

FCC ID: FKGR1101 Report No.: T180918D06-RP3

ISED: 2697A-R1101

Page: 1 / 44 Rev.: 00

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 (CLASS II PERMISSIVE CHANGE)

FCC Part 15.247 IC RSS-247 issue 2 and IC RSS-GEN issue 5
module
DURABOOK
9260NGW
Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

Komil Tsori

Kevin Tsai Deputy Manager Tested by:

eny Chang

Jerry Chuang Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

Page: 2/44 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Revised By
00	January 29, 2019	Initial Issue	Allison Chen

Page: 3 / 44 Rev.: 00

Table of contents

1.	GENERAL INFORMATION4
1.1	EUT INFORMATION
1.2	INFORMATION ABOUT THE FHSS CHARACTERISTICS
1.3	EUT CHANNEL INFORMATION6
1.4	ANTENNA INFORMATION6
1.5	MEASUREMENT UNCERTAINTY7
1.6	FACILITIES AND TEST LOCATION
1.7	INSTRUMENT CALIBRATION8
1.8	SUPPORT AND EUT ACCESSORIES EQUIPMENT9
1.9	TEST METHODOLOGY AND APPLIED STANDARDS9
2.	TEST SUMMERY10
3.	DESCRIPTION OF TEST MODES11
3.1	THE WORST MODE OF OPERATING CONDITION11
3.2	THE WORST MODE OF MEASUREMENT12
4.	EUT DUTY CYCLE13
5.	TEST RESULT14
5.1	OUTPUT POWER MEASUREMENT14
5.2	RADIATION BANDEDGE AND SPURIOUS EMISSION19
AP	PENDIX-A TEST PHOTOA-1

Page: 4 / 44 Rev.: 00

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	TWINHEAD INTERNATIONAL CORP. 11F, No 550, Rueiguang Rd , Neihu, Taipei, Taiwan 11492, R.O.C.		
Manufacturer	TWINHEAD INTERNATIONAL CORP. 11F, No 550, Rueiguang Rd , Neihu, Taipei, Taiwan 11492, R.O.O		
Equipment	module		
Model No.	9260NGW		
Model Discrepancy	N/A		
Trade Name	DURABOOK		
Received Date	September 18, 2018		
Date of Test	November 6 ~ 21, 2018		
Output Power (W)	GFSK : 0.0069 (EIRP: 0.0068) 8DPSK : 0.0062 (EIRP: 0.0061)		
Power Supply	1. Power from AC Adapter FSP / FSP090-DIEBN2 Input: 100-240Vac, 1.5A, 50-60Hz Output: 19Vdc, 4.74A 2. Power from Battery		
Class II Permissive Change	 The subject approved module is being used in a specific host. [Product: Tablet PC, brand name: DURABOOK, FCC model:/ R11XXXXX (X=0-9, A-Z, a-z, Blank), IC model: R11AH6] Power reduction per tune-up procedure is applied in order to comply with exposure requirements. 		

Page: 5 / 44 Rev.: 00

1.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS

1.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.2.2 Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.2.3 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.2.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2.5 Equipment Description

15.247(a)(1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page: 6 / 44 Rev.: 00

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BDR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.4 ANTENNA INFORMATION

Antenna Type	⊠ PIFA □ PCB □ Dipole □ Coils
Antenna Gain	Durabook Americas inc P/N: TWAH6WIPB02+A / -0.05dBi
Antenna Connector	I-PEX MHF4L

Page: 7 / 44 Rev.: 00

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Dally Hong	-
Radiation	Jerry Chuang	-
RF Conducted	Dally Hong	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Page: 8 / 44 Rev.: 00

1.7 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Equipment Manufacturer Model S/N Cal Date Cal Due						
Coaxial Cable	Woken	WC12	CC001	06/29/2018	06/28/2019	
Power Meter	Anritsu	ML2495A	1149001	02/06/2018	02/05/2019	
Power Seneor	Anritsu	MA2491A	030982	02/07/2018	02/06/2019	
Signal Analyzer	R&S	FSV 40	101073	09/27/2018	09/26/2019	

3M 966 Chamber Test Site						
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
Band Reject Filters	MICRO TRONICS	BRM 50702	120	05/14/2018	05/13/2019	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/13/2018	07/12/2019	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	06/29/2018	06/28/2019	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	06/29/2018	06/28/2019	
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	02/08/2018	02/07/2019	
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M020 03	08/20/2018	08/19/2019	
Loop Ant	COM-POWER	AL-130	121051	03/21/2018	03/20/2019	
Pre-Amplifier	EMEC	EM330	060609	06/29/2018	06/28/2019	
Pre-Amplifier	HP	8449B	3008A00965	06/29/2018	06/28/2019	
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/31/2018	05/30/2019	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	

AC Line Conducted Test Site						
Equipment Manufacturer Model S/N Cal Date Cal Due						
CABLE	EMCI	CFD300-NL	CERF	06/29/2018	06/28/2019	
EMI Test Receiver	R&S	ESCI	100064	07/24/2018	07/23/2019	
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/09/2018	02/08/2019	
LISN	SCHAFFNER	NNB41	03/10013	02/06/2018	02/05/2019	

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 9/44 Rev.: 00

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment								
No.	No. Equipment Brand Model Series No. FCC ID							
	N/A							

Support Equipment								
No.	No. Equipment Brand Model Series No. FCC ID							
	N/A							

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247. RSS-247 Issue 2 and RSS-GEN Issue 5.

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.3	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	5.1	AC Conducted Emission	Pass
15.247(b)(1)	RSS-247(5.4)(b)	5.2	Output Power Measurement	Pass
15.247(d)	RSS-GEN 8.9, 8.10	5.3	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	5.3	Radiation Spurious Emission	Pass

Page: 10 / 44 Rev.: 00

Page: 11 / 44 Rev.: 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BDR-1Mbps (DH5) 8DPSK for EDR-3Mbps (3DH5)
Test Channel Frequencies	GFSK for BDR-1Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz

Page: 12 / 44 Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission							
Test Condition	Test Condition AC Power line conducted emission for line and neutral						
Power supply Mode	Mode 1: EUT power by Adapter. Mode 2: EUT power by Battery.						
	Mode 2: EUT power by Battery.						
Worst Mode							

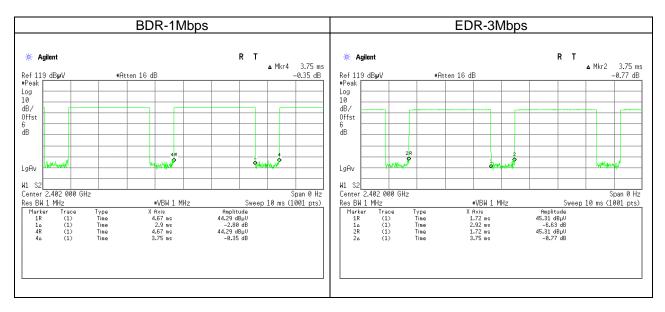
Radiated Emission Measurement Above 1G						
Test Condition	Band edge, Emission for Unwanted and Fundamental					
Power supply Mode	Mode 1: EUT power by Adapter. Mode 2: EUT power by Battery.					
Worst Mode						
Worst Position Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Y-Plane (H-Plane)						
Worst Polarity						

Radiated Emission Measurement Below 1G							
Test Condition	Test Condition Radiated Emission Below 1G						
Power supply Mode	Power supply Mode 1: EUT power by Adapter. Mode 2: EUT power by Battery.						
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4							

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report


3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page: 13 / 44 Rev.: 00

4. EUT DUTY CYCLE

Duty Cycle							
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)				
BDR-1Mbps	2.9000	3.7500	77.33%				
EDR-3Mbps	2.9200	3.7500	77.87%				

Page: 14 / 44 Rev.: 00

Report No.: T180918D06-RP3

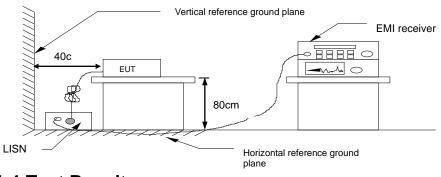
5. TEST RESULT

5.1 AC POWER LINE CONDUCTED EMISSION

5.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

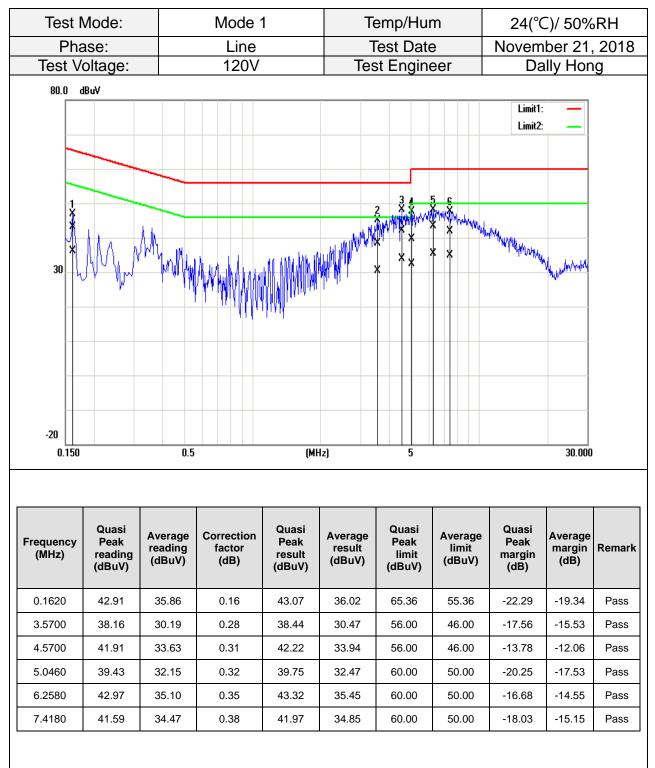

* Decreases with the logarithm of the frequency.

5.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

5.1.3 Test Setup


5.1.4 Test Result

Pass.

Page: 15 / 44 Rev.: 00

Test Data

Page: 16 / 44 Rev.: 00

Page: 17 / 44 Rev.: 00

5.2 OUTPUT POWER MEASUREMENT

5.2.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.4(b)

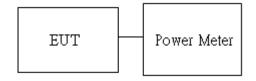
Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

IC

According to RSS-247 section 5.4(b), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).


	Antenna not exceed 6 dBi : 21dBm
Limit	Antenna with DG greater than 6 dBi : 21dBm
	[Limit = 30 - (DG - 6)]

Average output power : For reporting purposes only.

5.2.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

5.2.3 Test Setup

5.2.4 Test Result

Peak output power :

	BT										
Config.	СН	Freq. (MHz)	Power Setting	PK Power (dBm)	EIRP Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC Limit (dBm)	IC EIRP Limit	Antenna Gain (dBi)	
GFSK	0	2402	12	7.17	7.12	0.0052	0.0052		36	-0.05	
BR-1Mbps	39	2441	12	8.01	7.96	0.0063	0.0063				
(DH5)	78	2480	10	8.37	8.32	0.0069	0.0068	21			
8DPSK	0	2402	7	7.44	7.39	0.0055	0.0055	21			
EDR- 3Mbps	39	2441	7	5.86	5.81	0.0039	0.0038				
(3DH5)	78	2480	7	7.92	7.87	0.0062	0.0061				

Average output power :

BT								
Config.	CH Freq. (MHz)		Power Setting	AV Power (dBm)				
GFSK	0	2402	12	7.06				
BR-1Mbps	39	2441	12	7.92				
(DH5)	78	2480	10	8.28				
8DPSK	0	2402	7	5.75				
EDR- 3Mbps	39	2441	7	5.72				
(DH5)	78	2480	7	5.70				

Page: 18 / 44 Rev.: 00

Page: 19 / 44 Rev.: 00

5.3 RADIATION BANDEDGE AND SPURIOUS EMISSION

5.3.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Stre microvolts/m at 3 metr	
(MHz)	Transmitters	Receivers
30-88	100 (3 nW)	100 (3 nW)
88-216	150 (6.8 nW)	150 (6.8 nW)
216-960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Page: 20 / 44 Rev.: 00

Report No.: T180918D06-RP3

5.3.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

4. For harmonic, the worst case of output power was BDR-1Mbps. Therefore only BDR-1Mbps record in the report.

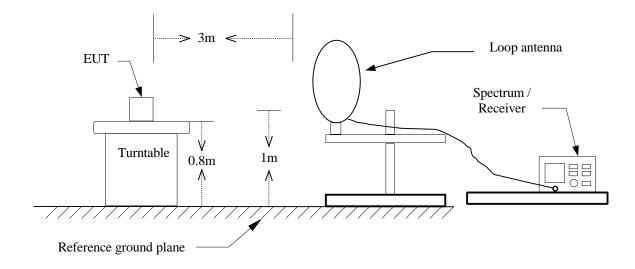
- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

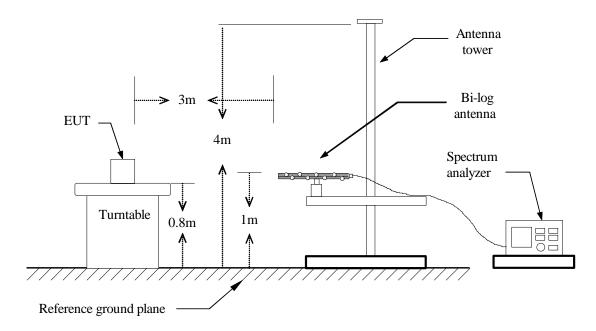
If Duty Cycle \geq 98%, VBW=10Hz.

'If Duty Cycle < 98%, VBW≥1/T.

Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW setting
GFSK_BDR-1Mbps	77.33%	2.9000	0.345	360Hz
8DPSK_EDR-3Mbps	77.87%	2.9200	0.342	360Hz

Remark:


- Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.
- 2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).


Page: 21 / 44 Rev.: 00

Report No.: T180918D06-RP3

5.3.3 Test Setup <u>9kHz ~ 30MHz</u>

<u>30MHz ~ 1GHz</u>

Page: 22 / 44 Rev.: 00

Above 1 GHz

5.3.4 Test Result

Band Edge Test Data

GFSK_BR-1Mbps Temp/Hum 22.3(°C)/ 46%RH Test Mode: Low CH Band Edge November 8, 2018 Test Date Test Item Polarize Vertical Test Engineer Jerry Chuang Detector Peak 120.0 dBuV/m Limit1: Limit2: 2 Y 80 M Mitnehammer Hensend and worker warder and the second and the second she do not the second she do not the a have been and the 40.0 2310.000 2321.20 2332.40 2343.60 2354.80 2366.00 2377.20 2388.40 2399.60 2422.00 MHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2351.888	51.45	-3.07	48.38	74.00	-25.62	peak
2401.952	97.24	-3.13	94.11	-	-	peak

Page: 23 / 44 Rev.: 00

Page: 24 / 44 Rev.: 00

Test Mode:	GF	SK_BR-1M Low CH	bps ר	ēmp/Hum	22.3(°C))/ 46%RH
Test Item		Band Edge	•	Test Date	Novemb	er 8, 201
Polarize		Vertical		st Engineer		Chuang
Detector		Average				
110.0 dBuV/m						
					Limit1: Limit2:	
					2	
					1	
70						
70						
	<u>1</u>					~
30.0 2310.000 2321.2	20 2332.40 2	343.60 2354.80	2366.00 2377	.20 2388.40 239	9.60 24	22.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2325.120	38.95	-3.04	35.91	54.00	-18.09	AVG
2402.064	96.90	-3.13	93.77	-	-	AVG

Page: 25 / 44 Rev.: 00

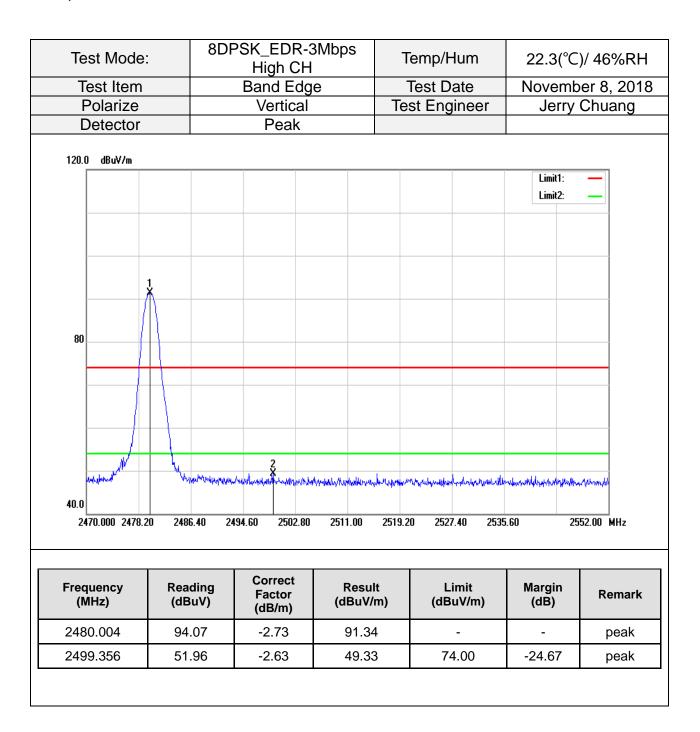
Test Mode	: G	FSK_BR-11 High CH		Temp/Hum	22.3(°C)/ 46%Rł
Test Item		Band Edg		Test Date	Novemb	er 8, 201
Polarize		Vertical		Test Engineer		Chuang
Detector		Peak				
120.0 dBu¥/m						
					Limit1: Limit2:	_
	1					
80						
	2					
40.0	hatenhormon	where the hashes of the second s	mentificialite constrained and	-henrischen sehrenden sehrender sehrender sehrender sehrender sehrender sehrender sehrender sehrender sehrender	yellen alattikaharamad herendar	ddenatureny
2470.000 2478.2	20 2486.40 2	2494.60 2502.80	2511.00 25	19.20 2527.40 25	i35.60 25	52.00 MHz
		Correct				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2480.004	95.14	-2.73	92.41	-	-	peak
2483.858	51.49	-2.71	48.78	74.00	-25.22	peak

Page: 26 / 44 Rev.: 00

Test Mode	: 0	GFSK_BR-1 High CF	Mbps I	Temp/Hum	n 22.3(°(C)/ 46%RI
Test Item		Band Edg		Test Date	Novem	ber 8, 201
Polarize		Vertica		Test Engine		/ Chuang
Detector		Average				
110.0 dBuV/m					Limit1:	_
					Limit2:	
70						
30.0		2				
2470.000 2478.2	20 2486.40	2494.60 2502.8) 2511.00 2	2519.20 2527.40	2535.60 2	2552.00 MHz
Frequency	Reading	Correct	Result	Limit	Margin	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m			Remark
2480.086	94.78	-2.73	92.05	-	-	AVG
2497.552	38.01	-2.64	35.37	54.00	-18.63	AVG

Page: 27 / 44 Rev.: 00

Test Mo		8DP	SK_EDR- Low CF			mp/Hum		:)/ 46%RH
Test Ite			Band Edg			est Date		per 8, 201
Polariz			Vertical		Tes	t Engineer	Jerry	Chuang
Detecto	or		Peak					
120.0 dBu¥/r	N							
							Limit1: Limit2:	_
							2	
80								
					1			
	with the second with the second	montentiques	negaletoinet. Mason west	unnym alanathanaithe	Jogen And William	abdrationadapped	water and the state of the stat	Wolfer .
2310.000 23	320.20 2330	.40 234	0.60 2350.80) 2361.00	2371.20	2381.40	2391.60 24	412.00 MHz
			0					
Frequency (MHz)	Read (dBr		Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
2372.016	52.	18	-3.10	49.08	3	74.00	-24.92	peak
2402.004	95.	75	-3.13	92.62	2	-	-	peak



Page: 28 / 44 Rev.: 00

Test Mode:	8D	PSK_EDR-: Low CH	3Mbps	Temp/Hum	22.3(°C)/ 46%RH
Test Item		Band Edg	e	Test Date	Novemb	er 8, 201
Polarize		Vertical		est Engineer		Chuang
Detector		Average				
110.0 dBu∀/m						
					Limit1: Limit2:	
					2	
					Ň	
70						
30.0						
2310.000 2320.2	20 2330.40 2	2340.60 2350.80	2361.00 2371	.20 2381.40 239	1.60 24	12.00 MHz
		Correct	_			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2389.356	38.35	-3.13	35.22	54.00	-18.78	AVG
	93.30	-3.13	90.17	-	-	AVG

Page: 29 / 44 Rev.: 00

Page: 30 / 44 Rev.: 00

Test Mode:	: 8D	PSK_EDR∹ High CH		Temp/Hum)/ 46%RH
Test Item		Band Edg	e	Test Date		er 8, 201
Polarize		Vertical		Test Engineer	Jerry	Chuang
Detector		Average				
110.0 dBu¥/m						
					Limit1: Limit2:	_
	1					
70						
						_
	2					
30.0						
2470.000 2478.2	20 2486.40	2494.60 2502.80	2511.00 251	9.20 2527.40 25	35.60 25	52.00 MHz
-	D I'.	Correct	D <i>K</i>			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2480.086	91.60	-2.73	88.87	-	-	AVG
	38.51	-2.70	35.81	54.00	-18.19	AVG

Page: 31 / 44 Rev.: 00

Below 1G Test Data

Test Mode:		BT Mode	•	Te	emp/Hum	20.9(°C	:)/ 43%RF
Test Item		30MHz-1GHz			est Date	November 6, 20	
Polarize		Vertical		Tes	st Engineer	Jerry	Chuang
Detector		Peak					
80.0 dBuV/m							
						Limit1:	—
						Margin:	_
				5 X		6 X	
30 1 2		3	4 ×				
-20 30.000 127.00	224.00 3	21.00 418.00	515.00	612.00	709.00 806.	00 10)00.00 MHz
30.000 127.00	224.UU 3	21.00 410.00	515.00	612.00	703.00 000.	.00 10	00.00 MHZ
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n		Limit (dBuV/m)	Margin (dB)	Remark
64.9200	64.9200 44.01 -14.78 29.23		40.00	-10.77	peak		
120.2100	34.44	-8.41	26.03		43.52	-17.49	peak
386.9600	30.48	-5.27	25.21		46.02	-20.81	peak
504.3300	28.43	-2.22	26.21		46.02	-19.81	peak
600.3600	32.66	-0.79	31.87		46.02	-14.15	peak
		1	31.76			-14.26	peak

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 32 / 44 Rev.: 00

Test N	Test Mode:		BT Mod	е	Temp/Hum		20.9(°C)/ 43%R	
Test I			30MHz-10	GHz		est Date	November 6, 2	
Pola			Horizont	al	Tes	t Engineer	Jerry	Chuang
Dete	ctor		Peak					
80.0 dBu	V/m							
							Limit1: Margin:	
30			4			5 ×		
1 X	2 X	3 X	4 X					
-20 30.000	127.00	224.00 3	321.00 418.00	515.00	612.00	709.00 806.0	0 10)00.00 MHz
Frequenc (MHz)	y	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remark
63.9500)	38.28	-14.84	23.44		40.00	-16.56	peak
120.210	0	29.91	-8.41	21.50		43.52	-22.02	peak
211.3900	D	31.90	-9.90	22.00		43.52	-21.52	peak
386.960	0	29.02	-5.27	23.75	;	46.02	-22.27	peak
665.350	0	28.61	0.66	29.27	,	46.02	-16.75	peak
800.180	<u>^</u>	31.30	3.04	34.34		46.02	-11.68	peak

Page: 33 / 44 Rev.: 00

Above 1G Test Data

Test Mode	:	GF	SK_BR- Low C		Г	emp/H	lum	22.3(°C	C)/ 46%R
Test Item			Harmo			Test D	ate	Novem	oer 9, 20 ⁻
Polarize			Vertic		Te	st Eng	jineer		Chuang
Detector			Peak	Υ.					
110.0 dBuV/m									
								Limit1: Limit2:	
70									
		×							
30.0 1000.000 3550.0	00 6100.	00 865	50.00 112 0	0.00 13750.0	D 16300	.00 1885	50.00 2140	0.00 2	6500.00 MHz
Frequency (MHz)	Read (dBu		Correct Factor (dB/m)	Res (dBu			imit uV/m)	Margin (dB)	Remark
7207.000	40.6	62	10.51	51.	13	74	4.00	-22.87	peak
N/A									
mark:	I					1		1	1

fundamental frequency.

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 34 / 44 Rev.: 00

Test Mode	: (GFSK_BR-1N Low CH		Temp/Hum	22.3(°C)/ 46%RI
Test Item		Harmonio		Test Date	November 9, 20	
Polarize		Horizonta	al T	est Engineer	Jerry Chuang	
Detector		Peak				
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
	1					
30.0	0 6100.00	8650.00 11200.00	D 13750.00 1630	0.00 18850.00 2140	0.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
7207.000	42.57	10.51	53.08	74.00	-20.92	peak
N/A						
mark:						

fundamental frequency.

 For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 35 / 44 Rev.: 00

Test Mode:	G	FSK_BR-1N Mid CH	/lbps	Temp/Hum	22.3(°C)/ 46%RI
Test Item		Harmonio	;	Test Date	Novemb	er 9, 201
Polarize		Vertical		Test Engineer		Chuang
Detector		Peak				
110.0 dBuV/m						
					Limit1:	_
					Limit2:	_
70						
	1					
	×					
30.0						
1000.000 3550.0	0 6100.00 80	650.00 11200.00) 13750.00 16	300.00 18850.00 2	1400.00 26	500.00 MHz
		Correct				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
7326.000	41.67	10.48	52.15	74.00	-21.85	peak
N/A						
mark:						
		· ·		ne 10th harmo		

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 36 / 44 Rev.: 00

Test Mode	:	FSK_BR-1I Mid CH		Ten	np/Hum	22.3(°C)/ 46%RH
Test Item		Harmoni			st Date		er 9, 2018
Polarize		Horizonta		Test	Engineer	Jerry	Chuang
Detector	P	eak and Ave	erage				
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
1000.000 3550.0	0 6100.00	8650.00 11200.0	0 13750.00	16300.00	18850.00 214	00.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
7326.000	43.63	10.48	54.11		74.00	-19.89	peak
7326.000	40.18	10.48	50.66	6	54.00	-3.34	AVG
N/A							
	suring frequ amental fre	encies from	1 GHz to	o the 10)th harmoni	c of highes	st

Page: 37 / 44 Rev.: 00

Test Mode	: G	FSK_BR-1I High CH		Tei	mp/Hum	22.3(°C	2)/ 46%R
Test Item		Harmoni		Te	st Date		per 9, 20 ⁻
Polarize		Vertical		Test	Engineer	Jerry	Chuang
Detector		Peak					
110.0 dBu¥/m							
						Limit1:	_
						Limit2:	_
70							
70							
	1 X						
30.0							
1000.000 3550.0	DO 6100.00 8	650.00 11200.0	0 13750.00	16300.00	18850.00 214	100.00 20	6500.00 MHz
_		Correct				.	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remarl
7438.000	42.27	10.48	52.75		74.00	-21.25	peak
N/A							

fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 38 / 44 Rev.: 00

Test Mode:		GFSK_BR-1 High CH	1		ıp/Hum	-	:)/ 46%RH
Test Item		Harmoni			t Date		per 9, 2018
Polarize		Horizonta		Test I	Engineer	Jerry	Chuang
Detector	F	Peak and Ave	erage				
110.0 dBu¥/m						Limit1:	
						Limit2:	_
70							
	1						
	1 X X						
30.0							
1000.000 3550.0	0 6100.00	8650.00 11200.0	0 13750.00	16300.00	18850.00 2140	00.00 26	500.00 MHz
Frequency	Reading	Correct Factor	Resul		Limit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/	m)	(dBuV/m)	(dB)	
7438.000	45.37	10.48	55.85	5	74.00	-18.15	peak
7438.000	40.25	10.48	50.73	3	54.00	-3.27	AVG
N/A							
	suring frequ amental fre	uencies from	n 1 GHz to	o the 10	th harmoni	c of highes	st

Page: 39 / 44 Rev.: 00

Test Mode	e	8DP	8DPSK_EDR-3Mbps Low CH			Temp/Hum		22.3(°C)/ 46%R	
Test Item			Harmo			Test D		November 9, 20	
Polarize			Vertic		Te	st Eng	ineer	Jerry	Chuang
Detector			Peak	κ					
110.0 dBu¥/m									
								Limit1: Limit2:	
70									
	1 X								
30.0 1000.000 3550.	00 6100.	00 865	i0.00 1120	0.00 13750.00	16300.	00 1885	50.00 2140	0.00 2	6500.00 MHz
Frequency (MHz)	Read (dBu		Correct Factor (dB/m)	Resu (dBuV			imit uV/m)	Margin (dB)	Remar
4804.000	37.4	47	3.09	40.5	6	74	4.00	-33.44	peak
N/A									
mark: 1. Mea									

fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 40 / 44 Rev.: 00

Test Mode	;	8DPSK_EDR-3Mbps Low CH			Temp/H	lum	22.3(°C	C)/ 46%R
Test Item		Harı	monic		Test Da		November 9, 20	
Polarize			zontal	Te	est Engi	ineer	Jerry Chuang	
Detector		P	eak					
110.0 dBu¥/m								
							Limit1: Limit2:	_
70								
	1 *							
30.0 1000.000 3550.	00 6100.00	8650.00	11200.00 13	750.00 16300).00 1885	0.00 2140	0.00 2	6500.00 MHz
		Corr	ect					
Frequency (MHz)	Readin (dBuV			Result dBuV/m)		mit uV/m)	Margin (dB)	Remar
4804.000	36.82	3.0	9	39.91	74	.00	-34.09	peak
N/A								
mark:	1		1		1			

fundamental frequency. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 41 / 44 Rev.: 00

Test Mode	8D	PSK_EDR-3 Mid CH	BMbps	Temp/Hum	22.3(°C)/ 46%RI
Test Item		Harmonio		Test Date	November 9, 20	
Polarize		Vertical		Test Engineer	Jerry	Chuang
Detector		Peak				
110.0 dBu¥/m						
					Limit1: Limit2:	
70						
	1					
30.0		11200.00) 13750.00 16	300.00 18850.00 214	00.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	36.33	3.61	39.94	74.00	-34.06	peak
N/A						
		1				

fundamental frequency.

 For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 42 / 44 Rev.: 00

Test Mode	9	8DP	8DPSK_EDR-3Mbps Mid CH			emp/H		-	C)/ 46%R
Test Item			Harmo			Fest D		November 9, 20	
Polarize			Horizor		Tes	st Eng	ineer	Jerry	Chuang
Detector			Peak	κ					
110.0 dBu¥/m									
								Limit1: Limit2:	
70									
	1								
30.0	00 6100	.00 865	50.00 1120	0.00 13750.00	16300.0	DO 1885	j0.00 2140	0.00 2	6500.00 MHz
_	_		Correct						
Frequency (MHz)	Read (dB		Factor (dB/m)	Resu (dBuV			imit uV/m)	Margin (dB)	Remarl
4882.000	36.	95	3.61	40.5	6	74	4.00	-33.44	peak
N/A									
mark:				I				1	

fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 43 / 44 Rev.: 00

Test Mode	8	DPSK_EDR∹ High CH		Temp/Hum	22.3(°C)/ 46%RI
Test Item		Harmoni	C	Test Date	November 9, 20	
Polarize		Vertical		Test Engineer	Jerry	Chuang
Detector		Peak				
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
	X					
30.0 1000.000 3550.	DO 6100.00	8650.00 11200.0	0 13750.00 163	300.00 18850.00 214	00.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	37.24	4.14	41.38	74.00	-32.62	peak
N/A						
mark:						

fundamental frequency.

 For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 44 / 44 Rev.: 00

Test Mode	e [DPSK_EDR High C	H	Temp/			2)/ 46%R
Test Item		Harmor		Test E		November 9, 20	
Polarize		Horizon		Test En	gineer	Jerry	Chuang
Detector		Peak					
110.0 dBu¥/m							
						Limit1: Limit2:	_
70							
	1 X						
30.0							
1000.000 3550.	.00 6100.00	8650.00 11200	.00 13750.00	16300.00 18	350.00 2140	10.00 26	6500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/r		Limit 3uV/m)	Margin (dB)	Remar
4960.000	36.59	4.14	40.73	7	4.00	-33.27	peak
N/A							
mark:							

fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

--End of Test Report--