System Check_H3500

Frequency: 3500 MHz ; Duty Cycle: 1:1; Room Ambient Temperature: $23.0^{\circ} \mathrm{C}$; Liquid
Temperature: $22.0^{\circ} \mathrm{C}$
Medium parameters used: $\mathrm{f}=3500 \mathrm{MHz} ; \sigma=2.833 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.494 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than $0.0012 \mathrm{~W} / \mathrm{kg}$
- Electronics: DAE4 Sn1486; Calibrated: 2023/6/16
- Probe: EX3DV4 - SN7369; ConvF(6.91, 6.91, 6.91) @ 3500 MHz; Calibrated: 2023/5/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100Mw/Area Scan (10x10x1):

Measurement grid: $d x=10 \mathrm{~mm}, \mathrm{dy}=10 \mathrm{~mm}$
Maximum value of SAR (measured) $=11.5 \mathrm{~W} / \mathrm{kg}$

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=2 \mathrm{~mm}$
Reference Value $=67.36 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=20.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 0 2} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=2.58 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=62.3 \%$
Maximum value of SAR (measured) $=14.7 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=14.7 \mathrm{~W} / \mathrm{kg}=11.67 \mathrm{dBW} / \mathrm{kg}$

System Check_H3700

Frequency: 3700 MHz ; Duty Cycle: 1:1; Room Ambient Temperature: $23.0^{\circ} \mathrm{C}$; Liquid
Temperature: $22.0^{\circ} \mathrm{C}$
Medium parameters used: $\mathrm{f}=3700 \mathrm{MHz} ; \sigma=3.063 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.901 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than $0.0012 \mathrm{~W} / \mathrm{kg}$
- Electronics: DAE4 Sn1486; Calibrated: 2023/6/16
- Probe: EX3DV4 - SN7369; ConvF(6.86, 6.86, 6.86) @ 3700 MHz; Calibrated: 2023/5/22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1):

Measurement grid: $d x=10 \mathrm{~mm}, \mathrm{dy}=10 \mathrm{~mm}$
Maximum value of SAR (measured) $=12.0 \mathrm{~W} / \mathrm{kg}$

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=2 \mathrm{~mm}$
Reference Value $=59.38 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=17.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.57 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.46 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.6 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67.1 \%$
Maximum value of SAR (measured) $=12.9 \mathrm{~W} / \mathrm{kg}$

