FCC 47 CFR §2.1093 AND IEEE STD 1528-2013

in accordance with the requirements of FCC Report and Order: ET Docket 93-62

FCC TEST REPORT

For

Radio Module

Trade Name: DURABOOK

Model: EM7565-9

Issued to

TWINHEAD INTERNATIONAL CORP.

11F, No. 550, Rueiguang Rd., Neihu, Taipei, Taiwan 114, R.O.C.

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891,
Taiwan. (R.O.C.)
http://www.ccsrf.com

service@ccsrf.com

Testing Laboratory 1309

Issued Date: 2018/04/17

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	2018/04/17	Initial Issue	ALL	Jerry Chuang
01	2018/5/10	Removed section 10.3 Revised section 11.1.1 and section 11.1.2 title.	93,95	Jerry Chuang

Page 2 Rev. 00

Table of Contents

1	Cert	ificate of Compliance (SAR Evaluation)	5
2	Desc	ription of Equipment Under Test	6
	2.1	Summary of Highest SAR Values	7
3	Requ	uirements for Compliance Testing Defined	8
	3.1	Requirements for Compliance Testing Defined by the FCC	8
4	Dosi	metric Assessment System	9
	4.1	Measurement System Diagram	
	4.2	System Components	11
5	Eval	uation Procedures	14
6	SAR	Measurement Procedures	16
	6.1	Normal SAR Test Procedure	
7	Devi	ce Under Test	18
	7.1	Wireless Technologies	18
	7.2	Maximum Tune-up Power	
8	Gen	eral LTE SAR Test and Reporting Considerations	21
9		er Reduction by Proximity Sensing	
	9.1	Procedures for determining proximity sensor triggering distances	
	9.2	Procedures for determining antenna and proximity sensor coverage	
	9.3	Proximity Sensor Status Table of trigger distance	25
	9.4	Tilt angle influences to proximity sensor triggering	27
	9.5	Power Reduction per Air-interface	29
	9.6	Proximity Sensor Coverage Area	43
10	RF O	output Power Measurement	44
	10.1	WCDMA	44
	10.2	LTE	49
	10.2.	1 LTE Band 2	50
	10.2.2	2 LTE Band 4	60
		3 LTE Band 5	
		4 LTE Band 13	
	10.2.5	5 LTE Band 66	84
11	Sum	mary of SAR Test Exclusion Configurations	92
	11.1	Standalone SAR Test Exclusion Calculations	
		1 SAR Exclusion Calculations for WWAN Antenna < 50mm from the User	
		2 SAR Exclusion Calculations for WWAN Antenna > 50mm from the User	
	11.1.3	3 SAR Required Test Configuration	96

12	Exposure Limit	97
13	Tissue Dielectric Properties	98
	13.1 Test Liquid Confirmation	98
	13.2 Typical Composition of Ingredients for Liquid Tissue Phantoms	99
	13.3 Simulating Liquids Parameter Check Results	100
14	Measurement Uncertainty	101
15	System Performance Check	102
	15.1 System Performance Check Results	103
16	SAR Measurements Results	104
17	Simultaneous Transmission SAR Analysis	112
	17.1 Estimated SAR for Simultaneous Transmission SAR Analysis	113
	17.1.1 Estimated SAR for Bluetooth	113
	17.2 Sum of the SAR for Simultaneous Transmission Analysis	114
	17.2.1 Sum of the SAR for WLAN & WWAN	114
	17.2.2 Sum of the 1g SAR for Body Exposure Condition	116
18	Equipment List & Calibration Status	117
19	Facilities	118
20	Reference	118
21		

1 Certificate of Compliance (SAR Evaluation)

Applicant TWINHEAD INTERNATIONAL CORP.

11F, No. 550, Rueiguang Rd., Neihu, Taipei, Taiwan 114, R.O.C.

Equipment Under Test: Radio Module

Trade Name: DURABOOK

Model Number: EM7565-9

Date of Test: March 5 ~ March 15, 2018

Device Category: Portable Devices

Exposure Category: General Population/Uncontrolled Exposure

Applicable Standards					
FCC	 IEEE 1528 2013 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 447498 D01 General RF Exposure Guidance v06 KDB 616217 D04 SAR for laptop and tablets v01r02 KDB 941225 D05 SAR for LTE Device v02r05 KDB 941225 D01 3G SAR procedure v03r01 				
	Limit				
	1.6 W/kg				
Test Result					
Pass					

The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Tested by:

Scott Hsu Section Manager

Compliance Certification Services Inc.

Jerry Chuang SAR Engineer

Compliance Certification Services Inc.

Page 5 Rev. 00

2 Description of Equipment Under Test

Product	Radio Module			
Trade Name	DURABOOK			
Model Number	EM7565-9			
WWAN Module	Sierra		Model:	EM7565-9
Transmitter	UMTS & LTE			
	Operatind Mode		TX Freq Range(MHz)	
	WCDMA Band II		1850 ~ 1910	
	WCDMA Band IV		1710 ~ 1755	
Modulation	WCDMA Band V		824 ~ 849	
Technique	LTE Band 2		1850 ~ 1910	
	LTE Band 4		1710 ~ 1755	
	LTE Band 5		824 ~ 849	
	LTE Band 13		777 ~ 787	
	LTE Band 66		1712.5~ 177	7.5
	Brand name	Sinbon Techno	ology Co., Ltd	
WWAN Antenna	Parts Number	22+600761+00		
Specification	Parts Number	22+600762+00		
	Туре	Monopole		
Rechargeable Li-polymer Battery–alternate	Li-polymer Model: X11BK-M			

Note:

Page 6 Rev. 00

^{1.} The sample selected for test was prototype that representative to production product and was provided by manufacturer.

2.1 Summary of Highest SAR Values

Results for highest reported SAR values for each frequency band and mode

Technology/Band	Test configuration	Mode	Highest Reported 1g-SAR (W/kg)
WCDMA Band II	Edge 1	RMC 12.2Kbps	1.089
WCDMA band IV	Edge 1	RMC 12.2Kbps	1.082
WCDMA band V	Edge 1	RMC 12.2Kbps	1.048
LTE band 2	Edge 1	QPSK	1.190
LTE band 4	Edge 1	QPSK	1.093
LTE band 5	Edge 1	QPSK	1.032
LTE band 13	Edge 1	QPSK	1.032
LTE band 66	Edge 1	QPSK	1.034

Result for highest Simultaneous Transmission SAR values

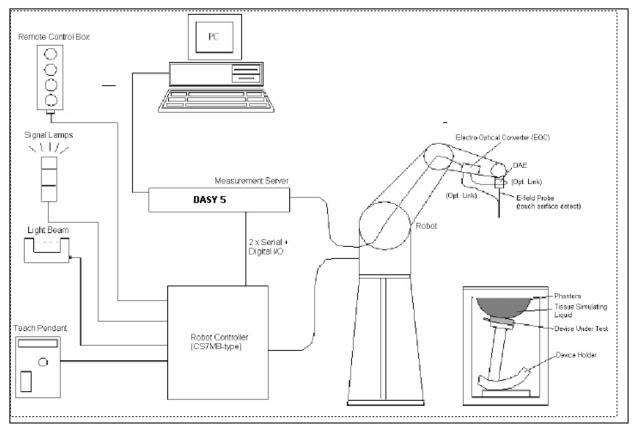
Technology/Band	Test configuration	Mode	Sum of Highest Reported 1g-SAR (W/kg)
WCDMA Band IV+WiFi 5.3 GHz	Edge 2	QPSK	1.591

Page 7 Rev. 00

3 Requirements for Compliance Testing Defined

3.1 Requirements for Compliance Testing Defined by the FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 W/kg for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the FCC 47 CFR §2.1093 and IEEE Std 1528-2013.


Page 8 Rev. 00

4 Dosimetric Assessment System

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m) which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe EX3DV4-SN: 3665 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure and found to be better than ±0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE 1528 2013.

Page 9 Rev. 00

4.1 Measurement System Diagram

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software version: 52.8.8.1258.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 10 Rev. 00

4.2 System Components

DASY4/DASY5 Measurement Server

The DASY4/DASY5 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4/DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.

The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Page 11 Rev. 00

EX3DV4 Isotropic E-Field Probe for Dosimetric Measurements

Construction: Symmetrical design with triangular core Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g.,

DGBE)

Calibration: Basic Broad Band Calibration in air: 10-3000 MHz.

Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon

request.

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)

Directivity: \pm 0.3 dB in HSL (rotation around probe axis)

 $\pm\ 0.5\ dB$ in HSL (rotation normal to probe axis)

Dynamic Range: $10 \mu W/g \text{ to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$

(noise: typically $< 1 \mu W/g$)

Dimensions: Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 1 mm

Application: High precision dosimetric measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6

GHz with precision of better 30%.

SAM Phantom (V4.0)

Construction: The shell corresponds to the specifications of the Specific

Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 2013, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually

teaching three points with the robot.

Shell Thickness: 2 ±0.2 mm **Filling Volume:** Approx. 25 liters

Dimensions: Height: 810mm; Length: 1000mm; Width: 500mm

SAM Phantom (ELI4)

Construction:

Phantom for compliance testing of handheld and bodymounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5 and higher and is compatible with all SPEAG dosimetric probes and dipoles

Shell Thickness: $2.0 \pm 0.2 \text{ mm (sagging: <1\%)}$

Filling Volume: Approx. 25 liters

Dimensions: Major ellipse axis: 600 mm

Minor axis: 400 mm 500mm

Page 12 Rev. 00

Device Holder for SAM Twin Phantom

Construction:

In combination with the Twin SAM Phantom V4.0 or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

System Validation Kits for SAM Phantom (V4.0)

Construction:

Dimensions:

Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions

Includes distance holder and tripod adaptor.

Frequency: 750, 835, 1750, 1900, 2450, 5300, 5600, 5800 MHz

Return loss: > 20 dB at specified validation position **Power capability:** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

> D750V3: dipole length: 179 mm; overall height: 330 mm D835V2: dipole length: 161 mm; overall height: 340 mm D1750V2: dipole length: 75.2 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm

System Validation Kits for ELI4 phantom

Construction:

Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes

distance holder and tripod adaptor.

Frequency: 750, 835, 1750, 1900, 2450, 5300, 5600, 5800 MHz

Return loss: > 20 dB at specified validation position **Power capability:** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions: D750V3: dipole length: 179 mm; overall height: 330 mm
D835V2: dipole length: 161 mm; overall height: 340 mm
D1750V2: dipole length: 75.2 mm; overall height: 300 mm

D1900V2: dipole length: 75.2 mm; overall height: 300 mm

Page 13 Rev. 00

5 Evaluation Procedures

Data Evaluation

Device parameters:

The DASY4/DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, aio, ai1, ai2

- Conversion factor $ConvF_i$ - Diode compression point dcp_i - Frequency f- Crest factor cf

Media parameters: - Conductivity σ

- Density ho

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = Compensated signal of channel i (i = x, y, z)

 U_i = Input signal of channel i (i = x, y, z)

cf = Crest factor of exciting field (DASY parameter)
 dcpi = Diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$$

with V_i = Compensated signal of channel i (i = x, y, z)

 $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

 $\mu V/(V/m)^2$ for E0field Probes

ConvF = Sensitivity enhancement in solution

aij = Sensor sensitivity factors for H-field probes

f = Carrier frequency (GHz)

Ei = Electric field strength of channel i in V/m

Hi = Magnetic field strength of channel i in A/m

Page 14 Rev. 00

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in W/kg

= total field strength in V/m E_{tot}

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{377}$$

$$P_{pwe} = \frac{E_{tot}^2}{377}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with

 P_{pwe} = Equivalent power density of a plane wave in mW/cm²

= total electric field strength in V/m E_{tot} = total magnetic field strength in A/m

> Page 15 Rev. 00

6 SAR Measurement Procedures

6.1 Normal SAR Test Procedure

• Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4/DASY5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, the grid resolution has to less than 15 mm by 15 mm at frequency ≤2GHz; the grid resolution has to less than 12mm by 12 mm at frequency between 2GHz to 4GHz; grid resolution has to less than 10 mm by 10 mm at frequency between 4GHz to 6GHz.

According to KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01

According to KDB 803004 DOL SAK measurement 100 Miliz	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe abgle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
Maximum area scan spatial resolution: Δxzoom, Δyzoom	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
	When the x or y dimension of measurement plane orientati above, the measurement reso corresponding x or y dimension least one measurement point	on, is smaller than the olution must be ≤ the on of the test device with at

Page 16 Rev. 00

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures points in accordance with the frequency can be divided into three parts. (1)The zoom scan volume was set to 5x5x7 points at frequency ≤ 2 GHz. (2) The zoom scan volume was set to 7x7x7 points at frequency between 2GHz to 4GHz (3) The zoom scan volume was set to 7x7x12 points at frequency between 4GHz to 6GHz. The measures points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly.

According to KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01

			≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δxzoom, Δyzoom			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm 4 – 6 GHz: ≤ 4 mm
	Unifor	rm grid: Δzzoom(n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	normal	Δzzoom(1):between 1st two points losest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δzzoom(n>1): between subsequent points	≤ 1.5·Δzzoom(n-1)	
Maximum zoom scan volume	х, у, z	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Power Drift Measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY4/DASY5 software stop the measurements if this limit is exceeded.

Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

Page 17 Rev. 00

7 Device Under Test

7.1 Wireless Technologies

Wireless technologies	Tx Frequency Bands	Operating mode	Duty Cycle used for testing
WCDMA (UMTS)	Band II Band IV Band V	UMTS Rel. 99 HSDPA HSUPA	N/A
LTE	Band 2 Band 4 Band 5 Band 13 Band 66	QPSK 16QAM	N/A

Page 18 Rev. 00

7.2 Maximum Tune-up Power

For WWAN

P-Sensor OFF

Tolerance (dB): ± 1		RF Output P	ower (dBm)
Band	Mode	Target	Max. tune-up power
MCDMAA	R99	23.0	24.0
WCDMA Band II	HSDPA	23.0	24.0
Barra II	HSUPA	23.0	24.0
MCDMAA	R99	23.0	24.0
WCDMA Band IV	HSDPA	23.0	24.0
Dana IV	HSUPA	23.0	24.0
VACCONAA	R99	23.0	24.0
WCDMA Band V	HSDPA	23.0	24.0
Bana v	HSUPA	23.0	24.0
Band	Mode	Target	Max. tune-up power
LTE Band 2	QPSK	23.0	24.0
LTE Band 4	QPSK	23.0	24.0
LTE Band 5	QPSK	23.0	24.0
LTE Band 13	QPSK	23.0	24.0
LTE Band 66	QPSK	23.0	24.0

Page 19 Rev. 00

P-Sensor ON

Tolerance (dB): ± 1		RF Output Power (dBm)	
Band	Mode	Target	Max. tune-up power
MCDNAA	R99	19.0	20.0
WCDMA Band II	HSDPA	19.0	20.0
Dana II	HSUPA	19.0	20.0
\A/CD84A	R99	19.0	20.0
WCDMA Band IV	HSDPA	19.0	20.0
Bana IV	HSUPA	19.0	20.0
\A/CD844	R99	21.0	22.0
WCDMA Band V	HSDPA	21.0	22.0
Bana v	HSUPA	21.0	22.0
Band	Mode	Target	Max. tune-up power
LTE Band 2	QPSK	19.0	20.0
LTE Band 4	QPSK	19.0	20.0
LTE Band 5	QPSK	21.0	22.0
LTE Band 13	QPSK	21.0	22.0
LTE Band 66	QPSK	19.0	20.0

Page 20 Rev. 00

8 General LTE SAR Test and Reporting Considerations

KDB 941225 D05 SAR for LTE Devices V02									
Item	Description	Informati	Information						
	Frequency range,		Channel Bandwidth						
	Channel Bandwidth,	Band 2	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	
	Numbers and Frequencies	Low	18607/ 1850.7	18615/ 1851.5	18625/ 1852.5	18650/ 1855	18675/ 1857.5	18700/ 1860	
		Mid	18900/ 11880	18900/ 1880	18900/ 1880	18900/ 1880	18900/ 1880	18900/ 1880	
		High	19192/ 1909.2	19184/ 1908.4	19175/ 1907.5	19150/ 1905	19125/ 1902.5	19100/ 1900	
		Band 4	Channel Bandwidth						
			1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	
		Low	19957/ 1710.7	19965/ 1711.5	19975/ 1712.5	20000/ 1715	20025/ 1717.5	20050/ 1720	
		Mid	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5	
		High	20392/ 1754.2	20384/ 1753.4	20375/ 1752.5	20350/ 1750	20325/ 1747.5	20300/ 1745	
			Channel Bandwidth						
		Band 5	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	
		Low	20407/ 824.7	20415/ 825.5	20425/ 826.5	20450/ 829			
		Mid	20525/ 836.5	20525/ 836.5	20525/ 836.5	20525/ 836.5			
		High	20642/ 848.2	20643/ 847.4	20625/ 846.5	20600/ 844			
		D 140	Channel Bandwidth						
		Band 13	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	
		Low			23205/ 779.5				
		Mid			23230/ 782	23230/ 782			
		High			23255/ 784.5				
			Channel Bandwidth						
		Band 66	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	
		Low			131997/ 1712.5	132022/ 1715	132047/ 1717.5	132072/ 1720	
		Mid			132322/ 1745	132322/ 1745	132322/ 1745	132322/ 1745	
		High			132647/ 1777.5	132622/ 1775	132597/ 1772.5	132572/ 1770	

Page 21 Rev. 00

KDB 941225 D05 SAR for LTE Devices V02 (Continued)

Item	Description	Information							
2	Descriptions of the LTE transmitter and antenna implementation;	A single antenna is used for LTE and other wireless modes (UMTS/CDMA) for both Transmit and Receive. A Secondary antenna is used for LTE and other wireless modes (UMTS/CDMA) for Receive Only.							
	, ,								
3	Maximum power reduction (MPR)	As per 3GPP 36.101 v9.11.0 (2012-03), Release 9							
		Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3							
		Modulation	lation Channel bandwidth / Transmission bandwidth (N _{RB}) MPR (dB)						
			1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
		QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
		16 QAM	≤ 5	≤ 4	≤8	≤ 12	≤ 16	≤ 18	≤ 1
		16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
		MPR is permanently built-in by design A-MPR was disabled							
4	Power Reduction	Yes							
5	Spectrum plots for RB configurations	Refer to Section 10.7							

Page 22 Rev. 00

9 Power Reduction by Proximity Sensing

A proximity sensor for power reduction is implemented in this device to address RF exposure compliance when the cellular antenna is positioned close to the user's body. The sensor's mechanical structure is designed to fit within the enclosure design used in this device and also extended around the edge and top of the antenna element in order to optimize sensitivity in these orientations. This design combines the antenna printed directly on a plastic part and proximity sensor FPC (Flexible Printed Circuit) bonded together into one piece. According to KDB 616217 D04 SAR for laptop and tablets v01r02)

9.1 Procedures for determining proximity sensor triggering distances

The following procedures should be applied to determine proximity sensor triggering distances for the back surface and individual edges of a tablet. Conducted power is monitored qualitatively to identify the general triggering characteristics and recorded quantitatively, versus spacing, as required by the procedures. Unless there is built-in test software that reports the triggering conditions and enables the power levels to be confirmed separately, monitoring of conducted power during the triggering tests typically requires internal access to the antenna ports inside the tablet, which may interfere with the triggering tests.

- (1) The relevant transmitter should be set to operate at its normal maximum output power.
- (2) The entire back surface or edge of the tablet is positioned below a flat phantom filled with the required tissue-equivalent medium, and positioned at least 20 mm further than the distance that triggers power reduction.
- (3) It should be ensured that the cables required for power measurements are not interfering with the proximity sensor. Cable losses should be properly compensated to report the measured power results.
- (4) The back surface or edge is moved toward the phantom in 3 mm steps until the sensor triggers.
- (5) The back surface or edge is then moved back (further away) from the phantom by at least 5 mm or until maximum output power is returned to the normal maximum level.
- (6) The back surface or edge is again moved toward the phantom, but in 1 mm steps, until it is at least 5 mm past the triggering point or touching the phantom. If 1 mm resolution is not suitable for the sensor triggering sensitivity, a KDB inquiry should be submitted to determine alternative test configurations.
- (7) If the tablet is not touching the phantom, it is moved in 3 mm steps until it touches the phantom to confirm that the sensor remains triggered and the maximum power stays reduced.
- (8) The process is then reversed by moving the tablet away from the phantom according to steps 4) to 7), to determine triggering release, until it is at least 10 mm beyond the point that triggers the return of normal maximum power.
- (9) The measured output power within ± 5 mm of the triggering points, or until the tablet is touching the phantom, for movements to and from the phantom should be tabulated in the SAR report.
- (10) If the sensor design and implementation allow additional variations for triggering distance tolerances, multiple samples should be tested to determine the most conservative distance required for SAR evaluation.
- (11) To ensure all production units are compliant, it is generally necessary to reduce the triggering distance determined from the triggering tests by 1 mm, or more if it is necessary, and use the smallest distance for movements to and from the phantom, minus 1 mm, as the sensor triggering distance for determining the SAR measurement distance.

Page 23 Rev. 00

9.2 Procedures for determining antenna and proximity sensor coverage

The sensing regions are usually limited to areas near the sensor element. If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. The following are used to determine if additional SAR measurements may be necessary due to sensor and antenna offset. 25 These procedures do not apply and are not required for configurations where the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

- (1) The back surface or edge of the tablet is positioned at a test separation distance less than or equal to the distance required for back surface or edge triggering, with both the antenna and sensor pad located at least 20 mm laterally outside the edge (boundary) of the phantom, along the direction of maximum antenna and sensor offset. For the back surface, if the direction of maximum offset is not aligned with the tablet coordinates (physical edges) the tablet test position would not be aligned with the phantom coordinates (orientations). Each applicable tablet edge should be positioned perpendicularly to the phantom to determine sensor coverage. For antennas and/or sensors located near the corner of a tablet, both adjacent edges must be considered.
- (2) The similar sequence of steps applied to determine sensor triggering distance in section 6.2 are used to verify back surface and edge sensor coverage by moving the tablet (sensor and antenna) horizontally toward the phantom while maintaining the same vertical separation between the back surface or edge and the phantom.
- (3) After the exact location where triggering of power reduction is determined, with respect to the sensor and antenna, the tablet movement should be continued, in 3 mm increments, until both the sensor and antenna(s) are fully under the phantom and at least 20 mm inside the phantom edge.
- (4) The process is then repeated from the opposite direction, starting at the other end of the maximum antenna and sensor offset, by rotating the tablet 180° along the vertical axis.
- (5) The triggering points should be documented graphically, with the antenna and sensor clearly identified, along with all relevant dimensions.
- (6) If the subsequently measured peak SAR location for the antenna is not between the triggering points, established by the sensor coverage tests from opposite ends of the antenna and sensor, additional SAR tests may be required for conditions where only part of the back surface or edge of a tablet corresponding to the antenna is in proximity to the user and the sensor may not be triggering as desired. A KDB inquiry must be submitted by the test lab to determine if additional tests are required and the proper test configurations to use for testing. This may include situations where the sensor coverage region is too small for the antenna, the sensor is located too far away from the antenna, the sensor location is insufficient to cover multiple antennas or the antenna is at the corner of a tablet etc.

Page 24 Rev. 00

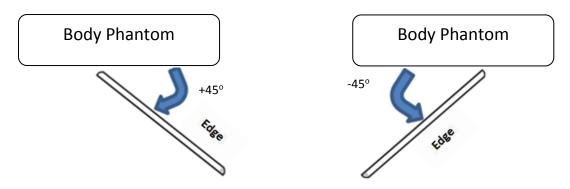
9.3 Proximity Sensor Status Table of trigger distance

As per the KDB 616217 D04 SAR for laptop and tablets v01r02, section 6.2, the following procedure is used to determine the triggering distances.

Proximity Sensor Status Table when DUT is moving towards the phantom

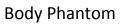
the DUT (mm)				
	Rear Surface	– Top-Edge		
30	OFF	OFF		
27	OFF	OFF		
25	OFF	OFF		
24	OFF	OFF		
23	OFF	OFF		
22	OFF	OFF		
21	OFF	OFF		
20	OFF	OFF		
19	OFF	OFF		
18	OFF	OFF		
17	OFF	OFF		
16	OFF	OFF		
15	OFF	OFF		
14	OFF	OFF		
13	OFF	OFF		
12	OFF	OFF		
11	OFF	OFF]	
10	ON	OFF	•	
9	ON	ON		*
8	ON	ON		
7	ON	ON	Rear Power	Edge Powe
6	ON	ON	Back-off	Back-off
5	ON	ON		
4	ON	ON		
3	ON	ON		
2	ON	ON		
1	ON	ON		
0	ON	ON	Ť	↓ ▼

Page 25 Rev. 00

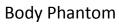

Proximity Sensor Status Table when DUT is moving away from the phantom

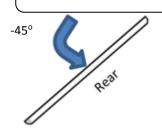
Distance to	Proximity Sensor Status	Proximity Sensor Status	Body Phantom
the DUT (mm)	Rear Surface	– Top-Edge	,
0	ON	ON	↑ ↑
1	ON	ON	
2	ON	ON	
3	ON	ON	
4	ON	ON	
5	ON	ON	Rear Power
6	ON	ON	Back-off Edge Power Back-off
7	ON	ON	васк-отт
8	ON	ON	
9	ON	ON	. Y
10	ON	OFF	*
11	OFF	OFF	
12	OFF	OFF	
13	OFF	OFF	
14	OFF	OFF	
15	OFF	OFF	
16	OFF	OFF	
17	OFF	OFF	
18	OFF	OFF	
19	OFF	OFF	
20	OFF	OFF	
21	OFF	OFF	
22	OFF	OFF	
23	OFF	OFF	
24	OFF	OFF	
25	OFF	OFF	
27	OFF	OFF	
30	OFF	OFF	

Page 26 Rev. 00

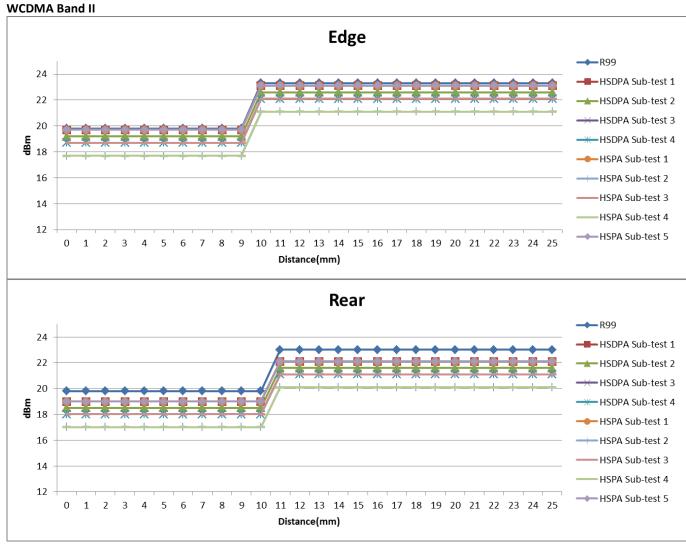

9.4 Tilt angle influences to proximity sensor triggering


As per the KDB 616217 D04 SAR for laptop and tablets v01r02, section 6.4, the following procedure is used to determine the tilt angle influences to proximity sensor triggering.



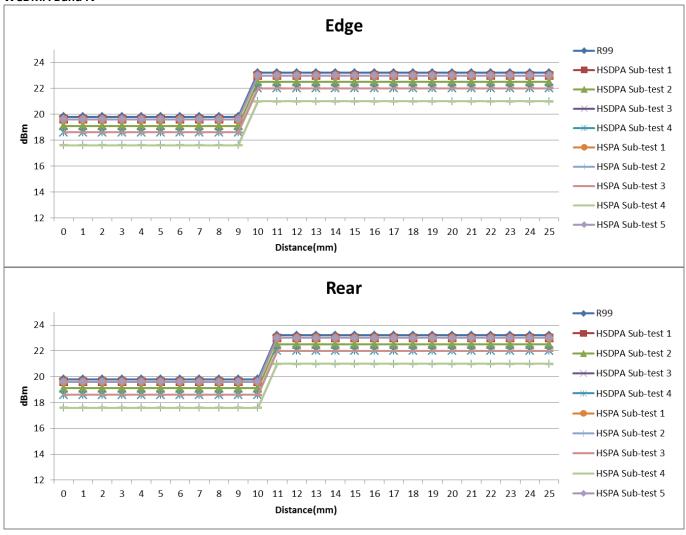

Distance to the DUT (mm)	Proximity Sensor Status 0° to +45°	Proximity Sensor Status 0° to -45°
9	ON	ON
8	ON	ON
7	ON	ON
6	ON	ON
5	ON	ON
4	ON	ON
3	ON	ON
2	ON	ON
1	ON	ON
0	ON	ON

Page 27 Rev. 00

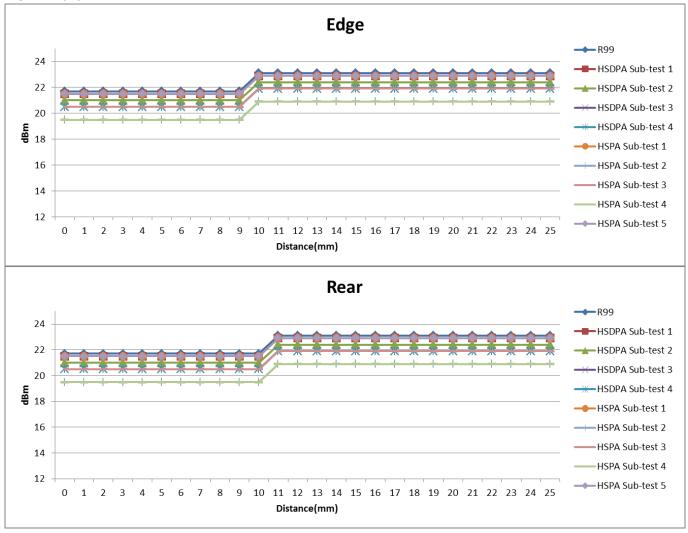


Distance to the DUT (mm)	Proximity Sensor Status 0° to +45°	Proximity Sensor Status 0° to -45°
10	ON	ON
9	ON	ON
8	ON	ON
7	ON	ON
6	ON	ON
5	ON	ON
4	ON	ON
3	ON	ON
2	ON	ON
1	ON	ON
0	ON	ON

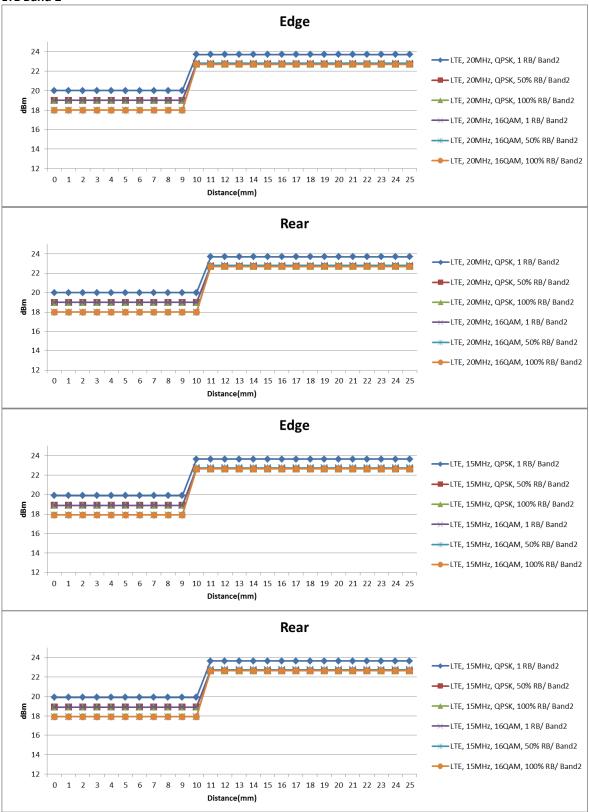
Page 28 Rev. 00


Power Reduction per Air-interface

The following graphs show the power level and the distance from the DUT to the flat phantom for the Top-Edge and Rear Surface.

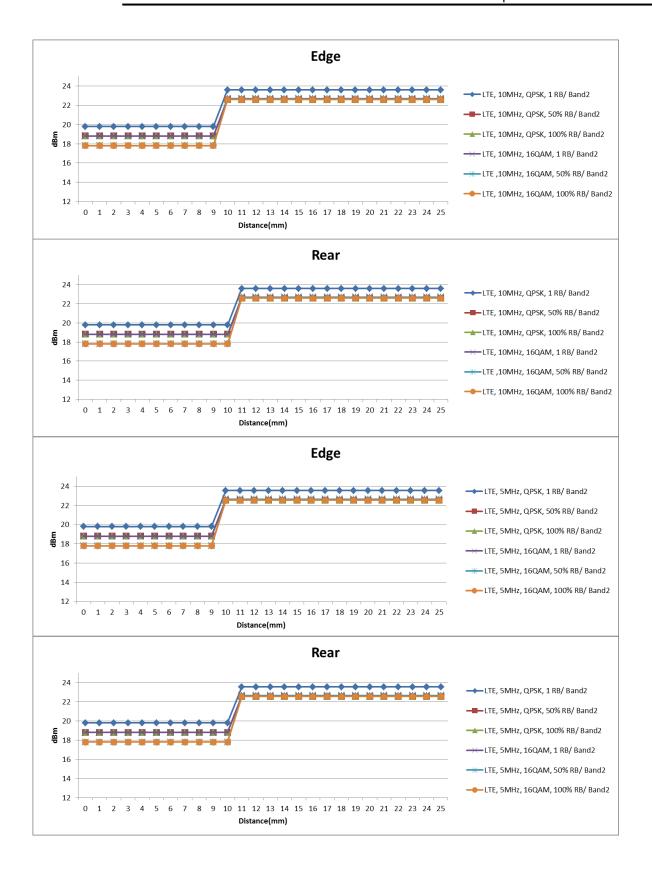

Page 29 Rev. 00

WCDMA Band IV


Page 30 Rev. 00

WCDMA Band V

Page 31 Rev. 00

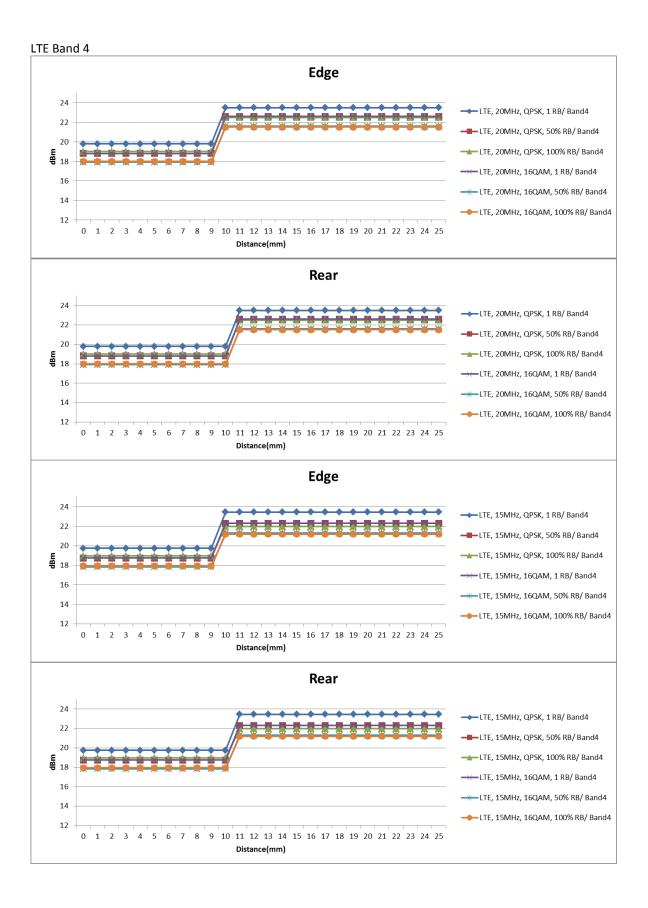

LTE Band 2

Page 32 Rev. 00

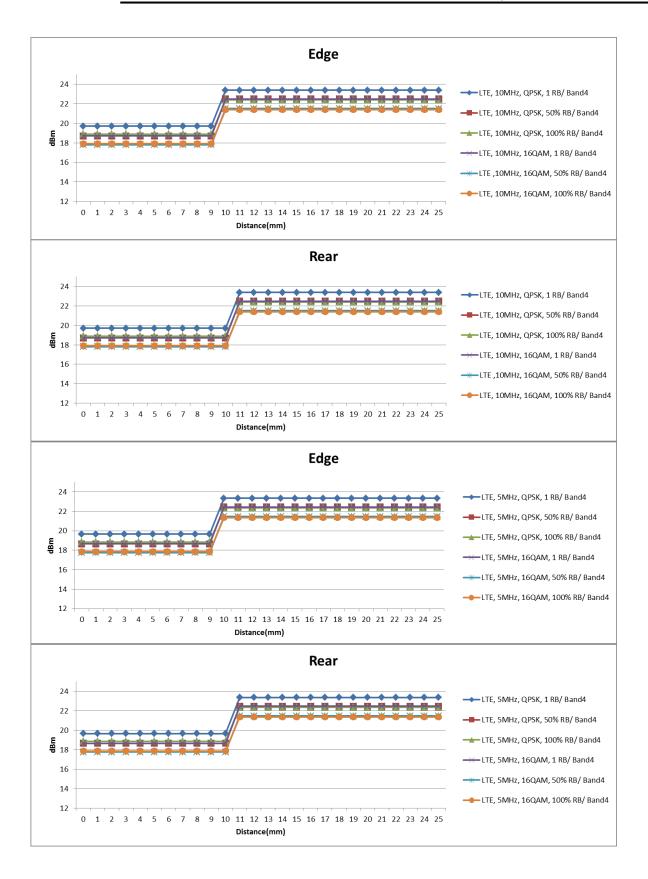
FCC ID: FKGX11BKB

Report No: T171221D04-SF

Page 33 Rev. 00

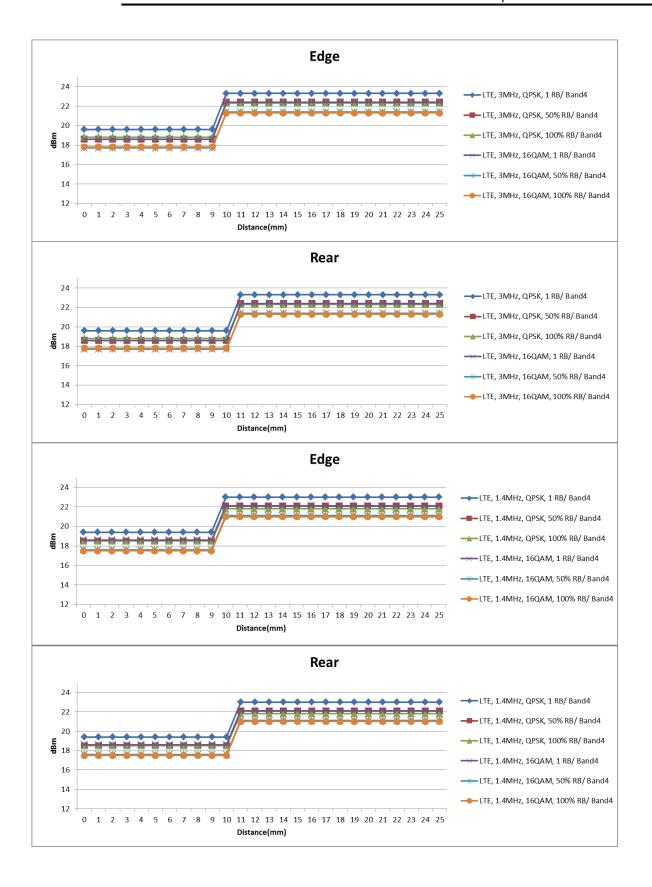

FCC ID: FKGX11BKB

Report No: T171221D04-SF

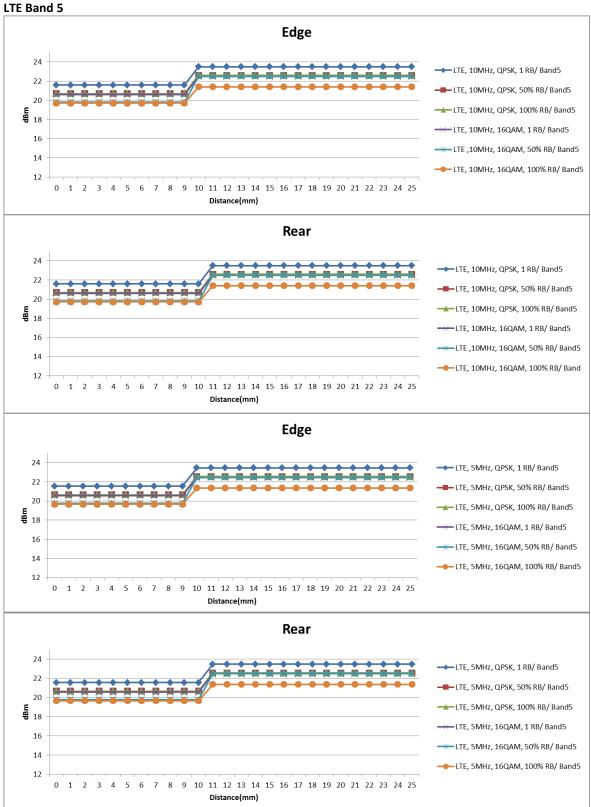


Page 34 Rev. 00

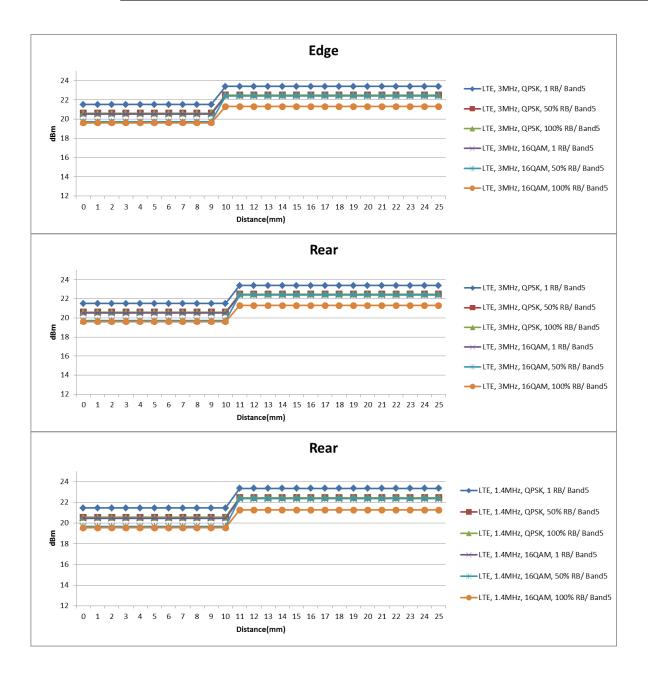
FCC ID: FKGX11BKB


Page 35 Rev. 00

Page 36 Rev. 00

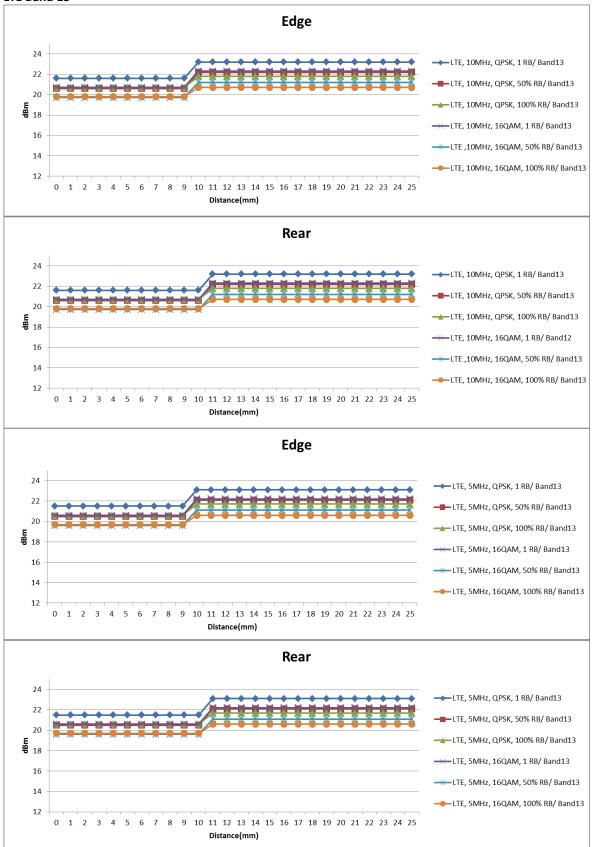

FCC ID: FKGX11BKB

Report No: T171221D04-SF

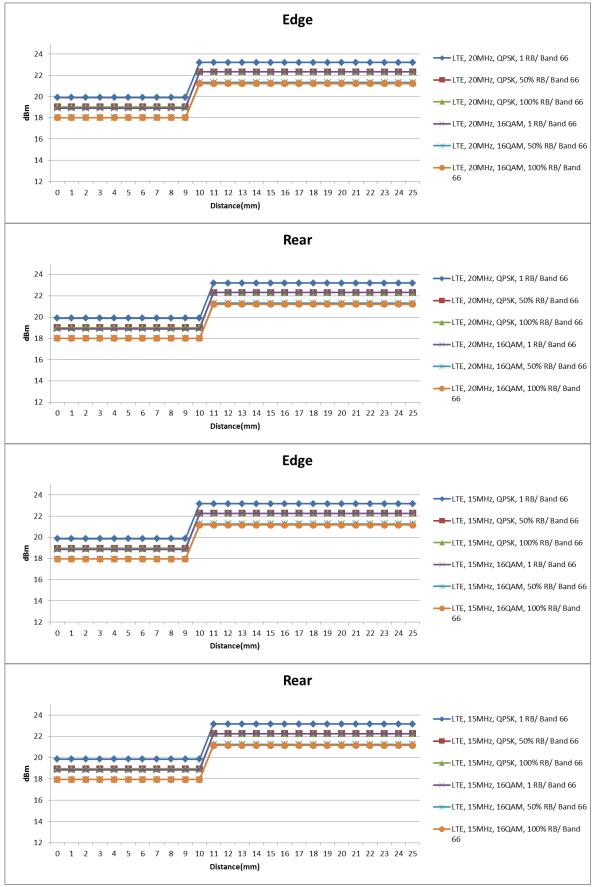


Page 37 Rev. 00

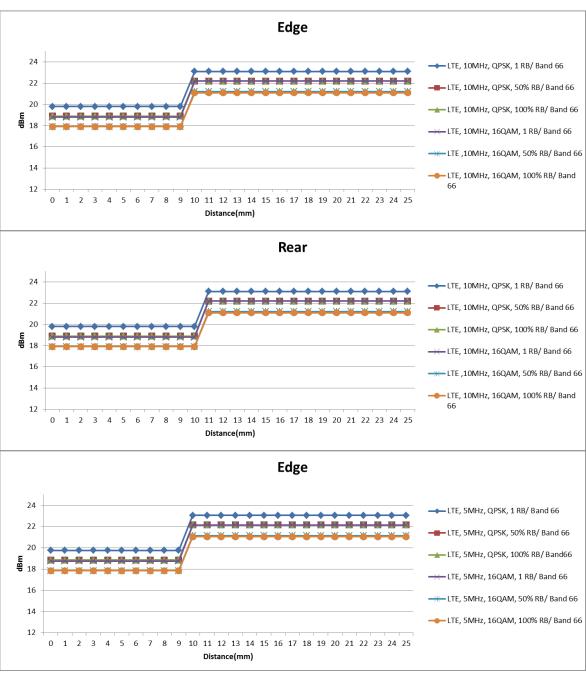
FCC ID: FKGX11BKB

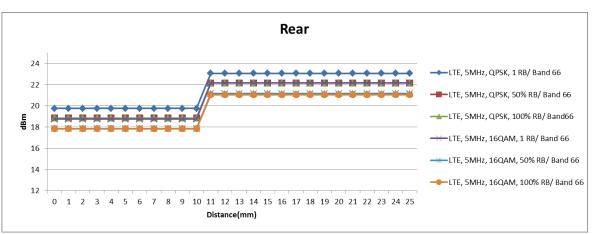


Page 38 Rev. 00


Page 39 Rev. 00

LTE Band 13




Page 40 Rev. 00

LTE Band 66

Page 41 Rev. 00

Page 42 Rev. 00

9.6 Proximity Sensor Coverage Area

According to KDB 616217 D04, Proximity Sensor Coverage Area of not request when the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

Page 43 Rev. 00

10 RF Output Power Measurement

10.1 WCDMA

Release 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 V8.5.0 specification. The EUT supports power Class 3, which has a nominal maximum output power of 22 dBm (+2.0/-2.0) 12.2kps RMC is used for this testing. Power control set to All bits up. A summary of these settings are illustrated below:

Mode	Subtest	Rel99		
	Loopback Mode	Test Mode 1		
WCDMA General	Rel99 RMC	12.2kbps RMC		
	Power Control Algorithm	Algorithm2		
Settings	βc/βd	8/15		

Output power table

		UL/DL		Average po	Average power(dBm)		
Band	Mode	Channel No.	Frequency(MHz)	W/o Power back-off	W/ Power back-off		
14/60444		9262/9662	1852.4	23.1	19.8		
WCDMA Band II	Rel 99	9400/9800	1880.0	23.3	19.8		
Banu II		9538/9938	1907.6	23.2	19.6		
\A/CD8.4.4	Rel 99	1312/1537	1712.4	23.1	19.7		
WCDMA Band IV		1413/1638	1732.6	23.2	19.8		
Dana IV		1513/1738	1752.6	23.0	19.7		
VA/CDN 4.4		4132/4357	826.4	23.0	21.6		
WCDMA Band V	Rel 99	4182/4407	836.4	23.1	21.7		
Danu V		4233/4458	846.6	23.0	21.7		

Page 44 Rev. 00

HSDPA

The following 4 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1	-						
	Rel99 RMC	12.2kbps RN	12.2kbps RMC						
	HSDPA FRC	H-Set1	H-Set1						
	Power Control Algorithm	Algorithm 2							
WCDMA	βς	2/15	12/15	15/15	15/15				
General Settings	βd	15/15	15/15	8/15	4/15				
octings.	Bd (SF)	64							
	βc/βd	2/15	12/15	8/15	4/15				
	βhs	4/15	24/15	30/15	30/15				
	CM (dB)	0	1	1.5	1.5				
	D _{ACK}	8							
	D_{NAK}	8							
	DCQI	8							
HSDPA	Ack-Nack repetition factor	3							
Specific Settings	CQI Feedback (Table 5.2B.4)	4ms	4ms						
	CQI Repetition Factor (Table 5.2B.4)	2							
	Ahs =βhs/βc	30/15							

Page 45 Rev. 00

Output power table

		UL/DL		Average po	wer(dBm)
Band	Mode	Channel No.	Frequency(MHz)	W/o Power back-off	W/ Power back-off
		9262/9662	1852.4	22.9	19.6
	1	9400/9800	1880.0	23.1	19.7
	_	9538/9983	1907.6	23.0	19.7
		9262/9662	1852.4	22.4	19.1
	2	9400/9800	1880.0	22.6	19.2
	_	9538/9983	1907.6	22.5	19.2
HSDPA II		9262/9662	1852.4	21.9	18.6
	3	9400/9800	1880.0	22.1	18.7
		9538/9983	1907.6	22.0	18.7
Ì		9262/9662	1852.4	21.9	18.6
	4	9400/9800	1880.0	22.1	18.7
		9538/9983	1907.6	22.0	18.7
		1312/1537	1712.4	23.0	19.6
	1	1413/1638	1732.6	22.9	19.6
		1513/1738	1752.6	22.8	19.5
Ì		1312/1537	1712.4	22.5	19.1
	2	1413/1638	1732.6	22.4	19.1
		1513/1738	1752.6	22.3	19.0
HSDPA IV	3	1312/1537	1712.4	22.0	18.6
		1413/1638	1732.6	21.9	18.6
		1513/1738	1752.6	21.8	18.5
Ī		1312/1537	1712.4	22.0	18.6
	4	1413/1638	1732.6	21.9	18.6
		1513/1738	1752.6	21.8	18.5
		4132/4157	826.4	22.8	21.5
	1	4182/4407	836.4	22.9	21.4
		4233/4458	846.6	22.9	21.3
Ī		4132/4157	826.4	22.3	21.0
	2	4182/4407	836.4	22.4	20.9
HCDD4.//	ļ	4233/4458	846.6	22.4	20.8
HSDPA V		4132/4157	826.4	21.8	20.5
	3	4182/4407	836.4	21.9	20.4
		4233/4458	846.6	21.9	20.3
Ţ		4132/4157	826.4	21.8	20.5
	4	4182/4407	836.4	21.9	20.4
	ļ	4233/4458	846.6	21.9	20.3

Note(s):

1. The HSDPA output power less than WCDMA, so we performed the SAR test in WCDMA.

Page 46 Rev. 00

HSPA (HSDPA & HSUPA)

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSPA	HSPA	HSPA	HSPA	HSPA			
	Subtest	1	2	3	4	5			
	Loopback Mode	Test Mode	1	-		.			
	Rel99 RMC	12.2kbps R	MC						
	HSDPA FRC	H-Set1							
	HSUPA Test	HSUPA Loo	pback						
	Power Control Algorithm	Algorithm2							
WCDMA	βc	11/15	6/15	15/15	2/15	15/15			
General	βd	15/15	15/15	9/15	15/15	15/15			
Settings	βес	209/225	12/15	30/15	2/15	24/15			
	βc/βd	11/15	6/15	9/15	2/15	15/15			
	βhs	22/15	12/15	30/15	4/15	30/15			
	βed	1309/225	94/75	47/15	56/75	134/15			
	CM (dB)	1	3	2	3	1			
	MPR (dB)	0	2	1	2	0			
	DACK	8		•		•			
	DNAK	8							
	DCQI	8							
HSDPA	Ack-Nack repetition factor	3							
Specific	CQI Feedback	4							
Settings	(Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table	2							
	5.2B.4)	2							
	Ahs = βhs/βc	30/15							
	D E-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	21			
	ETFCI (from 34.121 Table		1		L.				
	C.11.1.3)	75	67	92	71	81			
	Associated Max UL Data Rate								
	kbps	242.1	174.9	482.8	205.8	308.9			
HSUPA	·	E-TFCI 11		E-TFCI 11	E-TFCI 11				
Specific		E-TFCI PO 4	<u> </u>	E-TFCI PO 4	E-TFCI PC				
Settings		E-TFCI 67		E-TFCI 92	E-TFCI 67				
		E-TFCI PO 1	.8	E-TFCI PO 18	E-TFCI PC				
		E-TFCI 71	-		E-TFCI 71				
	Reference E_TFCIs	E-TFCI PO 2	!3		E-TFCI PC				
		E-TFCI 75	-		E-TFCI 75				
		E-TFCI PO 2	16		E-TFCI PC				
		E-TFCI 81			E-TFCI 81				
		E-TFCI PO 2	7		E-TFCI PC				

Page 47 Rev. 00

Output power table

		UL/DL		Average po	wer(dBm)
Band	Mode	Channel No.	Frequency(MHz)	W/o Power	W/ Power
				back-off	back-off
		9262/9662	1852.4	22.9	19.6
	1	9400/9800	1880.0	23.1	19.7
		9538/9983	1907.6	23.0	19.7
		9262/9662	1852.4	20.9	17.6
	2	9400/9800	1880.0	21.1	17.7
		9538/9983	1907.6	21.0	17.7
		9262/9662	1852.4	21.9	18.6
HSUPA II	3	9400/9800	1880.0	22.1	18.7
		9538/9983	1907.6	22.0	18.7
		9262/9662	1852.4	20.9	17.6
	4	9400/9800	1880.0	21.1	17.7
		9538/9983	1907.6	21.0	17.7
		9262/9662	1852.4	22.9	19.6
	5	9400/9800	1880.0	23.1	19.7
		9538/9983	1907.6	23.0	19.7
		1312/1537	1712.4	23.0	19.6
	1	1413/1638	1732.6	22.9	19.6
		1513/1738	1752.6	22.8	19.5
ľ		1312/1537	1712.4	21.0	17.6
	2	1413/1638	1732.6	20.9	17.6
		1513/1738	1752.6	20.8	17.5
		1312/1537	1712.4	22.0	18.6
HSUPA IV	3	1413/1638	1732.6	21.9	18.6
		1513/1738	1752.6	21.8	18.5
		1312/1537	1712.4	21.0	17.6
	4	1413/1638	1732.6	20.9	17.6
		1513/1738	1752.6	20.8	17.5
		1312/1537	1712.4	23.0	19.6
	5	1413/1638	1732.6	22.9	19.6
		1513/1738	1752.6	22.8	19.5
		4132/4157	826.4	22.8	21.5
	1	4182/4407	836.4	22.9	21.4
		4233/4458	846.6	22.9	21.3
		4132/4157	826.4	20.8	19.5
	2	4182/4407	836.4	20.9	19.4
		4233/4458	846.6	20.9	19.3
		4132/4157	826.4	21.8	20.5
HSUPA V	3	4182/4407	836.4	21.9	20.4
		4233/4458	846.6	21.9	20.3
		4132/4157	826.4	20.8	19.5
	4	4182/4407	836.4	20.9	19.4
	-	4233/4458	846.6	20.9	19.3
		4132/4157	826.4	22.8	21.5
	5	4182/4407	836.4	22.9	21.4
		4233/4458	846.6	22.9	21.3

Note(s):

1. The HSUPA output power less than WCDMA, so we performed the SAR test in WCDMA.

Page 48 Rev. 00

10.2 LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (22 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (RB)									
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz					
QPSK	> 5	> 4	>8	> 12	> 16	> 18	≤ 1				
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1				
16 QAM	> 5	> 4	>8	> 12	> 16	> 18	≤ 2				

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks ($N_{ m RB}$)	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
	6.6.2.2.1	0 4 40 00 05	5	>6	≤ 1
NS_03		2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
			15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.2	41	5	>6	≤ 1
140_04	0.0.2.2.2		10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS 10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	231	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32	-	-	-	-	-
Note 1: A	pplies to the lower	block of Band 23, i.e.	a carrier place	d in the 2000-201	10 MHz region.

Page 49 Rev. 00

Report No: T171221D04-SF

10.2.1 LTE Band 2

Output power table

	power t		Frequency		UL RB	UL RB		Average po	ower(dBm)
Band	(MHz)	Channel	(MHz)	Mode	Allocation	Start	MPR	W/o Power	W/ Power
					-			back-off	back-off
					1	0	0	23.6	19.7
					1	49	0	23.4	19.5
					1	99	0	23.4	19.4
				QPSK	50	0	1	22.6	18.8
					50	24	1	22.4	18.6
					50	49	1	22.5	18.4
		18700	1860.0		100	0	1	22.6	18.8
		20700	1000.0		1	0	1	22.7	18.7
					1	49	1	22.5	18.5
					1	99	1	22.4	18.5
				16QAM	50	0	2	21.7	18.9
	1				50	24	2	21.5	18.6
					50	49	2	21.5	18.5
					100	0	2	21.7	18.8
					1	0	0	23.7	19.5
				QPSK	1	49	0	23.5	19.4
					1	99	0	23.4	19.4
			0 1880.0		50	0	1	22.7	18.6
					50	24	1	22.5	18.5
					50	49	1	22.5	18.4
2	20	10000			100	0	1	22.6	18.5
2	20	18900		16QAM	1	0	1	22.7	18.5
					1	49	1	22.5	18.4
					1	99	1	22.4	18.4
					50	0	2	21.7	17.5
					50	24	2	21.5	17.5
					50	49	2	21.4	17.4
	1				100	0	2	21.8	17.6
	1				1	0	0	23.7	20.0
	1				1	49	0	23.6	19.8
	1				1	99	0	23.5	19.7
	1			QPSK	50	0	1	22.7	19.0
	1				50	24	1	22.6	19.0
	1				50	49	1	22.5	18.8
		40400	4000.0		100	0	1	22.7	19.0
	1	19100	1900.0		1	0	1	22.8	19.0
	1				1	49	1	22.7	18.8
	1				1	99	1	22.5	18.8
	1			16QAM	50	0	2	22.8	18.0
	1				50	24	2	22.6	17.9
	1				50	49	2	22.5	17.9
	1				100	0	2	22.7	18.0
	ļ			1	100	,			10.0

Page 50 Rev. 00

	BW		Frequency		UL RB	UL RB		Average po	ower(dBm)
Band	(MHz)	Channel	(MHz)	Mode	Allocation	Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.5	19.6
					1	37	0	23.3	19.4
					1	74	0	23.3	19.3
				QPSK	36	0	1	22.5	18.7
					36	18	1	22.3	18.5
					36	35	1	22.4	18.3
		40675			75	0	1	22.5	18.7
		18675	1857.5		1	0	1	22.6	18.6
					1	37	1	22.4	18.4
					1	74	1	22.3	18.4
			16QAM	36	0	2	21.6	18.8	
					36	18	2	21.4	18.5
					36	35	2	21.4	18.4
					75	0	2	21.6	18.7
					1	0	0	23.6	19.4
			00 1880.0	QPSK	1	37	0	23.4	19.3
					1	74	0	23.3	19.3
					36	0	1	22.6	18.5
					36	18	1	22.4	18.4
					36	35	1	22.4	18.3
2	15	18900			75	0	1	22.5	18.4
2	15			16QAM	1	0	1	22.6	18.4
					1	37	1	22.4	18.3
					1	74	1	22.3	18.3
					36	0	2	21.6	17.4
					36	18	2	21.4	17.4
					36	35	2	21.3	17.3
					75	0	2	21.7	17.5
					1	0	0	23.6	19.9
					1	37	0	23.5	19.7
					1	74	0	23.4	19.6
				QPSK	36	0	1	22.6	18.9
					36	18	1	22.5	18.9
					36	35	1	22.4	18.7
		19125	1902.5		75	0	1	22.6	18.9
		19129	1502.5		1	0	1	22.7	18.9
					1	37	1	22.6	18.7
					1	74	1	22.4	18.7
				16QAM	36	0	2	22.7	17.9
					36	18	2	22.5	17.8
					36	35	2	22.4	17.8
					75	0	2	22.6	17.9

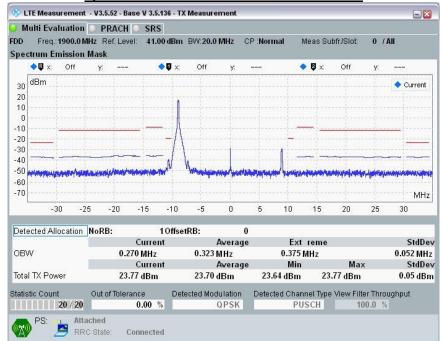
Page 51 Rev. 00

	BW		Frequency		UL RB	UL RB		Average po	ower(dBm)
Band	(MHz)	Channel	(MHz)	Mode	Allocation	Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.4	19.5
					1	24	0	23.2	19.3
					1	49	0	23.2	19.2
				QPSK	25	0	1	22.4	18.6
				Q. 3.	25	12	1	22.2	18.4
					25	24	1	22.3	18.2
					50	0	1	22.4	18.6
		18650	1855.0		1	0	1	22.5	18.5
					1	24	1	22.3	18.3
					1	49	1	22.2	18.3
				16QAM	25	0	2	21.5	18.7
					25	12	2	21.3	18.4
					25	24	2	21.3	18.3
					50	0	2	21.5	18.6
					1	0	0	23.5	19.3
			00 1880.0	QPSK	1	24	0	23.3	19.2
					1	49	0	23.2	19.2
					25	0	1	22.5	18.4
					25	12	1	22.3	18.3
					25	24	1	22.3	18.2
_	40	18900			50	0	1	22.4	18.3
2	10			16QAM	1	0	1	22.5	18.3
					1	24	1	22.3	18.2
					1	49	1	22.2	18.2
					25	0	2	21.5	17.3
					25	12	2	21.3	17.3
					25	24	2	21.2	17.2
					50	0	2	21.6	17.4
					1	0	0	23.5	19.8
					1	24	0	23.4	19.6
					1	49	0	23.3	19.5
				QPSK	25	0	1	22.5	18.8
					25	12	1	22.4	18.8
					25	24	1	22.3	18.6
		19150	1905.0		50	0	1	22.5	18.8
		13130	1505.0		1	0	1	22.6	18.8
					1	24	1	22.5	18.6
					1	49	1	22.3	18.6
				16QAM	25	0	2	22.6	17.8
					25	12	2	22.4	17.7
					25	24	2	22.3	17.7
					50	0	2	22.5	17.8

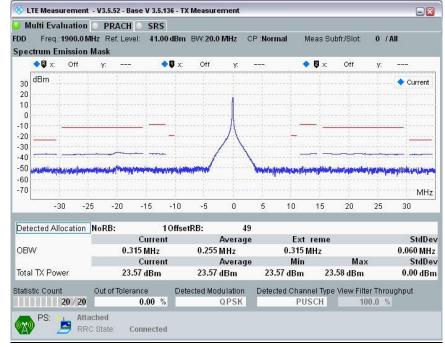
Page 52 Rev. 00

	BW		Frequency		UL RB	UL RB		Average po	ower(dBm)
Band	(MHz)	Channel	(MHz)	Mode	Allocation	Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.4	19.5
					1	12	0	23.2	19.3
					1	24	0	23.2	19.2
				QPSK	12	0	1	22.4	18.6
				Q. 3.	12	6	1	22.2	18.4
					12	11	1	22.3	18.2
					25	0	1	22.4	18.6
		18625	1852.5		1	0	1	22.5	18.5
					1	12	1	22.3	18.3
					1	24	1	22.2	18.3
				16QAM	12	0	2	21.5	18.7
				100/11/1	12	6	2	21.3	18.4
					12	11	2	21.3	18.3
					25	0	2	21.5	18.6
					1	0	0	23.5	19.3
			00 1880.0		1	12	0	23.3	19.3
					1	24	0	23.2	19.2
				QPSK	12	0		22.5	18.4
							1		
					12	6	1	22.3 22.3	18.3 18.2
		18900			12	11	1		
2	5			16QAM	25	0	1	22.4	18.3
					1	0	1	22.5	18.3
					1	12	1	22.3	18.2
					1	24	1	22.2	18.2
					12	0	2	21.5	17.3
					12	6	2	21.3	17.3
					12	11	2	21.2	17.2
					25	0	2	21.6	17.4
					1	0	0	23.5	19.8
					1	12	0	23.4	19.6
				ODCIV	1	24	0	23.3	19.5
				QPSK	12	0	1	22.5	18.8
					12	6	1	22.4	18.8
					12	11	1	22.3	18.6
		19175	1907.5		25	0	1	22.5	18.8
					1	0	1	22.6	18.8
					1	12	1	22.5	18.6
				466	1	24	1	22.3	18.6
				16QAM	12	0	2	22.6	17.8
					12	6	2	22.4	17.7
					12	11	2	22.3	17.7
					25	0	2	22.5	17.8

Page 53 Rev. 00

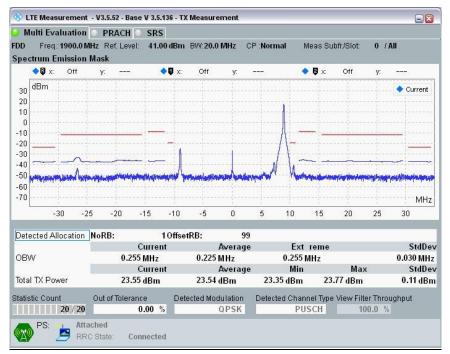

	BW		Frequency (MHz)		UL RB	UL RB		Average power(dBm)	
Band	(MHz)	Channel		Mode	Allocation	Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.3	19.4
					1	7	0	23.1	19.2
					1	14	0	23.1	19.1
				QPSK	8	0	1	22.3	18.5
					8	4	1	22.1	18.3
					8	7	1	22.2	18.1
		10615	1051 5		15	0	1	22.3	18.5
		18615	1851.5		1	0	1	22.4	18.4
					1	7	1	22.2	18.2
					1	14	1	22.1	18.2
				16QAM	8	0	2	21.4	18.6
					8	4	2	21.2	18.3
					8	7	2	21.2	18.2
					15	0	2	21.4	18.5
	3		1880.0	QPSK	1	0	0	23.4	19.2
					1	7	0	23.2	19.1
					1	14	0	23.1	19.1
					8	0	1	22.4	18.3
					8	4	1	22.2	18.2
		18900			8	7	1	22.2	18.1
2					15	0	1	22.3	18.2
					1	0	1	22.4	18.2
					1	7	1	22.2	18.1
				16QAM	1	14	1	22.1	18.1
					8	0	2	21.4	17.2
					8	4	2	21.2	17.2
					8	7	2	21.1	17.1
					15	0	2	21.3	17.3
					1	0	0	23.4	19.7
					1	7	0	23.3	19.5
					1	14	0	23.2	19.4
				QPSK	8	0	1	22.4	18.7
					8	4	1	22.3	18.7
					8	7	1	22.2	18.5
		19184	1908.4		15	0	1	22.4	18.7
		17104	1300.4		1	0	1	22.5	18.7
					1	7	1	22.4	18.5
					1	14	1	22.2	18.5
				16QAM	8	0	2	22.5	17.7
					8	4	2	22.3	17.6
					8	7	2	22.2	17.6
					15	0	2	21.4	17.7

Page 54 Rev. 00


	BW		Frequency (MHz)		UL RB	UL RB		Average power(dBm)	
Band	(MHz)	Channel		Mode	Allocation	Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.3	19.4
					1	2	0	23.1	19.2
					1	5	0	23.1	19.1
				QPSK	3	0	1	22.3	18.5
				QISI	3	1	1	22.1	18.3
					3	2	1	22.2	18.1
					6	0	1	22.3	18.5
		18607	1850.7		1	0	1	22.4	18.4
					1	2	1	22.2	18.2
					1	 5	1	22.1	18.2
				16QAM	3	0	2	21.4	18.6
					3	1	2	21.2	18.3
					3	2	2	21.2	18.2
					6	0	2	21.4	18.5
			1880.0		1	0	0	23.4	19.2
				QPSK	1	2	0	23.2	19.1
	1.4				1	5	0	23.1	19.1
					3	0	1	22.4	18.3
					3	1	1	22.2	18.2
		18900			3	2	1	22.2	18.1
_					6	0	1	22.3	18.2
2				16QAM	1	0	1	22.4	18.2
					1	2	1	22.2	18.1
					1	5	1	22.1	18.1
					3	0	2	21.4	17.2
					3	1	2	21.2	17.2
					3	2	2	21.1	17.1
					6	0	2	21.2	17.3
					1	0	0	23.4	19.7
					1	2	0	23.3	19.5
					1	5	0	23.2	19.4
				QPSK	3	0	1	22.4	18.7
					3	1	1	22.3	18.7
					3	2	1	22.2	18.5
		19192	1909.2		6	0	1	22.4	18.7
		13132	1505.2		1	0	1	22.5	18.7
					1	2	1	22.4	18.5
					1	5	1	22.2	18.5
				16QAM	3	0	2	22.5	17.7
					3	1	2	22.3	17.6
					3	2	2	22.2	17.6
					6	0	2	21.3	17.7

Page 55 Rev. 00

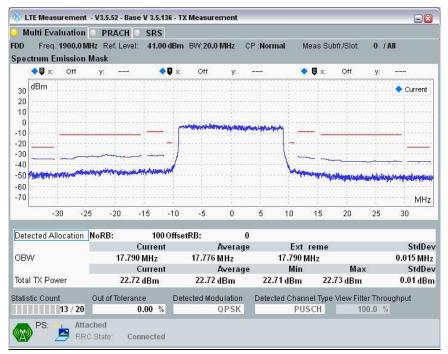
Spectrum Plots for the Test RB allocations




20MHz Band Width: Ch 19100, RB Size=1; RB Offset = 0

20MHz Band Width: Ch 19100, RB Size=1; RB Offset = 49

Page 56 Rev. 00


20MHz Band Width: Ch 19100, RB Size=50; RB Offset = 0

Page 57 Rev. 00

20MHz Band Width: Ch 19100, RB Size=50; RB Offset = 49

Page 58 Rev. 00

20MHz Band Width: Ch 19100, RB Size=100; RB Offset = 0

Page 59 Rev. 00

Report No: T171221D04-SF

10.2.2 LTE Band 4
Output power table

Output	BW (MHz)		Frequency (MHz)	Mode	UL RB Allocation	UL RB		Average power(dBm)	
Band		Channel				Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.5	19.8
					1	49	0	23.3	19.7
					1	99	0	23.4	19.6
				QPSK	50	0	1	22.6	18.8
					50	24	1	22.5	18.8
					50	49	1	22.5	18.6
		20050	4720.0		100	0	1	22.5	19.0
		20050	1720.0		1	0	1	22.6	18.8
					1	49	1	22.3	18.8
					1	99	1	22.4	18.6
				16QAM	50	0	2	21.6	17.9
					50	24	2	21.4	17.7
					50	49	2	21.4	17.7
					100	0	2	21.5	18.0
				QPSK	1	0	0	23.0	19.7
					1	49	0	22.8	19.5
					1	99	0	22.8	19.6
					50	0	1	22.0	18.9
			1732.5		50	24	1	21.9	18.6
					50	49	1	21.8	18.8
	20	20175			100	0	1	22.0	18.9
4					1	0	1	22.1	19.0
					1	49	1	21.8	18.9
				16QAM	1	99	1	21.9	18.8
					50	0	2	21.0	18.0
					50	24	2	20.9	17.8
					50	49	2	20.9	17.8
					100	0	2	21.0	17.9
				-	1	0	0	23.0	19.7
					1	49	0	23.0	19.7
					1	99	0	22.7	19.7
				QPSK	50	0	1	22.0	18.8
					50	24	1	22.0	18.7
					50	49	1	21.8	18.8
		20200	1745 0		100	0	1	21.9	18.8
		20300	1745.0		1	0	1	22.0	18.8
					1	49	1	22.0	18.8
					1	99	1	21.7	18.7
				16QAM	50	0	2	21.0	17.9
					50	24	2	21.0	17.7
					50	49	2	20.9	17.8
					100	0	2	21.0	18.0

Page 60 Rev. 00

Average power(dBm) BW Frequency **UL RB UL RB** Band Channel Mode **MPR** W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 23.5 0 0 19.8 1 19.7 37 0 23.3 1 23.4 19.6 1 74 0 QPSK 36 0 1 22.6 18.8 22.5 18.8 36 18 1 22.5 18.6 36 35 1 75 22.5 19.0 0 1 20025 1717.5 1 0 1 22.6 18.8 37 22.3 18.8 1 1 1 74 1 22.4 18.6 16QAM 0 2 21.6 17.9 36 2 21.4 17.7 36 18 2 21.4 17.7 36 35 75 2 21.5 18.0 0 1 0 0 22.9 19.7 1 37 0 22.7 19.5 1 74 0 22.7 19.6 **QPSK** 36 0 1 21.9 18.9 36 18 1 21.8 18.6 36 35 1 21.7 18.8 18.9 75 0 1 21.9 4 15 20175 1732.5 0 1 22.0 19.0 1 1 37 1 21.7 18.9 18.8 1 74 1 21.8 16QAM 20.9 18.0 36 0 2 36 18 2 20.8 17.8 20.8 17.8 36 35 2 20.9 17.9 75 0 2 23.0 19.7 1 0 0 1 37 0 23.0 19.7 22.7 74 19.7 1 0 **QPSK** 36 0 22.0 18.8 1 36 18 1 22.0 18.7 36 35 1 21.8 18.8 75 0 1 21.9 18.8 20325 1747.5 0 22.0 18.8 1 1 1 37 1 22.0 18.8 1 74 1 21.7 18.7 2 21.0 17.9 16QAM 0 36 36 18 2 21.0 17.7 2 17.8 36 35 20.9 2 75 0 21.0 18.0

Page 61 Rev. 00

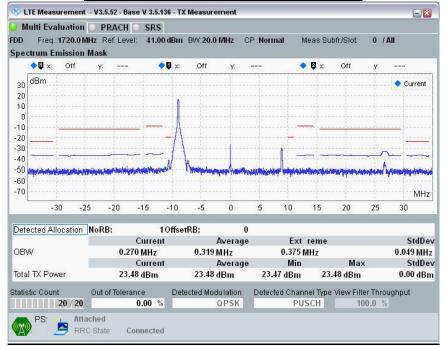
	BW		Frequency (MHz)		UL RB	UL RB		Average po	ower(dBm)
Band	(MHz)	Channel		Mode	Allocation	Start	MPR	W/o Power	W/ Power
					1	0	0	back-off 23.4	back-off 19.7
					1		0	23.2	19.7
					1	24	+		
				QPSK	1	49	0	23.3	19.5 18.7
				QF3K	25 25	0 12	1	22.5 22.4	18.7
					25 25		1	22.4	18.5
					25 50	24 0	1	22.4	18.9
		20000	1715.0			0	1	22.5	18.7
					1		1	22.2	18.7
					1	24	1		
				160 4 14	1	49	1	22.3	18.5
				16QAM	25	0	2	21.5	17.8
					25	12	2	21.3	17.6
					25	24	2	21.3	17.6
					50	0	2	21.4	17.9
	10		1732.5	QPSK	1	0	0	22.9	19.6
					1	24	0	22.7	19.4
					1	49	0	22.7	19.5
					25	0	1	21.9	18.8
					25	12	1	21.8	18.5
		20175			25	24	1	21.7	18.7
4					50	0	1	21.9	18.8
					1	0	1	22.0	18.9
				16QAM	1	24	1	21.7	18.8
					1	49	1	21.8	18.7
					25	0	2	20.9	17.9
					25	12	2	20.8	17.7
					25	24	2	20.8	17.7
					50	0	2	20.9	17.8
					1	0	0	22.9	19.6
					1	24	0	22.9	19.6
				ODCIV	1	49	0	22.6	19.6
				QPSK	25	0	1	21.9	18.7
					25 25	12	1	21.9	18.6
					25	24	1	21.7	18.7
		20350	1750.0		50	0	1	21.8	18.7
					1	0	1	21.9	18.7
					1	24	1	21.9	18.7
				160 484	1	49	1	21.6	18.6
				16QAM	25	0	2	20.9	17.8
					25	12	2	20.9	17.6
					25	24	2	20.8	17.7
					50	0	2	20.9	17.9

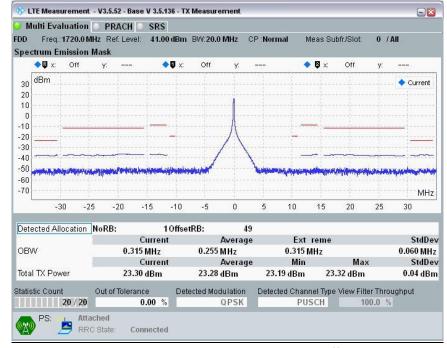
Page 62 Rev. 00

Average power(dBm) BW Frequency **UL RB UL RB** Band Channel Mode **MPR** W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 23.4 0 0 19.5 1 19.4 12 0 23.2 1 23.3 19.3 1 24 0 QPSK 12 0 1 22.5 18.5 12 22.4 18.5 6 1 12 22.4 18.3 11 1 25 22.4 18.7 0 1 19975 1712.5 22.5 1 0 1 18.5 22.2 12 18.5 1 1 1 24 1 22.3 18.3 16QAM 12 0 2 21.5 17.6 12 2 21.3 17.5 6 12 11 2 21.3 17.4 2 21.4 17.7 25 0 1 0 0 22.8 19.4 1 12 0 22.6 19.2 1 24 0 22.6 19.3 **QPSK** 12 0 1 21.8 18.6 12 6 1 21.7 18.3 12 11 1 21.6 18.5 25 0 1 21.8 18.6 4 5 20175 1732.5 0 1 21.9 18.7 1 1 12 1 21.6 18.6 18.5 1 24 1 21.7 16QAM 20.8 17.7 12 0 2 12 6 2 20.7 17.5 17.5 20.7 12 11 2 20.8 17.6 25 0 2 22.9 19.4 1 0 0 1 12 0 22.9 19.4 22.6 19.4 1 24 0 **QPSK** 12 0 21.9 18.5 1 12 6 1 21.9 18.4 12 11 1 21.7 18.5 25 0 1 21.8 18.5 20375 1752.5 0 21.9 18.5 1 1 1 12 1 21.9 18.5 18.4 1 24 1 21.6 2 20.9 17.6 16QAM 12 0 12 6 2 20.9 17.4 2 17.5 12 11 20.8 25 2 20.9 0 17.7

Page 63 Rev. 00

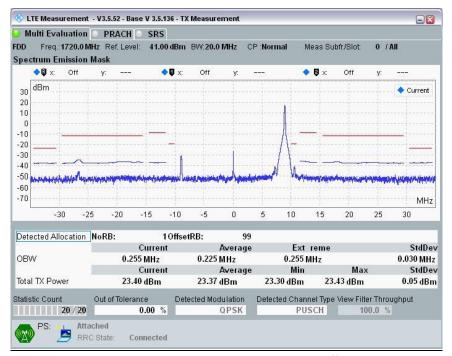
Average power(dBm) BW Frequency **UL RB UL RB** Band Channel Mode **MPR** W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 23.3 0 0 19.5 1 19.4 7 0 23.1 1 23.2 19.3 1 14 0 QPSK 8 0 1 22.4 18.5 8 4 22.3 18.5 1 7 22.3 18.3 8 1 15 22.3 18.7 0 1 19965 1711.5 18.5 1 0 1 22.4 7 1 22.1 18.5 1 1 14 1 22.2 18.3 16QAM 0 2 21.4 17.6 8 8 4 2 21.2 17.5 8 7 2 21.2 17.4 2 21.3 17.7 15 0 1 0 0 22.8 19.4 1 7 0 22.6 19.2 1 14 0 22.6 19.3 **QPSK** 8 0 1 21.8 18.6 8 4 1 21.7 18.3 7 8 1 21.6 18.5 15 0 1 21.8 18.6 4 3 20175 1732.5 1 0 1 21.9 18.7 1 7 1 21.6 18.6 18.5 1 14 1 21.7 16QAM 20.8 17.7 8 0 2 8 4 2 20.7 17.5 17.5 20.7 8 7 2 15 20.8 17.6 0 2 19.4 1 0 0 22.8 1 7 0 22.8 19.4 22.5 19.4 1 14 0 **QPSK** 8 0 21.8 18.5 1 8 4 1 21.8 18.4 7 8 1 21.6 18.5 15 0 1 21.7 18.5 20384 1753.4 0 21.8 18.5 1 1 7 1 1 21.8 18.5 18.4 1 14 1 21.5 2 20.8 17.6 16QAM 8 0 8 4 2 20.8 17.4 7 2 17.5 8 20.7 0 2 15 20.8 17.7


Page 64 Rev. 00


Average power(dBm) BW Frequency **UL RB UL RB** Band Channel Mode **MPR** W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 23.3 19.4 0 0 1 2 0 23.1 19.3 1 23.2 19.2 1 5 0 QPSK 3 0 1 22.4 18.4 3 22.3 18.4 1 1 3 2 22.3 18.2 1 22.3 18.6 6 0 1 19957 1710.7 18.4 1 0 1 22.4 1 2 22.1 18.4 1 1 5 1 22.2 18.2 16QAM 3 0 2 21.4 17.5 3 2 21.2 17.4 1 3 2 2 21.2 17.3 2 21.3 17.6 6 0 1 0 0 22.7 19.3 1 2 0 22.5 19.1 1 5 0 22.5 19.2 **QPSK** 3 0 1 21.7 18.5 3 1 1 21.6 18.2 3 2 1 21.5 18.4 18.5 6 0 1 21.7 4 1.4 20175 1732.5 1 0 1 21.8 18.6 1 2 1 21.5 18.5 18.4 1 5 1 21.6 16QAM 20.7 17.6 3 0 2 3 1 2 20.6 17.4 20.6 17.4 3 2 2 6 20.7 17.5 0 2 19.3 1 0 0 22.8 1 2 0 22.8 19.3 19.3 22.5 1 5 0 **QPSK** 3 0 21.8 18.4 1 3 1 1 21.8 18.3 3 2 1 21.6 18.4 6 0 1 21.7 18.4 20392 1754.2 0 21.8 18.4 1 1 2 18.4 1 1 21.8 18.3 1 5 1 21.5 2 20.8 17.5 16QAM 3 0 3 1 2 20.8 17.3 3 2 17.4 2 20.7 0 2 6 20.8 17.6

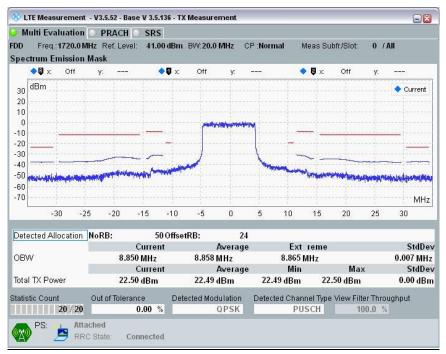
Page 65 Rev. 00

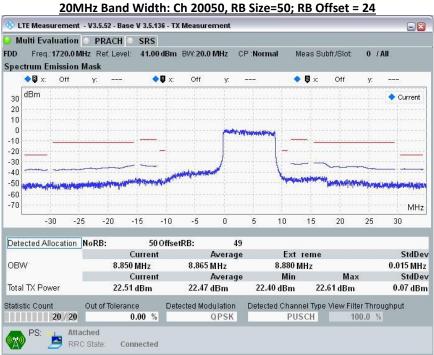
Spectrum Plots for the Test RB allocations



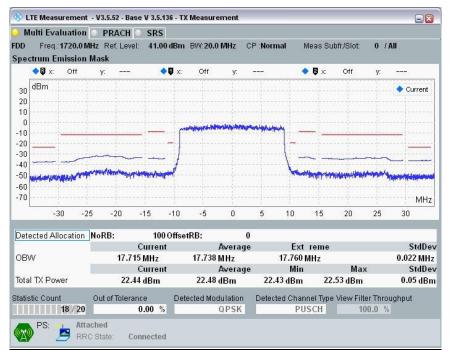
20MHz Band Width: Ch 20050, RB Size=1; RB Offset = 0

20MHz Band Width: Ch 20050, RB Size=1; RB Offset = 49


Page 66 Rev. 00



20MHz Band Width: Ch 20050, RB Size=50; RB Offset = 0


Page 67 Rev. 00

20MHz Band Width: Ch 20050, RB Size=50; RB Offset = 49

Page 68 Rev. 00

20MHz Band Width: Ch 20050, RB Size=100; RB Offset = 0

Page 69 Rev. 00

FCC ID: FKGX11BKB

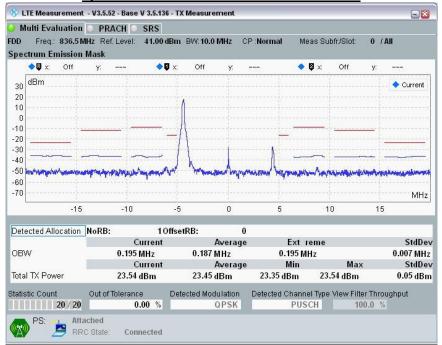
10.2.3 LTE Band 5

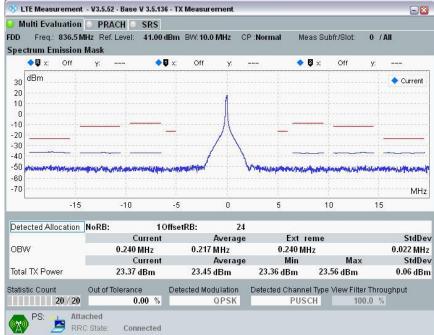
Output	power to	<u>able</u>							
	BW (MHz)	Channel	Frequency (MHz)		UL RB		MPR	Average power(dBm)	
Band				Mode	Allocation			W/o Power	W/ Power
	, ,		, ,					back-off	back-off
					1	0	0	23.0	21.5
					1	24	0	22.9	21.4
					1	49	0	22.7	21.3
				QPSK	25	0	1	22.1	20.6
					25	12	1	22.0	20.5
					25	24	1	21.8	20.3
		20450	829.0		50	0	1	22.0	20.6
		20430	029.0		1	0	1	22.1	20.6
					1	24	1	21.9	20.4
					1	49	1	21.8	20.3
				16QAM	25	0	2	21.0	19.6
					25	12	2	21.0	19.6
					25	24	2	20.9	19.4
					50	0	2	21.1	19.5
					1	0	0	23.5	21.6
					1	24	0	23.5	21.5
			836.5	QPSK	1	49	0	23.3	21.4
					25	0	1	22.6	20.7
					25	12	1	22.5	20.5
	10	20525			25	24	1	22.4	20.5
5					50	0	1	22.6	20.7
)					1	0	1	22.5	20.6
				16QAM	1	24	1	22.5	20.5
					1	49	1	22.4	20.4
					25	0	2	22.5	19.8
					25	12	2	21.5	19.5
					25	24	2	21.5	19.5
					50	0	2	21.4	19.7
					1	0	0	23.0	21.6
					1	24	0	22.9	21.3
					1	49	0	22.8	21.2
				QPSK	25	0	1	22.0	20.7
					25	12	1	22.0	20.3
					25	24	1	21.8	20.3
		20600	844.0		50	0	1	22.0	20.4
		20000	J-7-1.U		1	0	1	22.0	20.5
					1	24	1	21.9	20.4
					1	49	1	21.9	20.2
				16QAM	25	0	2	21.0	19.6
					25	12	2	21.0	19.3
					25	24	2	20.9	19.3
				50	0	2	20.9	19.4	

Page 70 Rev. 00

	BW		Frequency (MHz)		UL RB	UL RB		Average power(dBm)	
Band	(MHz)	Channel		Mode	Allocation	Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.0	21.5
					1	12	0	22.9	21.4
					1	24	0	22.7	21.3
				QPSK	12	0	1	22.1	20.6
				Q. 51.	12	6	1	22.0	20.5
					12	11	1	21.8	20.3
					25	0	1	22.0	20.6
		20425	826.5		1	0	1	22.1	20.6
					1	12	1	21.9	20.4
					1	24	1	21.8	20.3
				16QAM	12	0	2	21.0	19.6
					12	6	2	21.0	19.6
					12	11	2	20.9	19.4
					25	0	2	21.1	19.5
					1	0	0	23.5	21.6
			836.5	QPSK	1	12	0	23.5	21.5
					1	24	0	23.3	21.4
					12	0	1	22.6	20.7
	5	20525			12	6	1	22.5	20.5
					12	11	1	22.4	20.5
					25	0	1	22.6	20.7
5					1	0	1	22.5	20.6
					1	12	1	22.5	20.5
				16QAM	1	24	1	22.4	20.4
					12	0	2	22.5	19.8
					12	6	2	21.5	19.5
					12	11	2	21.5	19.5
					25	0	2	21.4	19.7
					1	0	0	23.0	21.6
					1	12	0	22.9	21.3
					1	24	0	22.8	21.2
				QPSK	12	0	1	22.0	20.7
					12	6	1	22.0	20.3
					12	11	1	21.8	20.3
		20625	046.5		25	0	1	22.0	20.4
		20625	846.5		1	0	1	22.0	20.5
					1	12	1	21.9	20.4
					1	24	1	21.9	20.2
				16QAM	12	0	2	21.0	19.6
					12	6	2	21.0	19.3
					12	11	2	20.9	19.3
					25	0	2	20.9	19.4

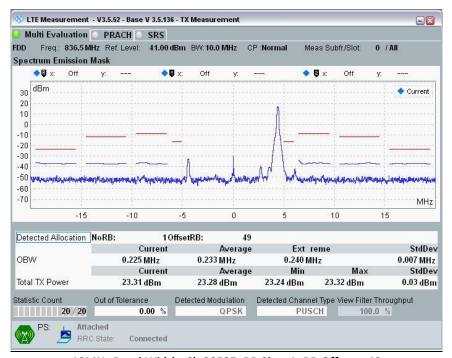
Page 71 Rev. 00


Average power(dBm) BW Frequency **UL RB UL RB** Band Channel Mode MPR W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 22.9 21.4 0 0 1 7 21.3 1 0 22.8 22.6 21.2 1 14 0 **QPSK** 20.5 8 0 1 22.0 8 4 1 21.9 20.4 7 8 21.7 20.2 1 20.5 15 0 1 21.9 20415 825.5 0 22.0 20.5 1 1 7 1 21.8 20.3 1 1 14 1 21.7 20.2 16QAM 8 0 2 20.9 19.5 19.5 8 4 2 20.9 7 2 19.3 8 20.8 19.4 15 0 2 21.0 0 21.5 1 0 23.4 1 7 0 23.4 21.4 1 14 0 23.2 21.3 **QPSK** 8 0 1 22.5 20.6 8 4 22.4 20.4 1 22.3 20.4 7 8 1 22.5 20.6 15 0 1 5 3 20525 836.5 22.4 20.5 1 0 1 20.4 1 7 1 22.4 20.3 22.3 1 14 1 19.7 16QAM 22.4 8 0 2 19.4 8 4 2 21.4 8 7 2 21.4 19.4 15 0 2 21.3 19.6 1 0 0 22.9 21.5 7 22.8 21.2 1 0 22.7 21.1 14 0 1 **QPSK** 8 0 1 21.9 20.6 21.9 20.2 8 4 1 8 7 1 21.7 20.2 15 0 20.3 1 21.9 20634 847.4 21.9 20.4 1 0 1 1 7 1 21.8 20.3 1 14 1 21.8 20.1 16QAM 20.9 19.5 8 0 2 8 4 2 20.9 19.2 8 7 2 20.8 19.2 20.8 15 0 2 19.3


Average power(dBm) BW Frequency **UL RB UL RB** Channel Mode **MPR** Band W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 22.9 1 0 0 21.4 22.8 1 2 0 21.3 5 22.6 21.2 1 0 3 22.0 20.5 **QPSK** 0 1 3 1 21.9 20.4 1 3 21.7 20.2 2 1 6 0 21.9 20.5 1 20407 824.7 1 0 1 22.0 20.5 1 2 1 21.8 20.3 5 21.7 20.2 1 1 16QAM 3 2 20.9 19.5 0 3 1 2 20.9 19.5 3 2 2 20.8 19.3 2 21.0 19.4 6 0 23.4 21.5 1 0 0 1 2 0 23.4 21.4 23.2 21.3 5 0 1 QPSK 3 0 1 22.5 20.6 20.4 3 22.4 1 1 3 2 1 22.3 20.4 6 22.5 20.6 0 1 5 20525 1.4 836.5 20.5 1 0 22.4 1 22.4 20.4 1 2 1 1 5 1 22.3 20.3 16QAM 19.7 3 0 2 22.4 2 21.4 19.4 3 1 3 2 2 21.4 19.4 2 21.3 19.6 6 0 0 0 22.9 21.5 1 2 22.8 21.2 1 0 1 5 0 22.7 21.1 **QPSK** 3 0 1 21.9 20.6 3 1 1 21.9 20.2 3 2 1 21.7 20.2 6 0 21.9 20.3 1 20642 848.2 1 0 1 21.9 20.4 1 2 1 21.8 20.3 1 5 1 21.8 20.1 16QAM 0 2 20.9 19.5 3 3 1 2 20.9 19.2 19.2 3 2 2 20.8 6 0 2 20.8 19.3

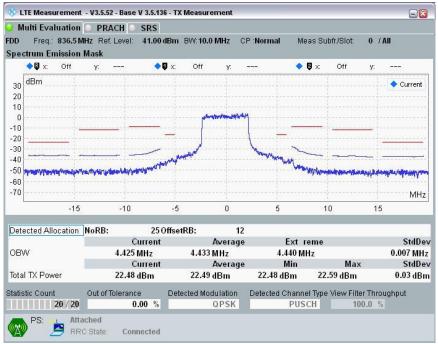
Page 73 Rev. 00

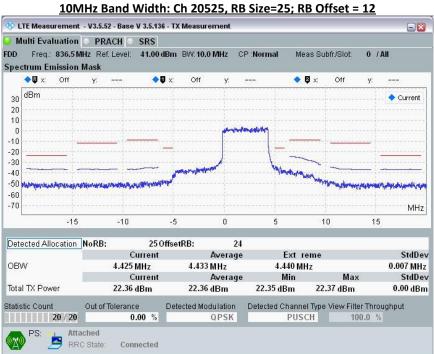
Spectrum Plots for the Test RB allocations



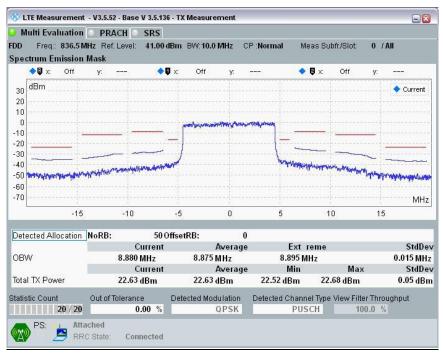
10MHz Band Width: Ch 20525, RB Size=1; RB Offset = 0

10MHz Band Width: Ch 20525, RB Size=1; RB Offset = 24


Page 74 Rev. 00



10MHz Band Width: Ch 20525, RB Size=25; RB Offset = 0


Page 75 Rev. 00

10MHz Band Width: Ch 20525, RB Size=25; RB Offset = 24

Page 76 Rev. 00

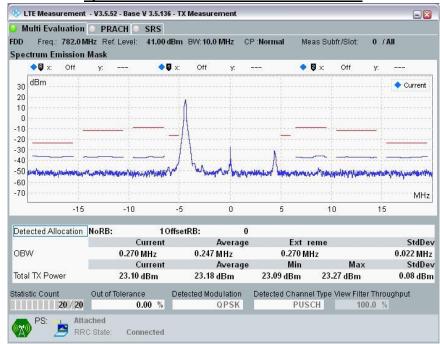
10MHz Band Width: Ch 20525, RB Size=50; RB Offset = 0

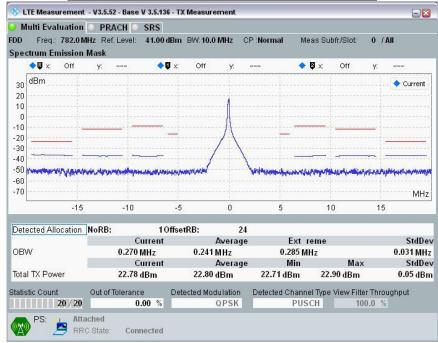
Page 77 Rev. 00

10.2.4 LTE Band 13

Output power table

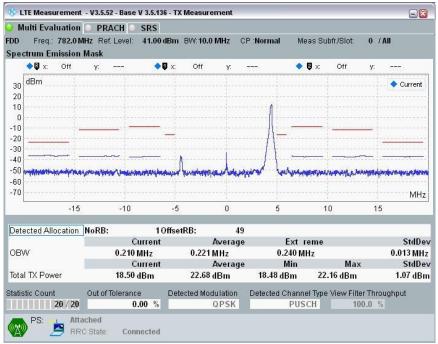
Output	power t	<u>abie</u>							
	BW		Frequency		UL RB	UL RB	1400	Average po	ower(dBm)
Band	(MHz)	Channel	(MHz)	Mode	Allocation	Start	MPR	W/o Power	W/ Power
	, ,		, ,					back-off	back-off
					1	0	0	23.2	21.6
					1	24	0	22.8	21.5
					1	49	0	22.7	21.5
				QPSK	25	0	1	22.2	20.6
				25	12	1	21.9	20.6	
					25	24	1	21.7	20.5
12	10	22220	702.0		50	0	1	21.8	20.7
13	10	23230	782.0		1	0	1	22.3	20.7
					1	24	1	21.8	20.5
					1	49	1	21.8	20.6
				16QAM	25	0	2	21.2	19.7
					25	12	2	20.9	19.5
					25	24	2	20.8	19.5
					50	0	2	20.7	19.8

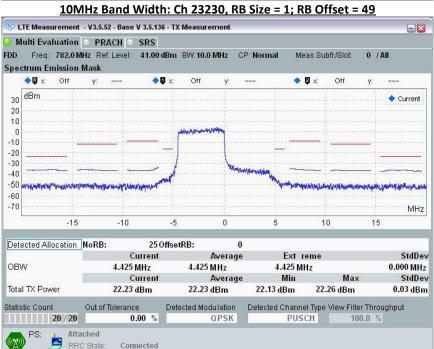

Page 78 Rev. 00


Average power(dBm) BW Frequency **UL RB UL RB** Band Channel Mode **MPR** W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 0 0 23.0 21.3 1 12 0 22.6 21.2 1 22.5 21.2 1 24 0 QPSK 12 0 1 22.0 20.3 12 21.7 20.3 6 1 12 21.5 20.2 11 1 25 21.6 20.4 0 1 23205 779.5 20.4 1 0 1 22.1 20.2 12 21.6 1 1 1 24 1 21.6 20.3 16QAM 12 0 2 21.0 19.4 12 2 20.7 19.2 6 12 11 2 20.6 19.2 2 20.7 19.5 25 0 1 0 0 23.1 21.5 1 12 0 22.7 21.4 1 24 0 22.6 21.4 **QPSK** 12 0 1 22.1 20.5 12 6 1 21.8 20.5 12 11 1 21.6 20.4 20.6 25 0 1 21.7 13 5 23230 752.0 0 1 22.2 20.6 1 1 12 1 21.7 20.4 20.5 1 24 1 21.7 16QAM 19.6 12 0 2 21.1 12 6 2 20.8 19.4 20.7 19.4 12 11 2 20.6 19.7 25 0 2 23.1 21.2 1 0 0 1 12 0 22.7 21.1 22.6 21.1 1 24 0 **QPSK** 20.2 12 0 22.1 1 12 6 1 21.8 20.2 12 11 1 21.6 20.1 20.3 25 0 1 21.7 23255 784.5 0 22.2 20.3 1 1 1 12 1 21.7 20.1 1 24 1 21.7 20.2 2 19.3 16QAM 12 0 21.1 12 6 2 20.8 19.1 2 12 11 20.7 19.1 25 2 0 20.6 19.4

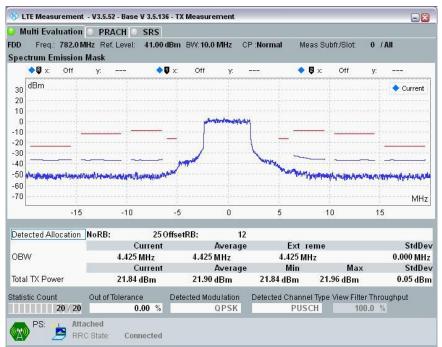
Page 79 Rev. 00

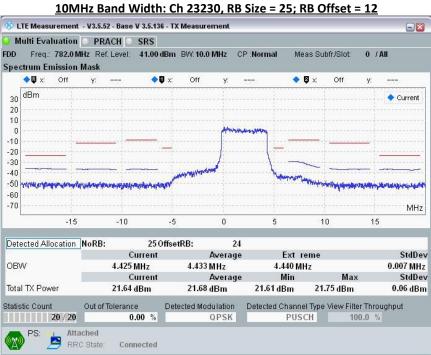
Spectrum Plots for the Test RB allocations



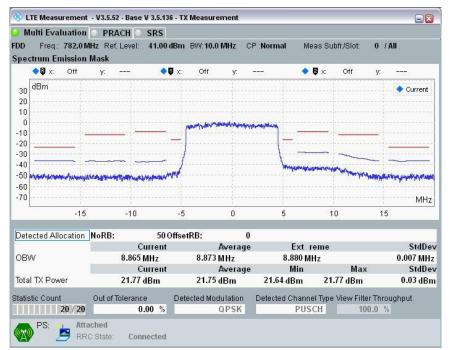

10MHz Band Width: Ch 23230, RB Size = 1; RB Offset = 0

10MHz Band Width: Ch 23230, RB Size = 1; RB Offset = 24


Page 80 Rev. 00



10MHz Band Width: Ch 23230, RB Size = 25; RB Offset = 0


Page 81 Rev. 00

10MHz Band Width: Ch 23230, RB Size = 25; RB Offset = 24

Page 82 Rev. 00

10MHz Band Width: Ch 23230, RB Size = 50; RB Offset = 0

Page 83 Rev. 00

Report No: T171221D04-SF

10.2.5 LTE Band 66

Output power table

Output	power t	<u>abie</u>	Frequency		UL RB	UL RB		Average po	ower(dBm)
Band	(MHz)	Channel	(MHz)	Mode	Allocation	Start	MPR	W/o Power back-off	W/ Power back-off
					1	0	0	23.0	19.6
					1	49	0	22.8	19.4
					1	99	0	22.8	19.4
				QPSK	50	0	1	22.0	18.7
					50	24	1	21.9	18.5
					50	49	1	21.8	18.4
		122072	1720.0		100	0	1	22.0	18.6
		132072	1720.0		1	0	1	22.1	18.7
					1	49	1	21.8	18.5
					1	99	1	21.9	18.4
				16QAM	50	0	2	21.0	17.7
					50	24	2	20.9	17.4
					50	49	2	20.9	17.4
					100	0	2	21.0	17.7
					1	0	0	23.2	19.9
					1	49	0	23.1	19.8
					1	99	0	23.0	19.8
				QPSK	50	0	1	22.3	19.0
			1745.0		50	24	1	22.1	18.9
					50	49	1	22.0	18.8
66	20	132322			100	0	1	22.3	19.0
00	20	132322			1	0	1	22.3	18.9
					1	49	1	22.2	18.8
					1	99	1	22.0	18.9
				16QAM	50	0	2	21.3	18.0
					50	24	2	21.1	17.8
					50	49	2	21.1	17.8
					100	0	2	21.2	18.0
					1	0	0	23.0	19.8
					1	49	0	23.0	19.7
					1	99	0	22.7	19.6
				QPSK	50	0	1	22.0	18.8
					50	24	1	22.0	18.8
					50	49	1	21.8	18.6
		132572	1770.0		100	0	1	21.9	18.8
		132372	1,70.0		1	0	1	22.0	18.9
					1	49	1	22.0	18.7
					1	99	1	21.7	18.7
				16QAM	50	0	2	21.0	17.8
					50	24	2	21.0	17.7
					50	49	2	20.9	17.7
					100	0	2	21.0	17.8

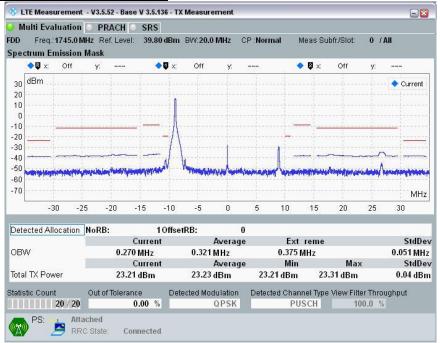
Page 84 Rev. 00

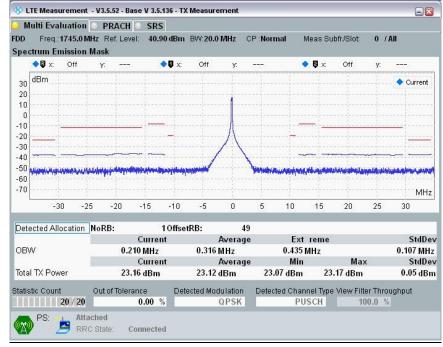
Average power(dBm) BW Frequency **UL RB UL RB** Channel Mode **MPR** Band W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 23.0 19.6 1 0 0 22.8 1 37 0 19.4 22.8 19.4 74 1 0 22.0 18.7 **QPSK** 36 0 1 36 21.9 18.5 18 1 21.8 18.4 36 35 1 75 22.0 18.6 0 1 132047 1717.5 0 1 22.1 18.7 1 1 37 1 21.8 18.5 74 21.9 18.4 1 1 16QAM 17.7 2 36 0 21.0 2 20.9 17.4 36 18 36 35 2 20.9 17.4 75 2 21.0 17.7 0 19.9 23.2 0 0 1 1 37 0 23.1 19.8 74 23.0 19.8 0 1 QPSK 1 22.3 19.0 36 0 18.9 22.1 36 18 1 36 35 1 22.0 18.8 22.3 19.0 75 0 1 66 132322 15 1745.0 0 22.3 18.9 1 1 22.2 18.8 37 1 1 1 74 1 22.0 18.9 16QAM 0 2 21.3 18.0 36 2 21.1 17.8 36 18 35 2 21.1 17.8 36 2 21.2 18.0 75 0 0 0 23.0 19.8 1 23.0 19.7 1 37 0 1 74 0 22.7 19.6 **QPSK** 36 0 1 22.0 18.8 36 18 1 22.0 18.8 36 35 1 21.8 18.6 75 0 21.9 18.8 1 132597 1772.5 1 0 1 22.0 18.9 1 37 1 22.0 18.7 1 74 1 21.7 18.7 16QAM 36 0 2 21.0 17.8 36 18 2 21.0 17.7 20.9 17.7 36 35 2 75 0 2 21.0 17.8

Page 85 Rev. 00

FCC ID: FKGX11BKB

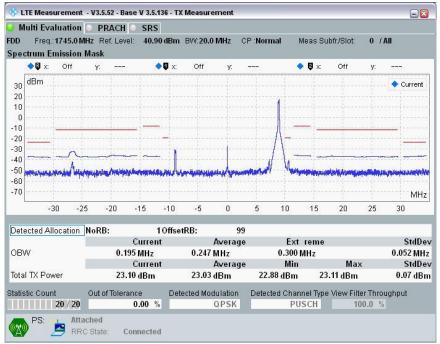
Average power(dBm) BW Frequency **UL RB UL RB** Channel Mode **MPR** Band W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 22.9 19.5 1 0 0 22.7 1 24 0 19.3 19.3 49 22.7 1 0 18.6 **QPSK** 25 0 1 21.9 25 21.8 18.4 12 1 21.7 18.3 25 24 1 50 21.9 18.5 0 1 132022 1715.0 0 1 22.0 18.6 1 1 24 1 21.7 18.4 18.3 1 49 1 21.8 16QAM 0 20.9 17.6 25 2 2 20.8 17.3 25 12 25 24 2 20.8 17.3 2 20.9 17.6 50 0 19.8 23.1 1 0 0 1 24 0 23.0 19.7 22.9 19.7 49 0 1 QPSK 25 0 1 22.2 18.9 18.8 25 22.0 12 1 25 24 1 21.9 18.7 22.2 18.9 50 0 1 66 10 132322 1745.0 1 0 22.2 18.8 1 22.1 18.7 24 1 1 1 49 21.9 18.8 1 16QAM 17.9 25 0 21.2 2 25 2 21.0 17.7 12 25 24 2 21.0 17.7 2 21.1 17.9 50 0 0 0 22.9 19.7 1 22.9 19.6 1 24 0 1 49 0 22.6 19.5 **QPSK** 25 0 1 21.9 18.7 25 12 1 21.9 18.7 25 24 21.7 18.5 1 50 21.8 18.7 0 1 132622 1775.0 1 0 1 21.9 18.8 1 24 1 21.9 18.6 1 49 1 21.6 18.6 17.7 16QAM 25 0 2 20.9 25 12 2 20.9 17.6 17.6 25 24 2 20.8 50 0 2 20.9 17.7


Page 86 Rev. 00


Average power(dBm) BW Frequency **UL RB UL RB** Band Channel Mode **MPR** W/o Power W/ Power (MHz) (MHz) Allocation Start back-off back-off 22.9 19.3 0 0 1 12 0 22.7 19.2 1 22.7 19.1 1 24 0 QPSK 12 0 1 21.9 18.4 12 21.8 18.5 6 1 12 21.7 18.1 11 1 25 21.9 18.3 0 1 131997 1712.5 18.4 1 0 1 22.0 12 21.7 18.5 1 1 1 24 1 21.8 18.1 16QAM 12 0 2 20.9 17.4 12 2 20.8 17.5 6 12 11 2 20.8 17.1 2 20.9 17.4 25 0 1 0 0 23.1 19.6 1 12 0 23.0 19.5 1 24 0 22.9 19.5 **QPSK** 12 0 1 22.2 18.7 12 6 1 22.0 18.6 12 11 1 21.9 18.5 18.7 25 0 1 22.2 66 5 132322 1745.0 0 1 22.2 18.6 1 1 12 1 22.1 18.5 18.6 1 24 1 21.9 16QAM 21.2 17.7 12 0 2 12 6 2 21.0 17.5 21.0 17.5 12 11 2 17.7 25 0 2 21.1 22.9 19.5 1 0 0 1 12 0 22.9 19.4 19.3 22.6 1 24 0 **QPSK** 12 0 21.9 18.5 1 12 6 1 21.9 18.5 12 11 1 21.7 18.3 25 0 1 21.8 18.5 132647 1777.5 0 21.9 18.6 1 1 18.4 1 12 1 21.9 18.4 1 24 1 21.6 2 20.9 17.5 16QAM 12 0 12 6 2 20.9 17.4 2 17.4 12 11 20.8 25 2 20.9 0 17.5

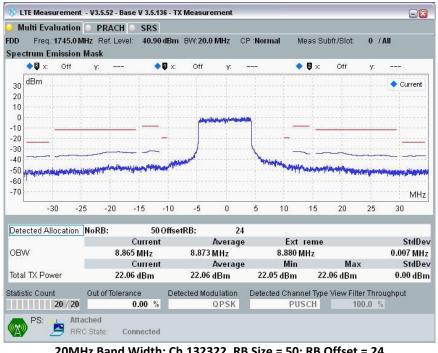
Page 87 Rev. 00

Spectrum Plots for the Test RB allocations

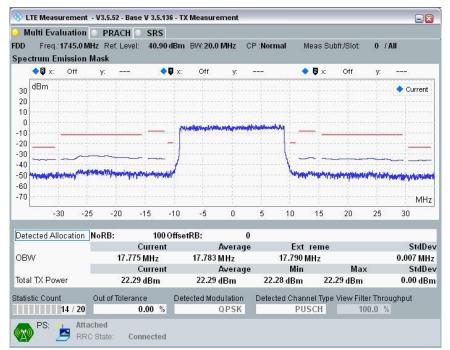


20MHz Band Width: Ch 132322, RB Size = 1; RB Offset = 0

20MHz Band Width: Ch 132322, RB Size = 1; RB Offset = 49


Page 88 Rev. 00

20MHz Band Width: Ch 132322, RB Size = 50; RB Offset = 0


Page 89 Rev. 00

20MHz Band Width: Ch 132322, RB Size = 50; RB Offset = 24 LTE Measurement - V3.5.52 - Base V 3.5.136 - TX Measurement -8 Multi Evaluation PRACH SRS Freq.: 1745.0 MHz Ref. Level: 40.90 dBm BW: 20.0 MHz CP: Normal Meas Subfr./Slot: 0 / All Spectrum Emission Mask **♦** 🛭 🗴 ◆0 x Off ◆ 2 x dBm Current 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 MHz 10 15 25 -30 -25 -20 -15 -10 -5 0 20 30 Detected Allocation NoRB: 50 OffsetRB: 49 Current StdDev Average Ext reme OBW 8.865 MHz 8.873 MHz 8.880 MHz 0.007 MHz StdDev Min Current Average Total TX Power 22.03 dBm 22.00 dBm 22.04 dBm 0.05 dBm 21.92 dBm Detected Channel Type View Filter Throughput Statistic Count Detected Modulation 20 / 20 0.00 % Attached RRC State Connected

20MHz Band Width: Ch 132322, RB Size = 50; RB Offset =49

Page 90 Rev. 00

20MHz Band Width: Ch 132322, RB Size = 100; RB Offset = 0

Page 91 Rev. 00

11 Summary of SAR Test Exclusion Configurations

11.1 Standalone SAR Test Exclusion Calculations

Since the Dedicated Host Approach is applied, the standalone SAR test exclusion procedure in KDB 447498 section4.3.1 is applied in conjunction with KDB 616217 section 4.3 to determine the minimum test separation distance:

- 1. According to KDB 447498 Section 4.1 5) if the antenna is at close proximity to user then the outer surface of the DUT should be treated as the radiating surface. The test separation distance is then determined by the smallest distance between the outer surface of the device and the user. For the purposes of this report close proximity has been defined as closer than 50 mm. For antennas <50 mm from the rear or edge the separation distance used for the estimated SAR calculations is 0 mm.
- 2. When the minimum test separation distance is < 5mm, a distance of 5mm is applied to determine SAR test exclusion.
- 3. When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.
- 4. If the antenna to DUT adjacent edge or bottom separation distance >50mm the actual antenna to user separation distance is used to determine SAR exclusion and estimated SAR value.

Refer to Appendix for the specific details on the antenna-to-antenna and antenna-to-edge distances used for test exclusion calculations.

Page 92 Rev. 00

11.1.1 SAR Exclusion Calculations for WWAN Antenna < 50mm from the User

According to KDB 447498 v06 r02 in section 4.3.1, if the calculated threshold value is > 3 then SAR testing is required.

For WWAN

Full Power, Proximity Sensor Off.

A	David	Frequency	Output	Power		Separat	ion Distanc	es(mm)		Calculated Threshold Value				
WWAN L	Band	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
	WCDMA Band II	1852.4	24.0	251	15.7	12.0	7.0	195.0	195.0	21.76	28.47	48.80	>50mm	>50mm
	WCDMA Band IV	1712.4	24.0	251	15.7	12.0	7.0	195.0	195.0	20.92	27.37	46.92	>50mm	>50mm
	WCDMA Band V	826.4	24.0	251	15.7	12.0	7.0	195.0	195.0	14.53	19.01	32.60	>50mm	>50mm
WWAN	LTE Band 2	1860.0	24.0	251	15.7	12.0	7.0	195.0	195.0	21.80	28.53	48.90	>50mm	>50mm
WWAI	LTE Band 4	1720.0	24.0	251	15.7	12.0	7.0	195.0	195.0	20.97	27.43	47.03	>50mm	>50mm
	LTE Band 5	829.0	24.0	251	15.7	12.0	7.0	195.0	195.0	14.56	19.04	32.65	>50mm	>50mm
	LTE Band 13	782.0	24.0	251	15.7	12.0	7.0	195.0	195.0	14.14	18.50	31.71	>50mm	>50mm
	LTE Band 66	1745.0	24.0	251	15.7	12.0	7.0	195.0	195.0	21.12	27.63	47.37	>50mm	>50mm

Page 93 Rev. 00

Power back off, Proximity Sensor On.

Antenna	Band	Frequency	Output	Power		Separat	ion Distanc	es(mm)		Calculated Threshold Value				
Antenna	Ballu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
	WCDMA Band II	1852.4	20.0	100	5.7	3.0	7.0	195.0	195.0	23.88	45.37	19.44	>50mm	>50mm
	WCDMA Band IV	1712.4	20.0	100	5.7	3.0	7.0	195.0	195.0	22.96	43.62	18.69	>50mm	>50mm
	WCDMA Band V	826.4	22.0	158	5.7	3.0	7.0	195.0	195.0	25.20	47.88	20.52	>50mm	>50mm
WWAN	LTE Band 2	1860.0	20.0	100	5.7	3.0	7.0	195.0	195.0	23.93	45.46	19.48	>50mm	>50mm
VVVVAIV	LTE Band 4	1720.0	20.0	100	5.7	3.0	7.0	195.0	195.0	23.01	43.72	18.74	>50mm	>50mm
	LTE Band 5	829.0	22.0	158	5.7	3.0	7.0	195.0	195.0	25.24	47.95	20.55	>50mm	>50mm
	LTE Band 13	782.0	22.0	158	5.7	3.0	7.0	195.0	195.0	24.51	46.57	19.96	>50mm	>50mm
	LTE Band 66	1745.0	20.0	100	5.7	3.0	7.0	195.0	195.0	23.18	44.03	18.87	>50mm	>50mm

Page 94 Rev. 00

11.1.2 SAR Exclusion Calculations for WWAN Antenna > 50mm from the User

According to KDB 447498 v06 r02, if the calculated Power threshold is less than the output power then SAR testing is required.

For WWAN

Full Power, Proximity Sensor Off.

Antonna	Band	Frequency	Output	Power		Separat	ion Dista	nces(mm)		Calculat	ed Thresho	ld Value	
Antenna	Dallu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
	WCDMA Band II	1852.4	24.0	100	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1560.2	2418.2
	WCDMA Band IV	1712.4	24.0	100	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1564.6	2418.2
	WCDMA Band V	826.4	24.0	126	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1615.0	2418.2
WWAN	LTE Band 2	1860.0	24.0	100	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1560.0	2418.2
WWAN	LTE Band 4	1720.0	24.0	100	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1564.4	2418.2
	LTE Band 5	829.0	24.0	126	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1614.7	2418.2
	LTE Band 13	782.0	24.0	100	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1619.6	2418.2
	LTE Band 66	1745.0	24.0	100	15.7	12.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1563.6	2418.2

Power back off, Proximity Sensor On.

Antenna	Band	Frequency	Output	Power		Separat	ion Dista	nces(mm)	Calculated Threshold Value					
Antenna	Dallu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4	
	WCDMA Band II	1852.4	20.0	100	5.7	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1560.2	1560.2	
	WCDMA Band IV	1712.4	20.0	100	4.4	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1564.6	1564.6	
	WCDMA Band V	826.4	22.0	126	4.4	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1615.0	1615.0	
WWAN	LTE Band 2	1860.0	20.0	100	4.4	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1560.0	1560.0	
W WAIN	LTE Band 4	1720.0	20.0	100	4.4	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1564.4	1564.4	
	LTE Band 5	829.0	22.0	126	4.4	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1614.7	1614.7	
	LTE Band 13	782.0	22.0	100	4.4	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1619.6	1619.6	
	LTE Band 66	1745.0	20.0	100	4.4	3.0	7.0	195.0	195.0	<50mm	<50mm	<50mm	1563.6	1563.6	

Page 95 Rev. 00

11.1.3 SAR Required Test Configuration

For WWAN

Full Power, Proximity Sensor Off

Test Configurations	Rear	Edge1	Edge2	Edge3	Edge4
WCDMA Band II	Yes	Yes	Yes	No	No
WCDMA Band IV	Yes	Yes	Yes	No	No
WCDMA Band V	Yes	Yes	Yes	No	No
LTE Band 2	Yes	Yes	Yes	No	No
LTE Band 4	Yes	Yes	Yes	No	No
LTE Band 5	Yes	Yes	Yes	No	No
LTE Band 13	Yes	Yes	Yes	No	No
LTE Band 66	Yes	Yes	Yes	No	No

Note(s)

- 1. Yes = SAR is required.
- 2. No = SAR is not required.

Power back off, Proximity Sensor On

Test Configurations	Rear	Edge1	Edge2	Edge3	Edge4
WCDMA Band II	Yes	Yes	Yes	No	No
WCDMA Band IV	Yes	Yes	Yes	No	No
WCDMA Band V	Yes	Yes	Yes	No	No
LTE Band 2	Yes	Yes	Yes	No	No
LTE Band 4	Yes	Yes	Yes	No	No
LTE Band 5	Yes	Yes	Yes	No	No
LTE Band 13	Yes	Yes	Yes	No	No
LTE Band 66	Yes	Yes	Yes	No	No
()					

Note(s)

- 1. Yes = SAR is required.
- 2. No = SAR is not required.

Page 96 Rev. 00

12 Exposure Limit

(A). Limits for Occupational/Controlled Exposure (W/kg)

<u>Whole-Body</u> <u>Partial-Body</u> <u>Hands, Wrists, Feet and Ankles</u>

0.4 8.0 2.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram

of tissue defined as a tissue volume in the shape of a cube. **SAR for hands, wrists, feet and ankles** is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE
GENERAL POPULATION/UNCONTROLLED EXPOSURE
PARTIAL BODY LIMIT
1.6 W/kg

Page 97 Rev. 00

13 Tissue Dielectric Properties

13.1 Test Liquid Confirmation

Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below 5% may not be easily achieved at certain frequencies.

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE 1528 2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 2013 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE 1528 2013

Target Frequency	He	ad	Вс	ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

Page 98 Rev. 00

13.2 Typical Composition of Ingredients for Liquid Tissue Phantoms

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequen	cy (MHz)				
(% by weight)	4!	50	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

alt: $99^+\%$ Pure Sodium Chloride Sugar: $98^+\%$ Pure Sucrose Water: De-ionized, $16~\text{M}\Omega^+$ resistivity HEC: Hydroxy thyl Cellulose DGBE: $99^+\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra-pure): Polyethylene glycol mono [4-(1, 1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 99 Rev. 00

13.3 Simulating Liquids Parameter Check Results

				Measured		Star	ndard		4	Limit(%)
Date	Band	Freq(MHz)	e' (εr)	е''	σ	e' (εr)	σ	e' (εr)	σ	±5
		1855	54.37	14.71	1.52	53.30	1.52	2.01%	-0.28%	±5
2018/3/5	Body 1900		54.43	14.57	1.52	53.30	1.52	2.13%	0.08%	±5
	-	1905	54.16	14.57	1.54	53.30	1.52	1.62%	1.45%	±5
		1715	51.25	15.60	1.49	53.52	1.47	-4.24%	1.35%	±5
2018/3/6	Body 1800		51.17	15.62	1.50	53.48	1.48	-4.32%	1.80%	±5
		1750	51.10	15.68	1.52	53.43	1.49	-4.37%	2.40%	±5
		1720	51.23	15.60	1.49	53.51	1.47	-4.26%	1.45%	±5
2018/3/6	Body 1800	1745	51.11	15.66	1.52	53.44	1.49	-4.37%	2.24%	±5
		1770	51.06	15.74	1.55	53.38	1.50	-4.34%	3.10%	±5
		829	55.14	2123	0.98	55.22	0.97	-0.14%	0.83%	±5
2018/3/7	Body 900	836.5	55.08	2120	0.99	55.20	0.97	-0.22%	1.46%	±5
		844	54.99	21.16	0.99	55.17	0.98	-0.33%	1.13%	±5
2018/3/8	Body 750	782	52.81	22.86	0.99	55.41	0.97	-4.69%	2.82%	±5
	† -	1852.4	51.20	14.23	1.46	53.30	1.52	-3.94%	-3.68%	±5
00407440		1880	51.15	1423	1.49	53.30	1.52	-4.04%	-2.22%	±5
2018/3/12	Body 1900	1900	51.12	14.33	1.51	53.30	1.52	-4.10%	-0.51%	±5
		1907.6	51.10	14.37	1.52	53.30	1.52	-4.13%	0.16%	±5
		1855	51.19	1423	1.47	53.30	1.52	-3.95%	-3.53%	±5
00405440		1880	51.12	14.33	1.50	53.30	1.52	-4.10%	-1.56%	±5
2018/3/12	Body 1900	1900	51.03	14.44	1.52	53.30	1.52	-4.25%	0.30%	±5
		1905	51.11	14.34	1.52	53.30	1.52	-4.11%	-0.12%	±5
		1712.4	51.54	15.28	1.45	53.53	1.46	-3.73%	-0.75%	±5
2019.0112	Body 1900	1732.4	51.45	15.24	1.47	53.48	1.48	-3.80%	-0.66%	±5
2018/3/13	Body 1800	1752.6	51.38	15.24	1.48	53.43	1.49	-3.83%	-0.36%	±5
		1800	51.33	15.34	1.53	53.30	1.52	-3.70%	0.93%	±5
		1715	51.52	15.28	1.46	53.52	1.47	-3.74%	-0.71%	±5
2018/3/13	Body 1800	1747.5	51.45	15.24	1.48	53.44	1.49	-3.73%	-0.44%	±5
2010/3/13	Body 1000	1780	51.39	15.23	1.51	53.35	1.51	-3.68%	-0.06%	±5
		1800	51.33	15.34	1.53	53.30	1.52	-3.70%	0.93%	±5
		826.4	52.83	21.82	1.00	55.24	0.97	-4.35%	3.37%	±5
2018/3/14	Body 900	836.6	5273	21.80	1.01	55.20	0.97	-4.47%	4.32%	±5
		846.6	52.62	21.76	1.02	55.17	0.98	-4.62%	4.07%	±5
		829	52.79	21.81	1.00	55.22	0.97	-4.40%	3.62%	±5
2018/3/14	Body 900	836.5	52.73	21.80	1.01	55.20	0.97	-4.47%	4.31%	±5
		844	52.62	21.76	1.02	55.17	0.98	-4.63%	4.01%	±5
2018/3/15	Body 750	782	56.52	2268	0.99	55.41	0.97	2.00%	2.02%	±5

Page 100 Rev. 00

14 Measurement Uncertainty

According to KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz section 2.8.2, SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Page 101 Rev. 00

15 System Performance Check

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm
- The DASY5 system with E-field probe EX3DV4 SN:3665 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx=dy= 5 mm, dz= 5 mm).
- Distance between probe sensors and phantom surface was set to 3.0 mm.
- The dipole input power (forward power) was 100 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System	Serial No.	Cal. Date	Freq. (MHz)	Target	SAR Values	(W/kg)
Dipole	Serial No.	Cal. Date	rieq. (IVIH2)	1g/10g	Head	Body
D1900V2	5d018	2017/06/28	1900	1g	40.1	40.6
D1300V2	34016	2017/00/28	1500	10g	20.9	21.5
D1750V2	1023	2017/06/27	1750	1g	36.9	36.9
D1730V2	1023	2017/00/27	1730	10g	19.5	19.7
D835V2	4d015	2017/03/21	835	1g	9.45	9.75
D833V2	40013	2017/03/21	833	10g	6.18	6.39
D750V3	1020	2018/01/18	750	1g	8.36	8.66
D730V3	1020	2018/01/18	730	10g	5.50	5.75

Page 102 Rev. 00

15.1 System Performance Check Results

Date		System Dipole		Parameters	Target	Measured	Deviation[%]	Limited [%]
Date	Туре	Serial No.	Liquid	rarameters	ranget	ivieasured	Deviation[%]	Lillilled [%]
2017/3/5	D1900V2	5d018	Body	1gSAR:	40.60	40.80	0.49	± 5
2017/3/3	D1300V2	Juoto	body	10g SAR:	21.50	21.10	-1.86	± 5
2017/3/6	D1750V2	1023	Body	1gSAR:	36.90	37.10	0.54	± 5
2017/3/0	D1730V2	1023	body	10g SAR:	19.70	19.50	-1.02	± 5
2018/3/7	D835V2	4d015	Body	1gSAR:	9.75	9.32	-4.41	± 5
2010/3/1	DOJJVZ	40013	Body	10g SAR:	6.39	6.12	-4.23	± 5
2018/3/8	3/8 D750V3 1020	Body	1gSAR:	8.66	8.49	-1.93	± 5	
2010/3/0	D730V3	1020	Body	10g SAR:	5.75	5.89	2.43	± 5
2017/2/12	D1900V2	5d018	Pod.	1gSAR:	40.60	40.20	-0.99	± 5
2017/3/12	D1900VZ	DUNTO	Body	10g SAR:	21.50	20.70	-3.72	± 5
2017/3/13	D1750V2	1023	Body	1gSAR:	36.90	36.10	-2.17	± 5
2017/3/13	D1730V2	1023	Воду	10g SAR:	19.70	18.90	-4.06	± 5
2018/3/14	D835V2	4d015	Body	1gSAR:	9.75	9.45	-3.08	± 5
2010/3/14	DOSSVZ	40015	воду	10g SAR:	6.39	6.20	-2.97	± 5
2018/3/15	D750V3	1020	Body	1gSAR:	8.66	8.43	-2.66	± 5
2010/3/13	D730V3	1020	BULLY	10g SAR:	5.75	5.85	1.74	± 5

Page 103 Rev. 00

16 SAR Measurements Results

WCDMA Band II:

VVCDIVIA Ba											
Power		Test		Freq.	Dist.	Power	(dBm)	Measured	Reported		
back off (On/Off)	Mode	Position	Channel	(MHz)	(mm)	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	Plot.
		Edge 1	9400	1880.0	0	20.0	19.8	1.020	1.068		
		Edge 1	9262	1852.4	0	20.0	19.8	1.020	1.068	1	
		Edge 1	9538	1907.6	0	20.0	19.6	0.929	1.019	1	
On	Rel 99 RMC	Edge 2	9400	1880.0	0	20.0	19.8	0.269	0.282		
Oii	12.2Kbps	Rear	9400	1880.0	0	20.0	19.8	0.902	0.945		
		Rear	9262	1852.4	0	20.0	19.8	0.856	0.896	1	
		Rear	9538	1907.6	0	20.0	19.6	0.853	0.935	1	
		Edge 1	9400	1880.0	0	20.0	19.8	1.040	1.089	2	1
	Rel 99	Edge 1	9400	1880.0	8	24.0	23.3	0.561	0.659		
Off	RMC	Edge 2	9400	1880.0	0	24.0	23.3	0.352	0.414		
	12.2Kbps	Rear	9400	1880.0	9	24.0	23.3	0.340	0.399		

Note(s):

- 1. Testing of other required channels within the operating mode of a frequency band is required when the reported 1-g SAR for the mid-band or highest output power channel. ≥0.8 W/kg and transmission band ≤ 100 MHz (Per KDB 447498 D01 v06)
- 2. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 2.1 Original SAR = 1.020 W/kg, therefore two times repeat SAR is required.
 - 2.2 Repeat SAR = 1.040 W/kg < 1.45W/kg
 - 2.3 SAR variation= -1.9% < 20%

Page 104 Rev. 00

WCDMA Band IV:

Power		Test		Freq.	Dist.	Power	(dBm)	Measured	Reported		
back off (On/Off)	Mode	Position	Channel	(MHz)	(mm)	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	Plot
		Edge 1	1413	1732.6	0	20.0	19.8	0.998	1.045		
		Edge 1	1312	1732.6	0	20.0	19.7	0.966	1.035	1	
		Edge 1	1513	1732.6	0	20.0	19.7	1.010	1.082	1	2
On	Rel 99 RMC	Edge 2	1413	1732.6	0	20.0	19.8	0.209	0.219		
Oil	12.2Kbps	Rear	1413	1732.6	0	20.0	19.8	0.858	0.898		
	•	Rear	1312	1732.6	0	20.0	19.7	0.841	0.901	1	
		Rear	1513	1732.6	0	20.0	19.7	0.864	0.926	1	
		Edge 1	1513	1732.6	0	20.0	19.7	1.000	1.072	2	
	Rel 99	Edge 1	1413	1732.6	8	24.0	23.2	0.540	0.649		
Off	RMC	Edge 2	1413	1732.6	0	24.0	23.2	0.336	0.404		
	12.2Kbps	Rear	1413	1732.6	9	24.0	23.2	0.279	0.335		

Note(s):

- 1. Testing of other required channels within the operating mode of a frequency band is required when the reported 1-g SAR for the mid-band or highest output power channel. ≥0.8 W/kg and transmission band ≤ 100 MHz (Per KDB 447498 D01 v06)
- 2. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 2.1 Original SAR = 1.010 W/kg, therefore two times repeat SAR is required.
 - 2.2 Repeat SAR = 1.000/kg < 1.45W/kg
 - 2.3 SAR variation= 0.9% < 20%

Page 105 Rev. 00

WCDMA Band V:

Power		Test		Freq.	Dist.	Power	(dBm)	Measured	Reported		
back off (On/Off)	Mode	Position	Channel	(MHz)	(mm)	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	Plot
		Edge 1	4182	836.6	0	22.0	21.7	0.978	1.048		3
		Edge 1	4132	826.4	0	22.0	21.6	0.955	1.047	1	
On	Rel 99 RMC	Edge 1	4233	846.4	0	22.0	21.7	0.963	1.032	1	
Oii	12.2Kbps	Edge 2	4182	836.6	0	22.0	21.7	0.033	0.035		
		Rear	4182	836.6	0	22.0	21.7	0.619	0.663		
		Edge 1	4182	836.6	0	22.0	21.7	0.941	1.008	2	
	Rel 99	Edge 1	4182	836.6	8	24.0	23.1	0.187	0.230		
Off	RMC	Edge 2	4182	836.6	0	24.0	23.1	0.099	0.122		
	12.2Kbps	Rear	4182	836.6	9	24.0	23.1	0.112	0.138		

Note(s)

- Testing of other required channels within the operating mode of a frequency band is required when the reported 1-g SAR for the mid-band or highest output power channel. ≥0.8 W/kg and transmission band ≤ 100 MHz (Per KDB 447498 D01 v06)
- 2. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 2.1 Original SAR = 0.978 W/kg, therefore two times repeat SAR is required.
 - 2.2 Repeat SAR = 0.941/kg < 1.45W/kg
 - 2.3 SAR variation= 3.7% < 20%

Page 106 Rev. 00

LTE Band 2 (20MHz Bandwidth):

Power		Took	,	Funa	Diet	III DD	UL RB	Power	· (dBm)	Measured	Departed		
back off	Mode	Test Position	Channel	Freq. (MHz)	Dist.	UL RB Allocation	Start	Tune up		1g SAR	Reported SAR(W/kg)	Note	Plot
(On/Off)		Position		(IVIHZ)	(11111)	Allocation	Start	limit	Measured	(W/kg)	SAK(W/Kg)		
			19100	1900.0	0	1	0	20.0	20.0	1.190	1.190		4
			19100	1900.0	0	1	49	20.0	19.8	1.120	1.173	2	
			19100	1900.0	0	1	99	20.0	19.7	1.090	1.168	2	
			19100	1900.0	0	50	0	19.0	19.0	1.190	1.190		
			19100	1900.0	0	50	24	19.0	19.0	1.170	1.170	2	
		Edge1	19100	1900.0	0	50	49	19.0	18.8	1.080	1.131	2	
		Lugei	19100	1900.0	0	100	0	19.0	19.0	0.939	0.939	2	
			18700	1860.0	0	1	0	20.0	19.7	0.930	0.997	2	
			18700	1860.0	0	50	0	19.0	18.8	0.890	0.932	2	
			18900	1880.0	0	1	0	20.0	19.5	0.896	1.005	2	
			18900	1880.0	0	50	0	19.0	18.6	0.870	0.954	2	
			19100	1900.0	0	1	0	20.0	20.0	1.120	1.120	3	
		Edge2	19100	1900.0	0	1	0	20.0	20.0	0.299	0.299	1	
		Lugez	19100	1900.0	0	50	0	19.0	19.0	0.291	0.291	1	
			19100	1900.0	0	1	0	20.0	20.0	0.827	0.827		
			19100	1900.0	0	1	49	20.0	19.8	0.761	0.797	2	
			19100	1900.0	0	1	99	20.0	19.7	0.720	0.771	2	
			19100	1900.0	0	50	0	19.0	19.0	0.812	0.812		
			19100	1900.0	0	50	24	19.0	19.0	0.796	0.796	2	
		Rear	19100	1900.0	0	50	49	19.0	18.8	0.751	0.786	2	
			19100	1900.0	0	100	0	19.0	19.0	0.800	0.800	2	
			18700	1860.0	0	1	0	20.0	19.7	0.824	0.883	2	
			18700	1860.0	0	50	0	19.0	18.8	0.794	0.831	2	
			18900	1880.0	0	1	0	20.0	19.5	0.829	0.930	2	
			18900	1880.0	0	50	0	19.0	18.6	0.791	0.867	2	
			19100	1900.0	8	1	0	24.0	23.7	1.010	1.082		
			19100	1900.0	8	1	49	24.0	23.6	0.994	1.090	2	
			19100	1900.0	8	1	99	24.0	23.5	0.976	1.095	2	
			19100	1900.0	8	50	0	23.0	22.7	0.829	0.888		
			19100	1900.0	8	50	24	23.0	22.6	0.827	0.907	2	
		Edge1	19100	1900.0	8	50	49	23.0	22.5	0.801	0.899	2	
		Lugei	19100	1900.0	8	100	0	23.0	22.6	0.821	0.900	2	
Off	QPSK		18700	1860.0	8	1	0	24.0	23.6	0.948	1.039	2	
	Q. 3K		18700	1860.0	8	50	0	23.0	22.6	0.758	0.831	2	
			18900	1880.0	8	1	0	24.0	23.7	1.050	1.125	2	
			18900	1880.0	8	50	0	23.0	22.7	0.811	0.869	2	
			18900	1880.0	8	1	0	24.0	23.7	0.980	1.050	3	
		Edge2	19100	1900.0	0	1	0	24.0	23.7	0.521	0.558	1	
		Lugez	19100	1900.0	0	50	0	23.0	22.7	0.417	0.447	1	
		Rear	19100	1900.0	9	1	0	24.0	23.7	0.424	0.454	1	
		ricai	19100	1900.0	9	50	0	23.0	22.7	0.343	0.368	1	

Note(s)

- 1. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05)
- 2. The highest reported SAR for 1 RB and 50% RB allocation are ≥ 0.8 W/kg, SAR is required of 100% RB. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. (Per KDB 941225 D05 v02r05)
- 3. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 1.19 W/kg, therefore two times repeat SAR is required.
 - 3.2 Repeat SAR = 1.12 W/kg < 1.45W/kg
 - 3.3 SAR variation = 5.8 % < 20%

Page 107 Rev. 00

LTE Band 4 (20MHz Bandwidth):

Power		Test	,	Freq.	Dist.	UL RB	UL RB	Power	· (dBm)	Measured	Reported		
back off (On/Off)	Mode	Position	Channel	(MHz)		Allocation	Start	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	Plots
			20050	1720.0	0	1	0	20.0	19.8	1.020	1.068		
			20050	1720.0	0	1	49	20.0	19.7	1.020	1.093	2	5
			20050	1720.0	0	1	99	20.0	19.6	0.980	1.075	2	
			20050	1720.0	0	50	0	19.0	18.8	0.930	0.974		
			20050	1720.0	0	50	24	19.0	18.8	0.914	0.957	2	
		Edgo1	20050	1720.0	0	50	49	19.0	18.6	0.912	1.000	2	
		Edge1	20050	1720.0	0	100	0	19.0	19.0	0.906	0.906	2	
			20175	1732.5	0	1	0	20.0	19.7	0.918	0.984	2	
			20175	1732.5	0	50	0	19.0	18.9	0.933	0.955	2	
			20300	1745.0	0	1	0	20.0	19.7	0.977	1.047	2	
			20300	1745.0	0	50	0	19.0	18.8	0.962	1.007	2	
			20050	1720.0	0	1	0	20.0	19.8	0.971	1.017	3	
On	QPSK	Edge2	20050	1720.0	0	1	0	20.0	19.8	0.191	0.200	1	
		Lugez	20050	1720.0	0	50	0	19.0	18.8	0.179	0.187	1	
			20050	1720.0	0	1	0	20.0	19.8	0.870	0.911		
			20050	1720.0	0	1	49	20.0	19.7	0.826	0.885	2	
			20050	1720.0	0	1	99	20.0	19.6	0.800	0.877	2	
			20050	1720.0	0	50	0	19.0	18.8	0.867	0.908		
			20050	1720.0	0	50	24	19.0	18.8	0.827	0.866	2	
		Rear	20050	1720.0	0	50	49	19.0	18.6	0.811	0.889	2	
			20050	1720.0	0	100	0	19.0	19.0	0.808	0.808	2	
			20175	1732.5	0	1	0	20.0	19.7	0.834	0.894	2	
			20175	1732.5	0	50	0	19.0	18.9	0.834	0.853	2	
			20300	1745.0	0	1	0	20.0	19.7	0.870	0.932	2	
			20300	1745.0	0	50	0	19.0	18.8	0.859	0.899	2	
		Edge1	20050	1720.0	8	1	0	24.0	23.5	0.666	0.747	1	
		Lugei	20050	1720.0	8	50	0	23.0	22.6	0.628	0.689	1	
Off	QPSK	Edge2	20050	1720.0	0	1	0	24.0	23.5	0.483	0.542	1	
Oii	UPSK	Lugez	20050	1720.0	0	50	0	23.0	22.6	0.387	0.424	1	
		Rear	20050	1720.0	9	1	0	24.0	23.5	0.477	0.535	1	
		nedi	20050	1720.0	9	50	0	23.0	22.6	0.358	0.393	1	

Note(s):

- 1. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05)
- 2. The highest reported SAR for 1 RB and 50% RB allocation are ≥ 0.8 W/kg, SAR is required of 100% RB. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. (Per KDB 941225 D05 v02r05)
- 3. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 1.020 W/kg, therefore two times repeat SAR is required.
 - 3.2 Repeat SAR = 0.971 W/kg < 1.45 W/kg
 - 3.3 SAR variation= 4.8 % < 20%

Page 108 Rev. 00

LTE Band 5 (10MHz Bandwidth):

Power		Test		Freq.	Dist.	UL RB	UL RB	Power	r (dBm)	Measured	Reported		
back off (On/Off)	Mode	Position	Channel	(MHz)		Allocation	Start	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	Plot.
			20525	836.5	0	1	0	22.0	21.6	0.941	1.032		6
			20525	836.5	0	1	24	22.0	21.5	0.909	1.020	2	
			20525	836.5	0	1	49	22.0	21.4	0.882	1.013	2	
			20525	836.5	0	25	0	21.0	20.7	0.909	0.974		
			20525	836.5	0	25	12	21.0	20.5	0.908	1.019	2	
		Edge1	20525	836.5	0	25	24	21.0	20.5	0.898	1.008	2	
		Eugei	20525	836.5	0	50	0	21.0	20.7	0.864	0.926	2	
On	QPSK		20450	829.0	0	1	0	22.0	21.5	0.901	1.011	2	
On	QF3K		20450	829.0	0	25	0	21.0	20.6	0.898	0.985	2	
			20600	844.0	0	1	0	22.0	21.6	0.935	1.025	2	
			20600	844.0	0	25	0	21.0	20.7	0.934	1.001	2	
			20525	836.5	0	1	0	22.0	21.6	0.928	1.018	3	
		Edge2	20525	836.5	0	1	0	22.0	21.6	0.081	0.089	1	
		Eugez	20525	836.5	0	25	0	21.0	21.5	0.079	0.070	1	
		Rear	20525	836.5	0	1	0	22.0	21.6	0.532	0.583	1	
		Real	20525	836.5	0	25	0	21.0	21.5	0.510	0.455	1	
		Edge1	20525	836.5	8	1	0	24.0	23.5	0.502	0.563	1	
		Eugei	20525	836.5	8	25	0	23.0	22.6	0.417	0.457	1	
Off	QPSK	Edge2	20525	836.5	0	1	0	24.0	23.5	0.127	0.142	1	
	Qr3K	Eugez	20525	836.5	0	25	0	23.0	22.6	0.112	0.123	1	
		Rear	20525	836.5	9	1	0	24.0	23.5	0.275	0.309	1	
		Neal	20525	836.5	9	25	0	23.0	22.6	0.227	0.249	1	

Note(s):

- 1. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05)
- 2. According to Notice 2016-DRS001, based on the IEEE 1528 and IEC 62209 requirements, the high, mid and low channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.
- 3. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 0.941 W/kg, therefore two times repeat SAR is required.
 - 3.2 Repeat SAR = 0.928 W/kg < 1.45W/kg
 - 3.3 SAR variation= 1.3 % < 20%

Page 109 Rev. 00

LTE Band 13 (10MHz Bandwidth):

Power back off Mode	Test		Freq.	Dist.	UL RB	UL RB	Powe	r (dBm)	Measured	Reported			
back off (On/Off)	Mode	Position	Channel	(MHz)		Allocation	Start	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	Plot.
			23230	782.0	0	1	0	22.0	21.6	0.941	1.032		7
			23230	782.0	0	1	24	22.0	21.5	0.911	1.022	2	
			23230	782.0	0	1	49	22.0	21.5	0.903	1.013	2	
		Edge1	23230	782.0	0	25	0	21.0	20.6	0.924	1.013		
		Eugei	23230	782.0	0	25	12	21.0	20.6	0.921	1.010	2	
000	QPSK		23230	782.0	0	25	24	21.0	20.5	0.907	1.018	2	
On	QP3K		23230	782.0	0	50	0	21.0	20.7	0.902	0.967	2	
			23230	782.0	0	1	0	22.0	21.6	0.929	1.019	3	
		Edga	23230	782.0	0	1	0	22.0	21.6	0.136	0.149	1	
		Edge2	23230	782.0	0	25	0	21.0	20.6	0.096	0.105	1	
		Dani	23230	782.0	0	1	0	22.0	21.6	0.611	0.670	1	
		Rear	23230	782.0	0	25	0	21.0	20.6	0.586	0.643	1	
		C-11	23230	782.0	8	1	0	24.0	23.2	0.610	0.733	1	
		Edge1	23230	782.0	8	25	0	23.0	22.2	0.545	0.655	1	
Off	ODCK	Ed==2	23230	782.0	0	1	0	24.0	23.2	0.142	0.171	1	
l Off	QPSK	Edge2	23230	782.0	0	25	0	23.0	22.2	0.082	0.098	1	
		Dane	23230	782.0	9	1	0	24.0	23.2	0.385	0.463	1	
		Rear	23230	782.0	9	25	0	23.0	22.2	0.300	0.361	1	

Note(s):

- 1. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05)
- 2. According to Notice 2016-DRS001, based on the IEEE 1528 and IEC 62209 requirements, the high, mid and low channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.
- 3. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 0.941 W/kg, therefore two times repeat SAR is required.
 - 3.2 Repeat SAR = 0.928 W/kg < 1.45 W/kg
 - 3.3 SAR variation= 1.3 % < 20%

Page 110 Rev. 00

LTE Band 66 (20MHz Bandwidth):

Power		Test		Freq.	Dist.	UL RB	UL RB	Power	(dBm)	Measured	Reported		
back off (On/Off)	Mode	Position	Channel	(MHz)		Allocation	Start	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	Plot.
			132332	1745.0	0	1	0	20.0	19.9	0.980	1.003		
			132332	1745.0	0	1	25	20.0	19.8	0.975	1.021	2	8
			132332	1745.0	0	1	49	20.0	19.8	0.966	1.012	2	
			132332	1745.0	0	50	0	19.0	19.0	0.978	0.978		
			132332	1745.0	0	50	24	19.0	18.9	0.966	0.989	2	
		Edge1	132332	1745.0	0	50	49	19.0	18.8	0.953	0.998	2	
		Eugei	132332	1745.0	0	100	0	19.0	19.0	0.948	0.948	2	
			132072	1720.0	0	1	0	20.0	19.6	0.894	0.980	2	
			132072	1720.0	0	50	0	19.0	18.7	0.866	0.928	2	
			132572	1770.0	0	1	0	20.0	19.8	0.947	0.992	2	
			132572	1770.0	0	50	0	19.0	18.8	0.942	0.986	2	
			132332	1745.0	0	1	0	20.0	19.9	1.010	1.034	3	
On	QPSK	E-12	132332	1745.0	0	1	0	20.0	19.9	0.231	0.236	1	
		Edge2	132332	1745.0	0	50	0	19.0	19.0	0.228	0.228	1	
			132332	1745.0	0	1	0	20.0	19.9	0.902	0.923		
			132332	1745.0	0	1	25	20.0	19.8	0.899	0.941	2	
			132332	1745.0	0	1	49	20.0	19.8	0.885	0.927	2	
			132332	1745.0	0	50	0	19.0	19.0	0.830	0.830		
			132332	1745.0	0	50	24	19.0	18.9	0.833	0.852	2	
		Rear	132332	1745.0	0	50	49	19.0	18.8	0.822	0.861	2	
			132332	1745.0	0	100	0	19.0	19.0	0.834	0.834	2	
			132072	1720.0	0	1	0	20.0	19.6	0.770	0.844	2	
			132072	1720.0	0	50	0	19.0	18.7	0.763	0.818	2	
			132572	1770.0	0	1	0	20.0	19.8	0.902	0.945	2	
			132572	1770.0	0	50	0	19.0	18.8	0.843	0.883	2	
		E-14	132332	1745.0	8	1	0	24.0	23.2	0.426	0.512	1	
		Edge1	132332	1745.0	8	50	0	23.0	22.3	0.347	0.408	1	
Off	ODCI	Edgo	132332	1745.0	0	1	0	24.0	23.2	0.571	0.686	1	
Off	QPSK	Edge2	132332	1745.0	0	50	0	23.0	22.3	0.466	0.548	1	
		Da	132332	1745.0	9	1	0	24.0	23.2	0.544	0.654	1	
		Rear	132332	1745.0	9	50	0	23.0	22.3	0.428	0.503	1	

Note(s):

- 1. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05)
- 2. According to Notice 2016-DRS001, based on the IEEE 1528 and IEC 62209 requirements, the high, mid and low channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.
- 3. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 0.941 W/kg, therefore two times repeat SAR is required.
 - 3.2 Repeat SAR = 0.928 W/kg < 1.45W/kg
 - 3.3 SAR variation= -3.0 % < 20%

Page 111 Rev. 00

17 Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance v06, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / R_i$$

Where:

SAR₁ is the highest Reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest Reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

 \mathbf{R}_i is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2]$

A new threshold of 0.04 is also introduced in the KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

$$(SAR_1 + SAR_2)^{1.5} / R_i \le 0.04$$

Page 112 Rev. 00

17.1 Estimated SAR for Simultaneous Transmission SAR Analysis

Considerations for SAR estimation

- 1. When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion.
- 2. Dedicated Host Approach criteria for SAR test exclusion is likewise applied to SAR estimation, with certain distinctions between test exclusion and SAR estimation:
 - When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied for SAR estimation; this is the same between test exclusion and SAR estimation calculations.
 - When the separation distance from the antenna to an adjacent edge is > 5 mm but ≤ 50 mm, the actual antenna-to-edge separation distance is applied for SAR estimation.
 - When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 W/kg

17.1.1 Estimated SAR for Bluetooth

According to section 11, the Bluetooth must be estimated according to following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[Vf_(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Antenna	Band	Frequency	Output	Power		Separa	tion Distance	es(mm)			Estim	ated 1-g SAR (\	N/Kg)	
Antenna	Ballu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
Bluetooth	2.4GHz	2437	9.0	8	5.7	157.0	9.6	19.0	291.0	0.292	0.400	0.173	0.088	0.400

Page 113 Rev. 00

17.2 Sum of the SAR for Simultaneous Transmission Analysis

All Wi-Fi 1-g SAR values were taken form results record in SAR report T171221D04-SF, submitted under FCC ID FKGX11BKA.

17.2.1 Sum of the SAR for WLAN & WWAN

WCDMA Band II+ WLAN

		Simulataneous Tra	nsmission Scenario					
Test	1	2	3	4	1+2 Summed 1g	1+3 Summed 1g	1+4 Summed 1g	SPLSR
Position	WCDMA Band II	Wi-Fi 2.4 GHz Band	Bluetooth	uetooth Wi-Fi SAR(W/kg) SAR(W/kg) SAR(W/kg) 5 GHz Band	(Yes/No)			
Rear	0.945	0.180	0.292	0.058	1.125	1.237	1.003	No
Edge 2	0.414	0.599	0.173	1.187	1.013	0.772	1.601	Yes

Note(s)

As the Sum of the SAR is greater than 1.6W/Kg, so SPLSR is required.

WCDMA Band IV+ WLAN

	Simulataneous Transmission Scenario					1.2	1.4	
Test Position	1	2	3	4	1+2 Summed 1g	1+3 Summed 1g	1+4 Summed 1g	SPLSR
	WCDMA Band IV	Wi-Fi 2.4 GHz Band	Bluetooth	Wi-Fi 5 GHz Band	SAR(W/kg)	SAR(W/kg)	SAR(W/kg)	(Yes/No)
Rear	0.926	0.180	0.292	0.058	1.106	1.218	0.984	No
Edge 2	0.404	0.599	0.173	1.187	1.003	0.772	1.591	No

Note(s):

As the Sum of the SAR is less than 1.6W/Kg, so SPLSR is not required.

WCDMA Band V + WLAN

	Simulataneous Transmission Scenario					1.2		
Test Position	1	2	3	4	1+2 Summed 1g	1+3 Summed 1g SAR(W/kg)	1+4 Summed 1g SAR(W/kg)	SPLSR (Yes/No)
	WCDMA Band V	Wi-Fi 2.4 GHz Band	Bluetooth	Wi-Fi 5 GHz Band	SAR(W/kg)			
Rear	0.663	0.180	0.292	0.058	0.843	0.955	0.721	No
Edge 2	0.106	0.599	0.173	1.187	0.705	0.772	1.293	No

Note(s):

As the Sum of the SAR is less than 1.6W/Kg, so SPLSR is not required.

LTE Band 2 + WLAN

		1+3	1+4				
1	2	3	4	1+2 Summed 1g	1+3 Summed 1g	1+4 Summed 1g	SPLSR
LTE Band 2	Wi-Fi 2.4 GHz Band	Bluetooth	Wi-Fi 5 GHz Band	SAR(W/kg)	SAR(W/kg)	SAR(W/kg)	(Yes/No)
0.930	0.180	0.292	0.058	1.110	1.222	0.988	No
0.558	0.599	0.173	1.187	1.157	0.772	1.745	Yes
	0.930	1 2 LTE Band 2 Wi-Fi 2.4 GHz Band 0.930 0.180	LTE Band 2 2.4 GHz Band Bluetooth 0.930 0.180 0.292	1 2 3 4 LTE Band 2 Wi-Fi 2.4 GHz Band Bluetooth Wi-Fi 5 GHz Band 0.930 0.180 0.292 0.058	1 2 3 4 Summed 1g SAR(W/kg) LTE Band 2 Wi-Fi 2.4 GHz Band Bluetooth Wi-Fi 5 GHz Band SAR(W/kg) 0.930 0.180 0.292 0.058 1.110	1 2 3 4 1+2 Summed 1g Sammed 1g SAR(W/kg) LTE Band 2 Wi-Fi 2.4 GHz Band Bluetooth Wi-Fi 5 GHz Band SAR(W/kg) 0.930 0.180 0.292 0.058 1.110 1.222	1 2 3 4 1+2 Summed 1g SAR(W/kg) Summed 1g SAR(W/kg) Summed 1g SAR(W/kg) SAR

Note(s):

As the Sum of the SAR is greater than 1.6W/Kg, so SPLSR is required.

Page 114 Rev. 00

LTE Band 4 + WLAN

	Simulataneous Transmission Scenario					4.0		
Test Position	1	2	3	4	1+2 Summed 1g	1+3 Summed 1g	1+4 Summed 1g	SPLSR
	LTE Band 4	Wi-Fi 2.4 GHz Band	Bluetooth	Wi-Fi 5 GHz Band	SAR(W/kg)	SAR(W/kg)	SAR(W/kg)	(Yes/No)
Rear	0.932	0.180	0.292	0.058	1.112	1.224	0.990	No
Edge 2	0.542	0.599	0.173	1.187	1.141	0.772	1.729	Yes

Note(s):

As the Sum of the SAR is greater than 1.6W/Kg, so SPLSR is required.

LTE Band 5 + WLAN

	Simulataneous Transmission Scenario					1,2	1.4	
Test Position	1	2	3	4	1+2 Summed 1g	1+3 Summed 1g	1+4 Summed 1g	SPLSR
	LTE Band 5	Wi-Fi 2.4 GHz Band	Bluetooth	Wi-Fi 5 GHz Band	SAR(W/kg)	SAR(W/kg)	SAR(W/kg)	(Yes/No)
Rear	0.583	0.180	0.292	0.058	0.763	0.875	0.641	No
Edge 2	0.142	0.599	0.173	1.187	0.741	0.772	1.329	No
Nicto/o).								

Note(s)

As the Sum of the SAR is less than 1.6W/Kg, so SPLSR is not required.

LTE Band 13 + WLAN

		Simulataneous Transmission Scenario						SPLSR
Test Position	1 1 2 1 2 1 4 1		1+2 Summed 1g	1+3 Summed 1g	1+4 Summed 1g			
	LTE Band 13	Wi-Fi 2.4 GHz Band	Bluetooth	Wi-Fi 5 GHz Band	SAR(W/kg)	SAR(W/kg)	SAR(W/kg)	(Yes/No)
Rear	0.670	0.180	0.292	0.058	0.850	0.962	0.728	No
Edge 2	0.171	0.599	0.173	1.187	0.770	0.772	1.358	No
N1 1 / N								

Note(s):

As the Sum of the SAR is less than 1.6W/Kg, so SPLSR is not required.

LTE Band 66 + WLAN

			4.0					
Test Position	1	2	3	4	1+2 Summed 1g	1+3 Summed 1g SAR(W/kg)	1+4 Summed 1g SAR(W/kg)	SPLSR (Yes/No)
	LTE Band 66	Wi-Fi 2.4 GHz Band	Bluetooth	Wi-Fi 5 GHz Band	SAR(W/kg)			
Rear	0.945	0.180	0.292	0.058	1.125	1.237	1.003	No
Edge 2	0.686	0.599	0.173	1.187	1.285	0.772	1.873	Yes

Note(s):

As the Sum of the SAR is greater than 1.6W/Kg, so SPLSR is required.

Page 115 Rev. 00

17.2.2 Sum of the 1g SAR for Body Exposure Condition

WCDMA Band II+ 5GHz Band

Test	Simulataneous Tra	nsmission Scenario	\(\sigma_1 \sigma_5 \text{A.D.}\)	Calculated		
Position	WCDMA Band II	Wi-Fi 5 GHz Band	Σ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure
Edge 2	0.414	1.187	1.601	16.50	0.01	1

Note(s)

The SPLSR is rounded to two decimal digits and ≤ 0.04

LTE Band 2+ 5GHz Band

Took	Simulataneous Tra	nsmission Scenario	V1 ~ CAD	Calculated		
Test Position	LTE Band 2	\mathbb{V} i-Fi \mathbb{V} 1-g SAF \mathbb{V} 5 GHz Band \mathbb{V} 1-g SAF		distance (cm)	SPLSR	Figure
Edge 2	0.558	1.187	1.745	16.50	0.01	2

TI CDI CD :

The SPLSR is rounded to two decimal digits and $\,\leqq\!0.04$

LTE Band 4+ 5GHz Band

Test	Simulataneous Tra	Simulataneous Transmission Scenario		Calculated			
Positio	LTE Band 4	Wi-Fi 5 GHz Band	Σ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure	
Edge 2	0.542	1.187	1.729	16.50	0.01	3	

Note(s):

The SPLSR is rounded to two decimal digits and ≤ 0.04

LTE Band 66+ 5GHz Band

Took	Simulataneous	Transmission Scenario	V1 a CAB	Calculated		
Test Positio	n LTE Band 66	Wi-Fi 5 GHz Band	Σ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure
Edge	0.686	1.187	1.873	16.50	0.02	4

Note(s):

The SPLSR is rounded to two decimal digits and ≤ 0.04

Page 116 Rev. 00

18 Equipment List & Calibration Status

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Cycle(year)	Calibration Due
Wireless Communication Test Set	Agilent	E5515C 8960	MY48363204	1	2018/07/25
Wideband Radio communication Tester	R&S	CMW 500	116875	1	2018/04/24
S-Parameter Network Analyzer	Agilent	E5071C	MY46107234	1	2018/10/17
Electronic Probe kit	Hewlett Packard	85070D	N/A	N/A	N/A
Power Meter	Agilent	4416	GB41291611	1	2018/08/29
Power Sensor	Agilent	8481H	MY41091956	1	2018/08/29
Data Acquisition Electronics (DAE)	SPEAG	DAE4	877	1	2018/03/19
Data Acquisition Electronics (DAE)	SPEAG	DAE4	558	1	2018/07/23
Dosimetric E-Field Probe	SPEAG	EX3DV4	3665	1	2018/05/23
750 MHz System Validation Dipole	SPEAG	D750V3	1020	1	2019/01/17
835 MHz System Validation Dipole	SPEAG	D835V2	4d015	1	2018/03/20
1750 MHz System Validation Dipole	SPEAG	D1750V2	1023	1	2018/06/26
1900 MHz System Validation Dipole	SPEAG	D1900V2	5d018	1	2018/06/27
Robot	Staubli	RX90L	F02/5T69A1/A/01	N/A	N/A
Amplifier	Mini-Circuit	ZVE-8G	665500309	N/A	N/A
Amplifier	Mini-Circuit	ZHL-1724HLN	D072602#2	N/A	N/A
Thermometer	Comet	53120	12932714	1	2019/03/01
Signal Grenerator	Aglient	E8267C	US43240162	1	2018/08/10
Directional Couplers	Aglient	87301D	MY44350252	1	2018/7/24

Page 117 Rev. 00

19 Facilities

All measurement facilities used to collect the measurement data are located at
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C
No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.

20 Reference

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 2005.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

Page 118 Rev. 00

21 Attachments

Exhibit	Content
1	System Performance Check Plots
2	SAR Test Data Plots
3	SPLSR Plots
4	Calibration Data Report
5	T1171221D04-SF PHOTOs

END OF REPORT

Page 119 Rev. 00