RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART E (Class II Permissive Change)

Test Standard	FCC Part 15.407
FCC ID	FKGX11BKA
Product name	WLAN and BT, 2x2 PCIe M.2 2230 adapter card
Brand Name	DURABOOK
Model No.	9260NGW
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

ven Cleang

Sam Chuang Manager Reviewed by:

eny Ching.

Jerry Chuang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	March 23, 2018	Initial Issue	Doris Chu
01	May 3, 2018	 Add Cable Connector in section 1.3 in page 7. Add loop antenna in page 8. Revise section 2 in page 10. 	Doris Chu
02	May 9, 2018	1. Revise section 1.3 Antenna connector in page 7.	Doris Chu

Table of contents

1.	GENERAL INFORMATION	1
1.1	EUT INFORMATION	1
1.2	EUT CHANNEL INFORMATION	5
1.3	ANTENNA INFORMATION	7
1.4	MEASUREMENT UNCERTAINTY	7
1.5	FACILITIES AND TEST LOCATION	3
1.6	INSTRUMENT CALIBRATION	3
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT)
1.8	TEST METHODOLOGY AND APPLIED STANDARDS)
2.	TEST SUMMERY10)
3.	DESCRIPTION OF TEST MODES 11	I
3.1	THE WORST MODE OF OPERATING CONDITION11	I
3.2	THE WORST MODE OF MEASUREMENT12	2
3.3	EUT DUTY CYCLE	3
4.	TEST RESULT15	5
4.1	AC POWER LINE CONDUCTED EMISSION15	5
4.2	OUTPUT POWER MEASUREMENT18	3
4.3	RADIATION BANDEDGE AND SPURIOUS EMISSION 24	1
AP	PENDIX 1 - PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	TWINHEAD INTERNATIONAL CORP. 11F, No. 550, Rueiguang Rd., Neihu, Taipei, Taiwan 114, R.O.C.				
Manufacturer	TWINHE	AD INTERNATIONAL CORF 550, Rueiguang Rd., Neihu,	D.		
Equipment	WLAN ar	nd BT, 2x2 PCIe M.2 2230 a	dapter card		
Model No.	9260NG	N			
Model Discrepancy	All the mo	odel number was just for ma	rketing purpose on	ly.	
Received Date	DURABC	ЮК			
Date of Test	March 12	2 ~ 30, 2018			
Power Operation	Power form Adapter FSP / FSP065-REBN2 I/P: 100-240VAC, 50-60Hz, 1.5A O/P: 19VDC, 3.42A				
		Mode	Frequency Range (MHz)	Output Power (W)	
		IEEE 802.11a	5180 ~ 5240	0.0673	
		IEEE 802.11n 20 MHz	5180 ~ 5240	0.1212	
	U-NII-1	IEEE 802.11n 40 MHz	5190 ~ 5230	0.1027	
		IEEE 802.11ac VHT 80 MHz	5210	0.0687	
		IEEE 802.11ac VHT 160 MHz	5250	0.0244	
		IEEE 802.11a	5260 ~ 5320	0.0929	
		IEEE 802.11n 20 MHz	5260 ~ 5320	0.1220	
Output Power(W)	U-NII-2a	IEEE 802.11n 40 MHz	5270 ~ 5310	0.1027	
		IEEE 802.11ac VHT 80 MHz	5290	0.0703	
		IEEE 802.11a	5500 ~ 5700	0.0570	
		IEEE 802.11n 20 MHz	5500 ~ 5700	0.0772	
	U-NII-2c	IEEE 802.11n 40 MHz	5510 ~ 5670	0.0323	
		IEEE 802.11ac VHT 80 MHz	5530 ~ 5610	0.0265	
		IEEE 802.11ac VHT 160 MHz	5570	0.0375	
		IEEE 802.11a	5745 ~ 5825	0.0785	
		IEEE 802.11n 20 MHz	5745 ~ 5825	0.1153	
	U-NII-3	IEEE 802.11n 20 MHz IEEE 802.11n 40 MHz	5745 ~ 5825 5755 ~ 5795	0.1153 0.1163	

Class II Permissive Change	 The subject approved module is being used in a specific host. [Product: Fully-Rugged Tablet PC, brand name/model: DURABOOK / X11XXXXXX(X=0~9,A~Z,a~z,Blank), U11XXXXXX(X=0~9,A~Z,a~z,Blank), R11(R5)]. Power reduction per tune-up procedure is applied in order to comply with exposure requirements. The product only installs a WLAN module [X11XXXXX(X=0~9,A~Z,a~z,Blank), U11XXXXX(X=0~9,A~Z,a~z,Blank), R11(R5)]
-------------------------------	---

Remark:

1. Client consigns only one sample to test (model number: X11BK). Therefore, the testing Lab. just guarantees the unit, which has been tested.

Τ

1.2 EUT CHANNEL INFORMATION

Frequency Range	UNII-1 IEEE 802.11a IEEE 802.11n 20 MHz IEEE 802.11ac VHT 80 MHz IEEE 802.11ac VHT 80 MHz IEEE 802.11ac VHT 160 MHz UNII-2a IEEE 802.11a IEEE 802.11a IEEE 802.11a IEEE 802.11a IEEE 802.11a IEEE 802.11a VHT 80 MHz IEEE 802.11a VHT 80 MHz IEEE 802.11a VHT 80 MHz IEEE 802.11a IEEE 802.11a VHT 80 MHz IEEE 802.11a VHT 80 MHz	5180 ~ 5240 MHz 5180 ~ 5240 MHz 5190 ~ 5230 MHz 5210 MHz 5250 MHz 5260 ~ 5320 MHz 5260 ~ 5320 MHz 5270 ~ 5310 MHz 5290 MHz 5200 ~ 5700 MHz 5500 ~ 5700 MHz 5500 ~ 5700 MHz 5500 ~ 5700 MHz 5500 ~ 5700 MHz 5510 ~ 5670 MHz 5510 ~ 5670 MHz 5570 MHz 5570 MHz 5745 ~ 5825 MHz 5745 ~ 5825 MHz 5745 ~ 5825 MHz 5755 ~ 5795 MHz 5775 MHz
Modulation Type	1. IEEE 802.11a mode: OFDM 2. IEEE 802.11n 20 MHz mode 3. IEEE 802.11n 40 MHz mode 4. IEEE 802.11ac VHT 80 MHz 5. IEEE 802.11ac VHT 160 MH	: OFDM mode: OFDM

Remark:

Г

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested					
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation			
☐ 1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

1.3 ANTENNA INFORMATION

Antenna Type	⊠ PIFA □ PCB □ Dipole □ Coils
Antenna Gain	Well Green Technology Co., Ltd P/N: 22+600763+0 (Main) / 1.18dBi 22+600764+00 (Aux) / -0.44dBi
Antenna connector	Unique antenna connector with U.FL

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
Radiation	Jerry Chuang	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

Wugu 966 Chamber A						
Name of Equipment Manufacturer Model Serial Number Calibration					Calibration Due	
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	08/25/2017	08/24/2018	
Pre-Amplifier	EMEC	EM330	60609	06/07/2017	06/06/2018	
Spectrum Analyzer	Agilent	E4446A	US42510252	11/27/2017	11/26/2018	
Loop Ant	COM-POWER	AL-130	121051	03/21/2018	03/20/2019	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Pre-Amplifier	HP	8449B	3008A00965	06/27/2017	06/26/2018	
Filter	N/A	2400-2500	N/A	N/A	N/A	
Filter	N/A	0-6000	N/A	N/A	N/A	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	07/31/2017	07/30/2018	

AC Conducted Emissions Test Site						
Name of Equipment	Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration Due					
LISN	R&S	ENV216	101054	05/18/2017	05/17/2018	
LISN	SCHWARZBEC K	NSLK 8127	8127-541	02/14/2018	02/13/2019	
EMI Test Receiver	R&S	ESCI	100064	05/17/2017	05/16/2018	

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment								
No.	No. Equipment Brand Model Series No. FCC ID							
	N/A							

Support Equipment								
No.	No. Equipment Brand Model Series No. FCC ID							
	N/A							

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.407, KDB 789033 D02 v02r01.

2. TEST SUMMERY

FCC Standard Sec. Chapter		Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a) 4.1		AC Conducted Emission	Pass
15.407(a)	4.2	Output Power Measurement	Pass
15.407(b)	4.3	Radiation Band Edge	Pass
15.407(b)	4.3	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	 IEEE 802.11a mode: 6Mbps IEEE 802.11n 20 MHz mode: MCS8 IEEE 802.11n 40 MHz mode: MCS8 IEEE 802.11ac VHT 80 MHz mode: MCS8 IEEE 802.11ac VHT 160 MHz mode: MCS8 							
		Mode	Frequency Range (MHz)	Number of Channels				
		IEEE 802.11a	5180 ~ 5240	4 Channels				
		IEEE 802.11n 20 MHz	5180 ~ 5240	4 Channels				
	U-NII-1	IEEE 802.11n 40 MHz	5190 ~ 5230	2 Channels				
		IEEE 802.11ac VHT 80 MHz	5210	1 Channels				
		IEEE 802.11ac VHT 160 MHz	5250	1 Channels				
		IEEE 802.11a	5260 ~ 5320	4 Channels				
	U-NII-2a	IEEE 802.11n 20 MHz	5260 ~ 5320	4 Channels				
	0-INII-2a	IEEE 802.11n 40 MHz	5270 ~ 5310	2 Channels				
Operating Frequency		IEEE 802.11ac VHT 80 MHz	5290	1 Channels				
Range &		IEEE 802.11a	5500 ~ 5700	11 Channels				
Number of Channels		IEEE 802.11n 20 MHz	5500 ~ 5700	11 Channels				
	U-NII-2c	IEEE 802.11n 40 MHz	5510 ~ 5670	5 Channels				
		IEEE 802.11ac VHT 80 MHz	5530 ~ 5610	2 Channels				
		IEEE 802.11ac VHT 160 MHz	5570	1 Channels				
		IEEE 802.11a	5745 ~ 5825	5 Channels				
	U-NII-3	IEEE 802.11n 20 MHz	5745 ~ 5825	5 Channels				
		IEEE 802.11n 40 MHz	5755 ~ 5795	2 Channels				
		IEEE 802.11ac VHT 80 MHz	5775	1 Channels				

Remark:

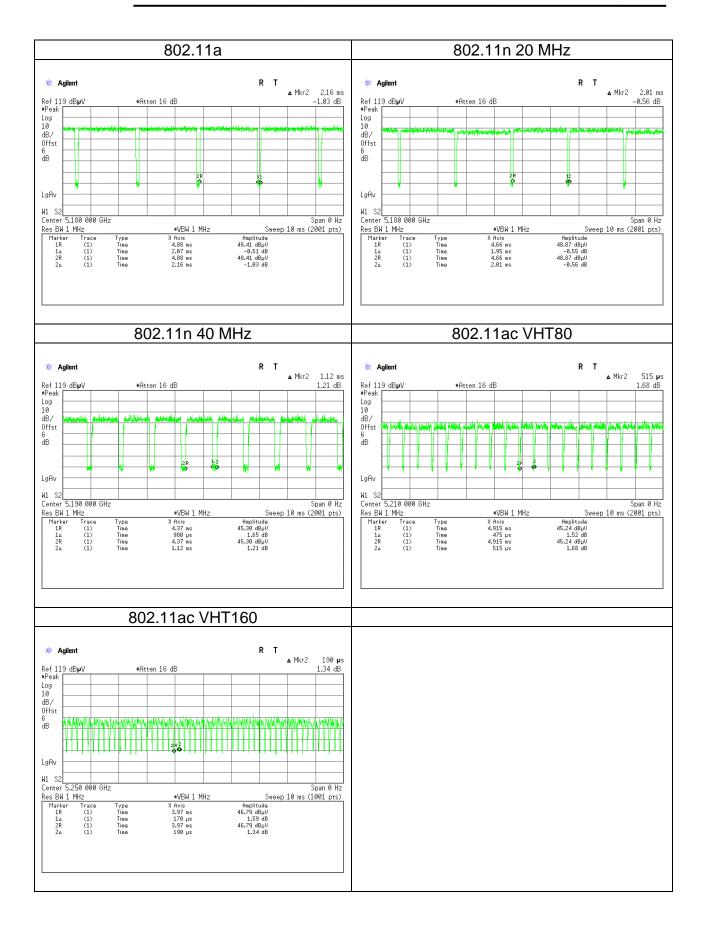
1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G					
Test Condition	Band edge, Emission for Unwanted and Fundamental				
Voltage/Hz 120V/60Hz					
Test Mode Mode 1:EUT power by AC adapter via power cable.					
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 				
Worst Polarity	Horizontal 🗌 Vertical				

Radiated Emission Measurement Below 1G					
Test Condition Radiated Emission Below 1G					
Voltage/Hz	120V/60Hz				
Test Mode	Mode 1:EUT power by AC adapter via power cable.				
Worst Mode	🛛 🖂 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle								
Configuration TX ON (ms)		TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)				
802.11a	2.0700	2.1600	95.83%	0.18				
802.11n 20	1.9500	2.0100	97.01%	0.13				
802.11n 40	0.9800	1.1200	87.50%	0.58				
802.11ac VHT80	0.4750	0.5150	92.23%	0.35				
802.11ac VHT160	0.1700	0.1900	89.47%	0.48				

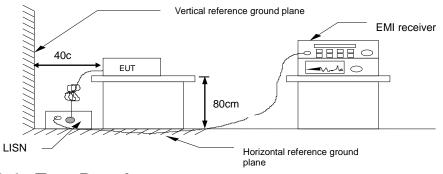
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a)(2)

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

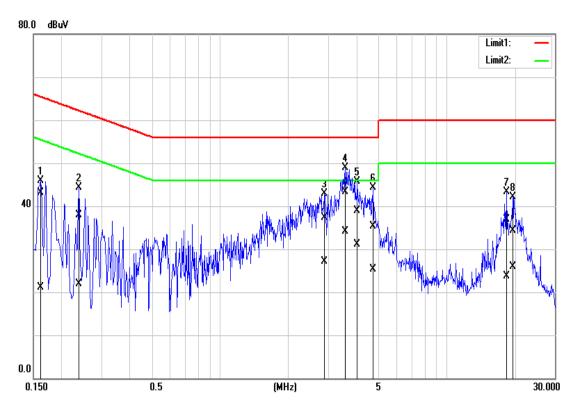

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

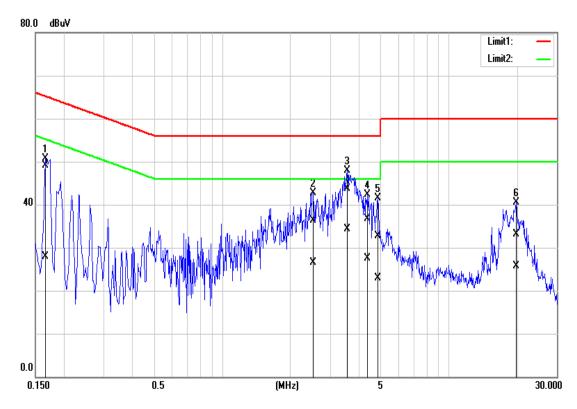
- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result

<u>Pass.</u>


Test Data

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	March 30, 2018
Phase:	Line	Test Engineer	Dally Hong

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1620	33.53	11.54	9.66	43.19	21.20	65.36	55.36	-22.17	-34.16
2	0.2380	28.17	12.22	9.67	37.84	21.89	62.16	52.17	-24.32	-30.28
3	2.8940	27.56	17.32	9.73	37.29	27.05	56.00	46.00	-18.71	-18.95
4	3.5660	33.60	24.31	9.75	43.35	34.06	56.00	46.00	-12.65	-11.94
5	4.0300	29.17	21.41	9.75	38.92	31.16	56.00	46.00	-17.08	-14.84
6	4.7220	25.52	15.62	9.77	35.29	25.39	56.00	46.00	-20.71	-20.61
7	18.3540	26.93	13.80	9.99	36.92	23.79	60.00	50.00	-23.08	-26.21
8	19.5820	24.29	15.83	10.01	34.30	25.84	60.00	50.00	-25.70	-24.16

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	March 30, 2018
Phase:	Neutral	Test Engineer	Dally Hong

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1660	39.43	18.21	9.71	49.14	27.92	65.15	55.16	-16.01	-27.24
2	2.5220	26.52	16.73	9.77	36.29	26.50	56.00	46.00	-19.71	-19.50
3	3.5700	33.82	24.58	9.79	43.61	34.37	56.00	46.00	-12.39	-11.63
4	4.3620	26.88	17.67	9.79	36.67	27.46	56.00	46.00	-19.33	-18.54
5	4.8780	22.98	13.01	9.81	32.79	22.82	56.00	46.00	-23.21	-23.18
6	19.9340	23.00	15.72	10.06	33.06	25.78	60.00	50.00	-26.94	-24.22

4.2 OUTPUT POWER MEASUREMENT

4.2.1 Test Limit

According to §15.407 (a)(1), 15.407(a)(2) and 15.407(a)(3).

<u>UNII-1 :</u>

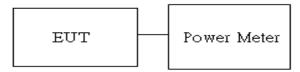
For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW(24 dBm) and The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz ,provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

UNII-2a and 2c:

the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. and The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 Log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

<u>UNII-3:</u>

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


UNII-1 Limit	Antenna not exceed 6 dBi : 24dBm (EIRP : 23dBm) Antenna with DG greater than 6 dBi : [Limit = $30 - (DG - 6)$]
UNII-2a/2c Limit	Antenna not exceed 6 dBi : 24dBm (EIRP : 30dBm) Antenna with DG greater than 6 dBi : [Limit = $30 - (DG - 6)$]
UNII-3 Limit	 Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi : [Limit = 30 - (DG - 6)]

4.2.2 Test Procedure

Test method Refer as KDB 789033 D02 v01r03, Section E.3.b.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Average output power. in the test report.

4.2.3 Test Setup

4.2.4 Test Result

Conducted output power :

	UNII-1									
Config CH		Freq.	Powe	er Set	AV Power(dBm)		AV Total Power	AV Total Power	Limit	
comg	5	(MHz)	chain0	chain1	chain0	chain1	(dBm)	(W)	(dBm)	
IEEE	36	5180	17.50	-	16.85	-	16.85	0.0484		
802.11a Data rate:	44	5220	17.50	-	18.27	-	18.27	0.0671		
6Mbps	48	5240	17.50	-	18.28	-	18.28	0.0673		
IEEE 36 802.11n HT20 44 Data rate:	36	5180	15.60	15.60	15.35	15.85	18.62	0.0727		
	44	5220	18.40	18.40	17.80	17.85	20.84	0.1212		
MCS8	48	5240	18.40	18.40	17.81	17.83	20.83	0.1211		
IEEE 802.11n HT40	38	5190	15.50	15.50	15.85	15.88	18.88	0.0772	24	
Data rate: MCS8	46	5230	15.50	15.50	17.35	16.85	20.12	0.1027		
IEEE 802.11ac VHT80 Data rate: MCS8	42	5210	15.00	15.00	15.35	15.37	18.37	0.0687		
IEEE 802.11ac VHT160 Data rate: MCS8	50	5250	10.25	10.25	10.87	10.85	13.87	0.0244		

	UNII-2a										
Config CH	сн	Freq.	Power Set		AV Power(dBm)		AV Total Power	AV Total Power	Limit		
coning	5	(MHz)	chain0	chain1	chain0	chain1	(dBm)	(dBm)	(dBm)		
IEEE	52	5260	20.00	-	19.68	-	19.68	0.0929			
802.11a Data rate: 6Mbps	56	5280	20.00	-	19.60	-	19.60	0.0912			
	64	5320	20.00	-	16.18	-	16.18	0.0415			
	52	5260	18.75	18.75	17.80	17.85	20.84	0.1212			
802.11n HT20 Data rate:	56	5280	19.25	19.25	17.82	17.87	20.86	0.1218			
MCS8	64	5320	18.00	18.00	17.83	17.88	20.87	0.1220	24		
IEEE 802.11n	54	5270	14.50	14.50	16.85	17.35	20.12	0.1027			
HT40 Data rate: MCS8	62	5310	14.50	14.50	16.86	17.25	20.07	0.1016			
IEEE 802.11ac VHT80 Data rate: MCS8	58	5290	14.30	14.30	15.35	15.56	18.47	0.0703			

	UNII-2c									
	СН	Freg.		er Set	AV Pow	AV Power(dBm)		AV Total Power	Limit	
Config	Сп	(MHz)	chain0	chain1	chain0	chain1	Power (dBm)	(W)	(dBm)	
IEEE	100	5500	17.50	-	16.85	-	16.85	0.0484		
802.11a Data rate:	116	5580	17.50	-	16.88	-	16.88	0.0488		
6Mbps	140	5700	17.50	-	17.56	-	17.56	0.0570		
IEEE 802.11n	100	5500	15.25	15.25	14.85	15.85	18.39	0.0690		
HT20 1' Data rate:	116	5580	17.25	17.25	15.85	15.88	18.88	0.0772		
	140	5700	15.25	15.25	15.52	15.64	18.26	0.0669		
IEEE 802.11n	102	5510	16.00	16.00	14.04	0.35	14.22	0.0264		
HT40 Data rate:	110	5550	16.00	16.00	14.05	0.26	14.23	0.0265	24	
MCS8	134	5670	16.00	16.00	14.95	0.31	15.10	0.0323		
IEEE 802.11ac VHT80 Data rate: MCS8	106	5530	11.62	11.62	11.21	11.23	14.23	0.0265		
IEEE 802.11ac VHT160 Data rate: MCS8	114	5570	13.50	13.50	17.60	18.85	15.74	0.0375		

	UNII-3									
	СН	Freq.	Powe	er Set	AV Power(dBm)		AV Total Power	AV Total Power	Limit	
Config	Сп	(MHz)	chain0	chain1	chain0	chain1	(dBm)	(W)	(dBm)	
IEEE	149	5745	19.75	-	19.76	-	18.39	0.0690		
802.11a Data rate:	157	5785	20.00	-	19.81	-	18.88	0.0773		
6Mbps	165	5825	19.75	-	19.75	-	18.95	0.0785		
IEEE 802.11n	149	5745	18.60	18.60	17.55	17.65	20.61	0.1151		
HT20 Data rate:	157	5785	18.60	18.60	17.35	17.38	20.38	0.1090		
MCS0	165	5825	18.60	18.60	17.85	17.35	20.62	0.1153	30	
IEEE 802.11n HT40	151	5755	7.50	7.50	17.36	17.37	20.38	0.1090		
Data rate: MCS0	159	5795	7.50	7.50	17.20	18.05	20.66	0.1163		
IEEE 802.11ac VHT80 Data rate: MCS0	155	5775	13.50	13.50	14.60	14.65	17.64	0.0580		

4.3 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.3.1 Test Limit

FCC according to §15.407, §15.209 and §15.205,

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

<u>UNII-1 :</u>

For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250-5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz

UNII-2a and 2c :

For devices with operating frequencies in the band 5250-5350 MHz but having a channel bandwidth that overlaps the band 5150-5250 MHz, the devices' unwanted emission shall not exceed -27 dBm/MHz e.i.r.p. outside the band 5150-5350 MHz and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device shall be labelled "for indoor use only." Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p.

<u>UNII-3:</u>

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.3.2 Test Procedure

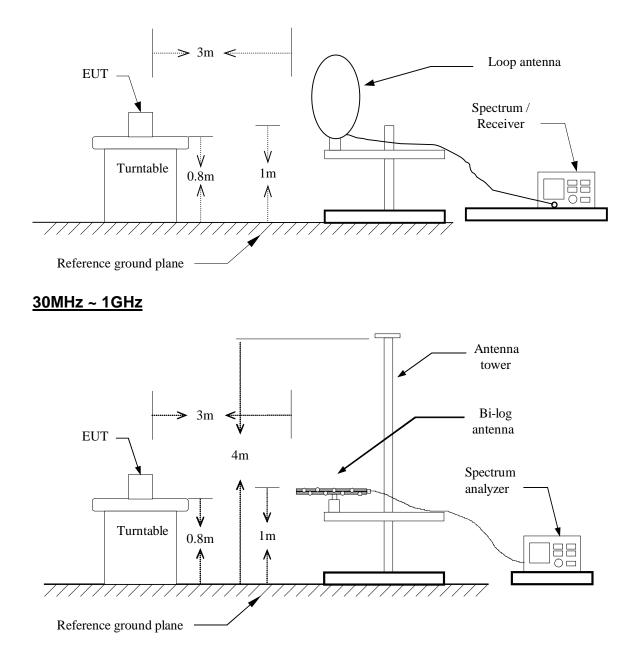
Test method Refer as KDB 789033 D02 v02r01, Section G.3, G.4, G.5, and G.6,.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

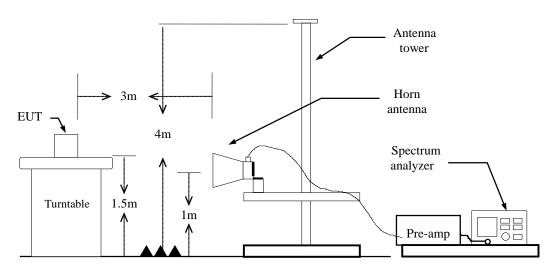
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

4. No emission found between lowest internal used/generated frequency to 30MHz (9KHz~30MHz)

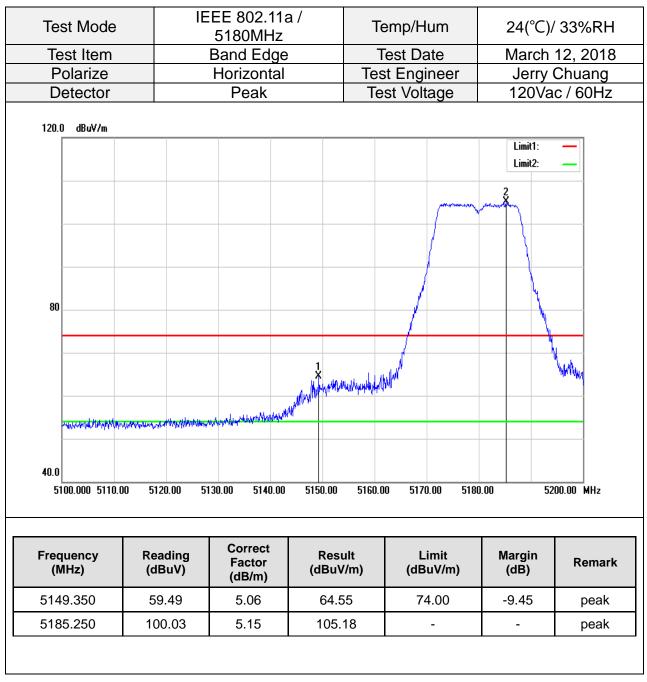

- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3*RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

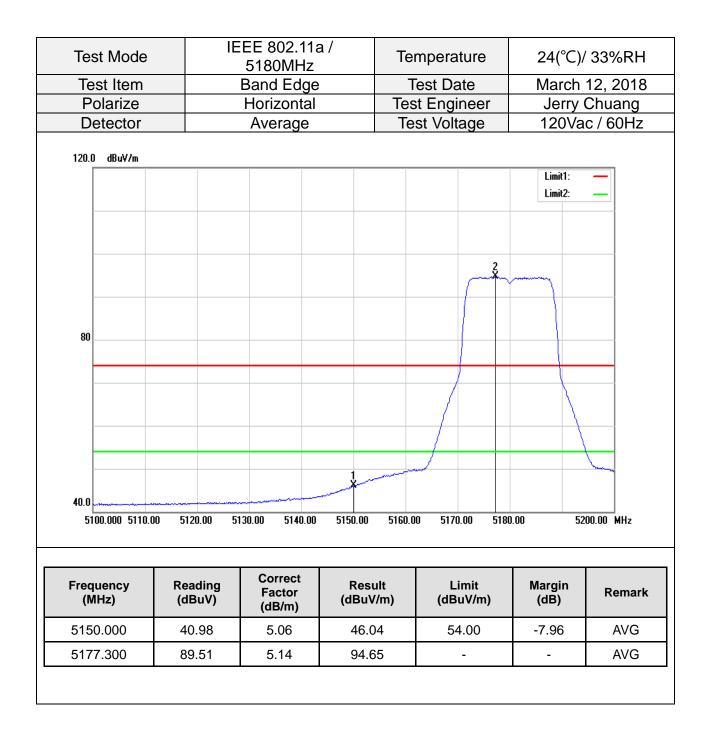
If Duty Cycle \geq 98%, VBW=10Hz.

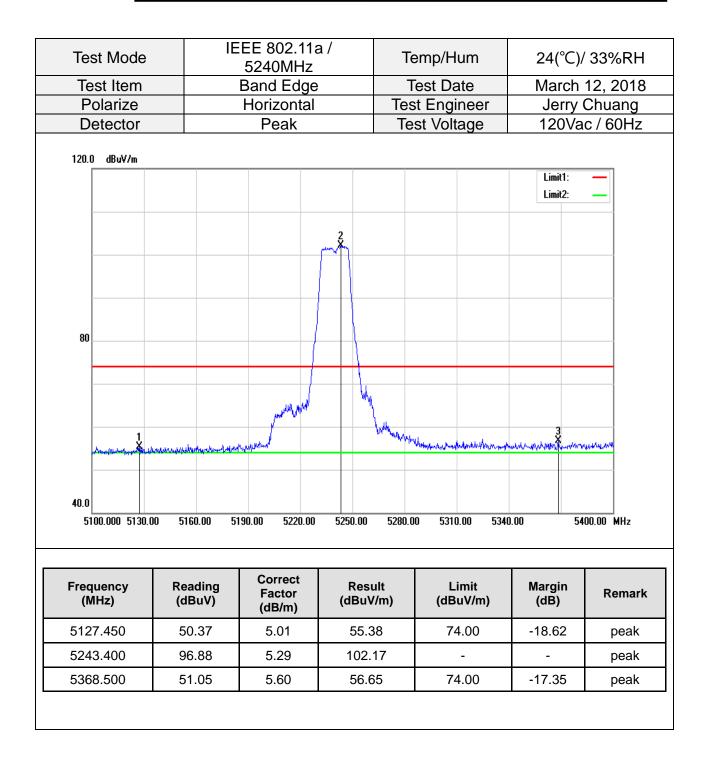

If Duty Cycle < 98%, VBW=1/T.

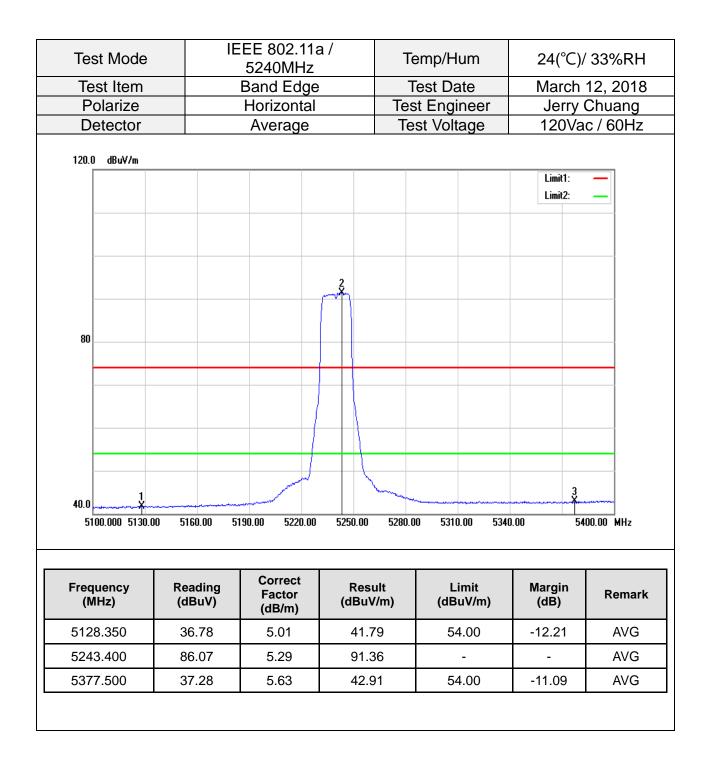
Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW Setting
802.11a	96%	2.0700	483.092	510Hz
802.11n 20MHz	97%	1.9500	512.821	560Hz
802.11n 40MHz	88%	0.9800	1020.408	1.1KHz
802.11ac VHT80 MHz	92%	0.4750	2105.263	2.2KHz
802.11ac VHT160 MHz	89%	0.1700	5.882	6.2KHz

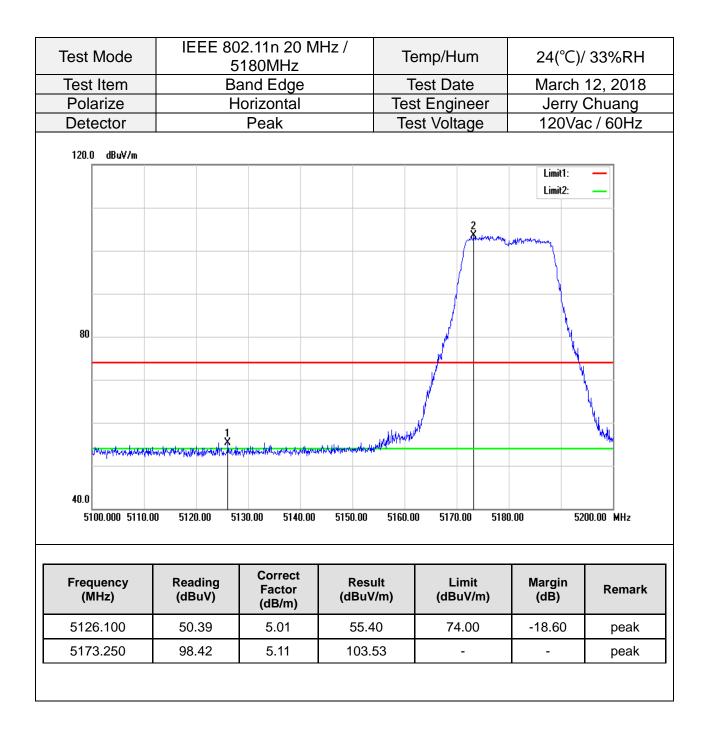
4.3.3 Test Setup <u>9kHz ~ 30MHz</u>

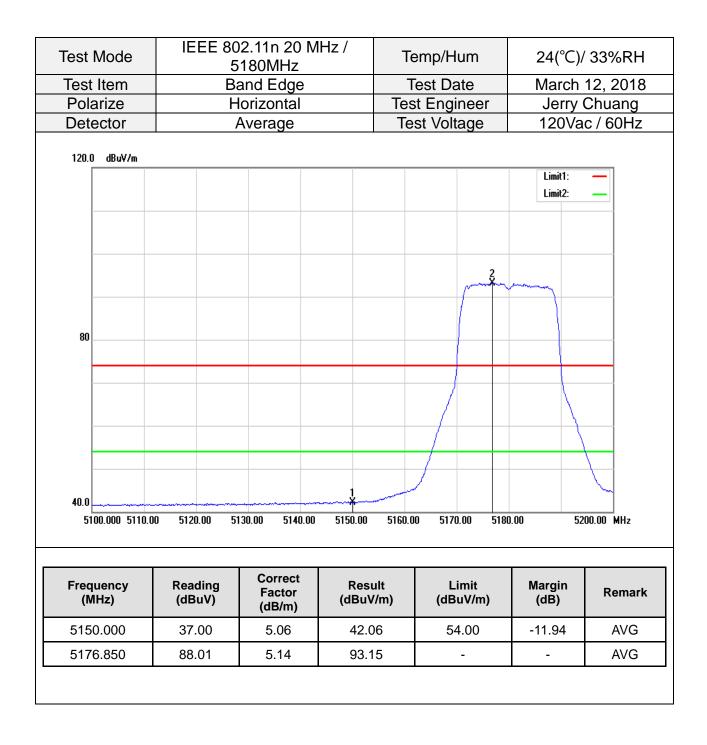

Above 1 GHz

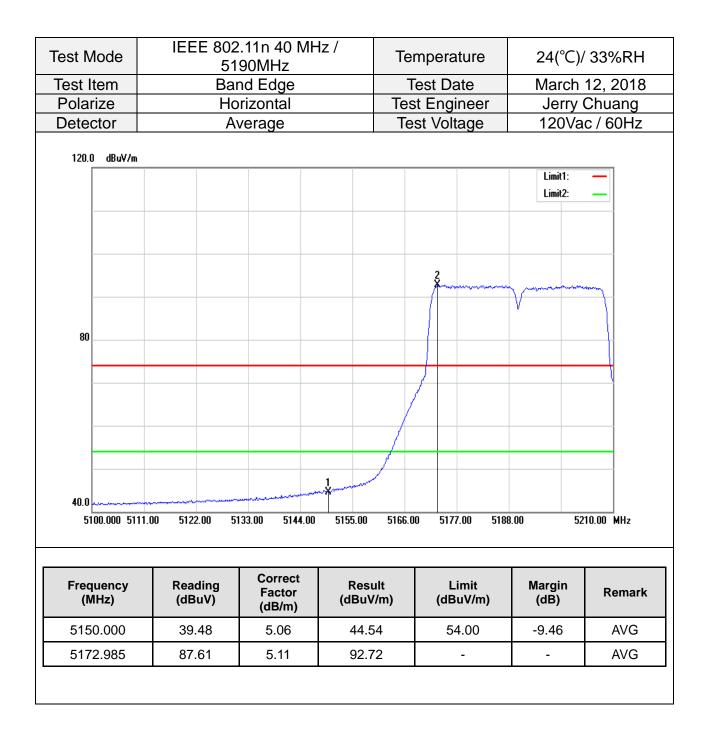



4.3.4 Test Result


Test Data

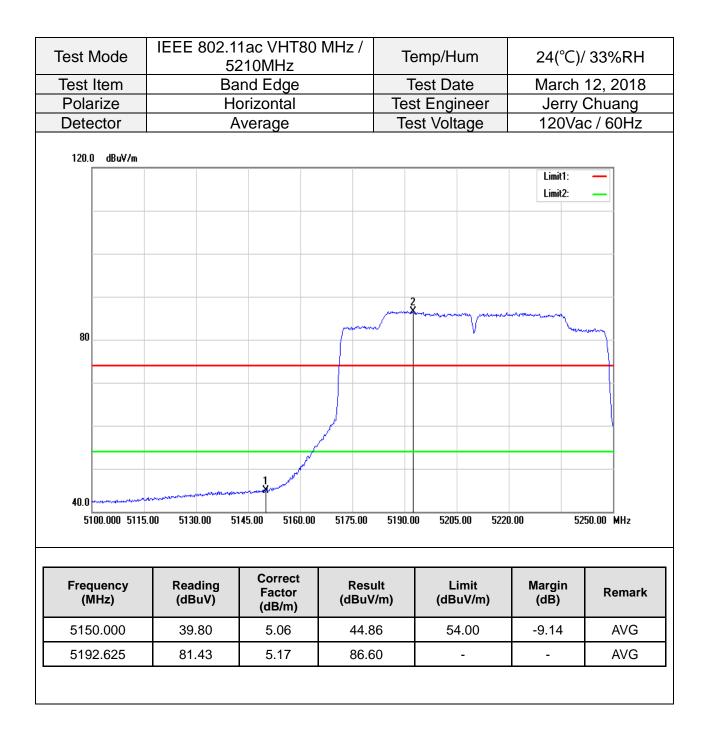

Band Edge Test Data for UNII-1





Test Mode		2.11n 20 Mł 240MHz	Hz /	ſemp/Hum	24(°C)/ 33%RH	
Test Item	Ba	nd Edge		Test Date	March	12, 2018
Polarize		orizontal	Те	est Engineer	Jerry	Chuang
Detector		Peak	Т	est Voltage	120Va	c / 60Hz
120.0 dBu¥/m						
					Limit1: Limit2:	_
			m			
80						
1 Autheninetration	naulutalauthittimantiklartima	handsmoundary	Mandana	the state of the s	poppedite for a star way and the set	ht.galgarie
40.0						
5100.000 5130.	00 5160.00 51	90.00 5220.00	5250.00 5280	.00 5310.00 534	D.OO 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5102.400	49.77	4.94	54.71	74.00	-19.29	peak
5245.500	98.10	5.31	103.41	-	-	peak
5376.150	50.81	5.63	56.44	74.00	-17.56	peak

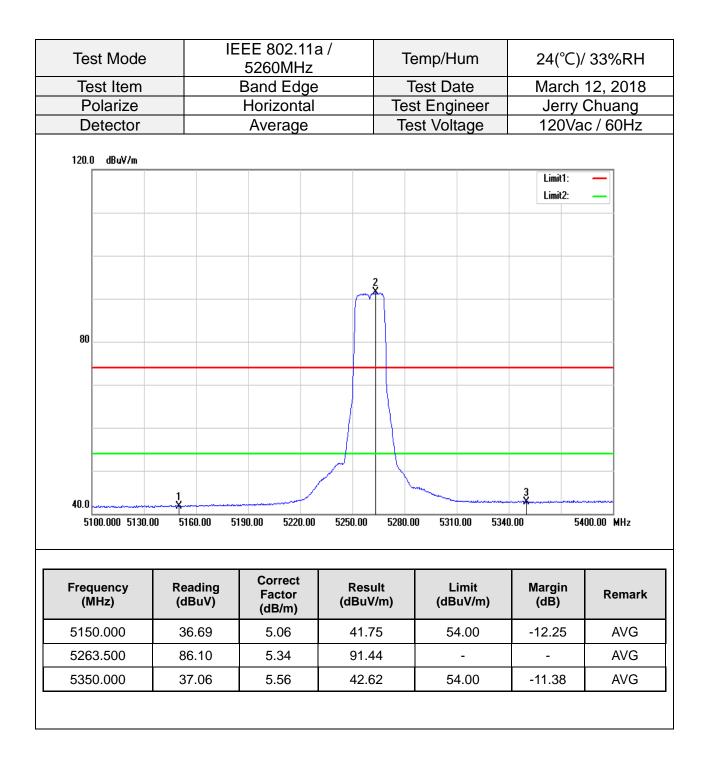
Test Mode		2.11n 20 MF 240MHz	łz /	Temperature	24(°C)/ 33%RH	
Test Item	Ba	nd Edge		Test Date	March	12, 2018
Polarize		orizontal	Т	est Engineer		Chuang
Detector	A	verage		Test Voltage	120Va	c / 60Hz
120.0 dBuV/m	I					
					Limit1: Limit2:	_
			2			
80						
	1					3
40.0 5100.000 51	30.00 5160.00 5	190.00 5220.00	5250.00 52	80.00 5310.00 534	0.00 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5149.950	37.03	5.06	42.09	54.00	-11.91	AVG
5245.500	87.83	5.31	93.14	-	-	AVG
5389.050	37.67	5.65	43.32	54.00	-10.68	AVG

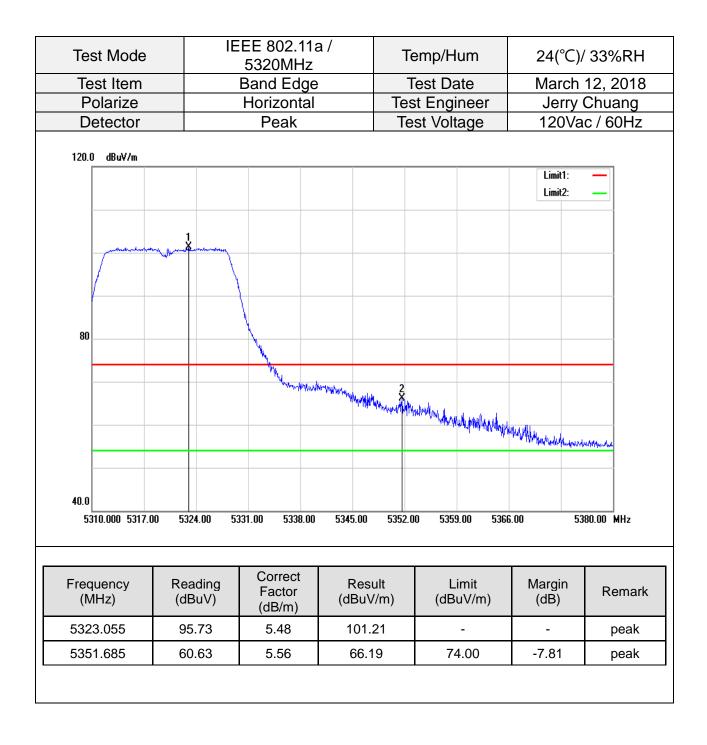


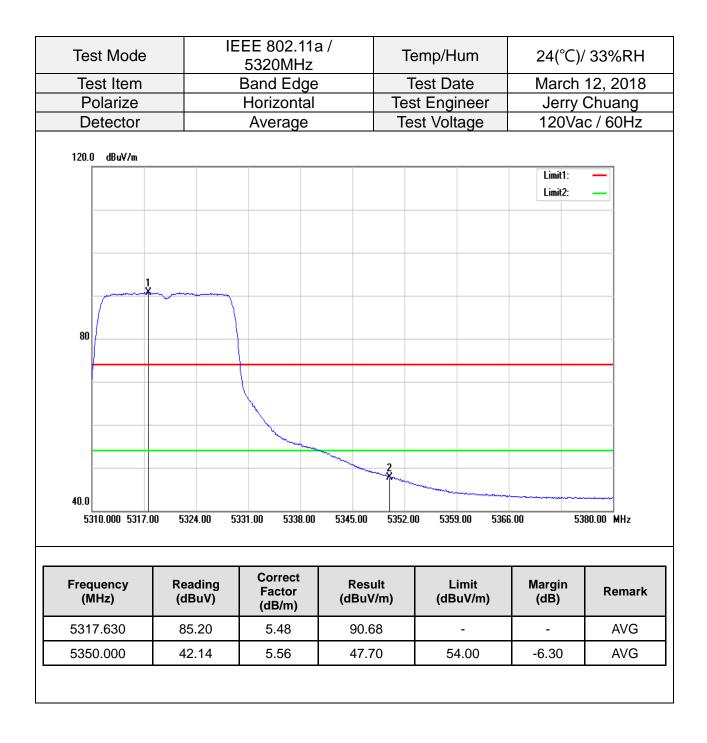
Test Mode		2.11n 40 Mł 230MHz	Hz /	Temp/ł	Hum	24(°C)/ 33%RH
Test Item	Ba	nd Edge		Test D	ate	March	n 12, 2018
Polarize		orizontal		Test Eng	gineer	Jerry	[,] Chuang
Detector		Peak		Test Vo	ltage	120V	ac / 60Hz
120.0 dBuV/m							
						Limit1: Limit2:	_
			2				
80							
home analysafter to a	and Radio and and the on the superior	nd call Warner		March March March	hansplaten som angen	manappatrices 3	monthere
40.0							
5100.000 5130.	.00 5160.00 5	190.00 5220.00	5250.00	5280.00 53	10.00 5340	D.00	5400.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/	-	Limit BuV/m)	Margin (dB)	Remark
5140.050	50.74	5.03	55.77	7	74.00	-18.23	peak
5242.050	97.49	5.29	102.7	8	-	-	peak
	51.29	5.61	56.90		74.00	-17.10	peak

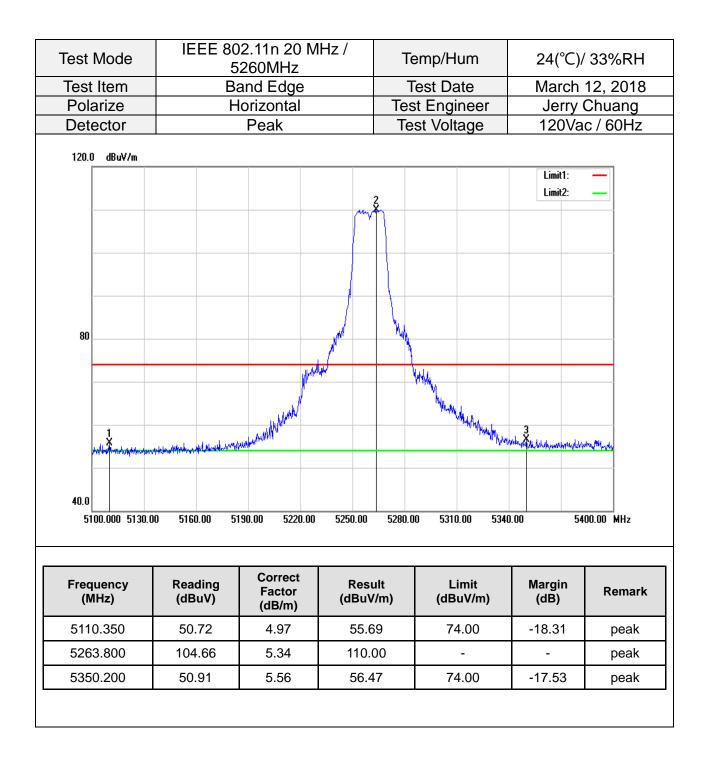
Test Mode		2.11n 40 Mł 230MHz	ר ^{Hz}	「emp/Hum	24(°C)/	33%RH
Test Item	Ba	nd Edge		Test Date	March	12, 2018
Polarize		orizontal	Te	st Engineer		Chuang
Detector	A	verage	T	est Voltage	120Va	c / 60Hz
120.0 dBuV/m						
					Limit1: Limit2:	_
80						
40.0			Conner		3	angan makinan
5100.000 5130.	00 5160.00 51	90.00 5220.00	5250.00 5280	.00 5310.00 534	D.OO 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5150.000	37.65	5.06	42.71	54.00	-11.29	AVG
5242.800	87.18	5.29	92.47	-	-	AVG
5350.000	37.45	5.56	43.01	54.00	-10.99	AVG

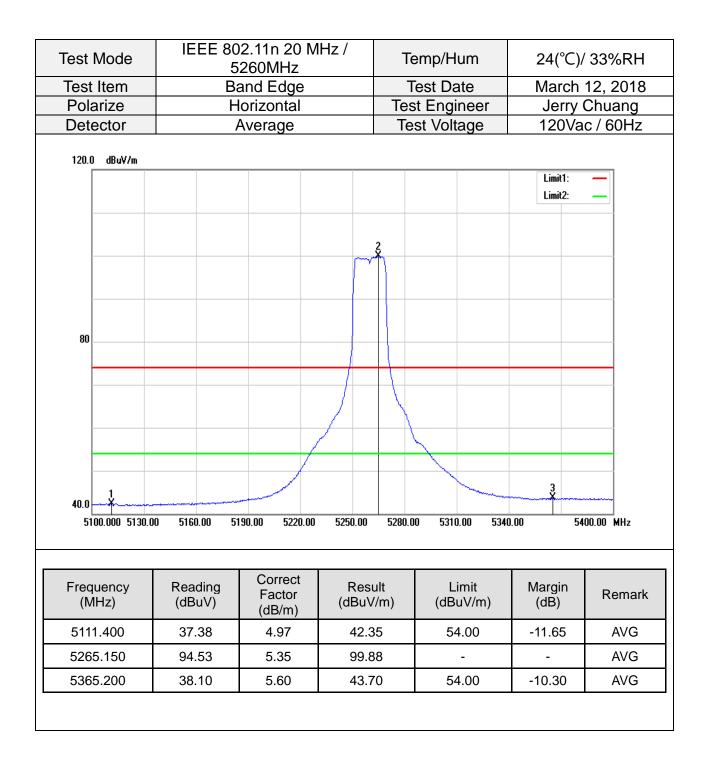
Test Mode	IEEE 802.1 52	1ac VHT80 210MHz	MHz /	Ter	mp/Hum	24(°C)/	/ 33%RH
Test Item	Ba	nd Edge		Te	est Date	March	12, 2018
Polarize	H	orizontal		Test	Engineer	Jerry	Chuang
Detector		Peak		Tes	t Voltage	120Va	c / 60Hz
120.0 dBuV/m						1:-01	
						Limit1: Limit2:	
			undergrows	- Automation	and an and the second	and and the second s	whitering
80							
heyidtorandstituluor	meddynaladidynd a caedar	destrue source de de la competencia					
40.0 5100.000 5115.	.00 5130.00 51	145.00 5160.00	5175.00	5190.00	5205.00 5220	1.00 52	250.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remark
5146.125	52.08	5.06	57.14		74.00	-16.86	peak
	1	5.15	96.91			I	peak

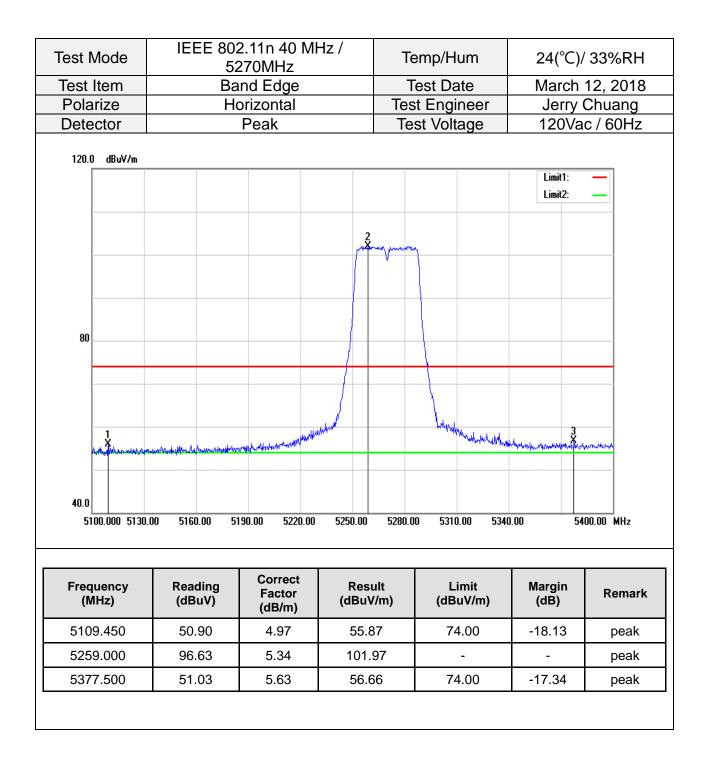


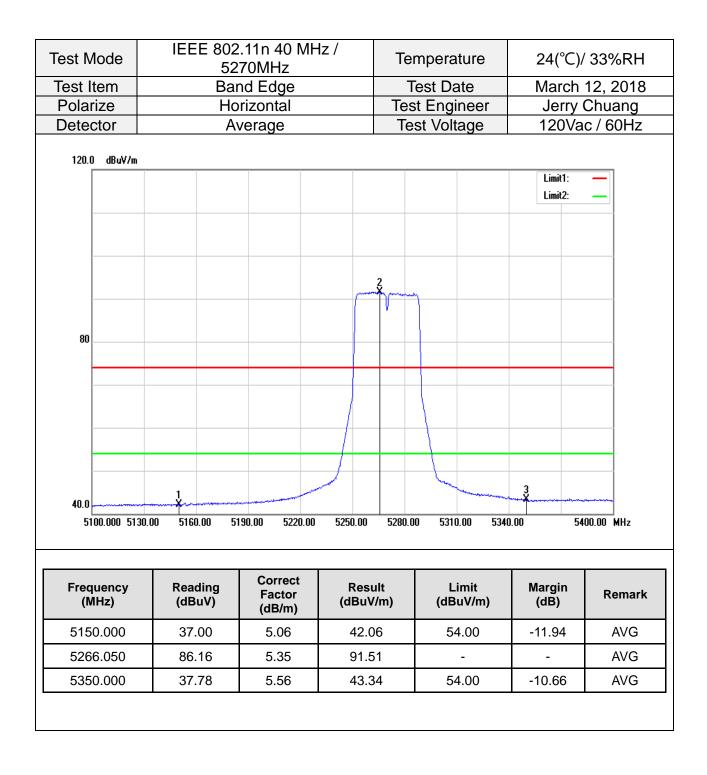

Test Mode		11ac VHT16 5250MHz	0 MHz T	emp/Hum	24(°C)/	′ 33%RH
Test Item	E	and Edge		Test Date	March	12, 2018
Polarize		Horizontal	Те	st Engineer		Chuang
Detector		Peak	Te	est Voltage	120Va	c / 60Hz
120.0 dBuV/	n					
					Limit1: Limit2:	_
		warment for the former of the second s	and the second second	ng man		
80			V			
	, All and a second seco					
ng kang pang tra	www.www.www.www.			\	Multipleside	3 WWA.MUAN
40.0						
5100.000 5	130.00 5160.00	5190.00 5220.00	5250.00 5280.	.00 5310.00 5340	0.00 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5143.950	52.29	5.05	57.34	74.00	-16.66	peak
5287.950	88.48	5.40	93.88	-	-	peak
5383.650	52.26	5.64	57.90	74.00	-16.10	peak


Test Mode	IEEE 802.1 / 5	1ac VHT16 250MHz	0 MHz	Temp/Hum	24(°C)/	′ 33%RH
Test Item	Ba	nd Edge		Test Date	March	12, 2018
Polarize		orizontal	Te	est Engineer		Chuang
Detector	A	verage	1	est Voltage	120Va	c / 60Hz
120.0 dBuV/m						
					Limit1: Limit2:	_
80	Jerrou and	and the second	and the production of the second s	3		
40.0	weight the second se				Summer and	}
5100.000 5130	.00 5160.00 5	190.00 5220.00	5250.00 528	0.00 5310.00 5340	0.00 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5147.100	39.57	5.06	44.63	54.00	-9.37	AVG
	78.47	5.39	83.86	-	-	AVG
5283.450			1	1	1	1


Band Edge Test Data for UNII-2a


Tes	st Mode			EE 802.11 5260 MHz		Te	emp/Hum	24(°C)/	/ 33%RH
Те	est Item			Band Edge		Т	est Date	March	12, 2018
	olarize			Horizonta			t Engineer		Chuang
De	etector			Peak			st Voltage		c / 60Hz
120.0) dBu∀/m								
						,		Limit1: Limit2:	_
80									
	an shekkar, na shekar	1 	h.,	w	which	h	Muthathermonistic	htmatrich and the	legenderige
40.0									
51	00.000 5130.0	00 516	60.00 51	90.00 5220.00) 5250.00	5280.0	0 5310.00 534	0.00 54	00.00 MHz
	juency IHz)		nding BuV)	Correct Factor (dB/m)	Resi (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
514	1.700	50).69	5.04	55.7	'3	74.00	-18.27	peak
526	4.100	96	6.90	5.34	102.	24	-	-	peak
	4.000	50	.96	5.59	56.5	5	74.00	-17.45	peak





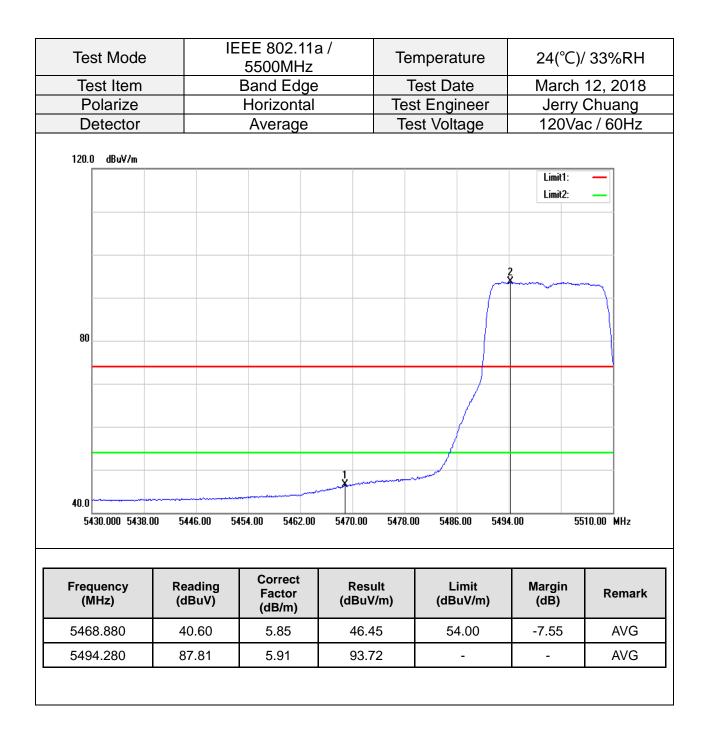
Test Mode		2.11n 20 Mł 320MHz	Hz /	Те	emp/Hum	24(°C)	/ 33%RH
Test Item		nd Edge		Т	est Date	March	12, 2018
Polarize		orizontal		Tes	t Engineer		Chuang
Detector		Peak		Tes	st Voltage	120Va	ac / 60Hz
120.0 dBuV/m							
						Limit1: Limit2:	_
	and the second have been as th	1					
80		Multin I					
		The shade of the state of the s					
		*****	working we when the	2	Mu water	munited at a set	
			Marthan W. John Mar	2 renvhilin	dhumananan Mumananan	man and an and a second and a	allMonina
40.0							
40.0	7.00 5324.00 53	331.00 5338.00	14440000000000000000000000000000000000	2 ************************************			all/Maylaugh 380.00 MHz
	7.00 5324.00 5 Reading (dBuV)			5352.00			
5310.000 5317 Frequency	Reading	331.00 5338.00 Correct Factor	5345.00 Resu	5352.00 ult //m)	0 5359.00 ! Limit	5366.00 53	380.00 MHz

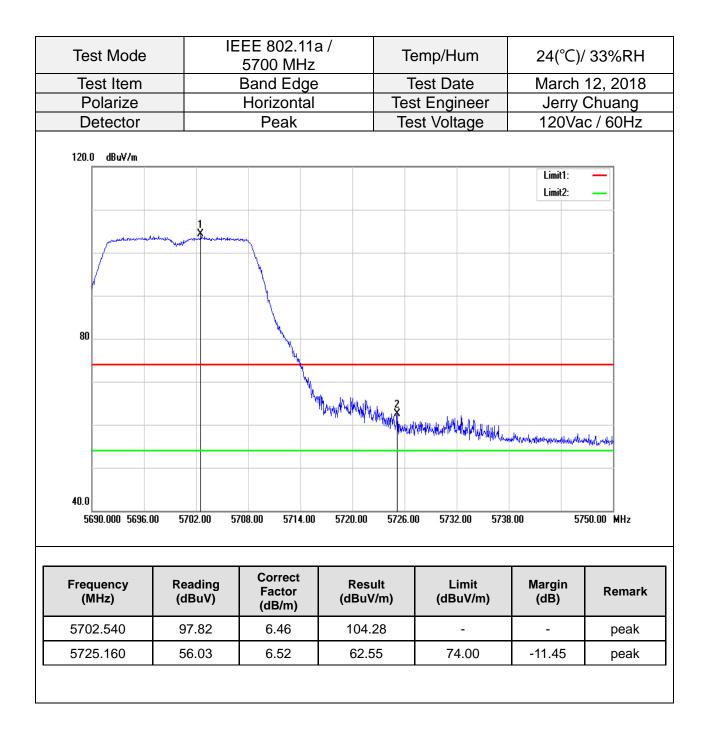
Test Mode		2.11n 20 MF 320MHz	łz /	Ten	nperature	24(°C)/	′ 33%RH
Test Item	Ba	nd Edge		Te	est Date	March	12, 2018
Polarize	H	orizontal		Test	Engineer		Chuang
Detector	Α	verage		Tes	t Voltage	120Va	c / 60Hz
120.0 dBuV/m							
						Limit1: Limit2:	_
<u> </u>							
80							
			~~~~~~	*	••••		
					and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
40.0 5310.000 53	17.00 5324.00 !	5331.00 5338.00	5345.00	5352.00	5359.00 5366	6.00 53	80.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
5325.960	91.34	5.51	96.85	5	-	-	AVG
5350.000	45.30	5.56	50.86	6	54.00	-3.14	AVG



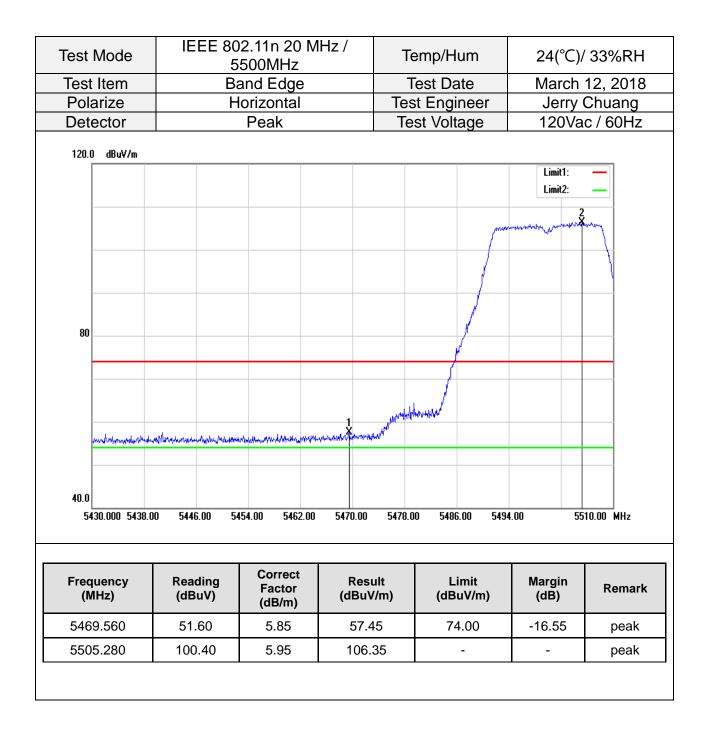


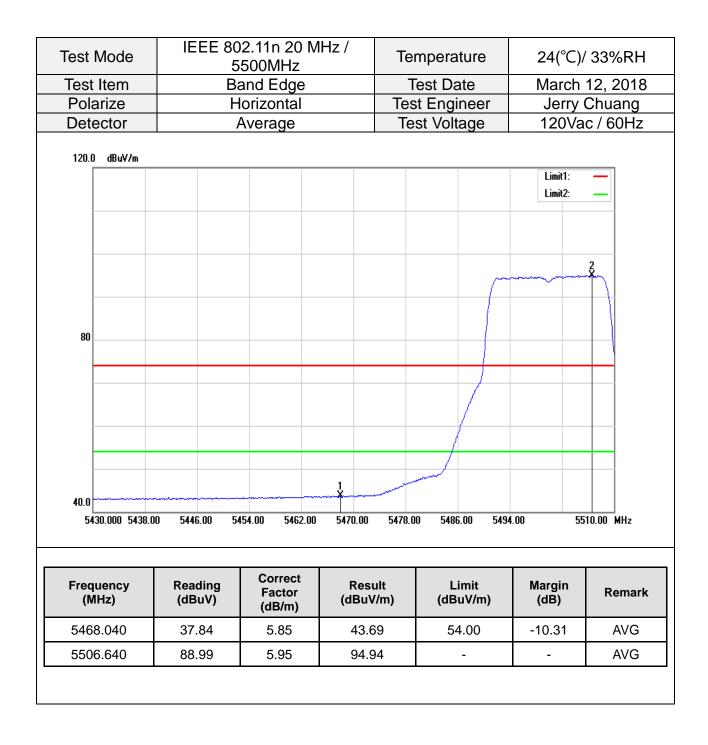
Test Item       Band Edge       Test Date       March 12, 2018         Polarize       Horizontal       Test Engineer       Jerry Chuang         Detector       Peak       Test Voltage       120Vac / 60Hz         128.0       dBuV/m       Imit:       Imit:       Imit:         0       Imit:       Imit:       Imit:       Imit:       Imit:         0       Imit:       Imit:       Imit:       Imit:       Imit:       Imit:         0       Imit:       Imit:       Imit:       Imit:       Imit:       Imit:       Imit:         0       Imit:       Imit: <th>Test Mode</th> <th></th> <th>.11n 40 MI 10MHz</th> <th>Hz /</th> <th>Te</th> <th>mp/Hum</th> <th>24(°C)/</th> <th>/ 33%RH</th>	Test Mode		.11n 40 MI 10MHz	Hz /	Te	mp/Hum	24(°C)/	/ 33%RH
Detector         Peak         Test Voltage         120Vac / 60Hz           120.0         dBuV/m	Test Item	Bar	nd Edge		Te	est Date		
120.0         dBwV/m           Image: Contract Frequency (MHz)         Reading           Correct Factor (dB/m)         Result (dB/m)           Image: Correct Factor (dB/m)         Result (dB/m)	Polarize	Ho	rizontal		Test	Engineer	Jerry	Chuang
Frequency         Reading (dBuV)         Correct Factor (dBW)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Margin (dB)         Remark	Detector		Peak		Tes	t Voltage	120Va	c / 60Hz
Image: state of the s	120.0 dBu¥/m						Limit1:	_
5290.000         5299.00         5308.00         5317.00         5326.00         5335.00         5344.00         5353.00         5362.00         5380.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark					~~~\//~~	Mr man and a state when and a state when a s		Minunder
(MHz) (dBuV) Factor (dBuV/m) (dBuV/m) (dBuV/m) Remark		3.00 5308.00 531	7.00 5326.00	5335.00	5344.00	5353.00 536	2.00 53	180.00 MHz
5321.860 97.04 5.48 102.52 peak			Factor				Margin (dB)	Remark
	5321.860	97.04	5.48	102.	52	-	-	peak
5351.650 54.03 5.56 59.59 74.00 -14.41 peak	5351.650	54.03	5.56	59.5	9	74.00	-14.41	peak


Test Mode		2.11n 40 Ml 310MHz	Hz / Te	emperature	24(°C)/	33%RH
Test Item		and Edge		Test Date		12, 2018
Polarize		orizontal		st Engineer		Chuang
Detector	A	verage	Te	est Voltage	120Va	c / 60Hz
120.0 dBuV/m						
					Limit1: Limit2:	_
		1				
80						
]						
40.0			marco	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******
5290.000 529	9.00 5308.00 5	317.00 5326.00	5335.00 5344.	00 5353.00 536	2.00 53	80.00 MHz
_		Correct				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5323.030	86.10	5.48	91.58	-	-	AVG
5350.000	40.59	5.56	46.15	54.00	-7.85	AVG


Test Mode	IEEE 802.1 ² 52	1ac VH180 290MHz	MHZ /	Те	mp/Hum	24(°C)/	/ 33%RH
Test Item		nd Edge		Te	est Date	March	12, 2018
Polarize	Ho	orizontal		Test	Engineer	Jerry	Chuang
Detector		Peak		Tes	st Voltage	120Va	ic / 60Hz
120.0 dBuV/m	ar ann an	1 mandred the Repair	many			Linit1: Linit2:	
80				Mr. Mr.		unghubanaunteprovedenteesterne	
40.0 5250.000 5265	i.00 5280.00 52	295.00 5310.00	5325.00	5340.00	5355.00 5	5370.00 54	100.00 MHz
	i.00 5280.00 52 Reading (dBuV)	295.00 5310.00 Correct Factor (dB/m)	5325.00 Resu (dBuV/	ılt	5355.00 5 Limit (dBuV/m)	5370.00 54 Margin (dB)	
5250.000 5265 Frequency	Reading	Correct Factor	Resu	ılt /m)	Limit	Margin	Remark


Test Item Polarize Detector 120.0 dBuV/m 80	Ho	nd Edge prizontal verage		Test	est Date t Engine st Voltag	er	Jerry	12, 2018 Chuang c / 60Hz
Detector 120.0 dBuV/m					-		120Va	
120.0 dBuV/m	<u> </u>	verage			st Voltag	e	Limit1:	<u>c / 60Hz</u>
		1						
80		1						
80		1	Journa					
80	······································	1	June					
80		*****	Jump					
80								
<u> </u>								
				$\mathbf{X}$				
				h	2 	and have	mun	
40.0								
5250.000 5265.00	5280.00 529	95.00 5310.00	5325.00	5340.00	) 5355.00	5370.0	D 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limi (dBuV/		Margin (dB)	Remark
5293.875	84.83	5.42	90.2	25	-		-	AVG
5350.350	43.58	5.56	49.1	4	54.0	0	-4.86	AVG

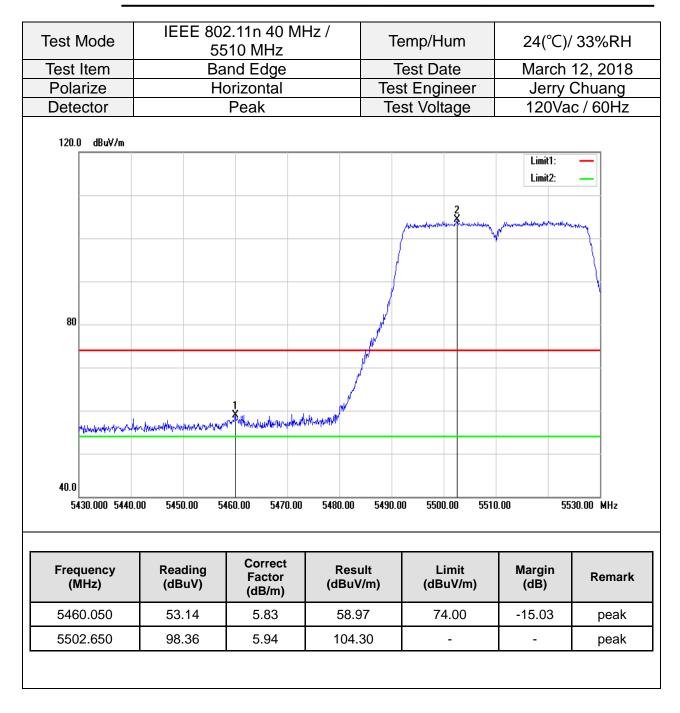

## Band Edge Test Data for UNII-2c

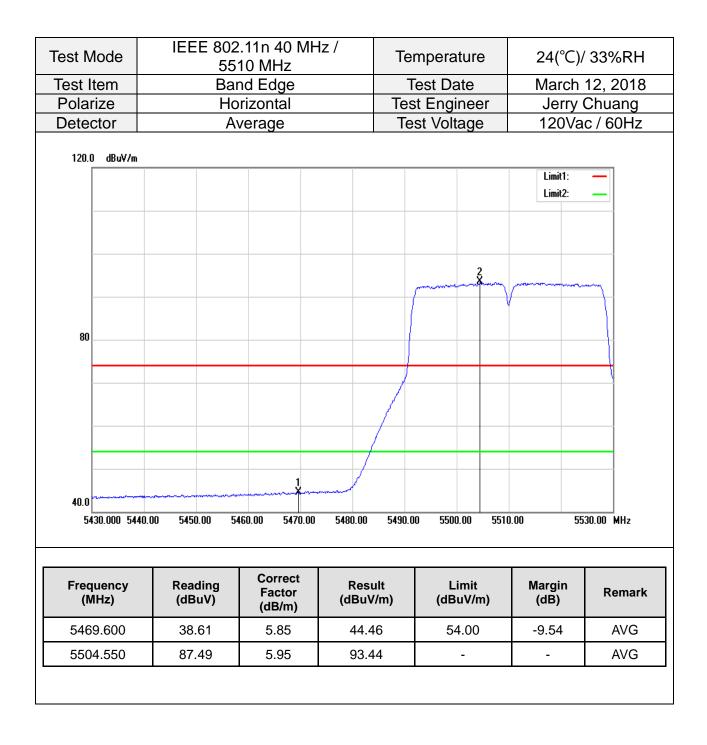

Test Mode			E 802.1		Temp	)/Hum	24(°C)/	′ 33%RH
Test Item			and Edg		Test	Date	March	12, 2018
Polarize			lorizont		Test Er	ngineer		Chuang
Detector			Peak			/oltage		c / 60Hz
120.0 dBu∀/m							Limit1:	
80		p-Mayon Marine	Philip-sites and Philip	un and a second se	Marchall West West		Limit2:	
40.0 5430.000 5438.0						5486.00 5494	4.00 55	10.00 MHz
Frequency (MHz)	Read (dB		Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5469.800	59.	.81	5.85	65.6	6	74.00	-8.34	peak
5502.560	98.	.82	5.94	104.	76	-	-	peak

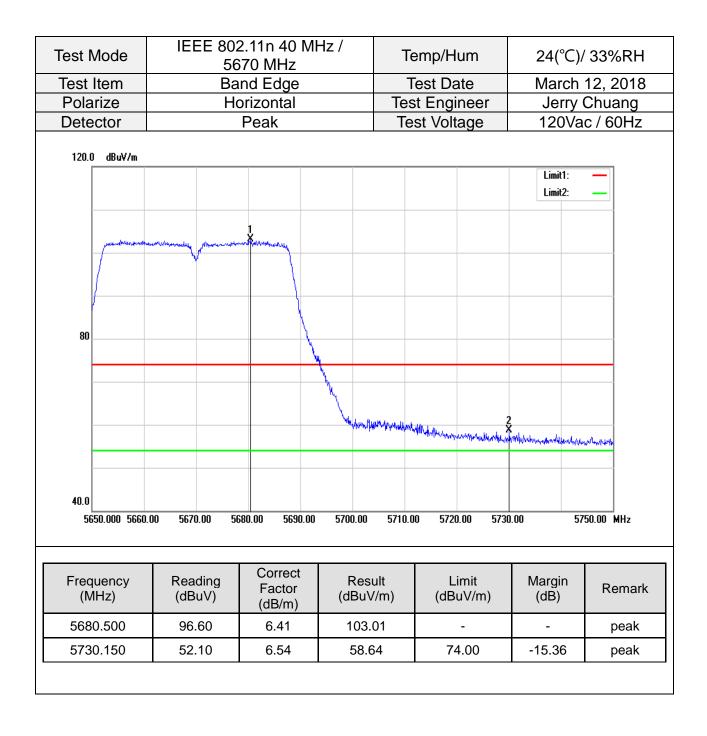


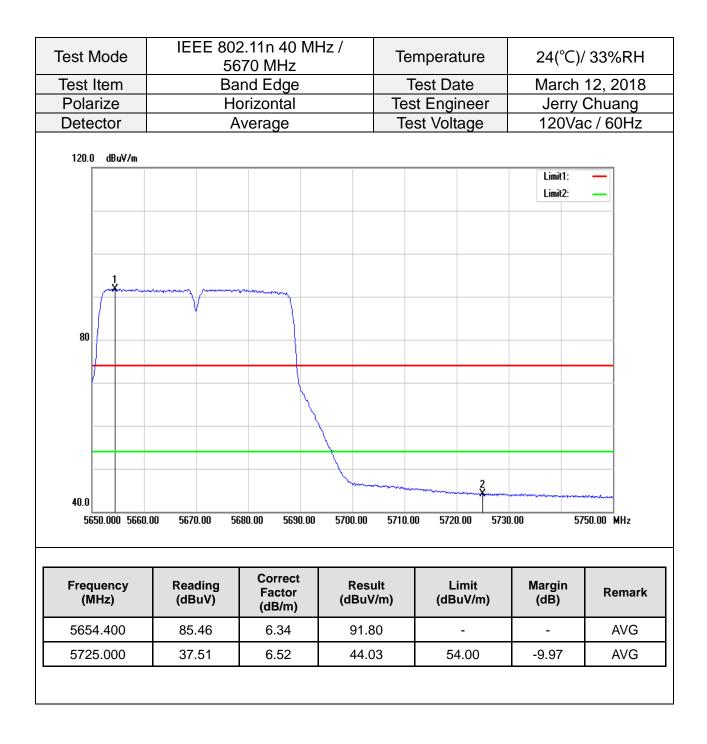








		00 MHz	•	emp/Hum	24( C)/	33%RH
Test Item		nd Edge	-	Test Date	March	12, 2018
Polarize	Но	rizontal	Te	Test Engineer		Chuang
Detector		Peak	Te	est Voltage	120Va	c / 60Hz
120.0 dBuV/m					Limit1:	_
80			Monte and		Limit2:	
40.0 5690.000 5696.0	0 5702.00 570	18.00 5714.00	5720.00 5726.	00 5732.00 5738	3.00 57	50.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5693.570	97.22	6.44	103.66	-	-	peak
5728.040	50.80	6.53	57.33	74.00	-16.67	peak


Test Mode		11n 20 MF 00 MHz	lz /	Ter	nperature	24(°C)	/ 33%RH
Test Item	Band Edge		Test Date			12, 2018	
Polarize	Но	rizontal			t Engineer		Chuang
Detector	Av	verage		Tes	st Voltage	120Va	ac / 60Hz
120.0 dBu¥/m							
						Limit1: Limit2:	-
		~					
80							
				2			_
40.0			and the second s	2 T			
5690.000 569	6.00 5702.00 57	708.00 5714.00	5720.00	5726.00	) 5732.00 57	738.00 57	750.00 MHz
-	D. II.	Correct					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resu (dBuV/			Margin (dB)	Remark
5694.980	86.92	6.44	93.3	6	-	-	AVG
5725.430	37.04	6.52	43.5	6	54.00	-10.44	AVG

## **CESRF** Compliance Certification Services Inc.

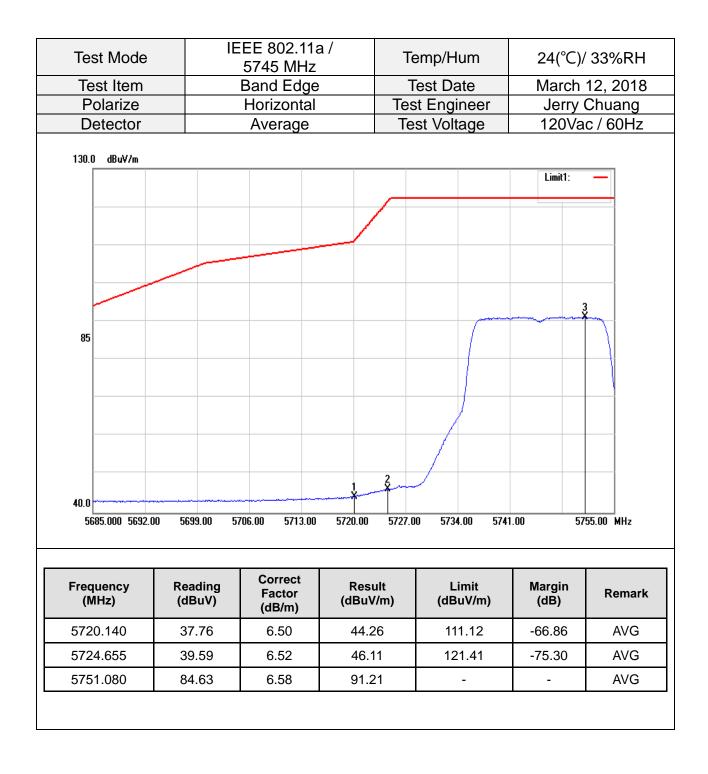


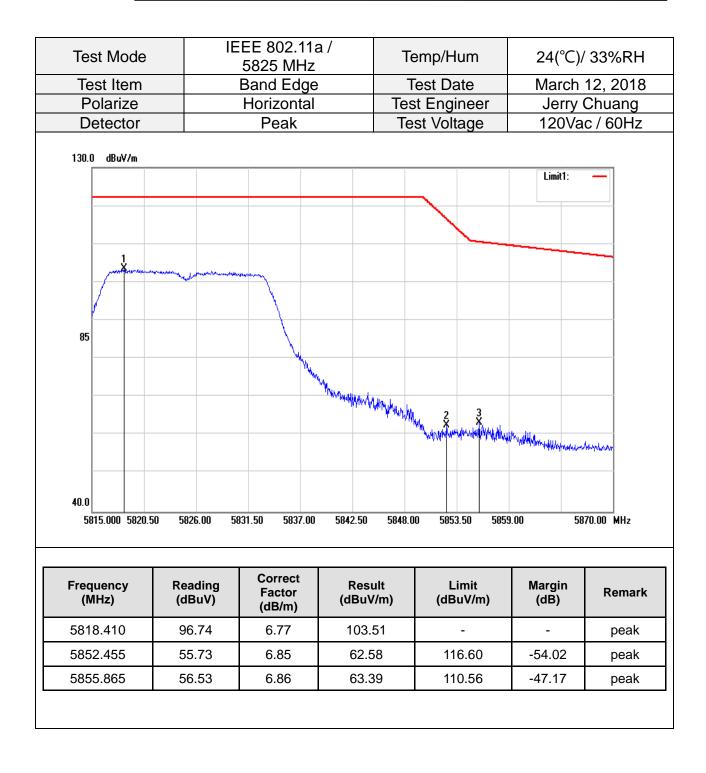


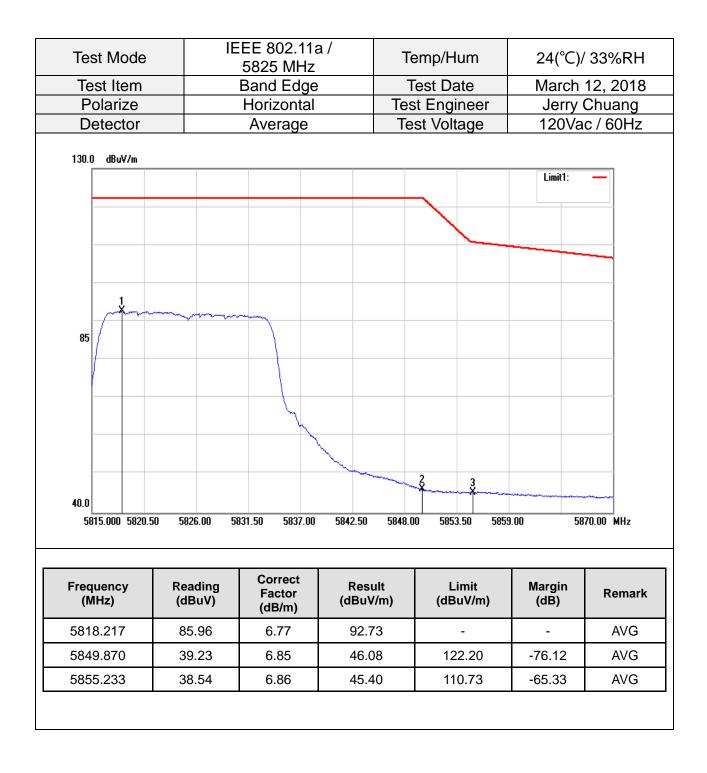


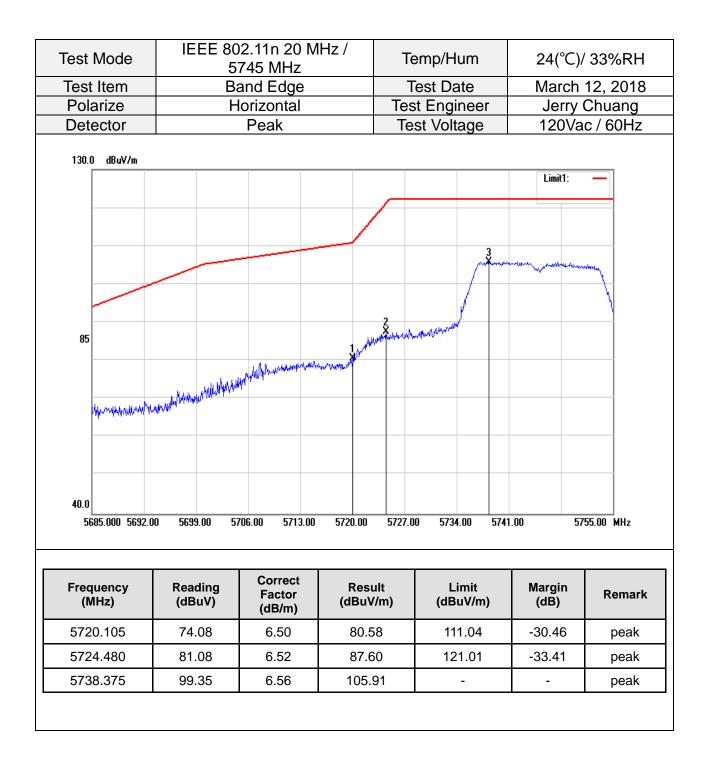


Test Item         Band Edge         Test Date         March 12, 2018           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Peak         Test Voltage         120Vac / 60Hz           128.0         dBuV/m         Imit:         Imit:         Imit:           128.0         Jerry         Jerry         Jerry         Jerry           128.0         Jerry         Jerry         Jerry         Jerry           128.0         Jerry         Jerry         Jerry         Jerry           40.0	Test Mode	IEEE 802.1 55	1ac VHT80 30 MHz	MHz /	Te	emp/Hu	ım	24(	°C)/ 339	%RH
Detector         Peak         Test Voltage         120Vac / 60Hz           120.0         dBuV/n         Imit:         Imit: <td>Test Item</td> <td>Ba</td> <td>nd Edge</td> <td></td> <td colspan="3">Test Date</td> <td colspan="2">March 12, 201</td> <td>2018</td>	Test Item	Ba	nd Edge		Test Date			March 12, 201		2018
120.0         dBuV/m           Image: Second seco	Polarize	Ho	orizontal							
Image: Second	Detector		Peak		Te	st Volta	ige	120	0Vac/6	0Hz
Image: State of the s	120.0 dBuV/m								K1.	1
Image: Second										
Image: state of the s				(m)	and the second	-	marken	2		
Image: state of the s				personal particular and a second					Low	
40.0         5430.000         5458.00         5472.00         5486.00         5500.00         5514.00         5528.00         5542.00         5570.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Remark	80									
40.0         5430.000         5458.00         5472.00         5486.00         5500.00         5514.00         5528.00         5542.00         5570.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Remark			Markan							
40.0         5430.000         5458.00         5472.00         5486.00         5500.00         5514.00         5528.00         5542.00         5570.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Remark		į	. Market							
5430.000         5444.00         5458.00         5472.00         5486.00         5500.00         5514.00         5528.00         5542.00         5570.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark	prove the stand and a stand	and a construction of the	risklaugere							
Frequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dBuV/m)Remark		00 5459.00 54	72 00 5496 00	5500.00	5514.0	0 5529	0 5542		5570.00	MU-7
(MHz) (dBuV) Factor (dBuV/m) (dBuV/m) (dB) Remark	3430.000 3444	r.00 J4J0.00 J4	12.00 3400.00	5500.00	5514.0	U JJ20.	JU JJ42		5570.00	M112
5469.200 52.53 5.85 58.38 74.00 -15.62 peak		quency Reading								emark
	5469.200	52.53	5.85	58.3	8	74.00		-15.6	2	peak
5548.860 95.18 6.06 101.24 peak	5548.860	95.18	6.06	101.2	24	-		-		peak

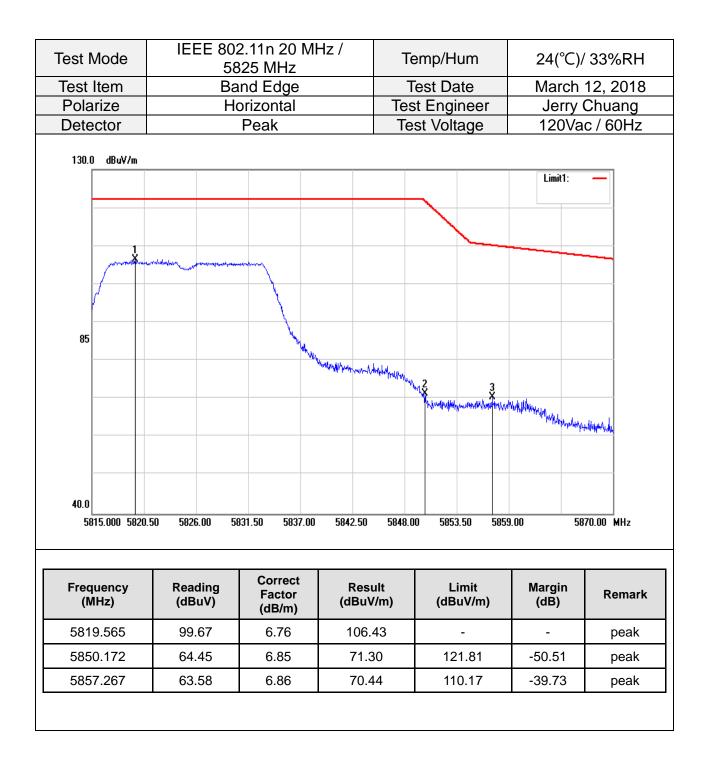

Test Mode	IEEE 802.1 ⁻ 55	1ac VHT80 30 MHz	MHz /	Ten	nperature	24(°C)	/ 33%RH
Test Item		nd Edge		Test Date			12, 2018
Polarize	Ho	orizontal			t Engineer		Chuang
Detector	A	verage		Tes	st Voltage	120Va	ic / 60Hz
120.0 dBu∀/m						Limit1:	_
80							
40.0 5430.000 5444		72.00 5486.00	5500.00	5514.00	) 5528.00 5543	2.00 55	570.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5470.000	39.32	5.85	5.85 45.1		54.00	-8.83	AVG
5552.850	84.83	6.07	90.9	0	-	-	AVG


Test Mode	IEEE 802.1 / 5	1ac VHT16 570 MHz	0 MHz	Te	emp/Hum	I	24(°C	C)/ 33%RH
Test Item	Ba	ind Edge		Test Date			March 12, 2018	
Polarize	Η	orizontal			t Engine			y Chuang
Detector		Peak		Te	st Voltag	e	120\	/ac / 60Hz
120.0 dBu¥/m								
							Limit1: Limit2:	_
	frame	why who are a second		n general de	waterie			
80								
where the most have	angund de la companya				N.	martinals	WWWWWW	3 White and the second
40.0								
5430.000 5462	.00 5494.00 5	526.00 5558.00	5590.00	5622.0	0 5654.00	5686	.00	5750.00 MHz
Frequency	Reading (dBuV)	Correct Factor (dB/m)	Resi (dBuV		Limit (dBuV/		Margin (dB)	Remark
(MHz)	. ,				74.00		44.50	
	53.66	5.84	59.5	50	74.00	)	-14.50	peak
(MHz)		. ,	59.5 94.5		- 74.00	)	-14.50	peak peak


Test Mode	IEEE 802.1 / 5	1ac VHT16 570 MHz	0 MHz	Temperature	24(°C)/	′ 33%RH
Test Item	Ba	nd Edge		Test Date	March	12, 2018
Polarize	H	orizontal		Test Engineer		Chuang
Detector	A	verage		Test Voltage	120Va	c / 60Hz
120.0 dBuV/m						
					Limit1: Limit2:	
80	punad		2	m		
www.man.	*					
40.0 5430.000 5462	.00 5494.00 55	526.00 5558.00	5590.00	5622.00 5654.00 50	686.00 57	'50.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor	Result (dBuV/m	Limit ) (dBuV/m)	Margin (dB)	Remark
5467.280	41.68	(dB/m) 5.85	47.53	54.00	-6.47	AVG
5586.000	77.43	6.15	83.58			AVG
	41.45	6.52	47.97	54.00	-6.03	AVG


## Band Edge Test Data for UNII-3

Test Mode	I	EEE 802.11a 5745 MHz		Temp/Hum	24(°C).	/ 33%RH
Test Item		Band Edge	;	Test Date	March	12, 2018
Polarize		Horizontal		Test Engineer		Chuang
Detector		Peak		Test Voltage		ic / 60Hz
130.0 dBu¥/m	1					
					Limit1:	
					3	
85						
		een waard all and a second and a	1 2 	and the second		
40.0						
5685.000 5692.0	0 5699.00	5706.00 5713.00	5720.00	5727.00 5734.00	5741.00 57	755.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n		Margin (dB)	Remark
5719.440	52.32	6.50	58.82	110.64	-51.82	peak
5704 540	54.49	6.51	61.00	114.31	-53.31	peak
5721.540						

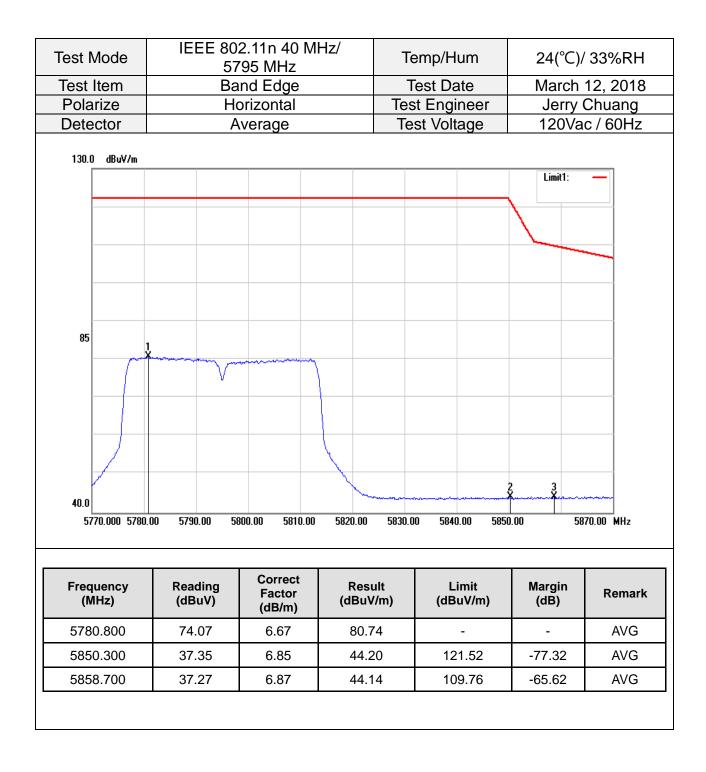









Test Mode		2.11n 20 M 745 MHz	Hz /	Ten	np/Hum	24(°C)/	′ 33%RH
Test Item		and Edge		Te	st Date	March	12, 2018
Polarize		orizontal		Test	Engineer		Chuang
Detector		Average			Voltage		c / 60Hz
130.0 dBuV/m							
				_		Limit1:	-
			1				
					3		~
85							
				2 X			
	and the second						
40.0							
5685.000 5692.0	0 5699.00 57	706.00 5713.00	5720.00	5727.00	5734.00 574	1.00 57	55.00 MHz
<b>F</b>	Reading	Correct	Decuk		l insit	Maraia	
Frequency (MHz)	(dBuV)	Factor (dB/m)	Resul (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remark
5720.140	58.23	6.50	64.73	3	111.12	-46.39	AVG
5724.935	63.15	6.52	69.67	,	122.05	-52.38	AVG
5738.305	88.96	6.56	95.52		-	-	AVG

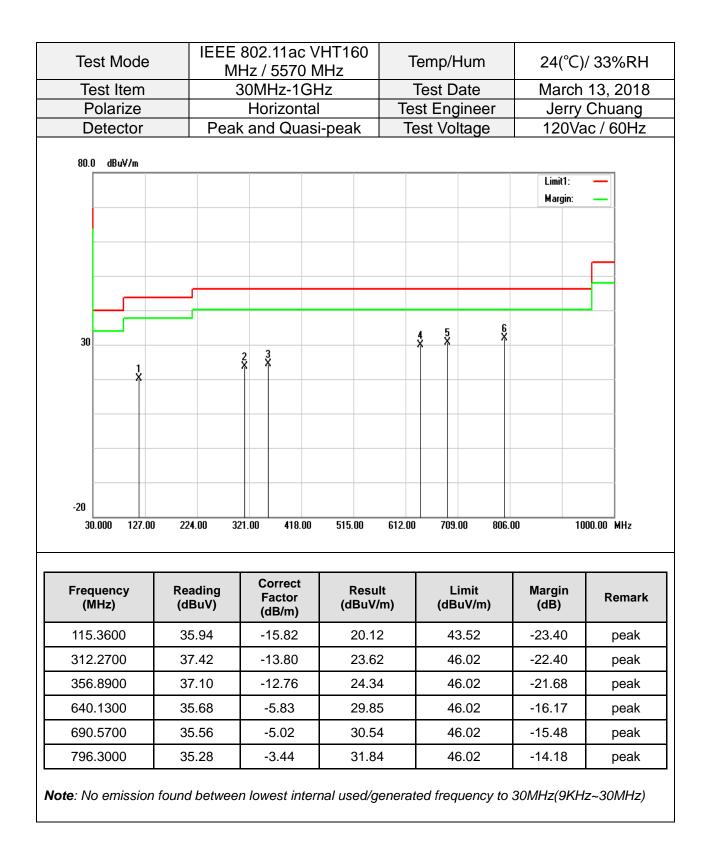



	58	2.11n 20 Mł 25 MHz	12 /	Ten	np/Hum	24(°C)/	33%RH
Test Item	Ba	nd Edge		Tes	st Date	March	12, 2018
Polarize	Ho	orizontal		Test	Engineer	Jerry	Chuang
Detector	A	verage		Test	Voltage	120Va	c / 60Hz
130.0_dBu∀/m							
						Limit1:	-
					<u> </u>		
1	<u>k</u>						
85							
		<u>س</u>					
				~2 *	3		
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
40.0							
5815.000 5820.5	50 5826.00 58	31.50 5837.00	5842.50	5848.00	5853.50 5859	0.00 58	70.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/i		Limit (dBuV/m)	Margin (dB)	Remark
5821.215	88.38	6.77	95.15	;	-	-	AVG
5850.035	47.76	6.85	54.61		122.12	-67.51	AVG
5854.985	45.44	6.86	52.30)	110.83	-58.53	AVG

Test Mode		2.11n 40 M 55 MHz	Hz/	ſemp/Hum	24(°C)/ 33%RH	
Test Item		nd Edge		Test Date	March	12, 2018
Polarize		orizontal	Те	st Engineer		Chuang
Detector		Peak		est Voltage		c / 60Hz
130.0 dBuV/m						
					Limit1:	—
		1				
85				3	warman the manufacture of	
1 X		2	and a second second			- North Contraction
and sharender between	an a	essi and an	edite/en/y ^{ee/}			
40.0						
5680.000 5690	.00 5700.00 57	10.00 5720.00	5730.00 5740	.00 5750.00 5760	D.00 57	'80.00 MHz
Frequency	Reading	Correct	Result	Limit	Margin	Domork
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
5681.350	51.15	6.40	57.55	91.40	-33.85	peak
5722.450	50.90	6.51	57.41	116.39	-58.98	peak
5747.850	84.73	6.59	91.32	-	-	peak

Test Mode		2.11n 40 M '55 MHz	Hz/	Te	emp/H	lum	24(°C)	/ 33%RH
Test Item	Ba	nd Edge		Т	est Da	ate	March	12, 2018
Polarize	H	orizontal			st Eng			Chuang
Detector	A	verage		Te	st Vol	tage	120Va	nc / 60Hz
130.0 dBu∀/m								
							Limit1:	-
		1						
85					3			
					Ť	\sim		
40.0	· <u> </u>	1	3					
5680.000 5690	.00 5700.00 57	710.00 5720.00	5730.00	5740.0	0 575	0.00 5760).00 57	780.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resi (dBuV			.imit suV/m)	Margin (dB)	Remark
5717.100	37.37	6.49	43.8	86	10	9.99	-66.13	AVG
5724.750	37.39	6.52	43.9)1	12	21.63	-77.72	AVG
5746.700	74.08	6.58	80.6	6		-	-	AVG

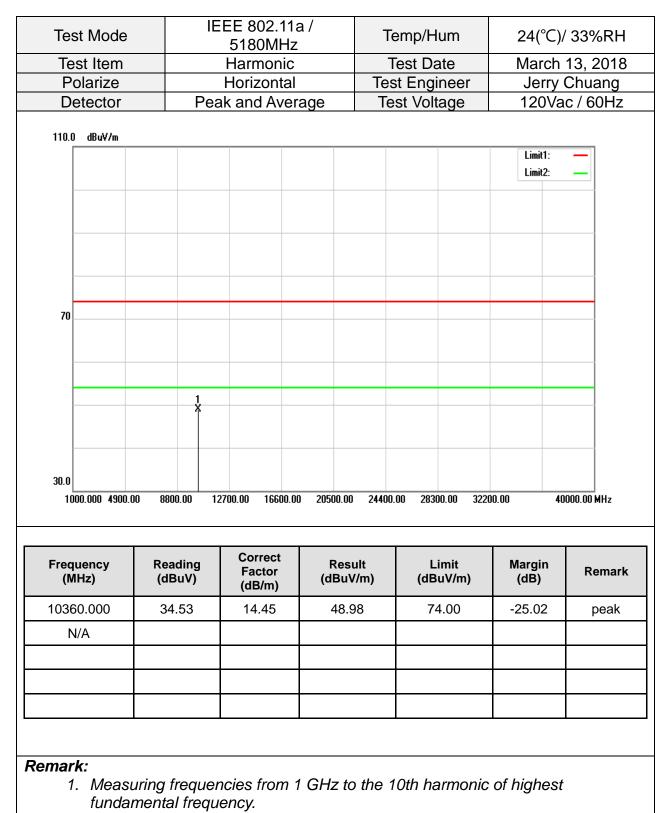
Test Mode		2.11n 40 M ′95 MHz	Hz/	Temp/Hum	24(°C)/	33%RH
Test Item	Ba	nd Edge		Test Date	March	12, 2018
Polarize		orizontal	Te	est Engineer	Jerry	Chuang
Detector		Peak	Т	est Voltage	120Va	c / 60Hz
130.0dBu∀/m						
					Limit1:	-
					· · · · · · · · · · · · · · · · · · ·	
85	and the second sec	man and an all a second and				
Jun			1			
/			Martindemple	yww.aggu.agdu.agtur.atur.atur.atur	2 3	milination
40.0						
5770.000 5780.	00 5790.00 5	800.00 5810.00	5820.00 583	D.OO 5840.OO 585	0.00 58	70.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5780.600	84.93	6.67	91.60	-	-	peak
5850.900	51.31	6.85	58.16	120.15	-61.99	peak
	50.51	6.87	57.38	109.89	-52.51	peak

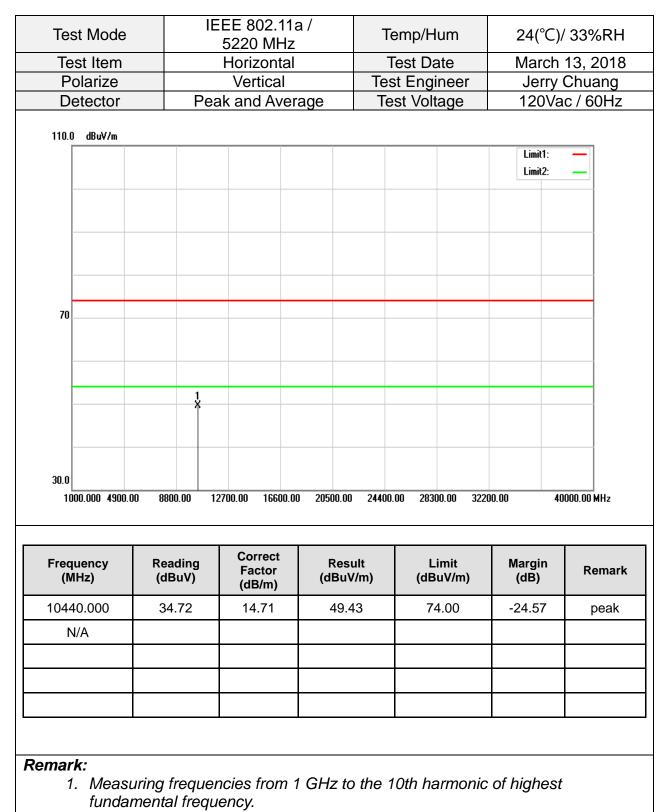


Test Mode	IEEE 802.1 57	1ac VHT80 75 MHz	MHz /	Temp/Hum	24(°C)/ 33%RH	
Test Item		ind Edge		Test Date	March	12, 2018
Polarize		orizontal	-	Test Engineer		Chuang
Detector		Peak		Test Voltage	120Va	ic / 60Hz
130.0 dBu∀/m						
					Limit1:	_
		Mahan	Manundation	h.		
90	hydrodenia (V r r maar	howbergy		
				\		
1	3 M			N _m		
1 ** 50.0	Ver Marken				and had the second	
5700.000 5717.	00 5734.00 5	751.00 5768.00	5785.00 58	302.00 5819.00 58	36.00 58	370.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5718.105	51.42	6.50	57.92	110.27	-52.35	peak
5724.395	52.96	6.52	59.48	120.82	-61.34	peak
	88.78	6.60	95.38	-	-	peak
5756.525	00.70					
5756.525 5851.215	49.78	6.85	56.63	119.43	-62.80	peak

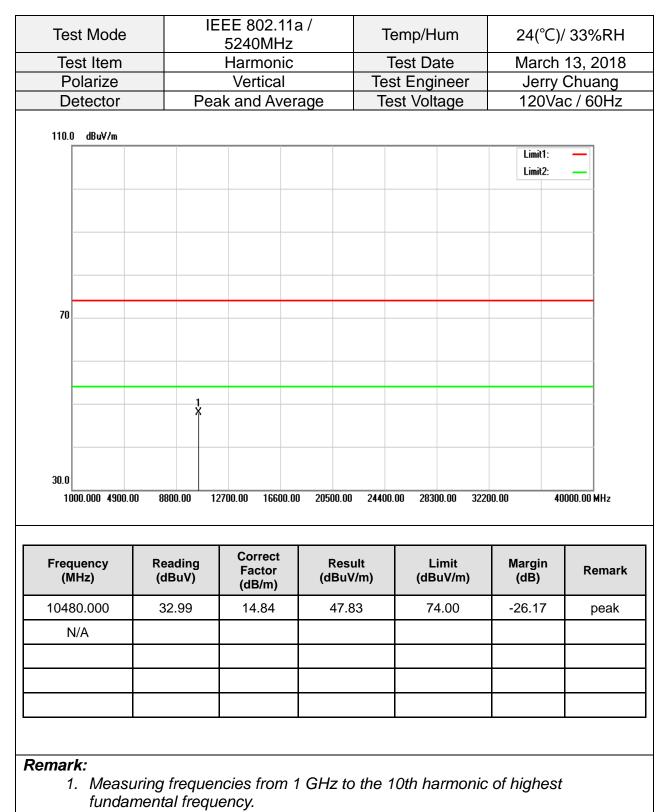
		1ac VHT80 75 MHz	MHZ / T	emp/Hum	24(°C)/	/ 33%RH
Test Item		nd Edge	-	Test Date	March 12, 201	
Polarize		orizontal	Tes	st Engineer		Chuang
Detector	A	verage	Te	est Voltage	120Va	c / 60Hz
120.0 dBu∀/m					1.4	
	/				Limit1:	
80		3	V			
40.0	2				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
5700.000 5717.	00 5734.00 57	/51.00 5768.00	5785.00 5802.	00 5819.00 5836	5.00 58	70.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5719.125	38.50	6.50	45.00	110.55	-65.55	AVG
5724.735	40.44	6.52	46.96	121.60	-74.64	AVG
5768.085	78.78	6.63	85.41	-	-	AVG
	37.82	6.85	44.67	118.07	-73.40	AVG
5851.810			-		1	-

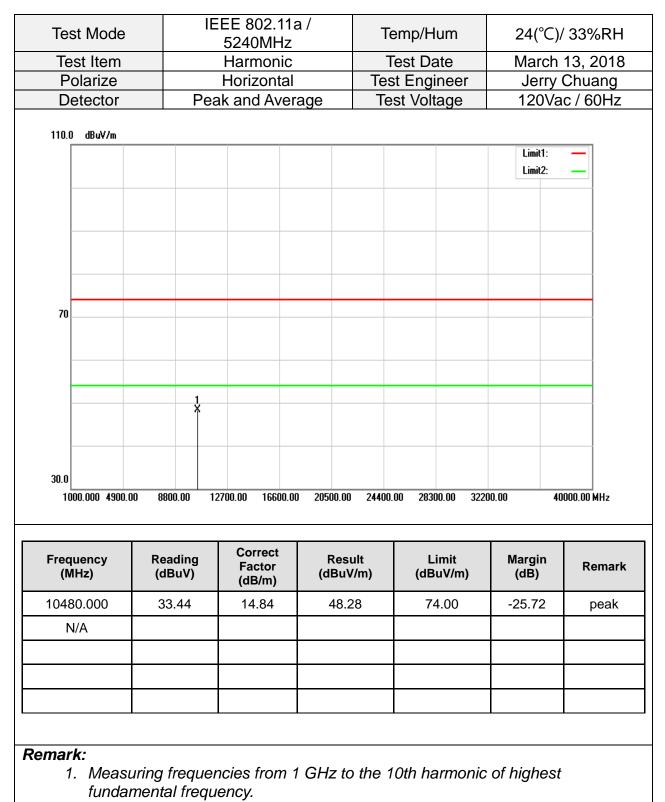
Below 1G Test Data

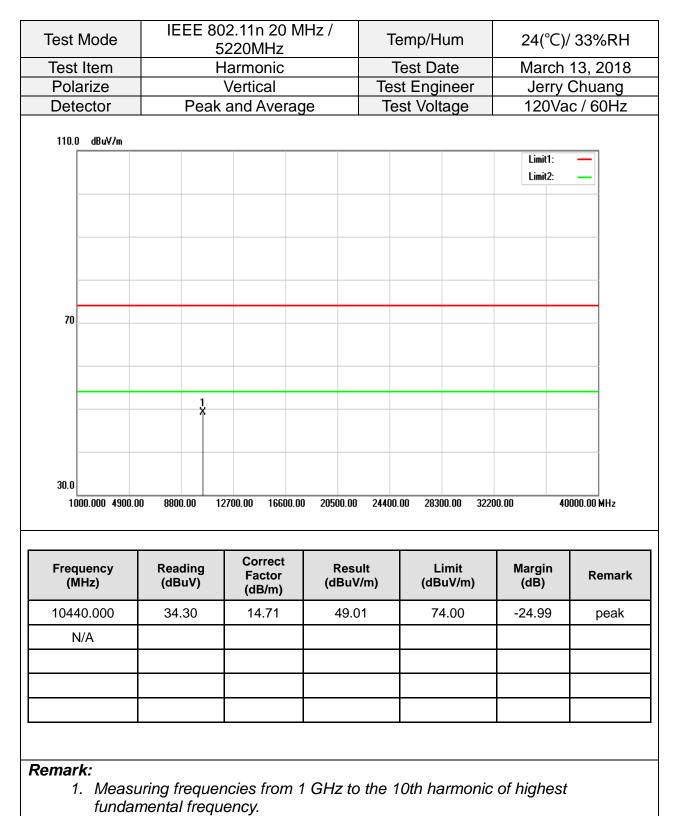

Test Mode		802.11ac VI Hz / 5570 M		Temp	o/Hum	24(°C)/	33%RH
Test Item		BOMHz-1GH		Test	Date	March	13, 2018
Polarize		Vertical			ngineer		Chuang
Detector	Peak	and Quasi	-peak		/oltage		c / 60Hz
80.0 dBuV/m						Limit1:	_
						Margin:	_
30	2 X		3	4 ×	5 X	6 X	
-20							
30.000 127.00	224.00 3	21.00 418.00	515.00	612.00	709.00 806.0	00 10	00.00 MHz
Frequency	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n		Limit (dBuV/m)	Margin (dB)	Remarl
(MHz)	. ,	(ub/iii)					
(MHz) 113.4200	40.46	-16.18	24.28		43.52	-19.24	peak
			24.28 23.01		43.52 46.02	-19.24 -23.01	peak peak
113.4200	40.46	-16.18					
113.4200 225.9400	40.46	-16.18 -16.98	23.01		46.02	-23.01	peak
113.4200 225.9400 455.8300	40.46 39.99 34.42	-16.18 -16.98 -9.48	23.01 24.94		46.02 46.02	-23.01 -21.08	peak peak

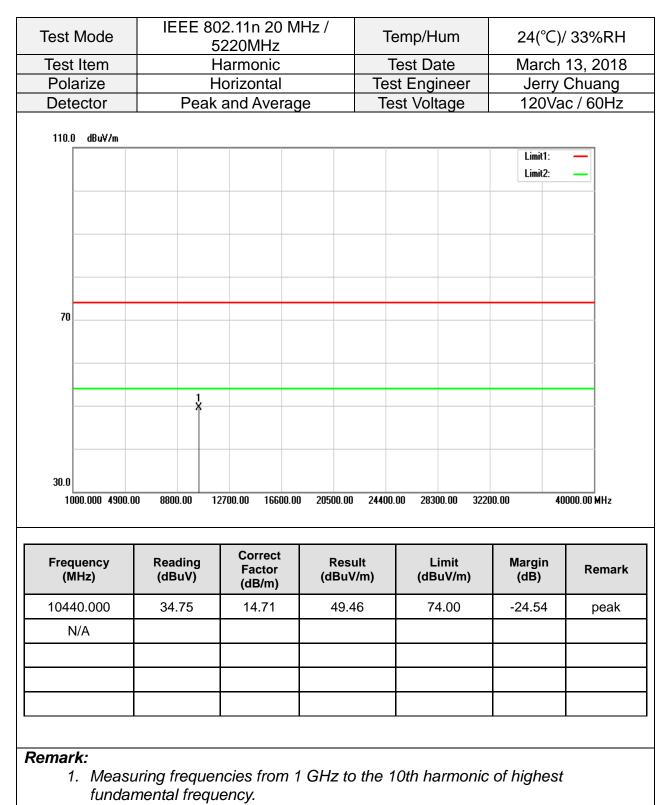


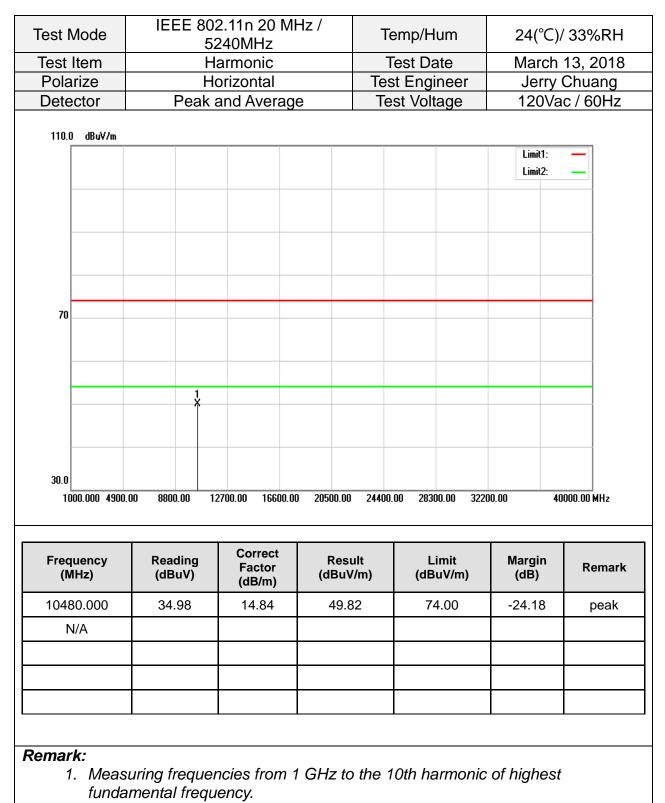
Above 1G Test Data for UNII-1

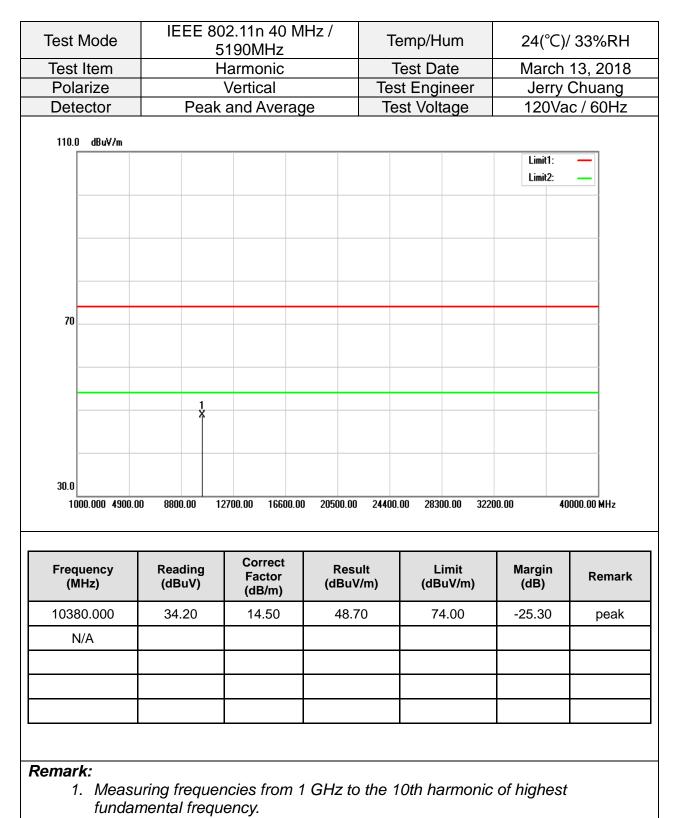

Test Mode		IE	EE 802. 5180MF		Т	emp/H	lum	24(°C))/ 33%RH
Test Item			Harmon		٦	Fest Da	ate	March	13, 2018
Polarize			Vertica		Tes	st Eng	ineer		Chuang
Detector		Pea	ak and Av	/erage	Te	est Vol	tage	120Va	ac / 60Hz
110.0 dBu¥/m								Limit1: Limit2:	_
70									
30.0 1000.000 4900. Frequency	Rea	ding	2700.00 1660 Correct Factor	Res	ult	L	imit	Margin	0000.00 MHz
(MHz)	(dE	BuV)	(dB/m)	(dBu	//m)	(dB	uV/m)	(dB)	
10360.000	34	.44	14.45	48.	39	7	4.00	-25.11	peak
N/A									


- Measuring frequencies from 1 GHz to the 10th harmonic of hi fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit






Test Mode		2.11n 20 MHz 180MHz	′ _ т	emp/Hum	24(°C)/ 33%RH		
Test Item	F	larmonic	7	Fest Date	March 13, 2018		
Polarize		Vertical	Tes	st Engineer	Jerry	Chuang	
Detector	Peak	and Average	Te	est Voltage	120Va	c / 60Hz	
110.0 dBuV/m							
					Limit1: Limit2:	_	
70							
	1						
30.0							
1000.000 4900.00	8800.00 1	12700.00 16600.00 2	0500.00 24400	.00 28300.00 3220	00.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10360.000	34.22	14.45	48.67	74.00	-25.33	peak	
N/A							
emark:							
1 Measur	ina freaue	ncies from 1 G	Hz to the 1	10th harmonic	of highest		


Test Mode		02.11n 20 M 5180MHz	Hz/ .	Temp/Hum	24(°C)/ 33%RI		
Test Item		Harmonic		Test Date	March 13, 201		
Polarize	F	lorizontal	Te	est Engineer		Chuang	
Detector	Peak	and Averag	e T	est Voltage	120Va	c / 60Hz	
110.0 dBu¥/m							
					Limit1: Limit2:	_	
70							
	1						
30.0							
1000.000 4900.0	0 8800.00 1	2700.00 16600.00	20500.00 2440	00.00 28300.00 3220	00.00 40	1000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10360.000	35.11	14.45	49.56	74.00	-24.44	peak	
N/A							
emark:							

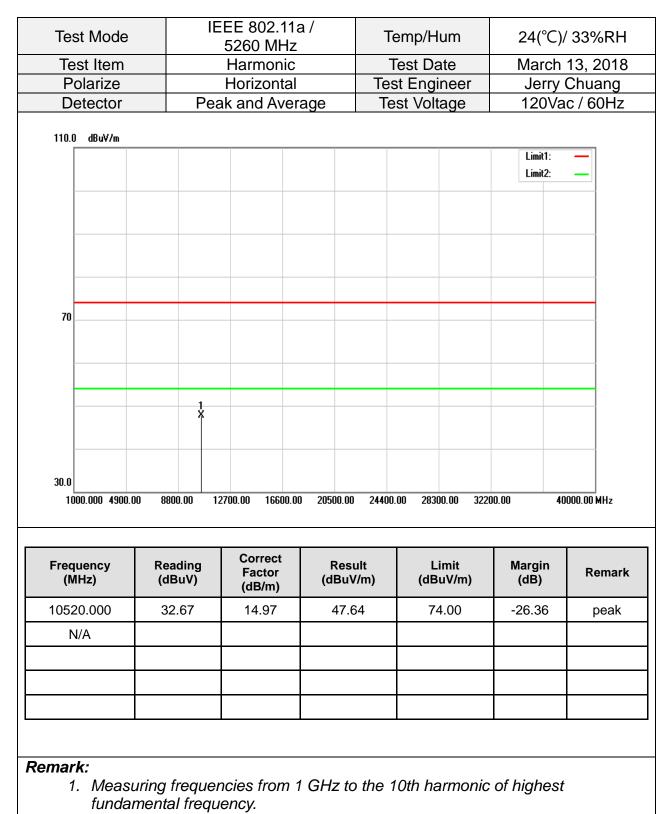
Test Mode		2.11n 20 MF 240MHz	łz /	Temp/Hum	24(°C)/ 33%RF		
Test Item	Н	armonic		Test Date	March 13, 2018		
Polarize	١	Vertical	Т	est Engineer	Jerry	Chuang	
Detector	Peak	and Average	; -	Test Voltage		ic / 60Hz	
110.0 dBuV/m							
					Limit1: Limit2:	_	
70							
	1						
30.0							
1000.000 4900.00) 8800.00 1	2700.00 16600.00	20500.00 244	400.00 28300.00 322	200.00 40)000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10480.000	34.17	14.84	49.01	74.00	-24.99	peak	
N/A							
emark:							

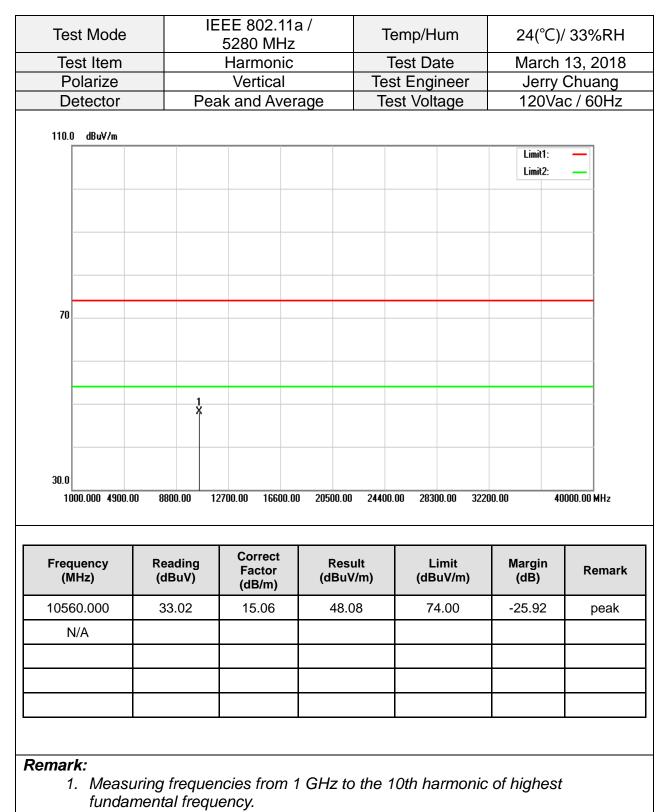
Test Mode		02.11n 40 MHz 5190MHz	/ T	emp/Hum	24(°C)/ 33%RF		
Test Item	ł	Harmonic	7	Fest Date	March 13, 201		
Polarize	ŀ	Horizontal	Tes	st Engineer		Chuang	
Detector	Peak	and Average	Te	est Voltage	120Va	c / 60Hz	
110.0 dBuV/m							
					Limit1: Limit2:	_	
70							
30.0							
1000.000 4900.00	8800.00 1	2700.00 16600.00 2	24400 24400	.00 28300.00 3220	0.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10380.000	33.96	14.50	48.46	74.00	-25.54	peak	
N/A							
emark:							
		ncies from 1 G					

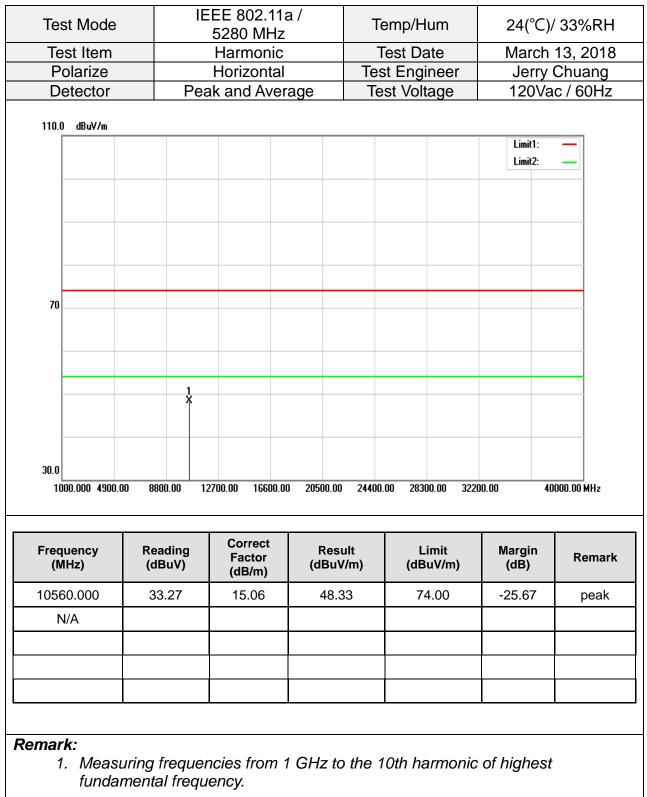
Fest Mode		02.11n 40 MH 5230MHz	z / T	emp/Hum	24(°C)/ 33%RH		
Test Item	ŀ	Harmonic	_	Test Date	March 13, 2018		
Polarize		Vertical	Te	st Engineer	Jerry	Chuang	
Detector	Peak	and Average	Te	est Voltage	120Va	c / 60Hz	
110.0 dBu¥/m							
					Limit1: Limit2:	_	
70							
	1						
30.0							
1000.000 4900.00	8800.00	12700.00 16600.00	20500.00 24400	0.00 28300.00 3220	00.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10460.000	34.15	14.79	48.94	74.00	-25.06	peak	
N/A							
emark:							
		encies from 1	.				

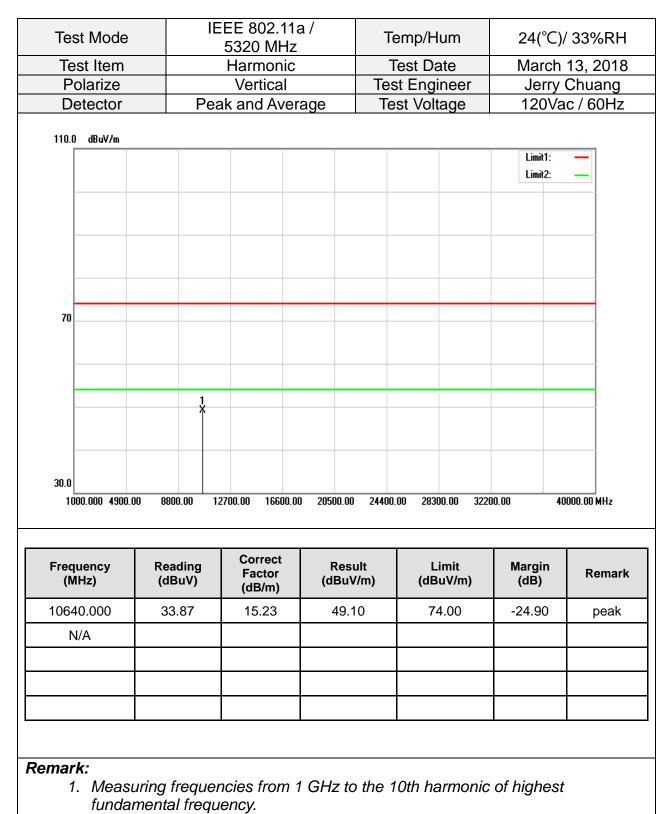
Test Mode	IEEE 802.11n 40 MHz / 5230MHz					Temp/Hum		24(°C)/ 33%RF		
Test Item		Harmor	nic		Test Date			March 13, 2018		
Polarize		Horizon				st Eng			/ Chuang	
Detector	Pea	k and Av	verage		Te	st Vol	tage	120V	ac / 60Hz	
110.0 dBuV/m										
								Limit1: Limit2:	_	
70										
	1									
30.0										
1000.000 4900.0	0 8800.00	12700.00	16600.00	20500.00	24400.	.00 283	00.00 322	0.00	40000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Cor Fac (dB	tor	Resul (dBuV/			.imit suV/m)	Margin (dB)	Remark	
10460.000	34.02	14.	79	48.81		7	4.00	-25.19	peak	
N/A										
emark:										
	ıring frequ				(1 4			<i></i>		

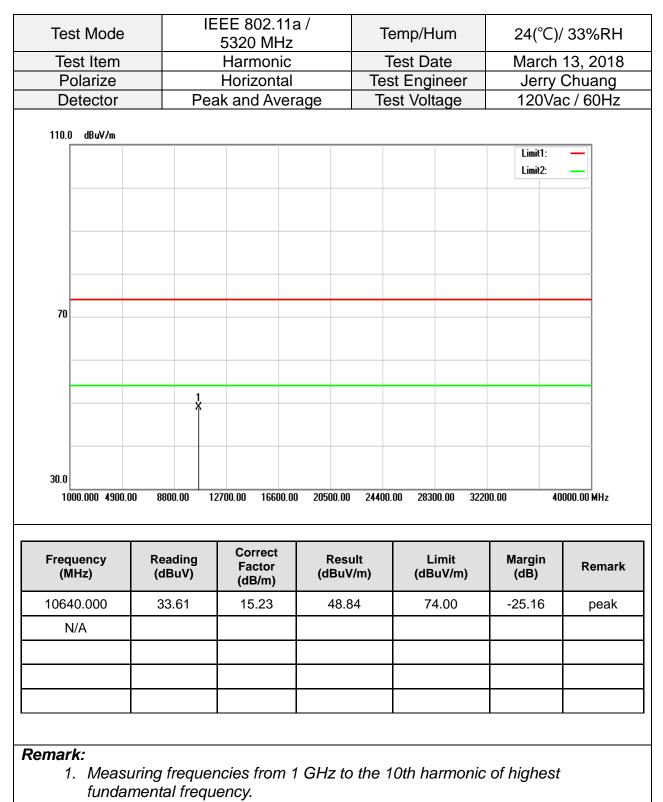
Test Mode		2.11ac VHT80 5210MHz	Temp/Hum			24(°C)/ 33%RH		
Test Item		Harmonic		Test Date				13, 2018
Polarize		Vertical				neer		Chuang
Detector	Pea	ak and Averag	je	Tes	st Volt	age	120Va	ac / 60Hz
110.0 dBuV/m								
							Limit1: Limit2:	_
70								
	1							
30.0								
1000.000 4900	D.00 8800.00	12700.00 16600.0	00 20500.00	24400.0)0 283()0.00 3220	00.00 4	0000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV			imit uV/m)	Margin (dB)	Remark
10420.000	33.45	14.66	48.1	1	74	4.00	-25.89	peak
N/A								
emark:								
	suring frequ amental fre	uencies from	1 GHz to	the 1	0th ha	armonic	of highest	L

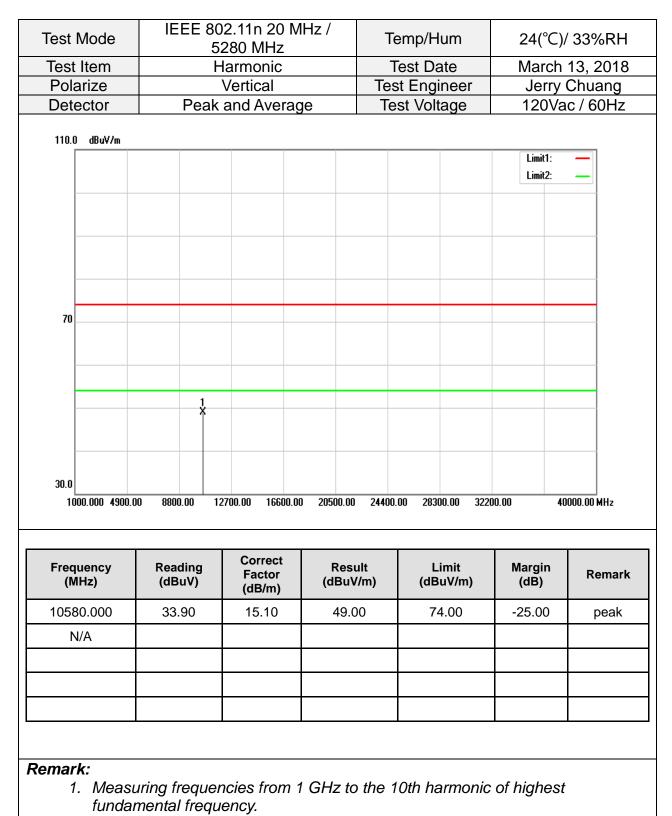

Test Mode	IEEE 80	IEEE 802.11ac VHT80 MHz / 5210MHZ					um	24(°C)/ 33%RH		
Test Item		Harmo				est Da			n 13, 2018	
Polarize		Horizoi				st Eng			/ Chuang	
Detector	Pe	ak and A	verage		Te	st Vol	age	120V	/ac / 60Hz	
110.0 dBuV/m										
								Limit1: Limit2:		
70										
		1								
		×								
30.0										
1000.000 4900	0.00 8800.00	12700.00	16600.00	20500.00	24400.	.00 283	DO.OO 3220)0.00	40000.00 MHz	
Frequency (MHz)	Readin (dBuV)	g Fa	rrect ctor B/m)	Resu (dBuV/			imit uV/m)	Margin (dB)	Remar	
10420.000	33.86	14	1.66	48.5	2	7.	4.00	-25.48	peak	
N/A										
									1	
emark:										

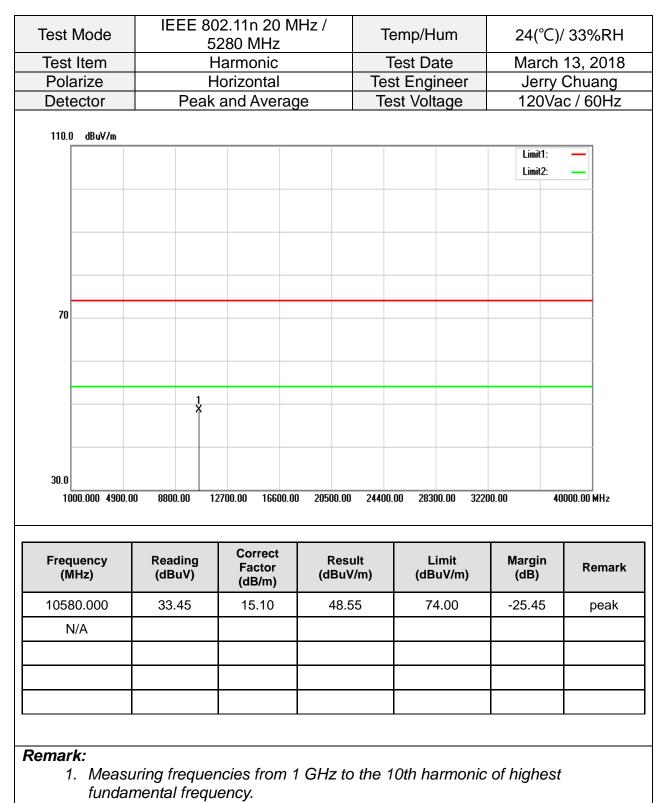

Fest Mode		11ac VHT160 5250MHz) MHz T	emp/Hum	24(°C)/ 33%RH		
Test Item	F	larmonic	-	Test Date	March	13, 2018	
Polarize		Vertical	Te	st Engineer	Jerry	Chuang	
Detector	Peak	and Average	e Te	est Voltage	120Va	c / 60Hz	
110.0 dBu∀/m							
					Limit1: Limit2:	_	
70							
	1						
30.0	0.00 8800.00	12700.00 16600.00	20500.00 24400	0.00 28300.00 322	00.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10500.000	33.60	14.92	48.52	74.00	-25.48	peak	
N/A							
					I		
e mark: 1. Mea	suring freque	ncies from 1	GHz to the	10th harmonic	of hiahest		


Test Mode	IEEE 80	2.11ac \ 5250 /		MHz	Te	emp/H	um	24(°C)	/ 33%RH
Test Item		Harmo				est Da			13, 2018
Polarize		Horizo	ntal			st Eng			Chuang
Detector	Pe	eak and A	Average		Te	st Vol	tage	120Va	ac / 60Hz
110.0 dBuV/m									
								Limit1: Limit2:	_
70									
		* 							
30.0									
1000.000 4900	.00 8800.00	12700.00	16600.00	20500.00	24400.	.00 283	00.00 3220	10.00 4	0000.00 MHz
Frequency (MHz)	Readin (dBuV	ig Fa	orrect actor B/m)	Resu (dBuV/			imit uV/m)	Margin (dB)	Remark
10500.000	34.42	1	4.92	49.3	4	7	4.00	-24.66	peak
N/A									
	1							1	1
Remark:									
1 1/000	suring free	nuoncios	from 1	CUT to	tha 1	Oth h	rmonio	of highoo	4


Above 1G Test Data for UNII-2a

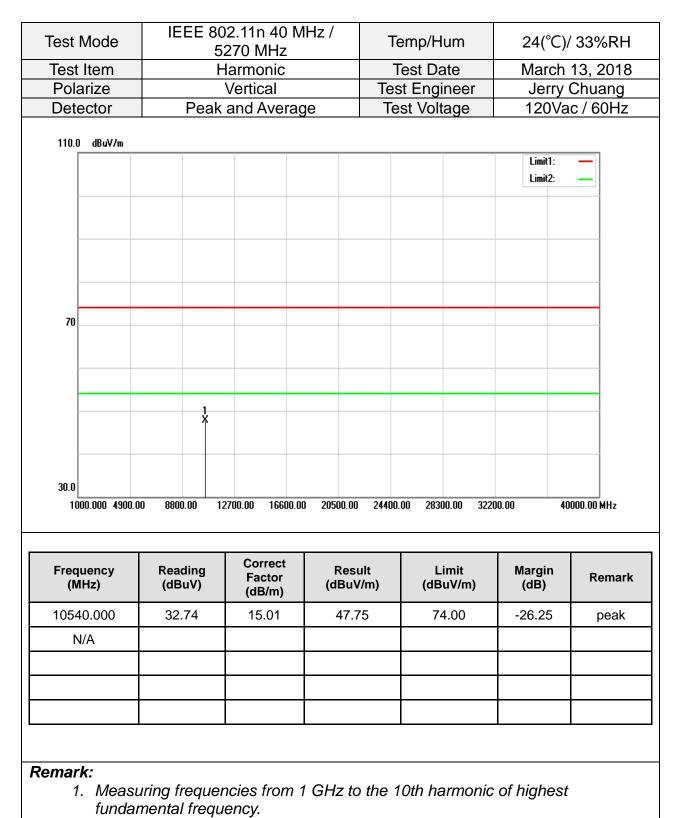

Test Mode		IEEE 802.11a 5260 MHz	/ T	emp/Hum	24(°C)/	′ 33%RH
Test Item		Harmonic		Fest Date		13, 2018
Polarize		Vertical		st Engineer		Chuang
Detector	P	eak and Avera	ge Te	est Voltage	120Va	c / 60Hz
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
	1 ×					
30.0						
1000.000 4900.00	8800.00	12700.00 16600.00	20500.00 24400	1.00 28300.00 322	00.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10520.000	33.30	14.97	48.27	74.00	-25.73	peak
N/A						
mark:	ing from	anaiaa fram 1				
	'ina ireau	encies irom i	GHz to the 1	10th harmonic	; of highest	

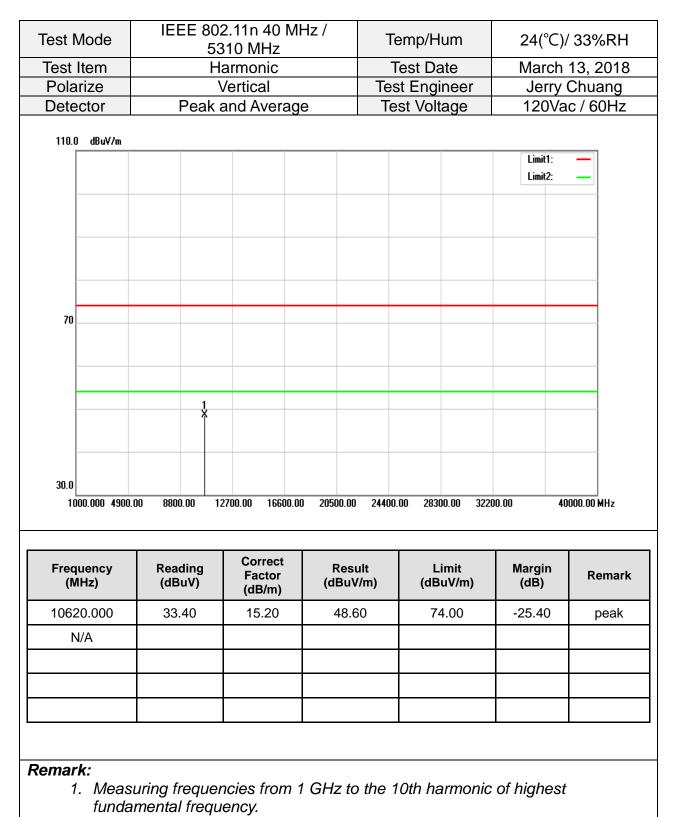


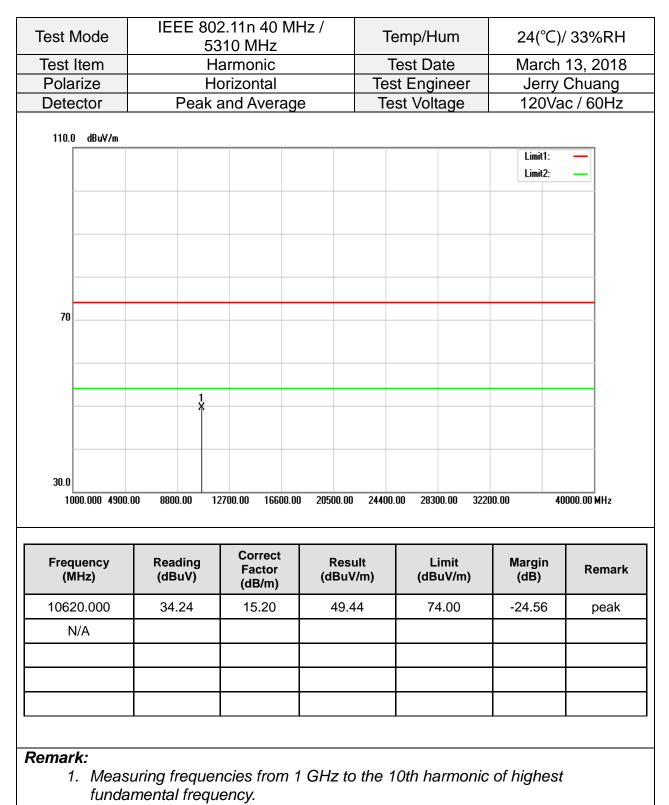


Fest Mode		802.11n 20 5260 MH		Te	emp/H	um	24(°C)	/ 33%RH
Test Item		Harmonio	C	Т	est Da	ate	March	13, 2018
Polarize		Vertical		Tes	st Engi	neer		Chuang
Detector	Pea	k and Ave	erage	Te	st Volt	age	120Va	ac / 60Hz
110.0 dBu¥/m								
							Limit1: Limit2:	_
70								
	1							
30.0								
1000.000 4900.00	8800.00	12700.00 10	6600.00 20500.0	0 24400	.00 2830	00.00 3220	00.00 4	0000.00 MHz
Frequency (MHz)	Reading (dBuV)	Corre Facto (dB/m	or Kes			imit uV/m)	Margin (dB)	Remark
10520.000	34.37	14.9	7 49.	34	74	4.00	-24.66	peak
N/A								
								<u> </u>
emark:								
			om 1 GHz t			•		

Test Mode		02.11n 20 MH 5260 MHz	z/ т	emp/Hum	24(°C)/	/ 33%RH	
Test Item		Harmonic	-	Test Date	March	13, 2018	
Polarize		Horizontal	Te	st Engineer	Jerry Chuang		
Detector	Peak	k and Average	Te	est Voltage	120Va	c / 60Hz	
110.0 dBu¥/m							
					Limit1: Limit2:	_	
70							
	*						
30.0							
1000.000 4900.00	8800.00	12700.00 16600.00	20500.00 24400).00 28300.00 3220	00.00 40	1000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
10520.000	33.50	14.97	48.47	74.00	-25.53	peak	
N/A							
		<u> </u>		I	I	I	
emark:							
	ing frague	encies from 1	UT to the	10th harmania	ofbiohoot		

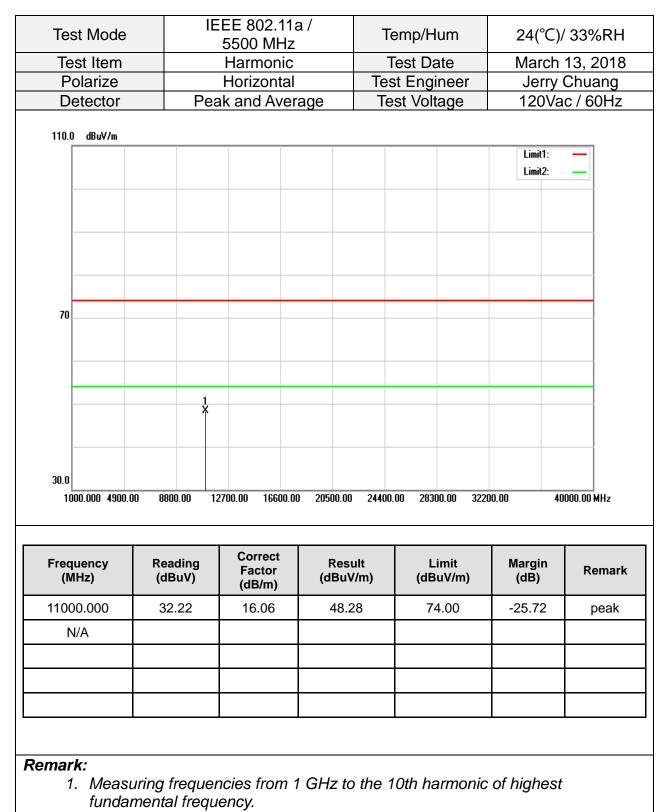



Test Mode		2.11n 20 MF 320 MHz	łz /	Temp/Hum	24(°C)/	/ 33%RH		
Test Item		armonic		Test Date	March	March 13, 2018		
Polarize	N	Vertical	Te	est Engineer	Jerry	Chuang		
Detector	Peak	and Average	e T	est Voltage		c / 60Hz		
110.0 dBu¥/m								
					Limit1: Limit2:	_		
70								
	1							
30.0								
1000.000 4900.0	0 8800.00 1.	2700.00 16600.00	20500.00 244	00.00 28300.00 3220	0.00 40	1000.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
10640.000	33.77	15.23	49.00	74.00	-25.00	peak		
N/A								
emark:								


Rev.02

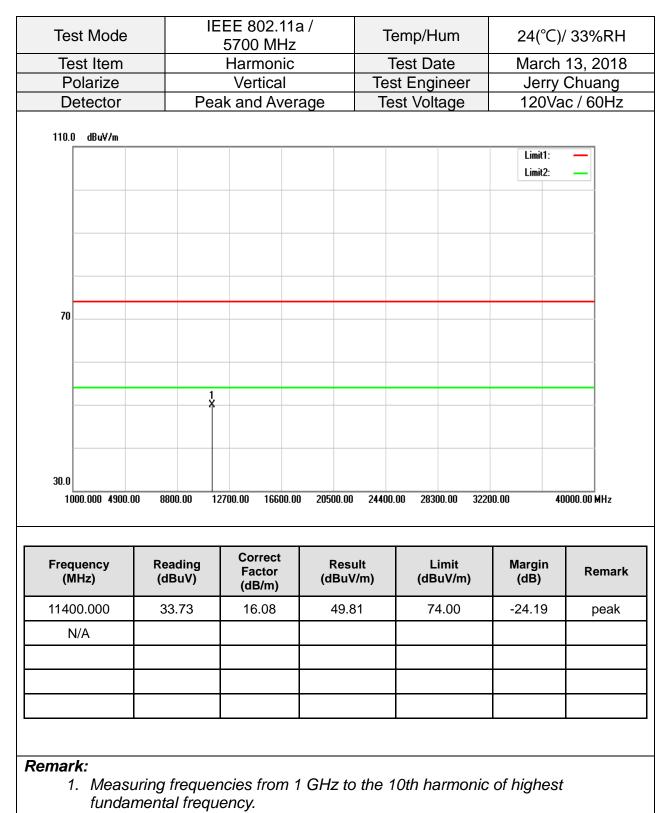
Test Mode		02.11n 20 5320 MHz	MHz /	Te	emp/H	um	24(°C),	/ 33%RH
Test Item		Harmonic			est Da			13, 2018
Polarize		Horizontal			st Engi			Chuang
Detector	Peal	< and Aver	age	Te	st Volt	age	120Va	c / 60Hz
110.0 dBu¥/m								
							Limit1: Limit2:	
70								
	1 X							
30.0								
1000.000 4900.00	8800.00	12700.00 166	00.00 20500.00	24400.	.00 2830	0.00 3220	0.00 40	1000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Kes (dBu)			imit uV/m)	Margin (dB)	Remark
10640.000	31.99	15.23	47.:	22	74	4.00	-26.78	peak
N/A								
emark:								
		encies froi						

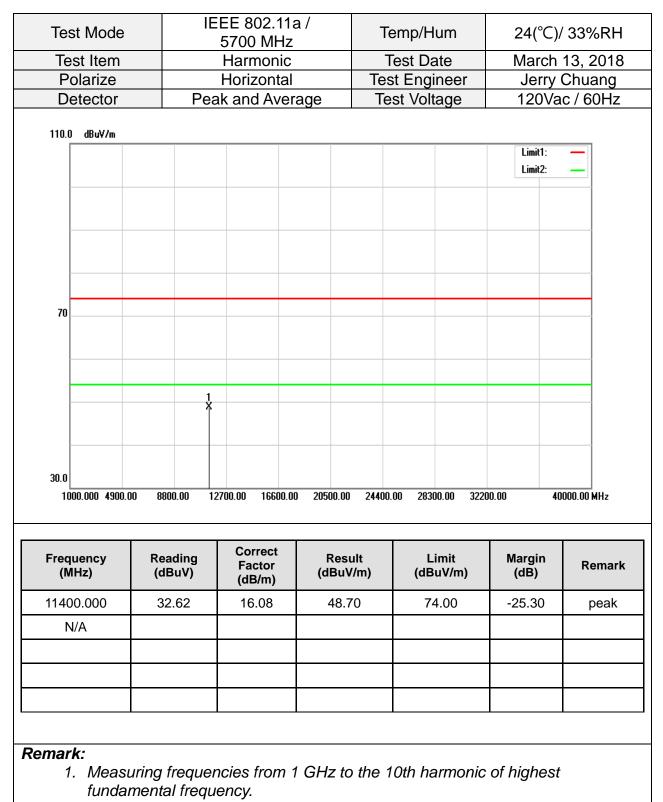
Test Mode		302.11n 40 M 5270 MHz	IHz /	Temp/ł	Hum	24(°C)	/ 33%RH	
Test Item		Harmonic		Test D	ate	March	13, 2018	
Polarize		Horizontal		Test Eng		Jerry Chuang		
Detector	Pea	k and Averag	ge	Test Vo	ltage	120Va	ic / 60Hz	
110.0 dBuV/m								
						Limit1: Limit2:		
70								
	X							
30.0								
1000.000 4900.00	8800.00	12700.00 16600.0	0 20500.00	24400.00 28	300.00 322	DO. OO 40	000.00 MHz	
Frequency	Reading	Correct	Result		Limit	Margin		
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m		BuV/m)	(dB)	Remark	
10540.000	33.98	15.01	48.99		74.00	-25.01	peak	
N/A								
emark:								
		encies from						

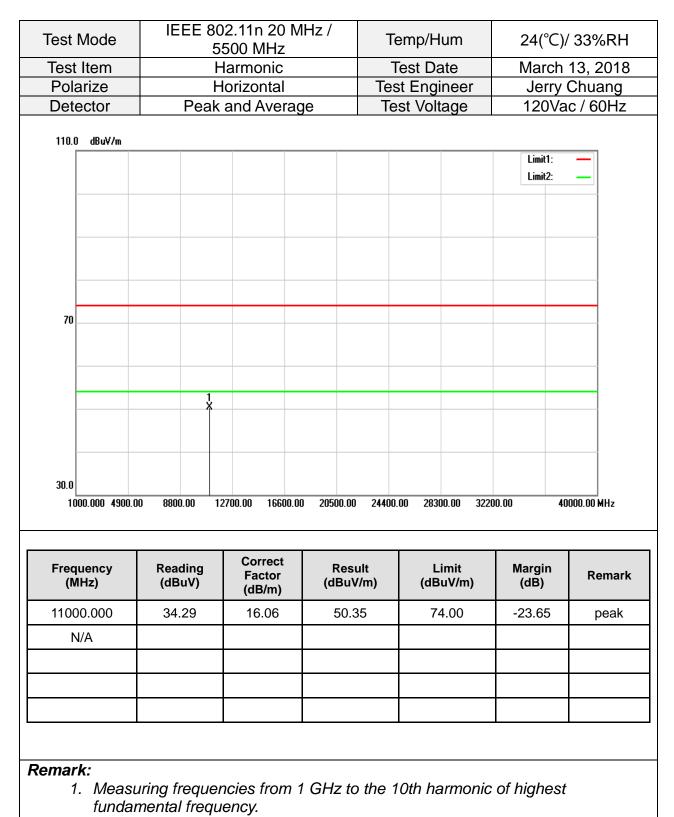

Fest Mode	5	11ac VHT80 290 MHz	IVIHZ /	Temp/H			/ 33%RH	
Test Item	ŀ	larmonic		Test D		March 13, 2018		
Polarize	Deal	Vertical		Test Eng			Chuang	
Detector	Peak	and Average	;	Test Vo	itage	120va	c / 60Hz	
110.0 dBuV/m								
						Limit1: Limit2:	_	
70								
30.0 1000.000 490	0.00 8800.00	12700.00 16600.00	20500.00 2	4400.00 28	300.00 3220	0.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)		Limit BuV/m)	Margin (dB)	Remark	
10580.000	32.93	15.10	48.03	7	74.00	-25.97	peak	
N/A								
emark:						1	1	
	suring freque	encies from 1	GHz to th	e 10th h	armonic	of highest		

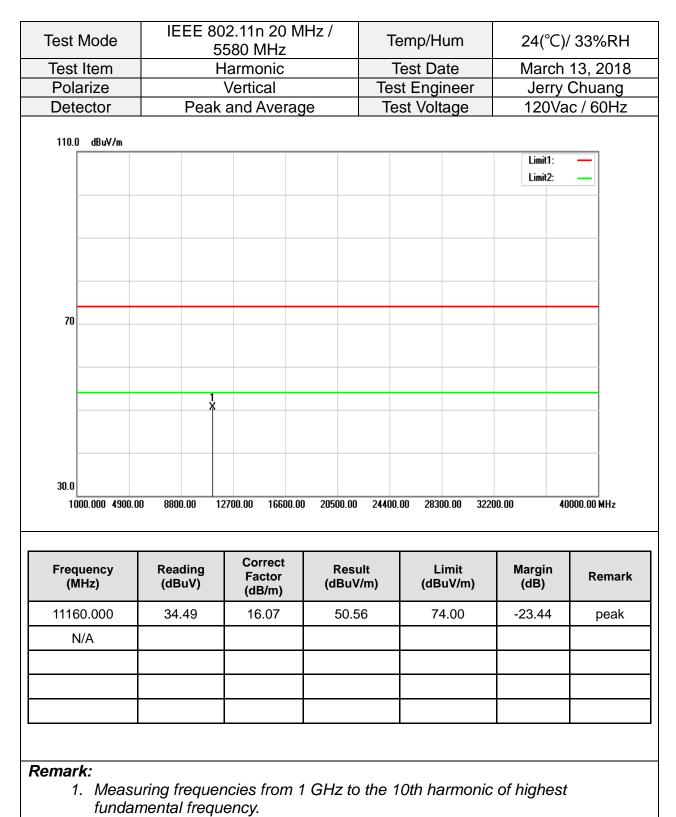
Test Mode	IEEE		1ac V 290 M		MHz /	Т	emp/⊦	lum	24(°C))/ 33%RH
Test Item			armor				Fest Da			13, 2018
Polarize		Ho	orizon	tal			st Eng			Chuang
Detector	F	Peak a	and Av	verage		Te	st Vol	tage	120Va	ac / 60Hz
110.0_dBu∀/m										
									Limit1: Limit2:	_
70										
		1 X								
30.0										
1000.000 4900	.00 8800.	00 12	2700.00	16600.00	20500.00	24400	.00 283	00.00 3220)0.00 4	10000.00 MHz
Frequency (MHz)	Read (dBu		Cor Fac (dB	tor	Resı (dBuV			.imit BuV/m)	Margin (dB)	Remark
10580.000	34.2	28	15.	.10	49.3	8	7	4.00	-24.62	peak
N/A										
	1						1		<u> </u>	<u> </u>
emark:	suring fr				<u></u>					

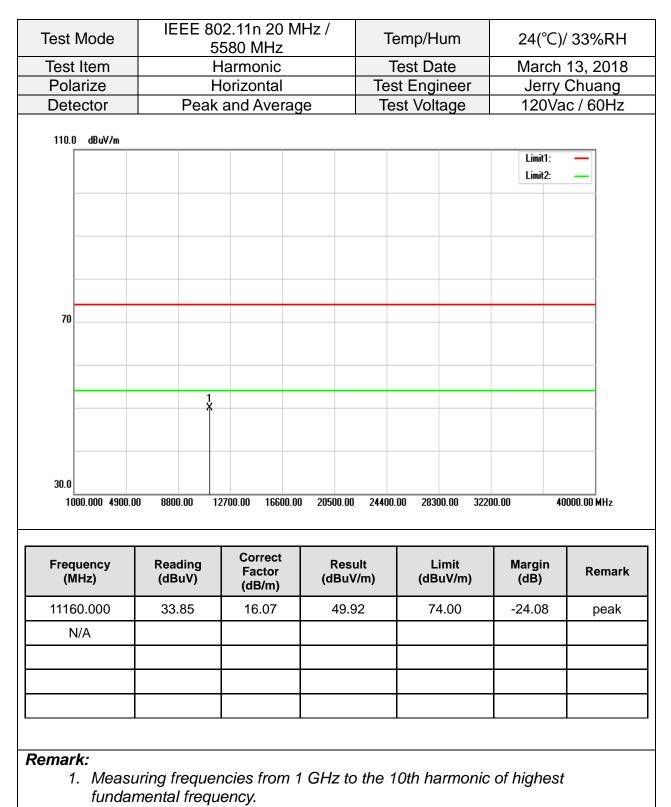

IEEE 802.11a / Test Mode Temp/Hum 24(°C)/ 33%RH 5500 MHz Test Item Harmonic Test Date March 13, 2018 Polarize Vertical Test Engineer Jerry Chuang Peak and Average Test Voltage 120Vac / 60Hz Detector 110.0 dBuV/m Limit1: Limit2: 70 ţ 30.0 1000.000 4900.00 8800.00 12700.00 16600.00 20500.00 24400.00 32200.00 40000.00 MHz 28300.00 Correct Reading Frequency Result Limit Margin Remark Factor (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB/m) 11000.000 33.24 16.06 49.30 74.00 -24.70 peak N/A Remark:


Above 1G Test Data for UNII-2c

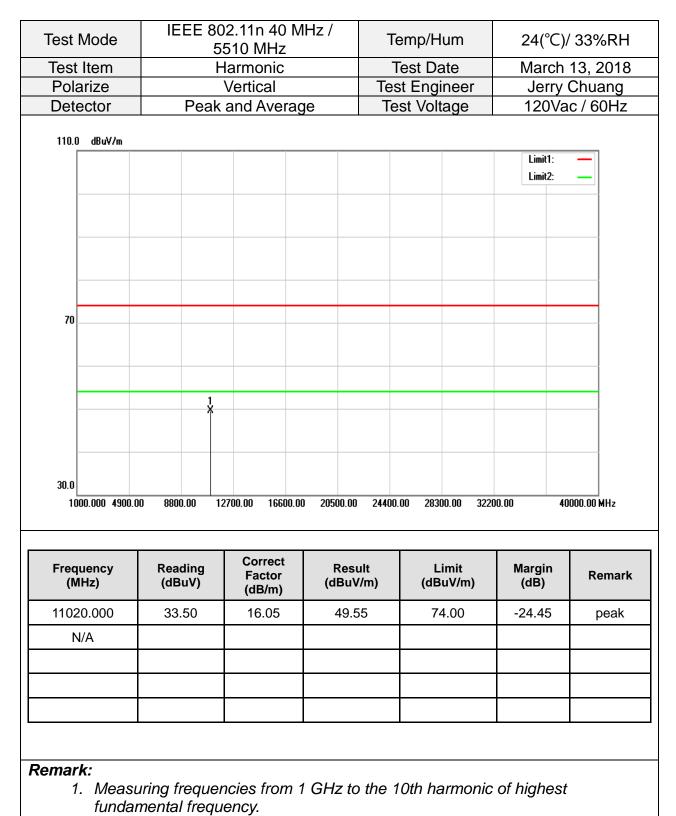

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

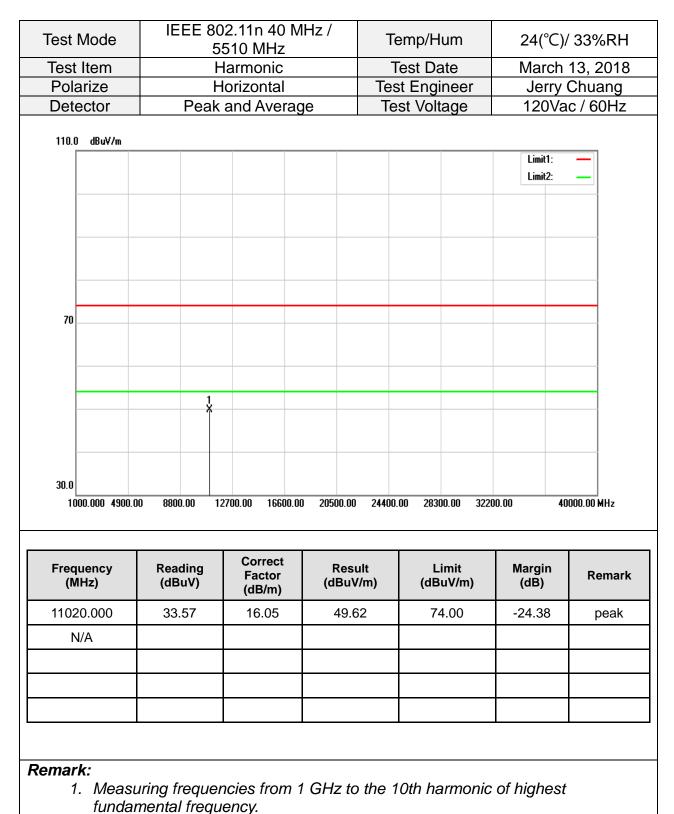

Detector Peak and Average Test Voltage 120Vac / 60H 110.0 dBuV/m	Test Mode		IEEE 80 5580)2.11a MHz	/	Т	emp/H	um	24(°C	C)/ 33%	RH
Detector Peak and Average Test Voltage 120Vac / 60H 110.0 dBuV/m	Test Item		Harn	nonic			Fest Da	ate	Marc	h 13, 2	018
10.0 dBuV/m 10.0 dBuV/m									Jerry Chuang		
Image: Second	Detector	P	eak and	Avera	ige	Te	est Volt	age	120\	/ac / 60)Hz
Image:	110.0 dBu¥/m										
30.0 1										_	
30.0 1											
30.0 1											
30.0 40000.00 MHz Frequency (MHz) Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Remain 11160.000 33.55 16.07 49.62 74.00 <	70										
30.0 40000.00 MHz Frequency (MHz) Reading (dBuV) Correct Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Remain 11160.000 33.55 16.07 49.62 74.00 <			-								
Index Reading (MHz) Correct (dBuV) Result Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Remain (dB) Remain (dB) Remain (dB) 11160.000 33.55 16.07 49.62 74.00 -24.38 peal											
Frequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remain margin (dB)11160.00033.5516.0749.6274.00-24.38peal											
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dBRemain (dB)11160.00033.5516.0749.6274.00-24.38peal	1000.000 4900.00	8800.00	12700.00	16600.00	20500.00	24400).00 283(0.00 3220	00.00	40000.00 M	lHz
	Frequency (MHz)		Fac	tor						Re	marl
N/A	11160.000	33.55	16	.07	49.6	2	74	4.00	-24.38	р	eak
	N/A										
	I										
	mark:										

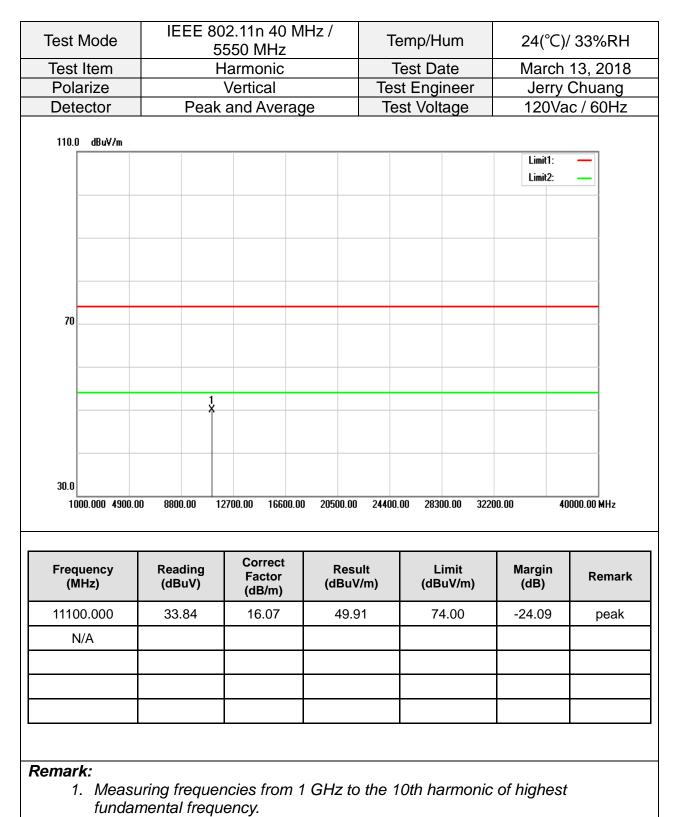


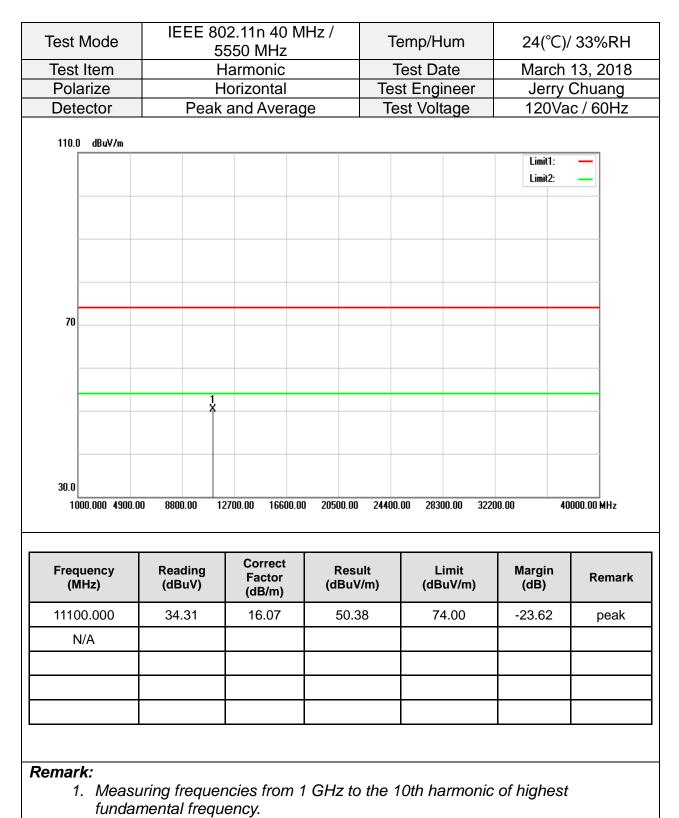


Fest Mode		02.11n 20 5500 MHz	MHz /	Te	emp/H	um	24(°C)/ 33%RH
Test Item		Harmonic		Т	est Da	ate	March	n 13, 2018
Polarize		Vertical			st Engi			Chuang
Detector	Pea	k and Aver	age	Те	st Volt	age	120V	ac / 60Hz
110.0 dBuV/m								
							Limit1: Limit2:	_
70								
	1	μ κ						
30.0								
1000.000 4900.00	8800.00	12700.00 166	00.00 20500.00	24400.	00 2830	0.00 322	00.00	10000.00 MHz
_		Correct						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)				imit uV/m)	Margin (dB)	Remark
11000.000	33.75	16.06	49.8	81	74	4.00	-24.19	peak
N/A								
emark:								
		encies froi						

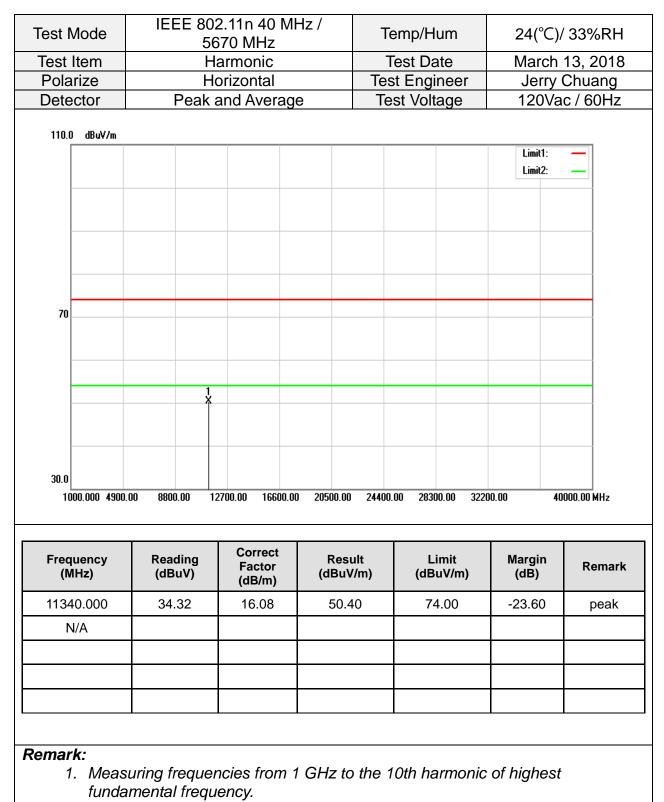





Rev.02


Test Mode		02.11n 20 N 6700 MHz	/IHz /	Te	emp/H	um	24(°C)	/ 33%RH	
Test Item	ŀ	Harmonic		Т	est Da	ate	March 13, 2018		
Polarize		Vertical		Tes	st Engi	neer	Jerry	Chuang	
Detector	Peak	and Avera	ge	Te	st Volt	age	120Va	ac / 60Hz	
110.0 dBu¥/m									
							Limit1: Limit2:	_	
70									
	>	x							
30.0 1000.000 4900.00	8800.00	12700.00 16600	.00 20500.00	24400.	00 2830)0.00 3220	0.00 4	0000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV			imit uV/m)	Margin (dB)	Remark	
11400.000	34.79	16.08	50.8	7	74	4.00	-23.13	peak	
N/A									
emark:									
	ina frague	encies from	1 CU7 to	tha 1	Oth he	rmonio	of highoo	4	

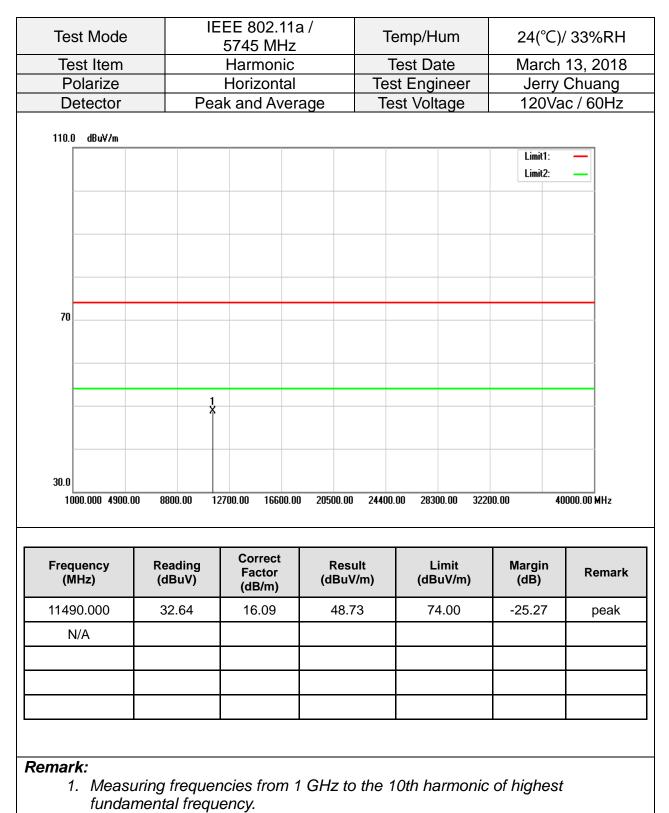
Fest Mode		02.11n 20 MH 5700 MHz	z/ т	emp/Hum	24(°C)/ 33%RH	
Test Item	Harmonic			Test Date		13, 2018
Polarize	Horizontal			st Engineer		Chuang
Detector	Peak and Average			est Voltage	120Vac / 60Hz	
110.0 dBuV/m						
					Limit1: — Limit2: —	
70						
30.0						
1000.000 4900.00	8800.00	12700.00 16600.00	20500.00 24400).00 28300.00 322	00.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
11400.000	33.11	16.08	49.19	74.00	-24.81	peak
N/A						
emark:						

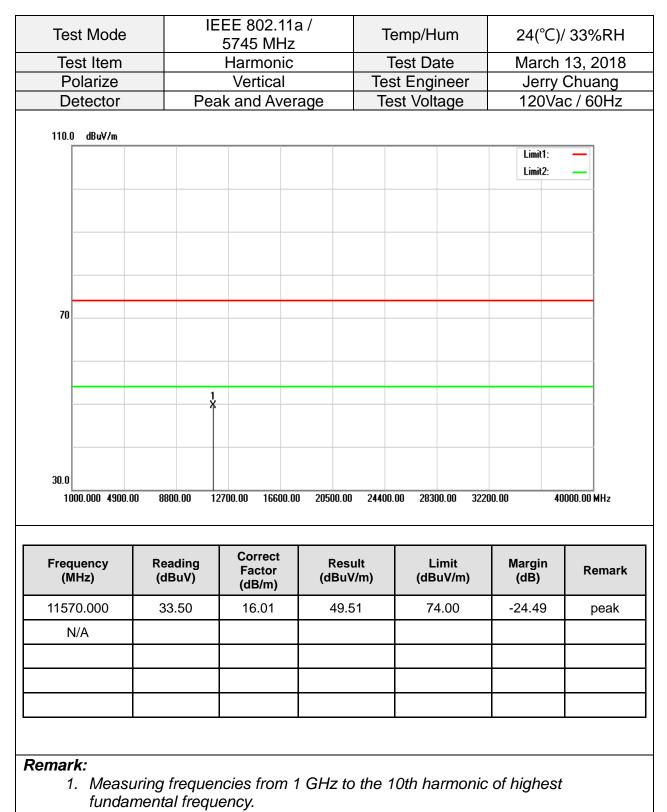


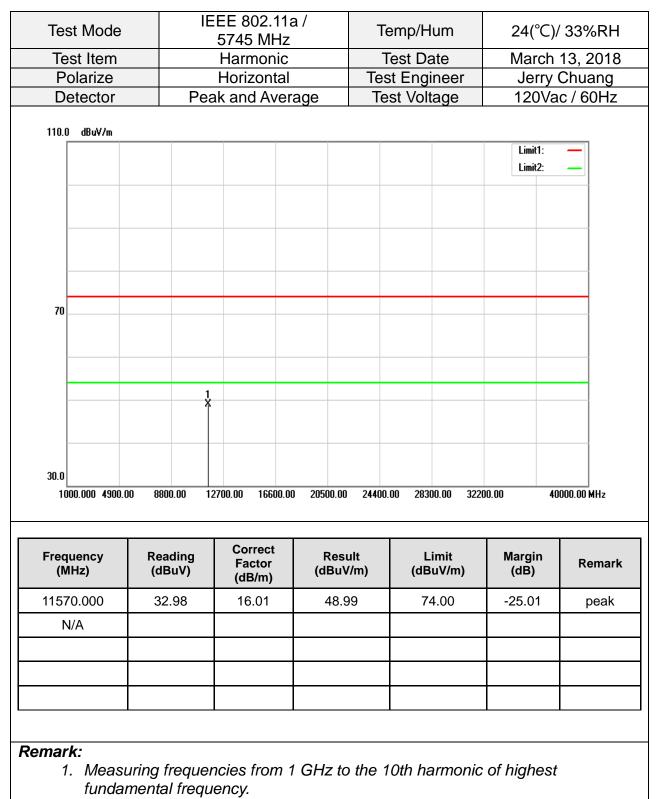
Test Mode		02.11n 40 M 670 MHz	Hz /	Temp/Hum	24(°C)	24(°C)/ 33%RH	
Test Item	Harmonic			Test Date	March	13, 2018	
Polarize	Vertical			lest Engineer	Jerry Chuang		
Detector	Peak and Average			Test Voltage	120Va	120Vac / 60Hz	
110.0 dBuV/m							
					Limit1: — Limit2: —		
70							
	\$						
30.0							
1000.000 4900.00	8800.00	12700.00 16600.0) 20500.00 24	1400.00 28300.00 322	200.00 40	0000.00 MHz	
-	D	Correct					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
11340.000	33.51	16.08	49.59	74.00	-24.41	peak	
N/A							
emark:							
		encies from a			<i></i>		

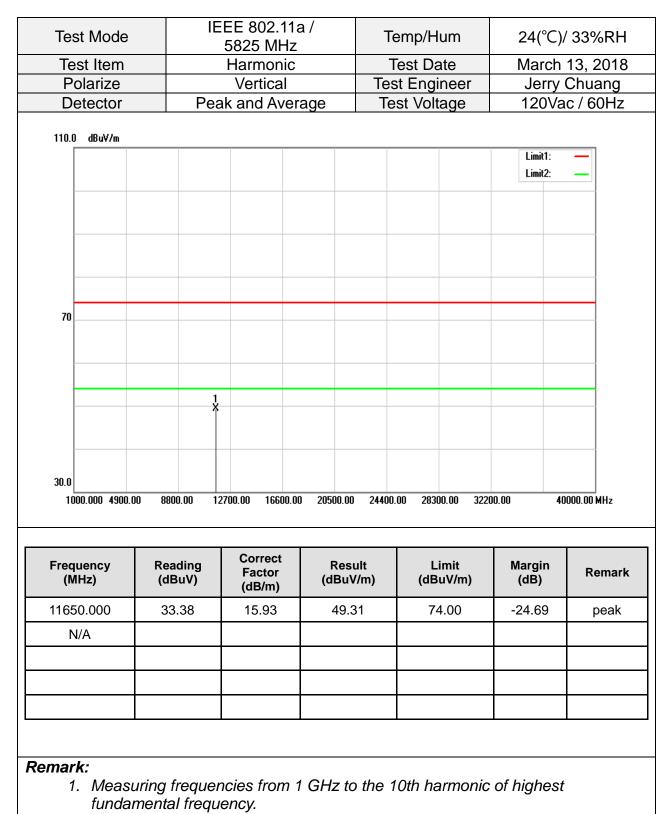
Test Mode		11ac VHT80 N 5530 MHz	MHz /	Temp/	Hum	24(°C)/	33%RH
Test Item	I	Harmonic		Test D			13, 2018
Polarize		Vertical		Test En			Chuang
Detector	Peak	and Average		Test Vo	oltage	120Va	c / 60Hz
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
	1 *	· · · · · · · · · · · · · · · · · · ·					
30.0							
1000.000 4900).00 8800.00	12700.00 16600.00	20500.00	24400.00 21	3300.00 3220	00.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m		Limit BuV/m)	Margin (dB)	Remark
11060.000	33.78	16.06	49.84		74.00	-24.16	peak
N/A							
emark:							
	suring freque	encies from 1	GHz to ti	he 10th I	narmonic	of highest	

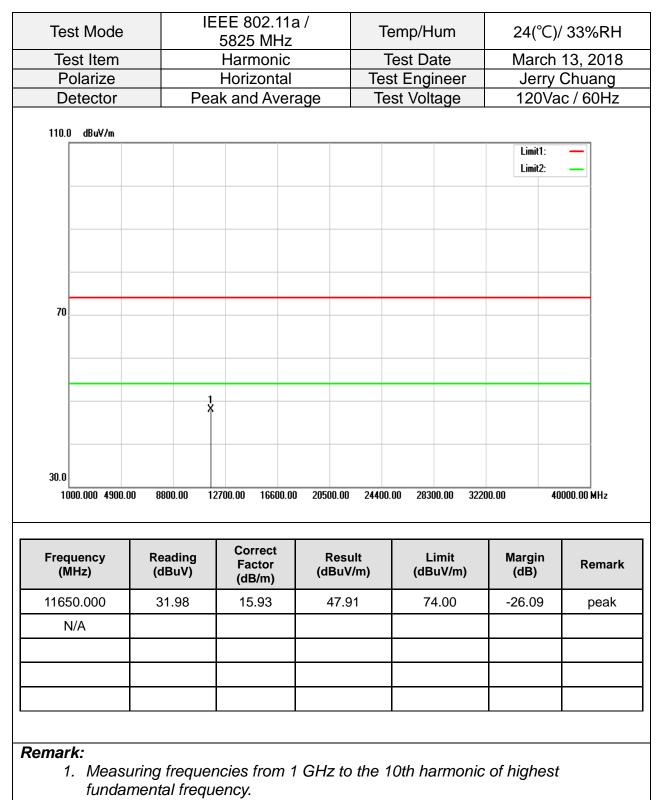
Test Mode	IEE		.11ac \ 5530 N	/HT80 1Hz	MHz /	Т	emp/H	um	24(°C)/ 33%RH
Test Item			Harmo				est Da			<mark>ו 13, 201</mark> 8 ח
Polarize			Horizo				st Eng			/ Chuang
Detector		Pea	k and A	verage	•	Te	st Vol	age	120V	ac / 60Hz
110.0 dBuV/m										
									Limit1: Limit2:	_
70										
30.0										
1000.000 490	0.00	8800.00	12700.00	16600.00	20500.00	24400	.00 283	00.00 3220	00.00	40000.00 MHz
_			Co	rrect	_	•.		• •/		
Frequency (MHz)		eading dBuV)	Fa	ictor B/m)	Resı (dBuV			imit uV/m)	Margin (dB)	Remark
11060.000	;	34.55	16	6.06	50.6	1	74	4.00	-23.39	peak
N/A										
emark:										
		frage	ionoloo	from 1					of highes	

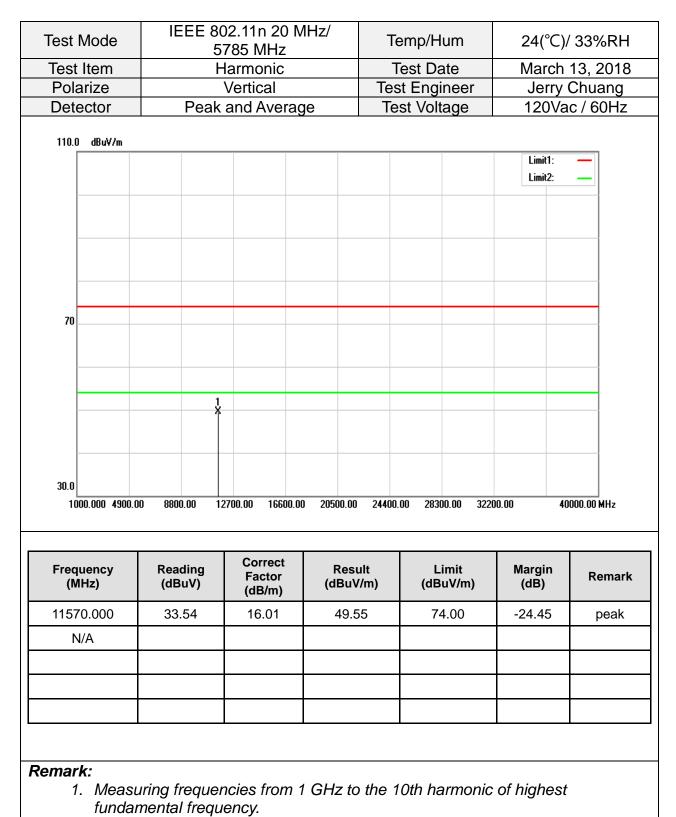

Rev.02

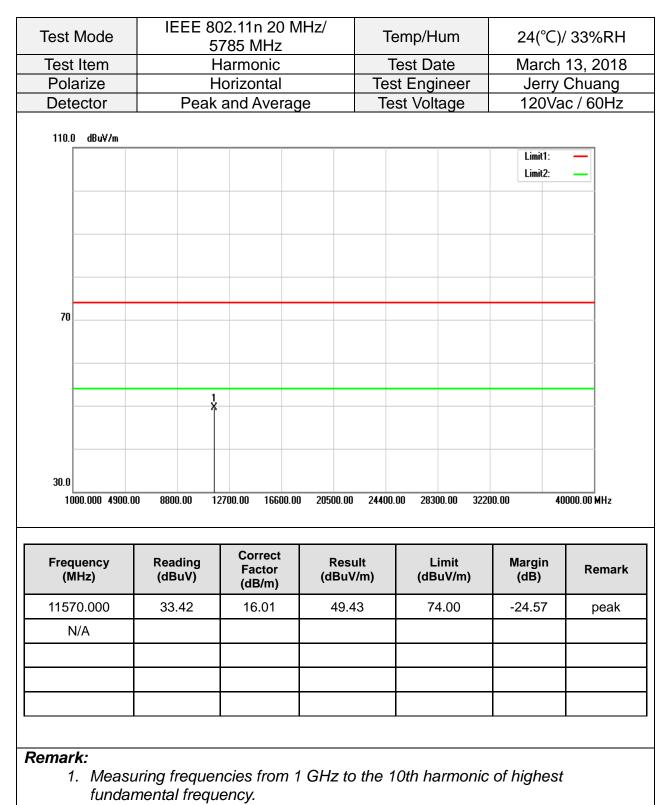

Test Mode		11ac VHT160 5570 MHz	MHz	Tem	o/Hum	24(°C)/	′ 33%RH
Test Item	F	larmonic		Test	Date	March	13, 2018
Polarize		Vertical			ngineer		Chuang
Detector	Peak	and Average		Test \	/oltage	120Va	c / 60Hz
110.0 dBuV/m							
						Limit1: Limit2:	
70							
	1						
30.0							
1000.000 4900.0	0 8800.00 1	12700.00 16600.00	20500.00	24400.00	28300.00 3220	00.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n	ı)	Limit (dBuV/m)	Margin (dB)	Remark
11140.000	34.14	16.07	50.21		74.00	-23.79	peak
N/A							
emark:							
1 Measi	ırina freaue	ncies from 1	GHz to t	he 10th	harmonic	of highest	

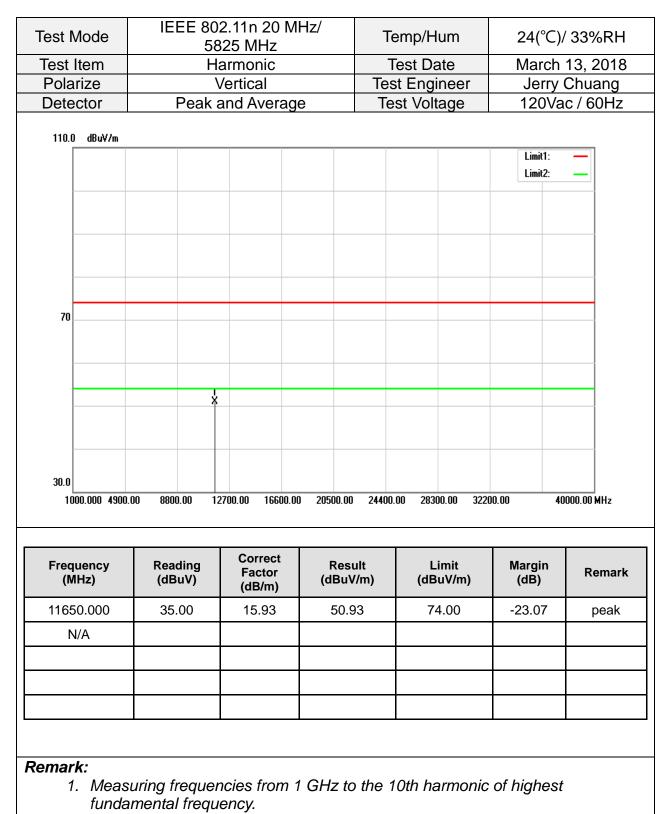

Test Mode	IEEI		.11ac \ 5570 N	/HT160 //Hz	MHz	Т	emp/H	um	24(°C)/ 33%RH
Test Item			Harmo				Test Da			n 13, 2018
Polarize	_		Horizoi				st Eng			Chuang
Detector		Peal	k and A	verage		Te	st Volt	age	120V	ac / 60Hz
110.0 dBu¥/m										
									Limit1: Limit2:	_
70										
			1 X							
30.0 1000.000 490	0.00 84	300.00	12700.00	16600.00	20500.00	24400	.00 283	00.00 3220	00.00	40000.00 MHz
Frequency (MHz)		ading BuV)	Fa	rrect ictor B/m)	Resı (dBuV			imit uV/m)	Margin (dB)	Remark
11140.000	3	3.86	16	6.07	49.9	3	74	4.00	-24.07	peak
N/A										
emark:										
				from 1						

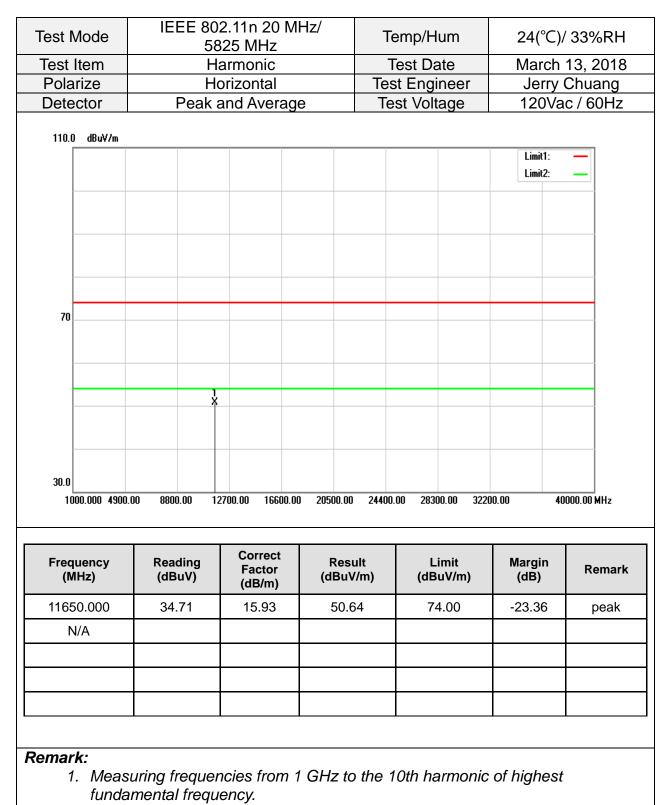

Above 1G Test Data for UNII-3

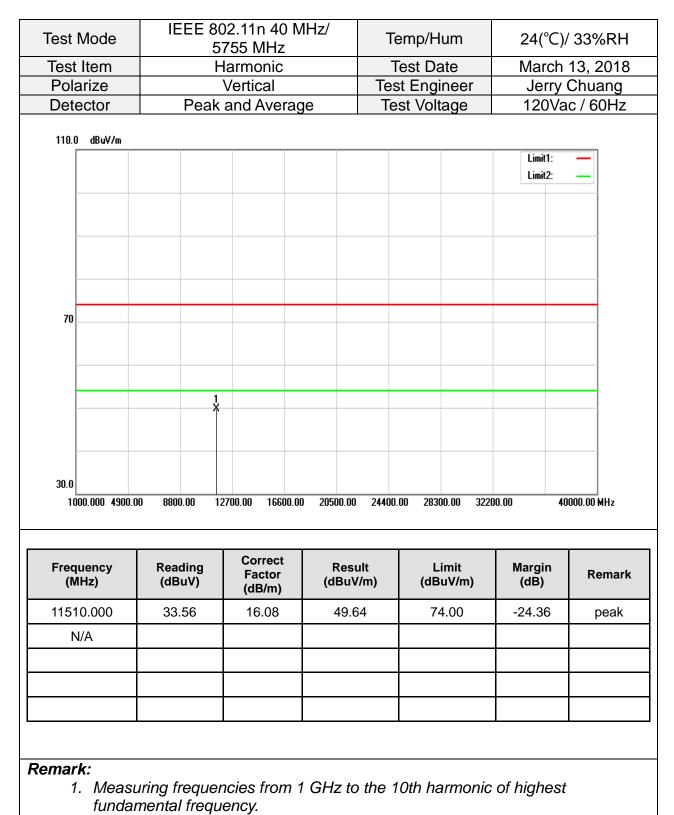

Test Mode		IEEE 80 5745		Te	emp/Hu	ım		/ 33%RH
Test Item		Harm			est Da			13, 2018
Polarize		Vert			st Engir			Chuang
Detector	F	eak and	Average	Te	st Volta	age	120Va	ac / 60Hz
110.0 dBuV/m								
							Limit1: Limit2:	_
70								
		1						
30.0								
1000.000 4900.00	8800.00	12700.00	16600.00 20500.	DO 24400.	.00 28300).00 3220	10.00 4	0000.00 MHz
Frequency (MHz)	Reading (dBuV)	Corr Fac (dB	tor (dB	sult ıV/m)		mit ıV/m)	Margin (dB)	Remark
11490.000	32.43	16.	-	.52	74	.00	-25.48	peak
N/A								
		<u> </u>					<u> </u>	
mark: 1. Measu	ring frog	ionoioo f					ofhishood	4
			rnm $i = H = H$	to tho 7	lith no	rmania		

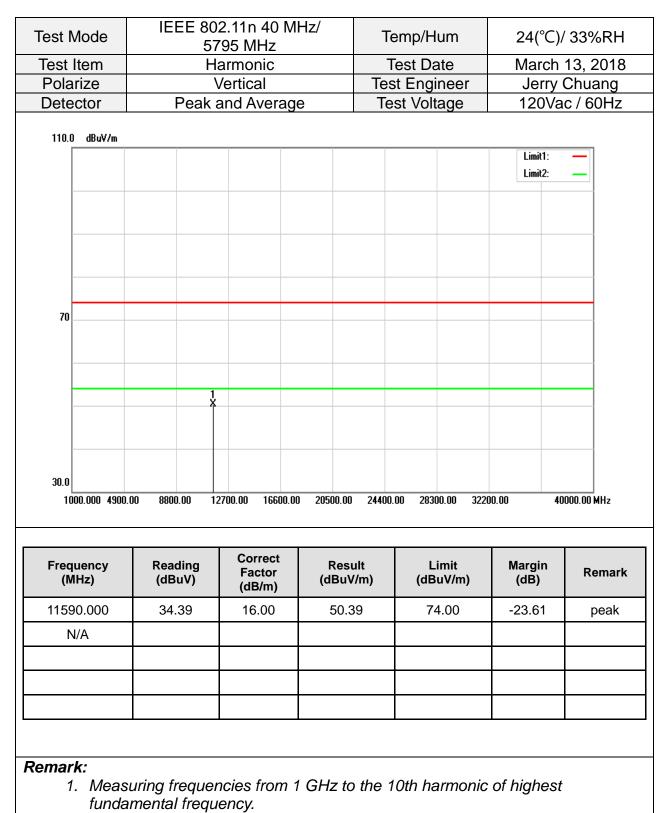





Test Mode)2.11n 20 M 745 MHz	Hz /	Ter	np/Hum	24(°C)/	[/] 33%RH
Test Item		larmonic		Te	st Date	March	13, 2018
Polarize		Vertical		Test	Engineer		Chuang
Detector	Peak	and Averag	е	Test	t Voltage	120Va	c / 60Hz
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
	1 X						
30.0							
1000.000 4900.00	D 8800.00 1	2700.00 16600.00	20500.00	24400.00	28300.00 3220	00.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m	ı)	Limit (dBuV/m)	Margin (dB)	Remark
11490.000	33.11	16.09	49.20		74.00	-24.80	peak
N/A							
emark:							


- fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the
 - Average value compliance with the average limit


Test Mode		02.11n 20 M 5745 MHz	Hz /	Te	emp/H	um	24(°C)/ 33%RH
Test Item		Harmonic		T	est Da	ate	March	n 13, 2018
Polarize		Horizontal			t Engi			[,] Chuang
Detector	Peak	c and Averag	e	Te	st Volt	age	120V	ac / 60Hz
110.0 dBuV/m								
							Limit1: Limit2:	_
70								
70								
	1	<u> </u>						
30.0								
1000.000 4900.00	8800.00	12700.00 16600.00	20500.00	24400.0	00 2830	0.00 322	00.00	40000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r			imit uV/m)	Margin (dB)	Remark
11490.000	34.07	16.09	50.16		74	4.00	-23.84	peak
N/A								
		1					1	1
emark:								
1 1/00011	ina froque	encies from 1	CH7 to t	ha 1	0th ha	rmonio	of highos	+





est Mode		2.11n 40 Mł 755 MHz	Hz/	Temp/Hur	n	24(°C)	/ 33%RH
Test Item	Н	armonic		Test Date	;	March	13, 2018
Polarize	H	orizontal	-	Test Engine	er	Jerry	Chuang
Detector	Peak	and Average)	Test Voltag	ge	120Va	ac / 60Hz
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
30.0							
1000.000 4900.0	0 8800.00 1	2700.00 16600.00	20500.00 24	1400.00 28300.0	0 3220	0.00 4	0000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Lim (dBuV	-	Margin (dB)	Remark
11510.000	33.29	16.08	49.37	74.0	0	-24.63	peak
N/A							
emark:							

- fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the
 - Average value compliance with the average limit

Test Mode		11ac VHT80 775 MHz	MHz /	Temp/ł	Hum	24(°C)/ 33%RH		
Test Item		larmonic		Test D			13, 2018	
Polarize		Vertical		Test Eng			Chuang	
Detector	Peak	and Average	9	Test Vo	ltage	120Va	c / 60Hz	
110.0 dBuV/m								
						Limit1: Limit2:		
70								
	1	4						
30.0								
1000.000 4900	.00 8800.00 1	12700.00 16600.00	20500.00	24400.00 28	300.00 3220	00.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m		Limit BuV/m)	Margin (dB)	Remark	
11550.000	33.83	16.04	49.87	7	74.00	-24.13	peak	
N/A								
emark:	uring fragua	ncies from 1		a 10th h		ofhickoct		

Test Mode		11ac VHT80 <u>775 MHz</u>	MHz /	Te	emp/H	um		C)/ 33%	
Test Item	ŀ	larmonic			est Da			ch 13, 2	
Polarize		lorizontal			t Engi			ry Chua	
Detector	Peak	and Average	е	Tes	st Volt	age	120	Vac / 60	OHz
110.0 dBuV/m									
							Limit1 Limit2		
70									
		I							
30.0									
30.0 1000.000 490	0.00 8800.00	12700.00 16600.00	0 20500.00	24400.0	00 2830	00.00 3220	00.00	40000.00 M	4 Hz
	0.00 8800.00 Reading (dBuV)	12700.00 16600.00 Correct Factor (dB/m)	0 20500.00 Rest (dBuV	ult	L	00.00 3220 imit uV/m)	00.00 Margir (dB)		4Hz emark
1000.000 490 Frequency	Reading	Correct Factor	Resi	ult //m)	L (dB	imit	Margir	n Re	
1000.000 490 Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Rest (dBuV	ult //m)	L (dB	imit uV/m)	Margir (dB)	n Re	emark
1000.000 490 Frequency (MHz) 11550.000	Reading (dBuV)	Correct Factor (dB/m)	Rest (dBuV	ult //m)	L (dB	imit uV/m)	Margir (dB)	n Re	emark
1000.000 490 Frequency (MHz) 11550.000	Reading (dBuV)	Correct Factor (dB/m)	Rest (dBuV	ult //m)	L (dB	imit uV/m)	Margir (dB)	n Re	emark
1000.000 490 Frequency (MHz) 11550.000 N/A M/A	Reading (dBuV)	Correct Factor (dB/m) 16.04	Resu (dBuV 50.0	ult //m) 08	L (dB 7/	imit uV/m) 4.00	Margir (dB) -23.92	η Re	emark