
900MHz DSSS DIGITAL CORDLESS TELEPHONE MODEL: IS-903 USA VERSION

Processing Gain Measurement

TEST METHOD

THE PROCESSING GAIN MAY BE MEASURED USING THE **CW** JAMMING MARGIN METHOD. FIGURE 1 SHOWS THE TEST CONFIGURATION. THE TEST CONSIST OF STEPPING A SIGNAL GENERATOR IN 50 **KHz** INCREMENTS ACROSS THE PASSBAND OF THE SYSTEM (UP TO 960 **KHz** AWAY IN **RI**,S **DCT**).

AT EACH POINT, THE GENERATOR LEVEL REQUIRED TO PRODUCE THE RECOMMENDED BIT ERROR RATE (BER) (SET AT BER = 10e-3) IS RECORDED.

THE LEVEL IS JAMMING LEVEL. THE OUTPUT POWER OF THE TRANSMITTING UNIT IS MEASURED AT THE SAME POINT. THE JAMMER TO SIGNAL (J/S) RATIO IS THEN CALCURATED. DISCARD THE WORST 20 % OF THE J/S DATA POINTS. THE LOWEST REMAINNING J/S RATIO IS USED TO CALCURATE THE PROCESSING GAIN.

THE MAXIMUM IMPLEMENTATION LOSS A SYSTEM CAN CLAIM IN CALCURATING PROCASSING GAIN IS 2 dB. THE EQUATION TO CALCURATE THE PROCESSING GAIN (Gp) IS THE FOLLOWING.

 $Gp = (S/N)_0 + Mj + Lsys$

(S/N)₀ = Signal to Noise Ratio reqd @ BER of 8dB for DBPSK

Mj = Jamming Marjin (J/S) in dB

Lsys = system implementation Losses = 2dB
S = Signal power - Attn - comb loss - cable loss

= 4.0 - 19.8 - 3.6 - 0.5 -27.9 = -28.2dB

J = Sig Gen O/PLvl(N) - Cal factor - Comb loss

= N - 0.3 - 3.6 dB

900MHz DSSS DIGITAL CORDLESS TELEPHONE MODEL: IS-903 USA VERSION

TEST DATA

Jammer Freq.(MHz)	Signal Lvl dB	CW Noise N dB	Mj J / S dB	Proc. Gain dE
915.6	- 27.9	- 15.1	8.8	19
915.65	- 27.9	- 15	8.9	19.1
915.7	- 27.9	- 22.9	11	11.2
915.75	- 27.9	- 19.9	4	14.2
915.8	- 27.9	- 19.6	4.3	14.5
915.85	- 27.9	- 20.3	3.6	13.8
915.9	- 27.9	- 21.3	2.6	12.8
915.95	- 27.9	- 19.3	4.6	14.8
916.0	- 27.9	- 21	2.9	13.1
916.05	- 27.9	- 11.8	12.1	22.3
916.1	- 27.9	- 19.5	4.4	14.6
916.15	- 27.9	- 11.8	12.1	22.3
916.2	- 27.9	- 17	6.9	17.1
916.25	- 27.9	- 14.2	9.7	19.9
916.3	- 27.9	- 12.5	11.4	21.6
916.35	- 27.9	- 10	13.9	24.1
916.4	- 27.9	- 6	17.9	28.1
916.45	- 27.9	- 4	19.9	30.1
916.5	- 27.9	- 1.2	22.7	32.9
916.55	- 27.9	- 1.8	22.1	32.3

. . .