N/A								

Note: All the above equipment /cable were placed in worse case position to maximize emission signals during emission test **Grounding:** Grounding was in accordance with the manufacturer's requirement and conditions for the intended use.

Date of Issue: Jan.20.,2011 Report No:F0D2901

3. TEST AND MEASUREMENT EQUIPMENT

3.1 CALIBRATION

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

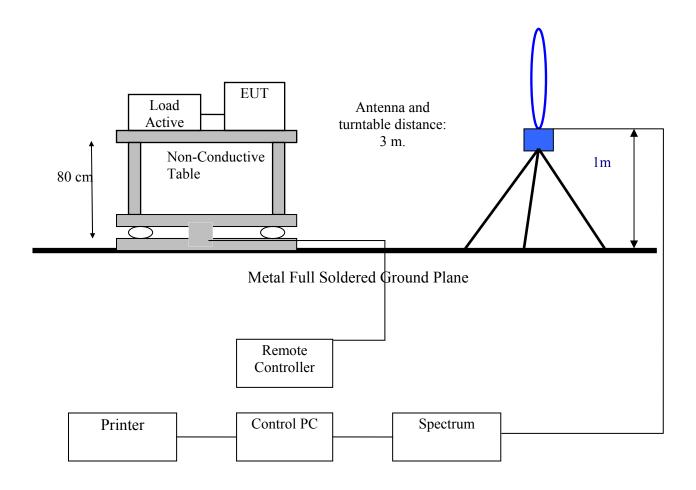
3.2 EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

TABLE 1 LIST OF TEST AND MEASUREMENT EQUIPMENT

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date	Note
EMC Test Receiver	R&S	ESCI	100438	Jun 29, 2010	Jun 29, 2011	
Bilog Antenna	SUNOL	JB1	A052204	Nov 06, 2009	Nov 06, 2011	
Turn table	EMCO	2080	9508-1805	N/A	N/A	
Controller	EMCO	2090	9804-1328	N/A	N/A	
Amplifier	G.W	GAP-801	EF150001	Jul.18, 2010	Jul.18, 2011	
Amplifier	Schwarzbeck	BBV 9718	9718-008	May 11 2010	May 11 2011	
Spectrum Analyzer	NEX1	Ns-265	5044006	May 11 2010	May 11 2011	
RF Cable	BELDEN	RG-8/U	28M-002	Nov 02, 2009	Nov 10, 2011	
RF Cable	Huber Suhner	SUCOFLEX 104	293864/4	Nov. 13, 2009	Nov. 13, 2011	
Thermo-Hygro meter	WISEWIND	4-IN-1	050100378	Apr 08, 2010	Dec 01, 2011	
Loop Antenna	TESEO	HLA6120	26349	Sep.11, 2010	Sep.11, 2011	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-491	Aug. 05, 2010	Aug. 05, 2011	


Date of Issue: Jan.20.,2011 Report No:F0D2901

X Calibration interval of instruments listed above is one year

√ Calibration interval of instruments listed above is one year.

4. SECTION 15.209 REQUIREMENTS FOR 197kHZ (FUNDAMENTAL/HARMONICS)

4.1 TEST SETUP

Date of Issue: Jan.20.,2011 Report No:F0D2901

4.2 LIMIT

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in section 15.209 as below.

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

^{*}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

In the above emission table, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m at 3-meter)
0.009-0.490	2400/F(kHz)	128.52-93.80
0.490-1.705	24000/F(kHz)	73.80-62.97
1.705-30	30	69.54
30-88	100	40
88-216	150	43
216-960	200	46
Above 960	500	54

Below the 30MHz test distance limit transfer to 3m limit calculation:

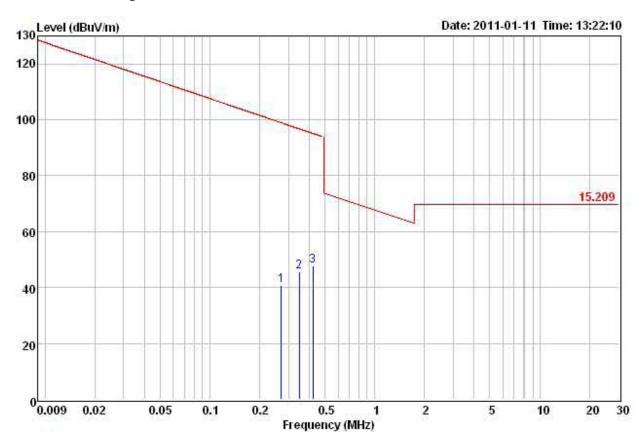
 $0.009 \text{MHz} - 0.0490 \text{MHz} \text{ 3m limit} = 20 \log(2400 / \text{F(kHz)}) + 40 \log(300 / 3) = 20 \log(2400 / \text{F(kHz)}) + 80 \text{dB} \\ 0.490 \text{MHz} - 1.705 \text{MHz} \text{ 3m limit} = 20 \log(24000 / \text{F(kHz)}) + 40 \log(30 / 3) = 20 \log(24000 / \text{F+40 dB}) + 40 \log(30 / 3) = 20 \log(30 / 3)$

1.705MHz-30MHz 3m limit= 20log30+40log(30/3)=29.54+40=69.54dB

Date of Issue: Jan. 12,2011 Report No: F0D2901

4.3 TEST PROCEDURE

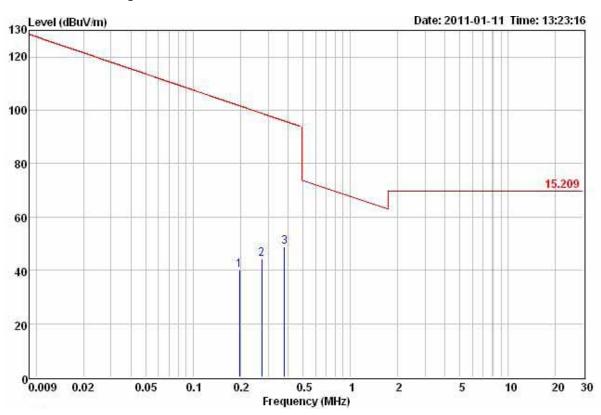
- 1. The EUT was placed on a turntable, which was 0.8m above ground plane.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT was set at 3m away from the receiving antenna to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was maximized by changing the polarization of receiving antenna, both horizontal and vertical.
- 6. Repeated above procedures until the measurements for all frequencies are completed.


4.4 RESULT: PASSED

4.5 TEST DATA:

Date of Issue: Jan. 12,2011 Report No: F0D2901

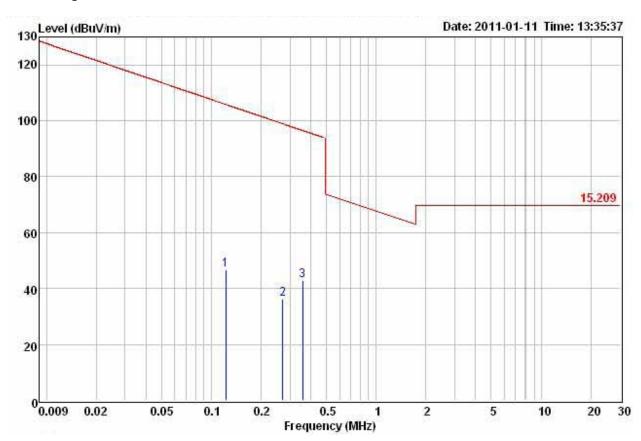
The EUT place to the X axis (Horizontal)



	Freq	Level	Read Level	Factor	Over Limit	Limit Line	Remark
9 5 8	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	-
1 2 3	0.27 0.35 0.42	45.76	25,59	20.22 20.17 20.13	-50.96	96.72	Peak

Date of Issue: Jan. 12,2011 Report No: F0D2901

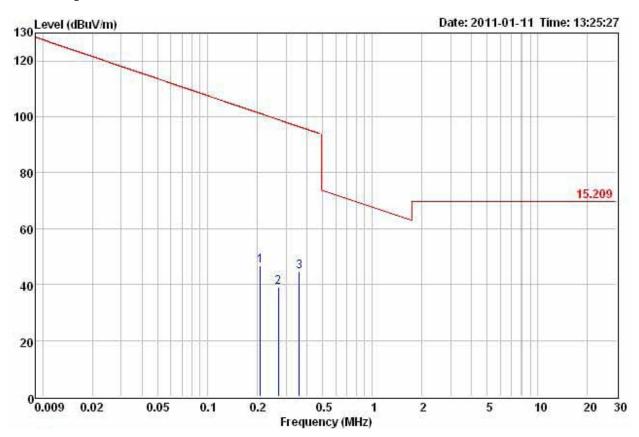
The EUT place to the X axis (Vertical)



	Freq	Level	Read Level	Factor	Over Limit		Remark
9 5	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	:0000000000
1 2 3	0.20 0.27 0.38	44.12	23.91	19.92 20.21 20.15	-54.77	98.89	Peak

Date of Issue: Jan. 12,2011 Report No: F0D2901

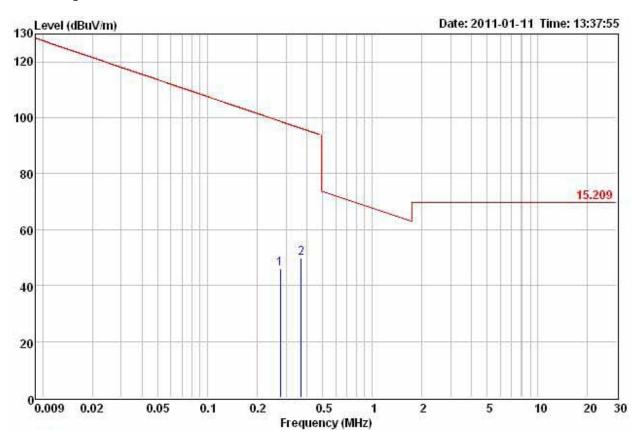
The EUT place to the Y axis (Horizontal)



	Freq	Level	Read Level	Factor	Over Limit	Limit Line	Remark
e _{au}	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	
1 2 3	0.27	46.66 36.10 42.88	15.88	20.22	-62.84	98.94	Peak

Date of Issue: Jan. 12,2011 Report No: F0D2901

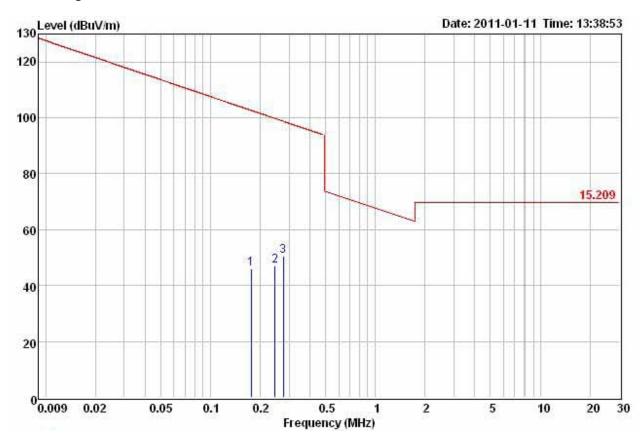
The EUT place to the Y axis (Vertical)



	Freq	Level	Read Level	Factor	Over Limit	Limit Line	Remark
e ss	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	ł Socoocococo
1 2 3		46.55 39.11 44.68	18.89		-59.87	98,98	Peak

Date of Issue: Jan. 12,2011 Report No: F0D2901

The EUT place to the Z axis (Horizontal)



	Freq	Level	Read Level	Factor	Over Limit	Limit Line	Remark
9 5	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	- 50000000000
1 2	0.28 0.37	46.13 49.72		20.22 20.15			

Date of Issue: Jan. 12,2011 Report No: F0D2901

The EUT place to the Z axis (Vertical)

	Freq	Level	Read Level		Over Limit		Remark
9 5 8	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	E transministrativa
1 2 3	0.18 0.25 0.28			20.22		99.75	Peak

Date of Issue: Jan. 12,2011 Report No: F0D2901

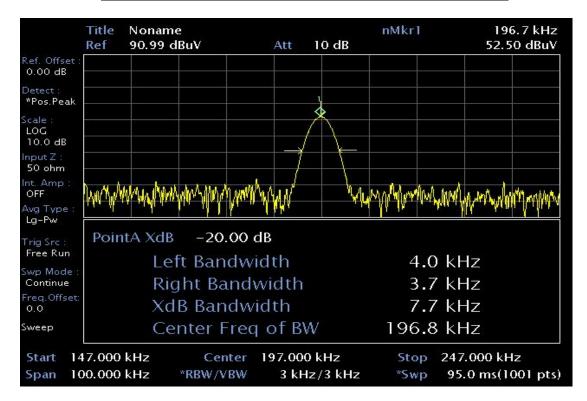
Note:

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, PreAmp, etc.
- 3. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- 4. Peak detector measurement data will represent the worst case results.
- 5. "---" denotes the data which is not available.
- 6. Testing was done up to the 4# harmonics because there is no any signal after 4# harmonics.

Date of Issue: Jan. 12,2011 Report No: F0D2901

5. 20dB BANKWIDTH

5.1 TEST SETUP

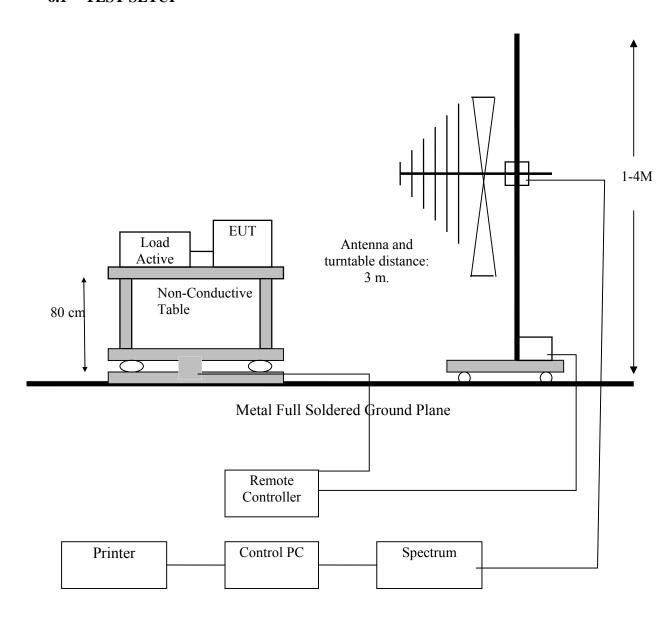

Refer to paragraph 4.1 and 7.1.

5.2 TEST PROCEDURE

The spectrum analyzer span was set to 2 to 3 times the estimated 20 dB bandwidth of the emission. The RBW was to \geq 1% of the estimated 20 dB bandwidth. The trace was set to max hold with a peak detector active. The measurement function of the analyzer was utilized to determine the 20 dB and 99% occupied bandwidths.

5.3 TEST DATA:

Frequency	20dB band width		
(kHz)	(kHz)		
196.7	7.7		



Date of Issue: Jan. 12,2011 Report No: F0D2901

6. SECTION 15.209 REQUIREMENTS (GENERAL RADIATED EMISSION)

6.1 TEST SETUP

Date of Issue: Jan. 12,2011 Report No: F0D2901

6.2 LIMIT

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in section 15.209 as below.

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

^{*}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

In the above emission table, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m at 3-meter)
0.009-0.490	2400/F(kHz)	128.52-93.80
0.490-1.705	24000/F(kHz)	73.80-62.97
1.705-30	30	69.54
30-88	100	40
88-216	150	43
216-960	200	46
Above 960	500	54

Below the 30MHz test distance limit transfer to 3m limit calculation:

 $0.009 MHz - 0.0490 MHz \ 3m \ limit = 20 log(2400/F(kHz)) + 40 log(300/3) = 20 log \ (2400/F(kHz)) + 80 dB \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F(kHz)) + 40 log(30/3) = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.705 MHz \ 3m \ limit = 20 log(24000/F+40 dB) \\ 0.490 MHz - 1.7$

1.705MHz-30MHz 3m limit= 20log30+40log(30/3)=29.54+40=69.54dB

Date of Issue: Jan. 12,2011 Report No: F0D2901

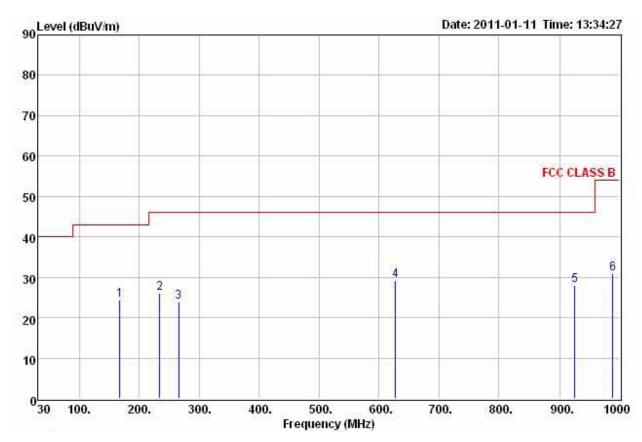
6.3 TEST PROCEDURE

- 1. The EUT was placed on a turntable, which was 0.8m above ground plane.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT was set at 3m away from the receiving antenna, which was varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was maximized by changing the polarization of receiving antenna, both horizontal and vertical.
- 6. Repeated above procedures until the measurements for all frequencies are completed.

6.4 TEST SPECIFICATION

ANSI C63.4 – 2003 Section 5.2, 7.1, 7.2

6.5 RESULT: PASSED

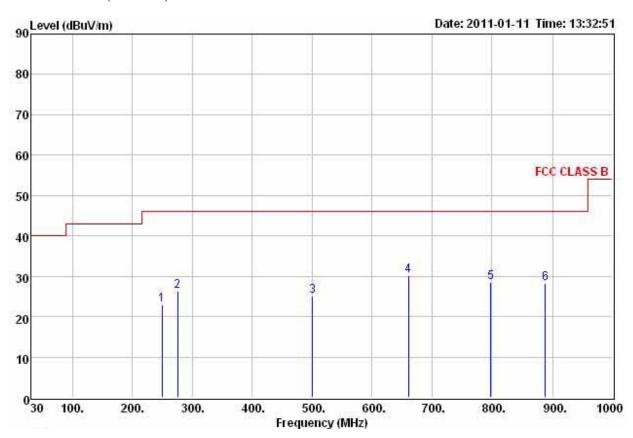

Date of Issue: Jan. 12,2011 Report No: F0D2901

6.6 TEST DATA:

All frequencies not described in this test report and within the range of the general radiated emission limits are not detectable significantly. The table as below is representing worst emissions found.

Normal mode

30MHz-1GHz (Horizontal)



	Freq	Level	Read Level			Limit Line	Remark
955	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	
1 2 3 4 5 6	166.77 233.70 265.71 627.52 925.31 989.33	26.07 23.98 29.25 27.88	39.08 35.24 31.18 23.45	-13.01 -11.26 -1.93 4.43	-18.68 -19.93 -22.02 -16.75 -18.12 -23.01	46,00 46,00 46,00 46,00	Peak Peak Peak Peak

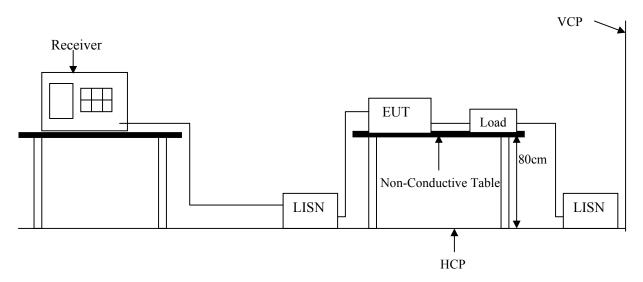
Date of Issue: Jan. 12,2011 Report No: F0D2901

30MHz-1GHz (Vertical)

	Freq	Level	Read Level	Factor		Limit Line	
÷ 38	MHz	dBuV/m	dBuV	dB/m	dB	dBuV/m	
1 2 3 4 5 6	249.22 275.41 500.45 661.47 798.24 888.45	26.37 25.00 30.14	37.09 29.83 31.44 27.17	-12.61 -10.72 -4.83 -1.30 1.27 3.39	-19.63 -21.00 -15.86 -17.56	46,00 46,00 46,00 46,00	Peak Peak Peak Peak

Date of Issue: Jan. 12,2011 Report No: F0D2901

Note:


- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, PreAmp, etc.
- 3. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- 4. Measurements from 9 kHz to 150 kHz, Peak detector setting: 100 Hz RBW
- 5. Measurements from 150 kHz to 30MHz, Peak detector setting: 10 kHz RBW
- 6. Measurements from 30 MHz to 1000 MHz, Peak detector setting: 100 kHz RBW
- 7. Measurements from 9 kHz to 150 kHz, CISPR Quasi-Peak detector: 200 Hz RBW
- 8. Measurements from 150 kHz to 30MHz, CISPR Quasi-Peak detector: 9 kHz RBW
- 9. Measurements from 30 MHz to 1000 MHz, CISPR Quasi-Peak detector: 120 kHz RBW
- 10. Peak detector measurement data will represent the worst case results.

Date of Issue: Jan. 12,2011 Report No: F0D2901

7. SECTION 15.207 REQUIREMENTS (POWERLINE CONDUCTED EMISSIONS)

7.1 TEST SETUP

7.2 TEST SETUP

7.3 LIMIT

Ето амотом тот а	CLAS	SS A	CLASS B		
Frequency range (MHz)	QP	Average	QP	Average	
(=====)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	
0.15-0.5	79 dBuV	66 dBuV	66 - 56 dBuV	56 - 46 dBuV	
0.5-5.0	73 dBuV	60 dBuV	56 dBuV	46 dBuV	
5.0-30.0	73 dBuV	60 dBuV	60 dBuV	50 dBuV	

Remark: In the above table, the tighter limit applies at the band edges.

7.4 TEST PROCEDURE

The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). It provides a 50 ohm / 50 μ H coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm / 50 μ H coupling impedance with 50 ohm termination. (Please refer to the block diagram of the test setup and photograph.)

Both sides of AC line are checked for the maximum conducted emission interference. In order to find the maximum emissions, the relating positions of equipment and all of the interference cables must be changed according to EN 55022 regulations: The measurement procedure on conducted emission interference.

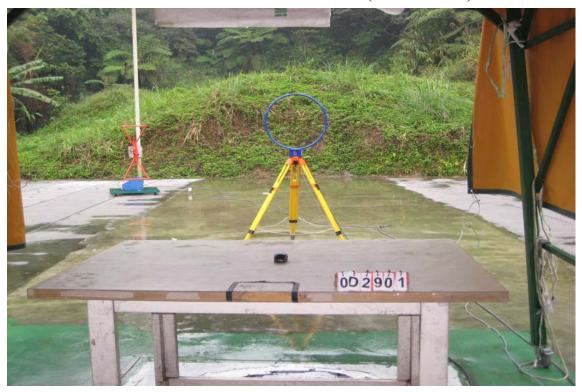
The resolution bandwidth of the field strength meter is set at 9 KHz.

Date of Issue: Jan. 12,2011 Report No: F0D2901

7.5 TEST SPECIFICATION

According to PART15.207

- 7.6 **RESULT:** NOT AVAILABLE, BECAUSE THE EUT IS POWERED BY THE BATTERY.
- 7.7 TEST DATA: N/A



Appendix 1 PHOTOS OF TEST CONFIGURATION

Global Certification Corp. Report No. : F0D2901

Horizontal Polarization and the EUT (9kHz~30MHz)

Horizontal Polarization and the EUT(30MHz~1GHz)

