FCC TEST REPORT

For

SIIG Inc

Full HD Multi-Channel Expandable Wireless HDMI Gateway Extender

Test Model: CE-H22T11-SX / CE-H22U11-SX

Additional Model No. : CE-X00366-X / CE-X00367-X(X is number 0-9 or A-Z

denotes model no)

Prepared for Address	:	SIIG Inc 6078 Stewart Avenue, Fremont, CA 94538-3152, USA
Prepared by Address	:	Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	Dec 26, 2017
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	Dec 26, 2017~Jan 17, 2018
Date of Report	:	Jan 17, 2018

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 70

	FCC TEST REPORT					
FCC CFR 47 PART 15 E(15.407)						
Report Reference No	: LCS171226011AEA					
Date of Issue	: Jan 17, 2018					
Testing Laboratory Name	: Shenzhen LCS Compliance Testing Laboratory Ltd.					
Address	: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China					
Testing Location/ Procedure	 : Full application of Harmonised standards ■ Partial application of Harmonised standards □ Other standard testing method □ 					
Applicant's Name	: SIIG Inc					
Address	: 6078 Stewart Avenue, Fremont, CA 94538-3152, USA					
Test Specification						
Standard	: FCC CFR 47 PART 15 E(15.407): 2015 / ANSI C63.10: 2013					
Test Report Form No	: LCSEMC-1.0					
TRF Originator	RF Originator Shenzhen LCS Compliance Testing Laboratory Ltd.					
Master TRF	: Dated 2011-03					
This publication may be reproduced Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance	ng Laboratory Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes no responsibility for and will not ng from the reader's interpretation of the reproduced material due to its					
Test Item Description	: Full HD Multi-Channel Expandable Wireless HDMI Gateway					
Trade Mark	O sug					
Test Model	: CE-H22T11-SX / CE-H22U11-SX					
Ratings	DC 5V/2A by power adapter Adapter input: 100-240VAC, 50/60Hz, 0.3A					
Result	: Positive					
Compiled by:	Supervised by: Approved by:					
Calvin Weng	Pick Su Grim Ling					

Calvin Weng/ Administrators

Dick Su/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 70

FCC -- TEST REPORT

Test Report No. : LCS	5171226011AEA	<u>Jan 17, 2018</u> Date of issue				
Test Model	: CE-H22T11-SX / CE-H	22U11-SX				
EUT Full HD Multi-Channel Expandable Wireless HDMI Gateway Extender						
Applicant	: SIIG Inc					
Address : 6078 Stewart Avenue, Fremont, CA 94538-3152, USA						
Telephone	:					
Fax	:					
Manufacturer	: Shenzhen Lenkeng Te	echnology Co., Ltd				
Address	: West 3F/4F, Jinguangx Shenzhen, Guangdong	ia Culture & Tech Park, 3 Guangxia Road, , China				
Telephone	:					
Fax	:					
Factory	: Shenzhen Lenkeng Te	echnology Co., Ltd				
Address	: West 3F/4F, Jinguangxia Culture & Tech Park, 3 Guangxia Road, Shenzhen, Guangdong, China					
Telephone	:					
Fax	:					

Test Result

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	Jan 17, 2018	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 70

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	
1.2. SUPPORT EQUIPMENT LIST	
1.3. External I/O 1.4. Description of Test Facility	7
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
1.6. MEASUREMENT UNCERTAINTY	
1.7. DESCRIPTION OF TEST MODES	8
1.8. LIST OF MEASURING EQUIPMENT	
2. TEST METHODOLOGY	10
2.1. EUT CONFIGURATION	10
2.2. EUT EXERCISE	10
2.3. GENERAL TEST PROCEDURES	10
3. SYSTEM TEST CONFIGURATION	11
3.1. JUSTIFICATION	11
3.2. EUT EXERCISE SOFTWARE	
3.3. SPECIAL ACCESSORIES	11
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
4. SUMMARY OF TEST RESULTS	
5. TEST RESULT	
5.1. ON TIME AND DUTY CYCLE	13
5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT.	
5.3. Power Spectral Density Measurement	20
5.4. 99% AND 20DB OCCUPIED BANDWIDTH MEASUREMENT	30
5.6. RADIATED EMISSIONS MEASUREMENT.	
5.7. POWER LINE CONDUCTED EMISSIONS	
5.8 UNDESIRABLE EMISSIONS MEASUREMENT	
5.9. ANTENNA REQUIREMENTS	68
6. TEST SETUP PHOTOGRAPHS OF EUT	70
7. EXTERIOR PHOTOGRAPHS OF THE EUT	70
8. INTERIOR PHOTOGRAPHS OF THE EUT	70

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: SIIG Inc
Test Model	: CE-H22T11-SX / CE-H22U11-SX
Additional M/N	. CE-X00366-X / CE-X00367-X(X is number 0-9 or A-Z denotes model no)
Model Declaration	All the models are the same except the model name is different, therefore, full test was applied on CE-H22T11-SX / CE-H22U11-SX, the rest model is deemed to fulfill the requirement without further test.
Power Supply	DC 5V/2A by power adapter
	Adapter input: 100-240VAC, 50/60Hz, 0.3A
Hardware Version	: H17209-TX V1.0
Software Version	: VER1.0
WIFI(5G Band)	:
Frequency Range	: 5180-5240MHz, 5745-5825MHz
Channel Number	9 Channels for 802.11a/n20/ac VHT20 : 4 Channels for 802.11n40/ac VHT40 2 Channels for 802.11ac VHT80
Modulation Type	: 802.11a/n20/n40/ac VHT20/ac VHT40/ac VHT80: OFDM
Antenna Description	: External Antenna, 5dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate				
Mass Power Electronic	ADAPTER for NBS12E050200VU			FCC VoC				
Limited	EUT	ND312E050200V0						

1.3. External I/O

I/O Port Description	Quantity	Cable
HDMI Port	1	N/A
IR IN	1	N/A
DC IN	1	N/A

1.4. Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

There is one 3m semi-anechoic chamber and one line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4: 2014, CISPR 32/EN 55032 and CISPR16-1-4 SVSWR requirements.

1.5. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Item		Frequency Range	Uncertainty	Note		
		9KHz~30MHz	3.10dB	(1)		
		30MHz~200MHz	2.96dB	(1)		
Radiation Uncertainty		200MHz~1000MHz	3.10dB	(1)		
		1GHz~26.5GHz	3.80dB	(1)		
		26.5GHz~40GHz	3.90dB	(1)		
Conduction Uncertainty	:	150kHz~30MHz 1.63dB		(1)		
Power disturbance	•	30MHz~300MHz	1.60dB	(1)		

1.6. Measurement Uncertainty

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 70

1.7. Description of Test Modes

The EUT has been tested under operating condition.

The EUT was set to transmit at 100% duty cycle. This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in Y position.

For pre-testing, when performed power line conducted emission measurement, the input Voltage/Frequency AC 120V/60Hz and AC 240V/50Hz were used. Only recorded the worst case in this report.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was determined to be IEEE 802.11a mode (High Channel, 5180-5240MHz Band).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was determined to be IEEE 802.11a mode (High Channel, 5180-5240MHz Band).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11a Mode: 6 Mbps, OFDM. IEEE 802.11n HT20 Mode: MCS0, OFDM. IEEE 802.11n HT40 Mode: MCS0, OFDM. IEEE 802.11ac VHT20 Mode: MCS0, OFDM. IEEE 802.11ac VHT40 Mode: MCS0, OFDM. IEEE 802.11ac VHT80 Mode: MCS0, OFDM.

Support Bandwidth For 5G WIFI Part:

Bandwidth Mode	20MHz	40MHz	80MHz
IEEE 802.11a	Ŋ		
IEEE 802.11n HT20	\mathbf{N}		
IEEE 802.11n HT40		N	
IEEE 802.11ac VHT20	\mathbf{N}		
IEEE 802.11ac VHT40		V	
IEEE 802.11ac VHT80			$\overline{\mathbf{A}}$

Channel & Frequency:

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)			
	36	5180	44	5220			
5190-5240MU-	38	5190	46	5230			
5180~5240MHz	40	5200	48	5240			
	42	5210	/	/			
For IEEE 802.11a	/n HT20/ac VH	T20, Channel 36, 40	and 48 were tes	ted.			
For IEEE 802.11n	HT40/ac VHT4	0, Channel 38 and 4	16 were tested.				
For IEEE 802.11a	c VHT80, Chan	nel 42 was tested.					
	149	5745	157	5785			
5745~5825MHz	151	5755	159	5795			
5745~5625IMITZ	153	5765	161	5805			
	155	5775	165	5825			
For 802.11a/n(HT20)/ac(VHT20), Channel 149, 157 and 165 were tested.							
For 802.11n(HT40)/ac(VHT40), Channel 151 and 159 were tested.							
For 802.11ac(VHT80), Channel 155 was tested.							

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 70

1.8. List Of Measuring Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R & S	NRVS	100444	2017-06-17	2018-06-16
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
4	EPM Series Power Meter	Agilent	E4419B	MY45104493	2017-06-17	2018-06-16
5	E-SERIES AVG POWER SENSOR	Agilent	E9301H	MY41495234	2017-06-17	2018-06-16
6	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-18	2018-11-17
7	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16
8	SPECTRUM ANALYZER	R&S	FSP	100503	2017-06-17	2018-06-16
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16
10	Positioning Controller	MF	MF-7082	/	2017-06-17	2018-06-16
11	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16
12	EMI Test Receiver	R&S	ESR 7	101181	2017-06-17	2018-06-16
13	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-18	2018-11-17
14	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-05-02	2018-05-01
16	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22
17	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
19	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16
20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16
21	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-00 32	2017-06-17	2018-06-16
22	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16
23	X-series USB Peak and Average Power Sensor Aglient	Agilent	U2021XA	MY54080022	2017-10-27	2018-10-26
24	4 CH. Simultaneous Sampling 14 Bits 2MS/s	Agilent	U2531A	MY54080016	2017-10-27	2018-10-26
25	Test Software	Ascentest	AT890-SW	20160630	N/A	N/A
26	RF Control Unit	Ascentest	AT890-RFB	N/A	2017-06-17	2018-06-16
27	Universal Radio Communication Tester	R&S	CMU 200	105788	2017-06-17	2018-06-16
28	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2017-06-17	2018-06-16
29	RF Control Unit	Tonscend	JS0806-1	N/A	2017-06-17	2018-06-16
30	DC Power Supply	Agilent	E3642A	N/A	2017-11-18	2018-11-17
31	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB 789033 D02 General UNII Test Procedures New Rules v01 is required to be used for this kind of FCC 15.407 UII device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

The sample will be controlled by RFTest tool to enter RF test mode to control sample change channel, modulation and so on;

3.3. Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
1	PC	Lenovo	Ideapad	A131101550	/	/	DOC
2	Power adapter	Lenovo	CPA-A090	36200414	1.00m	unshielded	DOC

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

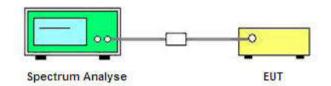
Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

	Applied Standard: FCC Part 15 Subpart E						
FCC Rules	Description of Test	Result					
§15.407(a)	Maximum Conducted Output Power	Compliant					
§15.407(a)	Power Spectral Density	Compliant					
§15.407(a)	26dB Bandwidth	Compliant					
§15.407(a)	99% Occupied Bandwidth	Compliant					
§15.407(e)	6dB Bandwidth	Compliant					
§15.407(b)	Radiated Emissions	Compliant					
§15.407(b)	Band edge Emissions	Compliant					
§15.205	Emissions at Restricted Band	Compliant					
§15.407(g)	Frequency Stability	N/A					
§15.207(a)	Line Conducted Emissions	Compliant					
§15.203	Antenna Requirements	Compliant					
§2.1093	RF Exposure	Compliant					

Note: The customer declared frequency stability is better than 20ppm which ensures that the signal remains in the allocated bands under all operational conditions stated in the user manual.

5. TEST RESULT

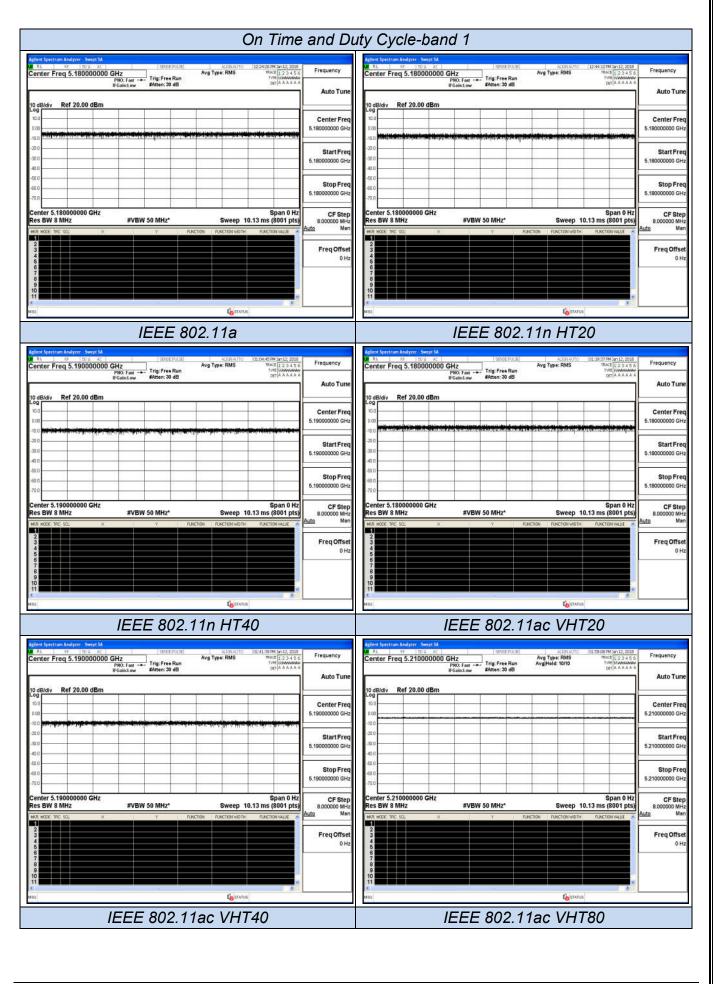

- 5.1. On Time and Duty Cycle
- 5.1.1. Standard Applicable

None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

- 5.1.3. Test Procedures
- 1). Set the Centre frequency of the spectrum analyzer to the transmitting frequency;
- 2). Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3). Detector = peak;
- 4). Trace mode = Single hold.
- 5.1.4. Test Setup Layout

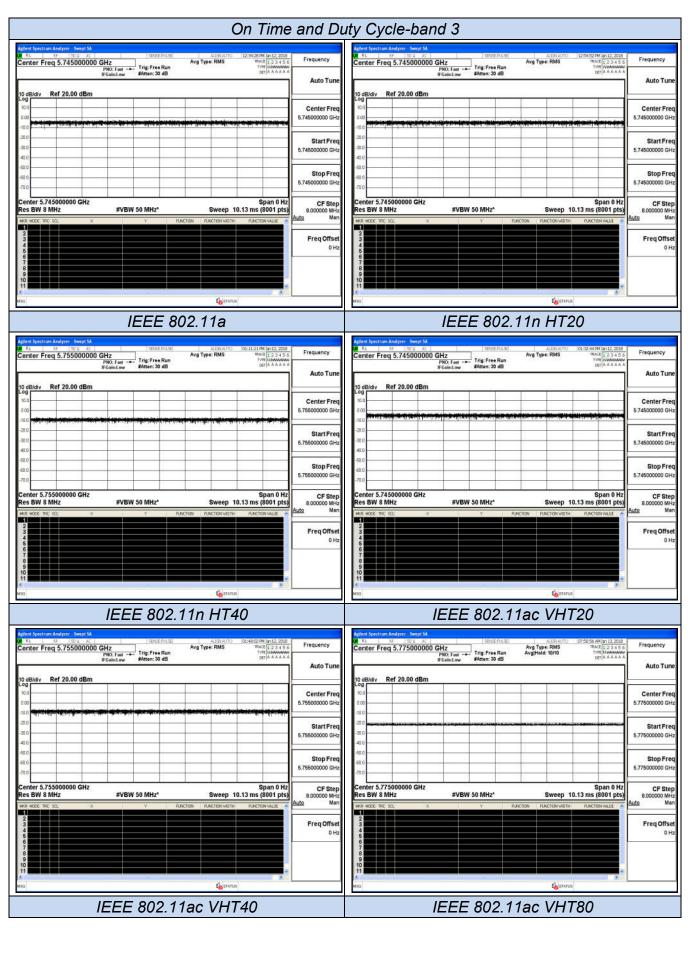

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

5.1.6.1 Band 1

Mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW(KHz)
IEEE 802.11a	5.0	5.0	1	100%	0	0.01
IEEE 802.11n HT20	5.0	5.0	1	100%	0	0.01
IEEE 802.11n HT40	5.0	5.0	1	100%	0	0.01
IEEE 802.11ac VHT20	5.0	5.0	1	100%	0	0.01
IEEE 802.11ac VHT40	5.0	5.0	1	100%	0	0.01
IEEE 802.11ac VHT80	5.0	5.0	1	100%	0	0.01
Note: Duty Cycle Correction Factor=10log(1/Duty cycle)						



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 70

5.1.6.2 Band 3

Mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW(KHz)
IEEE 802.11a	5.0	5.0	1	100%	0	0.01
IEEE 802.11n HT20	5.0	5.0	1	100%	0	0.01
IEEE 802.11n HT40	5.0	5.0	1	100%	0	0.01
IEEE 802.11ac VHT20	5.0	5.0	1	100%	0	0.01
IEEE 802.11ac VHT40	5.0	5.0	1	100%	0	0.01
IEEE 802.11ac VHT80	5.0	5.0	1	100%	0	0.01
Note: Duty Cycle Correction Factor=10log(1/Duty cycle)						

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 70

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 70

5.2. Maximum Conducted Output Power Measurement

5.2.1. Standard Applicable

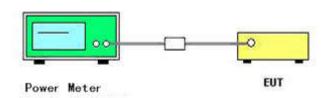
(1) For the band 5.15~5.25GHz

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 5.2.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the power meter.

5.2.3. Test Procedures

The transmitter output (antenna port) was connected to the power meter.


According to KDB 789033 D02 Section 3 (a) Method PM (Measurement using an RF average power meter):

- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
 - The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
 - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 70 <u>SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.</u> FCC ID: FK3HDMIGATEWAY Report No.: LCS171226011AEA the duty cycle is 25%).

5.2.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Test Result of Maximum Conducted Output Power

5.2.6.1 Band 1

Test Mode	Channel	Frequency (MHz)	AVG Conducted Power (dBm)	Duty Cycle Factor (dB)	Report Conducted Power (dBm)	Maximum Limit (dBm)	Result
	36	5180	12.65	0.00	12.65		
IEEE 802.11a	40	5200	12.58	0.00	12.58	24	Complies
	48	5240	12.19	0.00	12.19		
	36	5180	11.90	0.00	11.90		
IEEE 802.11n HT20	40	5200	11.87	0.00	11.87	24	Complies
	48	5240	11.92	0.00	11.92		
IEEE 802.11n HT40	38	5190	11.68	0.00	11.68	24	Complies
1EEE 802.11111140	46	5230	11.91	0.00	11.91	24	Complies
IEEE 802.11ac	36	5180	11.84	0.00	11.84		
VHT20	40	5200	11.77	0.00	11.77	24	Complies
VIII20	48	5240	11.92	0.00	11.92		
IEEE 802.11ac	38	5190	10.29	0.00	10.29	24	Complies
VHT40	46	5230	10.09	0.00	10.09	24	Complies
IEEE 802.11ac VHT80	42	5210	7.25	0.00	7.25	24	Complies

Remark:

- 1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. Report conducted power = Measured conducted average power + Duty Cycle factor;

5.2.6.2 Band 3

Test Mode	Channel	Frequency (MHz)	AVG Conducted Power (dBm)	Duty Cycle Factor (dB)	Report Conducted Power (dBm)	Maximum Limit (dBm)	Result
	149	5745	12.27	0.00	12.27		
IEEE 802.11a	157	5785	12.12	0.00	12.12	30	Complies
	165	5825	11.78	0.00	11.78		
IEEE 802.11n	149	5745	11.07	0.00	11.07		
HT20	157	5785	11.15	0.00	11.15	30	Complies
11120	165	5825	11.14	0.00	11.14		
IEEE 802.11n	151	5755	11.07	0.00	11.07	30	Complies
HT40	159	5795	11.14	0.00	11.14		Complies
IEEE 802.11ac	149	5745	11.08	0.00	11.08		
VHT20	157	5785	11.06	0.00	11.06	30	Complies
VH120	165	5825	11.19	0.00	11.19		-
IEEE 802.11ac	151	5755	9.65	0.00	9.65	30	Complian
VHT40	159	5795	9.60	0.00	9.60		Complies
IEEE 802.11ac VHT80	155	5775	6.21	0.00	6.21	30	Complies

Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;

4. Report conducted power = Measured conducted average power + Duty Cycle factor;

5.3. Power Spectral Density Measurement

5.3.1. Standard Applicable

For 5.15~5.25GHz

- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.note1
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.note1
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For 5725~5850MHz

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

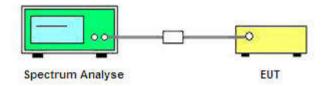
5.3.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures

5.3.3.1 UNII Band 1

- 1). The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2). The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3). Set the RBW = 1MHz.
- 4). Set the VBW \geq 3MHz
- 5). Span=Encompass the entire emissions bandwidth (EBW) of the signal (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- 6). Number of points in sweep ≥ 2 × span / RBW. (This ensures that bin-to-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- 7). Manually set sweep time ≥ 10 × (number of points in sweep) × (total on/off period of the transmitted signal).
- 8). Set detector = power averaging (rms).
- 9). Sweep time = auto couple.
- 10). Trace mode = max hold.
- 11). Allow trace to fully stabilize.
- 12). Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 70

- 13). Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25%.
- 14). Use the peak marker function to determine the maximum power level in any 1MHz band segment within the fundamental EBW.

5.3.3.2 UNII Band 3

- 1). The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2). The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3). Set the RBW = 300 kHz
- 4). Set the VBW \geq 3*RBW
- 5). Span=Encompass the entire emissions bandwidth (EBW) of the signal
- 6). Detector = RMS.
- 7). Sweep time = auto couple.
- 8). Trace mode = max hold.
- 9). Allow trace to fully stabilize.
- 10). If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- 11). If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- 12). Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

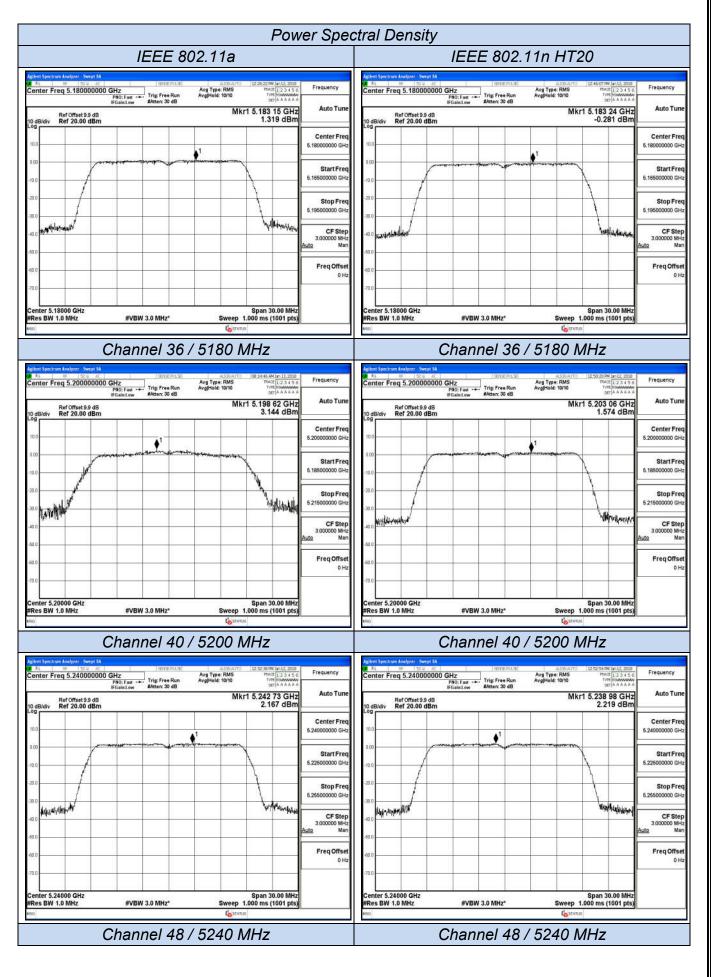
The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Power Spectral Density

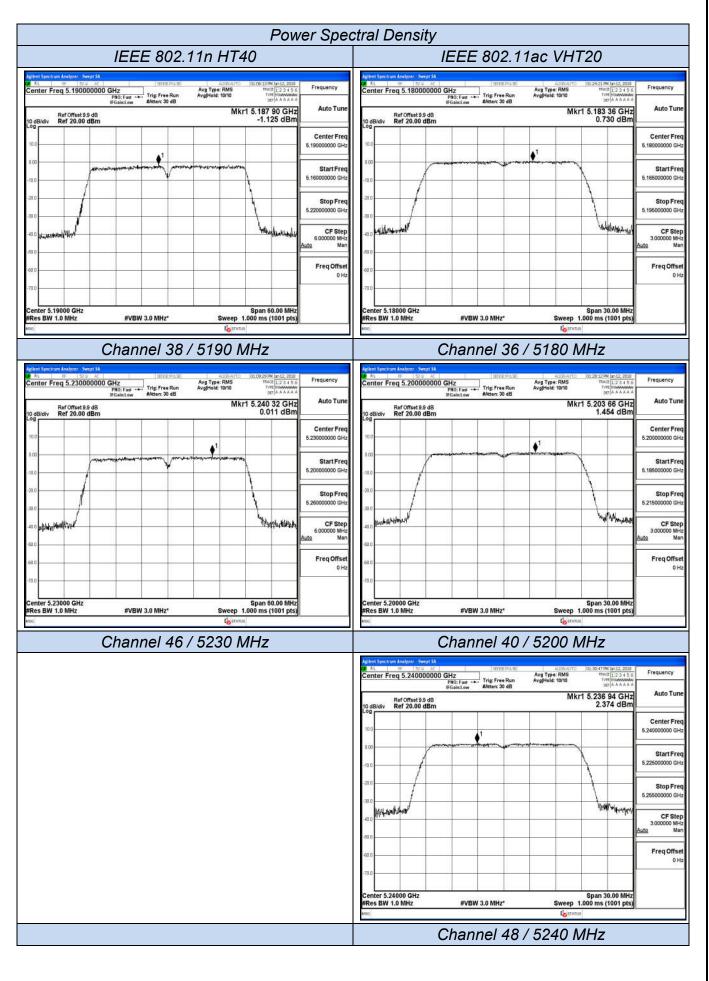
<u>SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.</u> FCC ID: FK3HDMIGATEWAY Report No.: LCS171226011AEA 5.3.6.1 UNII Band 1

Test Mode	Channel	Frequency (MHz)	Power Density (dBm/MHz)	Duty cycle factor (dB)	Report conducted PSD (dBm/MHz)	Max. Limit (dBm/MHz)	Result
	36	5180	1.32	0.00	1.32		
IEEE 802.11a	40	5200	3.14	0.00	3.14	11.00	Complies
	48	5240	2.17	0.00	2.17		
IEEE 802.11n	36	5180	-0.28	0.00	-0.28		Complies
HT20	40	5200	1.57	0.00	1.57	11.00	
11120	48	5240	2.22	0.00	2.22		-
IEEE 802.11n	38	5190	-1.13	0.00	-1.13	11.00	Complies
HT40	46	5230	0.01	0.00	0.01	11.00	Complies
IEEE 802.11ac	36	5180	0.73	0.00	0.73		
VHT20	40	5200	1.45	0.00	1.45	11.00	Complies
VIIIZO	48	5240	2.37	0.00	2.37		-
IEEE 802.11ac	38	5190	-1.47	0.00	-1.47	11.00	Complies
VHT40	46	5230	-0.05	0.00	-0.05	11.00	Complies
IEEE 802.11ac VHT80	42	5210	-8.26	0.00	-8.26	11.00	Complies

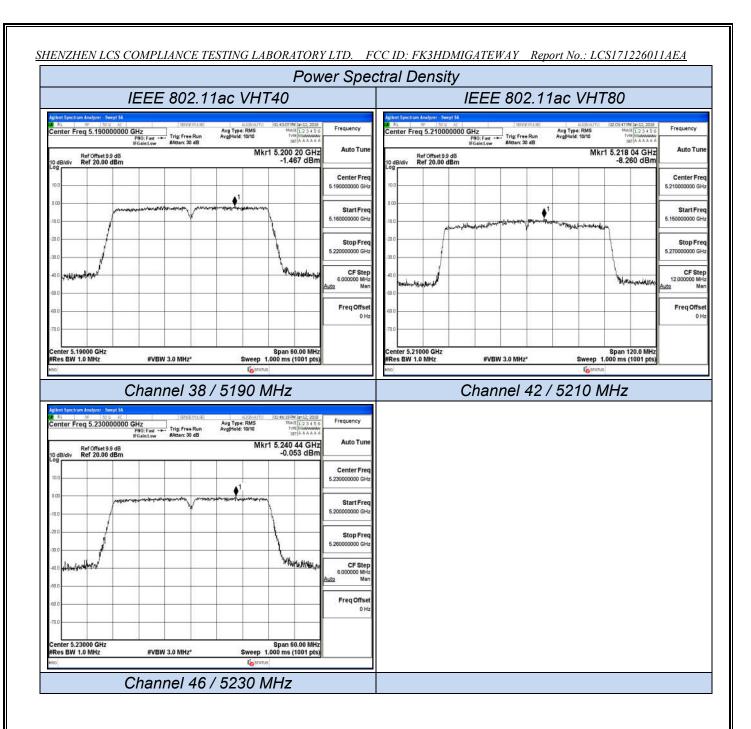
Remark:


1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

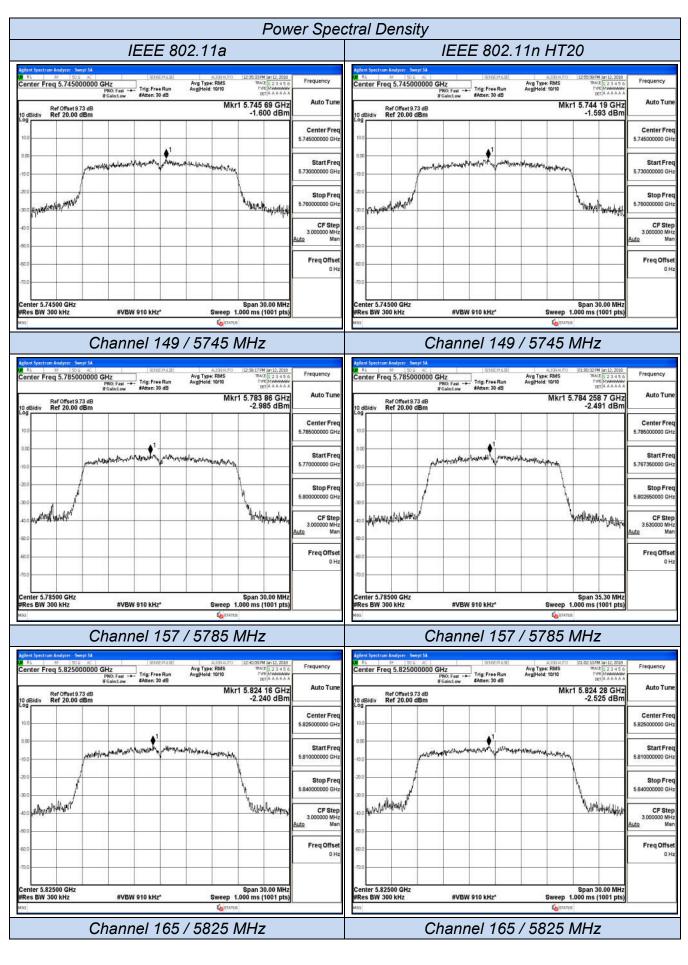

3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;

4. Report conducted PSD = Measured conducted average power + Duty Cycle factor;

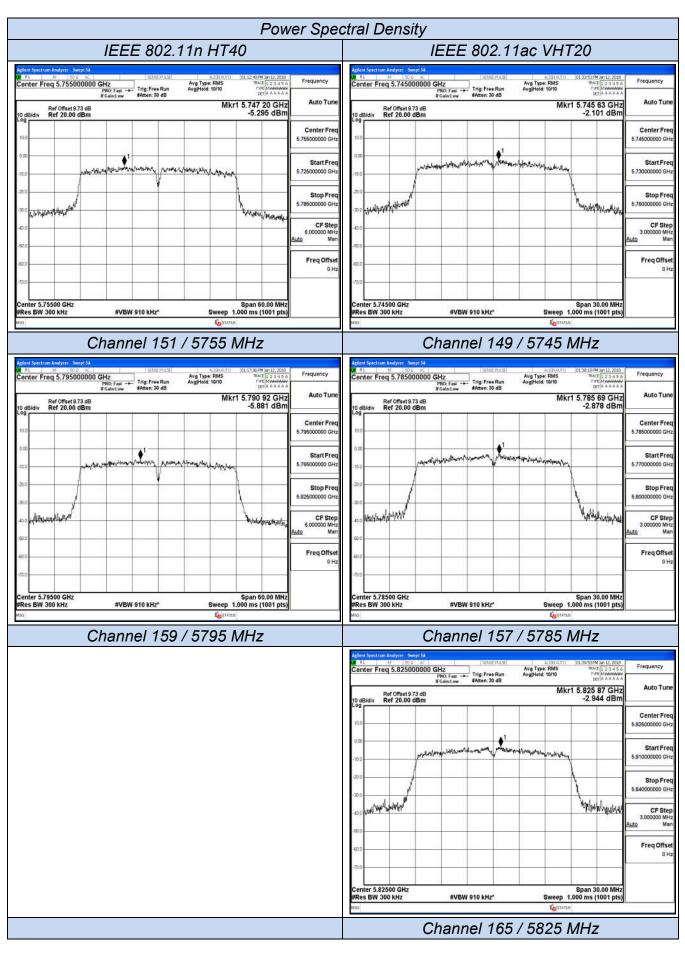

5. Please refer to following test plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 70

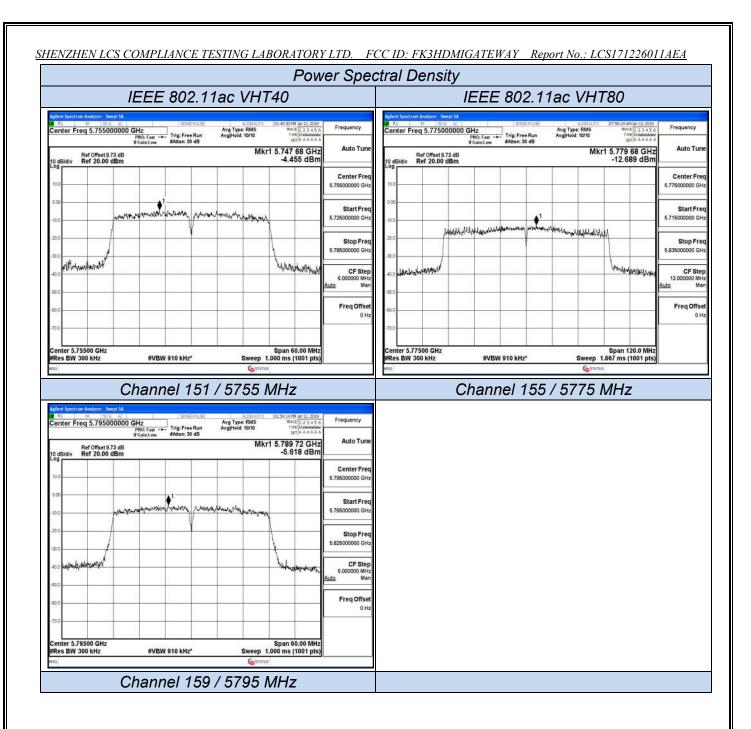
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 70


Test Mode	Channel	Frequency (MHz)	Power Density (dBm/ 300KHz)	Duty cycle factor (dB)	RBW factor (dB)	Report conducted PSD dBm/ 500KHz)	Maximum Limit (dBm/ 500KHz)	Result
	149	5745	-1.60	0.00	2.22	0.62		
IEEE 802.11a	157	5785	-2.99	0.00	2.22	-0.77	30	Complies
	165	5825	-2.24	0.00	2.22	-0.02		
IEEE 802.11n	149	5745	-1.59	0.00	2.22	0.63		
HT20	157	5785	-2.49	0.00	2.22	-0.27	30	Complies
H120	165	5825	-2.53	0.00	2.22	-0.31		-
IEEE 802.11n	151	5755	-5.30	0.00	2.22	-3.08	30	Complian
HT40	159	5795	-5.88	0.00	2.22	-3.66		Complies
IEEE 802.11ac	149	5745	-2.10	0.00	2.22	0.12		
VHT20	157	5785	-2.88	0.00	2.22	-0.66	30	Complies
VIIIZO	165	5825	-2.94	0.00	2.22	-0.73		
IEEE 802.11ac	151	5755	-4.46	0.00	2.22	-2.24	30	Complies
VHT40	159	5795	-5.62	0.00	2.22	-3.40		Complies
IEEE 802.11ac VHT80	155	5775	-12.69	0.00	2.22	-10.47	30	Complies

5.3.6.2 UNII Band 3


Remark:

1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.


- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. Report conducted PSD = measured conducted PSD + Duty Cycle factor + RBW factor;
- 5. RBW factor = 10 log (500 KHz / 300 KHz) = 2.218 dB;
- 6. Please refer to following test plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 70

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 70

5.4. 99% and 26dB Occupied Bandwidth Measurement

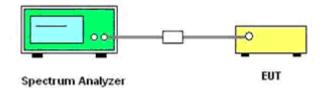
5.4.1. Standard Applicable

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

99% and 26dB occupied bandwidth not applicable for UNII Band 3;

5.4.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.


Spectrum Parameter	Setting
Attenuation	Auto
Span	> 26dB Bandwidth
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.4.3. Test Procedures

1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.

- 2. The RBW = 1% 3% of occupied bandwidth, VBW = 3*RBW;
- 3. Measured the spectrum width with power higher than 26dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Test Result of 99% and 26dB Occupied Bandwidth

Test Mode	Channel	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limits (MHz)	Verdict
	36	5180	19.97	17.75		
IEEE 802.11a	40	5200	21.26	17.84	No Limit	PASS
	48	5240	19.88	17.73		
IEEE 802.11n	36	5180	19.95	17.72		
HT20	40	5200	19.92	17.74	No Limit	PASS
11120	48	5240	19.96	17.73		
IEEE 802.11n	38	5190	40.04	36.18	No Limit	PASS
HT40	46	5230	39.86	36.17		FA00
IEEE 802.11ac	36	5180	19.89	17.73		
VHT20	40	5200	19.95	17.75	No Limit	PASS
V11120	48	5240	19.91	17.74		
IEEE 802.11ac	38	5190	40.12	36.18	No Limit	PASS
VHT40	46	5230	40.01	36.17		FA00
IEEE 802.11ac VHT80	42	5210	82.76	75.47	No Limit	PASS

5.4.6.1 UNII Band 1

Remark:

1. Measured 99% and 26dB bandwidth at difference data rate for each mode and recorded worst case for each mode.

- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. Please refer to following test plots;

IEEE 802.11a Address Synchrone Analyzer: Decupited BW Red ISPCEPASE Center Freq 5.18000000 GHz Frequency Center Freq 5.18000000 GHz Center Freq 5.18000000 GHz Image: State Stat	Agbed Spectrum Analyzer - Occupied W IEEE 802.11n HT20 Agbed Spectrum Analyzer - Occupied W Agbed Spectrum Analyzer - Occupied W Center Freq 5.180000000 GHz Center Freq 5.18000000 GHz Freq S.18000000 GHz Freq S.180000000 GHz Freq S.1800000000 GHz Freq S.18000000000000000000 GHz Freq S.1800000000 GHz Freq S.18000000000000 GHz Freq S.1800000000000000 GHz Freq S.1800000000 GHz Freq S.18000000000 GHz Freq S.1800000000 GHz Freq S.1800000000000000000000000000 GHz Freq S.18000000000000000000000000000000000000
Ref Office Office <thoffice< th=""> <thoffice< th=""></thoffice<></thoffice<>	Image: Name Acc ISPREPRUSE AUXWATO 12244427M San12,2018 Frequency Center Freq 5.180000000 GHz Center Freq 5.180000000 GHz Radio Std: None Frequency
200 300 400 600 600 600 600 600 600 6	
PRes BW 200 kHz #VBW 620 kHz Sweep 1 ms Sweep 1 ms Auto CCF 54 Auto CCF 54 Auto <th>Pres BW 200 kHz #VBW 620 kHz Sweep 1 ms Cristep 1 ms Occupied Bandwidth Total Power 12.4 dBm Auto Man 17.721 MHz Freq Offset Freq Offset Freq Offset Freq Offset</th>	Pres BW 200 kHz #VBW 620 kHz Sweep 1 ms Cristep 1 ms Occupied Bandwidth Total Power 12.4 dBm Auto Man 17.721 MHz Freq Offset Freq Offset Freq Offset Freq Offset
Channel 36 / 5180 MHz	Channel 36 / 5180 MHz
Agtert Spectrum Analyzer. Geouplet BW ISPECENCE ALISTANTO 1081259 ANIOn 13,2009 M R to BY SSG a.C. ISPECENCE ALISTANTO 1081259 ANIOn 13,2009 Center Freq 5.200000000 GHz Frequency Trig Free Run AvgiHold: VI Radie Stet. None IP Gaint www Frequency Frequency Frequency Center Freq 5.200000000 GHz Radie Stet. None ID dBidiv Ref Offset 9 dB ISPECENCE Frequency Center Freq 5.20000000 GHz Radie Device: BTS ID dBidiv Ref Offset 9 dB ISPECENCE ISPECENCE ISPECENCE ISPECENCE ID dBidiv Ref Offset 9 dB ISPECENCE ISPECENCE ISPECENCE ISPECENCE ID dBidiv Ref Offset 9 dB ISPECENCE ISPECENCE ISPECENCE ISPECENCE ID dBidiv Ref 20.00 dBm ISPECENCE ISPECENCE ISPECENCE ISPECENCE ISPECENCE ID dBidiv ISPECENCE ISPECENCENCE ISPECENCENCE ISPECENCE ISPECENCE ISPECENCE ISPECENCE ISPECENCE ISPECENCENCE ISPECENCE	
State State CF Ste Center 5.2 GHz #VBW 620 kHz Span 40 MHz Center 5.2 GHz #VBW 620 kHz Span 40 MHz Cocupied Bandwidth Total Power 14.7 dBm 17.842 MHz Freq Offs 01 Transmit Freq Error 64.378 kHz OBW Power 99.00 % x dB Bandwidth 21.26 MHz x dB -26.00 dB	30 30<
Agtern Spectrum Analyzer - Occupied BW	Agent Spectrum Analyzer - Decupted two
Center Freq 5.240000000 GHz Center Freq 5.24000000 GHz Radio Stat. None #IFGainLow Arg/Hold: VI Radio Device: BTS 10 dS/div Ref 20.000 dBm Ref 20.000 dBm Log Center Freq 5.240000000 GHZ Radio Device: BTS 10 dS/div Ref 20.000 dBm Ref 20.000 dBm Ref 20.000 dBm 200 Ref 20.000 dBm Ref 20.000 dBm Ref 20.000 dBm 300 Ref 20.000 dBm Ref 20.000 dBm Ref 20.0000 GHZ 300 Ref 20.000 dBm Ref 20.0000 dBm Ref 20.0000 GHZ 300 Ref 20.0000 dBm Ref 20.0000 dBm Ref 20.00000 GHZ 300 Ref 20.0000 dBm Ref 20.00000 GHZ Ref 20.00000 GHZ 300 Ref 20.00000 GHZ Ref 20.00000 GHZ Ref 20.00000 GHZ 300 Ref 20.00000 GHZ Ref 20.00000 GHZ Ref 20.000000 GHZ 300 Ref 20.00000 GHZ Ref 20.00000 GHZ Ref 20.00000 GHZ 300 Ref 20.00000 GHZ Ref 20.00000 GHZ Ref 20.00000 GHZ 300 Ref 20.00000 GHZ Ref 20.00000 GHZ Ref 20.00000 GHZ	Center Freq 5.240000000 GHz Center Freq 5.240000000 GHz Radio Stat. Name Radio Stat. Name Radio Device: BTS Frequency 10 dB/div Ref Offset 9.9 dB 10 dB/div Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz Center Freq 5.24000000 GHz 10 dB/div Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz Center Freq 5.24000000 GHz Center Freq 5.24000000 GHz 10 dB/div Ref Offset 9.9 dB 10 dB/div Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz Center Freq 5.24000000 GHz 10 dB/div Ref Offset 9.9 dB 10 dB/div Ref Offset 9.9 dB 10 dB/div Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz 10 dB/div Ref Offset 9.9 dB 10 dB/div Center Freq 5.24000000 GHz 10 dB/div Ref Offset 9.9 dB 10 dB/div 10 dB/div Ref Offset 9.9 dB 10 dB/div Ref Offset 9.9 dB 10 dB/div <
Center 5.24 GHz Span 40 MHz #Res BW 200 kHz #VBW 620 kHz Sweep 1 ms Auto 500 kHz Automatic Span 40 MHz 4000000 MHz Automatic Span 40 MHz Automatic Span 40	z #VBW 020 KH2 SWEEP THIS 4.00000 MHz Auto Man
Occupied Bandwidth Total Power 15.1 dBm 17.731 MHz Freq Offs Transmit Freq Error 27.447 kHz OBW Power 99.00 % 01 x dB Bandwidth 19.88 MHz x dB -26.00 dB 01	Cocupied Bandwidth Total Power 14.9 dBm 17.733 MHz FreqOffset
MKG CERTRUS	
Channel 48 / 5240 MHz	Channel 48 / 5240 MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 70

99% and 26dB O	ccupied Bandwidth
IEEE 802.11n HT40	, IEEE 802.11ac VHT20
Agtest Spectra Analyse - Occupied BV INDEX.PLASE AUGMATO OLDSAT/TM In 12, 2015 Frequency If AL IF Top Analyse - Occupied BV Genter Freq 5, 19000000 GHz Radio Std. Kene Frequency Center Freq 5, 19000000 GHz Trip Free Run Avg/Hold: 11 Radio Device: BTS Frequency Std Galaxies Std Galaxies Trip Free Run Avg/Hold: 11 Radio Device: BTS Frequency 10 dB/div Ref Offset 9 dB Galaxies	Agelend Spectrum Analyzer: Oscil acc Direc PLASE AUXIANCO OLIZODOR Man L2, 2018 Frequency Center Freq 5.180000000 GHz Center Freq 5.180000000 GHz Radio Stati None Radio Stati None Frequency Bildity eff calant.ew Stream Anglifeld: tri Radio Device. BTS Center Freq Frequency 10 Bildity Ref Offset 9.9 dB Center Freq Center Freq Stream Anglifeld: tri Radio Device. BTS 100 Center Freq Stream Anglifeld: tri Radio Device. BTS Center Freq 100 Center Freq Stream Anglifeld: tri Stream Anglifeld: tri Stream Anglifeld: tri 100 Center Freq Stream Anglifeld: tri Stream Anglifeld: tri Stream Anglifeld: tri 100 Center Freq Stream Anglifeld: tri Stream Anglifeld: tri Stream Anglifeld: tri 100 Center Freq Stream Anglifeld: tri Stream Anglifeld: tri Stream Anglifeld: tri 100 Center Freq Stream Anglifeld: tri Stream Anglifeld: tri Stream Anglifeld: tri 100 Center Freq Stream Anglifeld: tri <t< th=""></t<>
Center 5.19 GHz Span 80 MHz Sweep 1 ms CF Step 800000 MHz #Res BW 390 kHz #VBW 1.2 MHz Sweep 1 ms Aute Aute Man Occupied Bandwidth Total Power 14.2 dBm Aute Man 36.179 MHz Freq Offset 0 Hz Freq Offset 0 Hz x dB Bandwidth 40.04 MHz x dB -26.00 dB 0 Hz	Center 5.18 GHz span 40 MHz Span 40 MHz CF Step 4.00000 MHz Occupied Bandwidth Total Power 13.4 dBm Addo Man 17.729 MHz Transmit Freq Error 44.248 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 19.89 MHz x dB -26.00 dB 0 Hz
Channel 38 / 5190 MHz	Channel 36 / 5180 MHz
Albert Such verdinger Support Support </th <th>Applied Spectrum Analyzer, Decoupted DW Spectrum Science Frequency Frequency Frequency Frequency Spectrum Science Spectrum Science</th>	Applied Spectrum Analyzer, Decoupted DW Spectrum Science Frequency Frequency Frequency Frequency Spectrum Science Spectrum Science
Channel 46 / 5230 MHz	Channel 40 / 5200 MHz Alter Sector Advance - George Advance Center Freq 5.240000000 GHz Center Freq 5.24000000 GHz Center Sector Advance Center Freq 5.24000000 GHz Center Sector Advance Center Sector Advance State Freq Sector Advance Center Sector Advance Center Sector Advance State Freq Sector Advance <t< th=""></t<>
	17.742 MHz Freq Offset 0 Hz Transmit Freq Error 29.838 kHz OBW Power 99.00 % 19.91 MHz x dB -26.00 dB ***********************************

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 70

99% ar	nd 26dB O	ccupied Bandw	vidth				
IEEE 802.11ac VHT40		IEEE 802.11ac VHT80					
Aglient Spectram Analyzer - Gocupied DW 1993/25/91/25 AL391/AL7D OL14201991/AL7D		Applent Spectrum Analyzer - Occupied BW R & Epicer - Occupied BW Center Freq 5.210000000 GH: #FG	ALIGN AUTO 08:17:21 4413an 13, 2018 Radio Std: None 1/1 Radio Device: BTS	Frequency			
Ref 20.00 dBm 10 dB(dv Ref 20.00 dBm 10 dB(dv 10 dB(Auto Man	Ref 00%et 9 dB Ref 20.00 dBm 100 000 000	#VBW 2.4 MHz Total Power 70 MHz	Span 160 MHz Sweep 1 ms 14.8 dBm	Center Freq 5:21000000 GHz 5:21000000 GHz 6:00000 MHz <u>Auto</u> Man		
Transmit Freq Error 117.39 kHz OBW Power 99.00 % x dB Bandwidth 40.12 MHz x dB -26.00 dB	Freq Offset 0 Hz	Transmit Freq Error	109.82 kHz OBW Power 82.76 MHz x dB	99.00 % -26.00 dB	Freq Offset 0 Hz		
Channel 38 / 5190 MHz				Channel 42 / 5210 MHz			
Apilent Synchma Analyzer - Occupied Bit 2022/01/02 A222/01/02 A222/01/02 01.45137414 R. 1 10 00.4 2022/01/02 A222/01/02 01.45137414 Center Freq 5.230000000 GHz Trips Free 8.230000000 GHz Radio Std: No Auto Std: No Radio Std: No Ref Offset 9 GB Ref 20.00 dBm Ref 20.00 dBm	ne Frequency						
	Center Freq 5.23000000 GHz						
Center 5.23 GHz Span 8 #Res BW 390 kHz #VBW 1.2 MHz Sweep	1 ms CF Step 8.000000 MHz						
Occupied Bandwidth Total Power 15.2 dBm 36.166 MHz Transmit Freq Error 106.58 kHz OBW Power 99.00 % x dB Bandwidth 40.01 MHz x dB -26.00 dB	Auto Man Freq Offset 0 Hz						
Channel 46 / 5230 MHz							

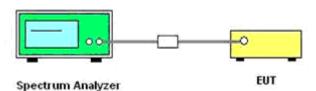
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 70

5.5. 6dB Occupied Bandwidth Measurement

5.5.1. Standard Applicable

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.5.2. Measuring Instruments and Setting


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span	> 26dB Bandwidth
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.5.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 100 KHz and the video bandwidth of 300 KHz were used.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

5.5.4. Test Setup Layout

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.5.6. Test Result of 6dB Occupied Bandwidth

5.5.6.1 UNII Band 3

Test Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limits (MHz)	Verdict
IEEE 802.11a	149	5745	17.67		
	157	5785	17.63	≥0.500 Co	Complies
	163	5825	17.63		
IEEE 802.11n HT20	149	5745	17.65		Complies
	157	5785	17.65	≥0.500	
	163	5825	17.64		
IEEE 802.11n HT40	151	5755	36.39	≥0.500	Complies
	159	5795	36.38	≥0.500	
IEEE 802.11ac VHT20	149	5745	17.62		Complies
	157	5785	17.65	≥0.500	
	165	5825	17.64		
IEEE 802.11ac VHT40	151	5755	36.18	≥0.500	Complies
	159	5795	36.38	≥0.500	
IEEE 802.11ac VHT80	155	5775	75.46	≥0.500	Complies

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 70

- 1. Measured 6dB bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. Please refer to following test plots;

6dB Occup	ied Bandwidth
IEEE 802.11a	IEEE 802.11n HT20
Agilent Spectrum Andyzer, Occopied DW SPREFRASE 4.329.4070 12:254437915an12,2038 Center Freq 5.745000000 GHz Center Freq 5.745000000 GHz Radio Stati None Center Freq 5.745000000 GHz Freq Unit Sector State Frequency Bit Goint ow Addem # Atten: 30 dB Radio Device: BTS Ref Offset 9.73 dB	Aglent Spectrum Andyzez - Google BW USZER ALSE AUXIV 122508574 3r12, 2015 Center Freq 5.745000000 GHz Center Freq: 5.745000000 GHz Radio Std: None Trig: Freq Run Avg Hold: 1/1 Radio Device: BTS Ref Offset 9.73 dB
to dB/div Ref 20.00 dBm Log Log Center Fr 5.74500000 G 00 00 00 00 00 00 00 00 00 00 00 00 00	eq 100 dB/div Ref 20.00 dBm Center Freq
Center 5.745 GHz #Res BW 100 kHz Span 40 MHz \$weep 3.867 ms CF st 4000000 M Occupied Bandwidth Total Power 13.6 dBm Auto M 17.727 MHz Freq Offs Freq Offs Freq Offs Freq Offs	Auto Min Auto Min Auto Man 17,700 MHz
	Hz Transmit Freq Error -4.884 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 17.65 MHz x dB -6.00 dB 0
Channel 149 / 5745 MHz	Channel 149 / 5745 MHz
Applied Synchron Andyzer: Oscipité DW STREEP 192 AU20218/TO 12:0210/TO 12:0210/	Aglund Synahom Analyses, Groupide (107) B Star 199 (1996) Control 1997 (1997)
Center Fr 5.78500000 G 00 00 00 00 00 00 00 00 00 0	eq 100 Center Freq
Occupied Bandwidth Total Power 12.6 dBm	an Occupied Bandwidth Total Power 12.5 dBm
17.581 MHz Freq Offs Transmit Freq Error 2.768 kHz OBW Power 99.00 % 0 x dB Bandwidth 17.63 MHz x dB -6.00 dB 0	set 17.590 MHz Freq Offset Hz Transmit Freq Error 8.793 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 17.65 MHz x dB -6.00 dB 0 Hz
Channel 157 / 5785 MHz	Channel 157 / 5785 MHz
Agents Synchron Audyzer, Counside BW Stream 1.52 8.3376.871.621 Frequency Frequency Frequency Frequency 8.3766.871.621 Radio Std. None Frequency Frequency Frequency 8.3766.871.621 Radio Device: BTS Frequency Frequency	Albeid Spectrum Autyper - Okcupied WV State Spectrum Autyper - Okcupied WV State Spectrum - Spect
10 dB/dV Ref 20.00 dBm 100 100 100 100 100 100 100 10	
Center 5.825 GHz Span 40 MHz CF St #Res BW 100 kHz #VBW 300 kHz Sweep 3.867 ms 4.000000 M Auto M	Hz HVEV 300 KHZ SWEEP 3.307 HIS 4.000000 MHz
17.590 MHz FreqOffs	Occupied Bandwidth Total Power 12.8 dBm
мао	MSG Lossianes
Channel 165 / 5825 MHz	Channel 165 / 5825 MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 70

6dB Occupi	ed Bandwidth			
IEEE 802.11n HT40	IEEE 802.11ac VHT20			
Agtent Spectrum Analyser-Occupied BW EXPERINCIAL ADDRUMTIO DOL11144PM Spic2, 2038 Frequency If A tor IST CERTACIN Center Freq 5.755000000 GHz Radio Std: None Frequency If Galaction atf Galaction Frequency Frequency Center Freq 5.755000000 GHz Radio Device: BTS If Galaction atf Galaction Asgentation Asgentation Radio Device: BTS It of Bicritiv Ref Offset 9.73 dB Center Freq 5.755000000 GHz Radio Device: BTS Center Freq 5.755000000 GHz It of Bicritiv Ref 20.00 dBm Center Freq 5.755000000 GHz Center Freq 5.755000000 GHz Center Freq 5.755000000 GHz It of Bicritive Asgentation Asgentation Asgentation Center Freq 5.755000000 GHz It of Bicritive Asgentation Asgentation Asgentation Center Freq 5.755000000 GHz It of Bicritive Asgentation Asgentation Asgentation Center Freq 5.755000000 GHz It of Bicritive Asgentation Asgentation Asgentation Center Freq 5.755000000 GHz It of Bicritive Asgentation Asgentation Asge				
Center 5.755 GHz Span 80 MHz Sweep 7.667 ms #Res BW 100 kHz #VBW 300 kHz Sweep 7.667 ms Occupied Bandwidth Total Power 13.5 dBm 36.181 MHz Transmit Freq Error 46.674 kHz OBW Power 99.00 % x dB Bandwidth 36.39 MHz x dB -6.00 dB	www.sbivilia.com www.sbivilia.com sweep sweep state 4.00000 MHz Occupied Bandwidth Total Power 13.5 dBm Auto Man 17.729 MHz Freq Offset Freq Offset Freq Offset			
Channel 151 / 5755 MHz	Channel 149 / 5745 MHz			
Ref office 3 / 3 000 d/d Centrer Freq 5 / 35000000 GHz Centrer Freq 5 / 35000000 GHz Ref office 3 / 3 d8 Ref office 3 / 3 d8 Centrer Freq 5 / 35000000 GHz Ref office 3 / 3 d8 Ref office 3 / 3 d8 Ref office 3 / 3 d8 Centrer Freq 5 / 300000 GHz Ref office 3 / 3 d8 Centrer Freq 5 / 300000 GHz State and a log and log and a log and a log and a log and a log and log and	1000 10000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 100000 100000			
	Ref Offset 9 3 dB State Free State Free State Free State State None Radie State None			
	Channel 165 / 5825 MHz			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 70

	6	dB Occupie	ed Bandwidth				
IEEE 80	02.11ac VHT40		IEEE 802.11ac VHT80				
Tria	PREPRABILALISTANTO OLHB247 Freq 2,75500000 GHz Radio Std Free Run Avg Hold: 11 n: 30 dB Radio Dev	S. 1996 6	Adition Synchron Analyzes - Bocopied BW 2012/07/0 (0159/120/120/120/120/120/120/120/120/120/120				
Log 100 100 100 100 100 100 100 10		Center Freq 5.75500000 GHz	Log Center Free 100 100 000 100				
Center 5.755 GHz #Res BW 100 kHz # Occupied Bandwidth 35.987 MHz Transmit Freq Error -53.941 kHz x dB Bandwidth 36.18 MHz	EVEW 300 KHz Speep Total Power 14.2 dBm OBW Power 99.00 % x dB -6.00 dB	n 80 MHz 7.667 ms <u>Auto</u> Man Freq Offset 0 Hz	Occupied Bandwidth Total Power 10.8 dBm 75.851 MHz Freq Offse				
Channel	151 / 5755 MHz		Channel 155 / 5775 MHz				
Center Freq 5.73500000 GHz	AUGENCE PFRes 52800000 GH2 PFres 500000 GH2 PFRes Run Avg Heid: 1/1 Radio Std Radio Dev Composition Composit	Center Freq 5.79600000 GHz					
Center 5.795 GHz #Res BW 100 kHz #	Spa #VBW 300 kHz Sweep	n 80 MHz 7.667 ms 8.000000 MHz	2				
Occupied Bandwidth 35.930 MHz Transmit Freq Error -31.991 kHz x dB Bandwidth 36.38 MHz	Total Power 13.2 dBm OBW Power 99.00 % x dB -6.00 dB Egenne 159 / 5795 MHz	Auto Man FreqOffset 0Hz					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 70

5.6. Radiated Emissions Measurement

5.6.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. \2\ Above 38.6

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz (68.2dBuV/m at 3m).

For transmitters operating in the 5.725-5.85 GHz band:

All emissions shall be limited to a level of -27 dBm/MHz(68.2 dBuV/m at 3m) at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz(105.2 dBuV/m at 3m) at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6(110.8 dBuV/m at 3m) dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz(122.2 dBuV/m at 3m) at the band edge

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.6.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 ^m carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.6.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

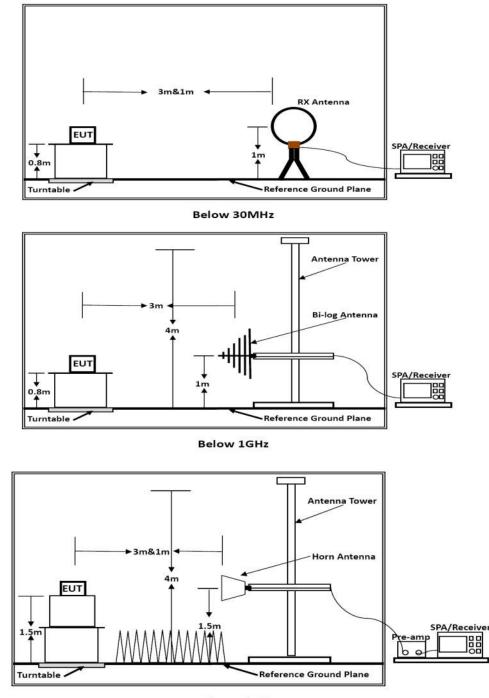
Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.


Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

5.6.4. Test Setup Layout

For radiated emissions below 30MHz

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 70

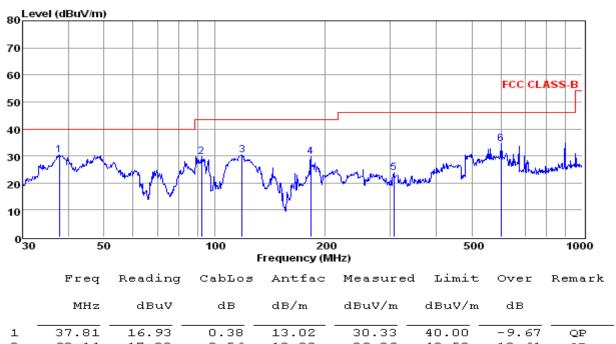
5.6.6. Results of Radiated Emissions (9 KHz~30MHz)

Temperature	25 ℃	Humidity	60%	
Test Engineer	Tom Liu	Configurations	IEEE 802.11a/n/ac	

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dB)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

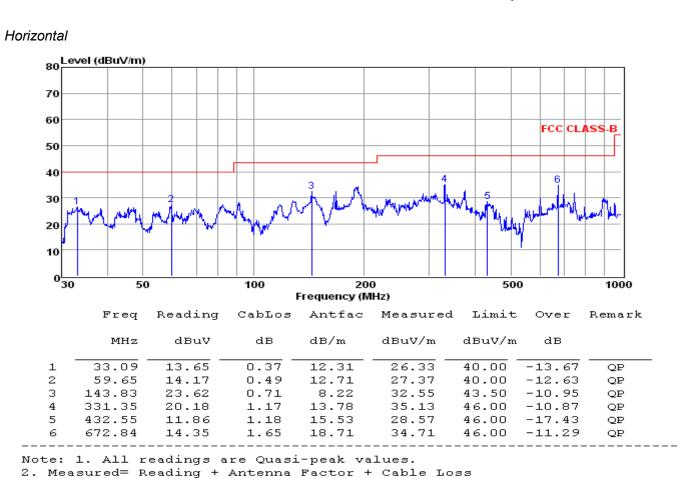

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.6.7. Results of Radiated Emissions (30MHz~1GHz)

Test result for IEEE 802.11a

Vertical


								_	
2	92.14	17.03	0.56	12.30	29.89	43.50	-13.61	QP	
3	118.60	19.07	0.64	10.73	30.44	43.50	-13.06	QP	
4	182.56	18.91	0.89	9.91	29.71	43.50	-13.79	QP	
5	306.75	9.56	1.05	13.15	23.76	46.00	-22.24	QP	
6	601.43	14.68	1.43	18.46	34.57	46.00	-11.43	QP	

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 70

3. The emission that ate 20db blow the offficial limit are not reported

***Note:

Pre-scan all mode and recorded the worst case results in this report (IEEE 802.11a mode (Low Channel, 5180 MHz).

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level.

Only recorded the worst test case data in this report.

5.6.8. Results for Radiated Emissions (Above 1GHz)

Note: Only recorded the worst test result in this report.

5.6.8.1 UNII Band 1

IEEE 802.11a

Channel 36 / 5180 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.53	33.21	35.82	9.52	52.44	74.00	-21.56	Peak	Horizontal
10.36	34.69	33.21	35.82	9.52	41.60	54.00	-12.40	Average	Horizontal
10.36	46.56	32.82	35.82	9.52	53.08	74.00	-20.92	Peak	Vertical
10.36	35.24	32.82	35.82	9.52	41.76	54.00	-12.24	Average	Vertical

Channel 40 / 5200 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	45.96	33.21	35.82	9.52	52.87	74.00	-21.13	Peak	Horizontal
10.44	35.18	33.21	35.82	9.52	42.09	54.00	-11.91	Average	Horizontal
10.44	47.01	32.82	35.82	9.52	53.53	74.00	-20.47	Peak	Vertical
10.44	35.60	32.82	35.82	9.52	42.12	54.00	-11.88	Average	Vertical

Channel 48 / 5240 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.62	33.21	35.82	9.52	53.53	74.00	-20.47	Peak	Horizontal
10.48	35.79	33.21	35.82	9.52	42.70	54.00	-11.30	Average	Horizontal
10.48	47.65	32.82	35.82	9.52	54.17	74.00	-19.83	Peak	Vertical
10.48	36.21	32.82	35.82	9.52	42.73	54.00	-11.27	Average	Vertical

IEEE 802.11n HT20

Channel 36 / 5180 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.09	33.21	35.82	9.52	52.00	74.00	-22.00	Peak	Horizontal
10.36	34.51	33.21	35.82	9.52	41.42	54.00	-12.58	Average	Horizontal
10.36	46.34	32.82	35.82	9.52	52.86	74.00	-21.14	Peak	Vertical
10.36	34.67	32.82	35.82	9.52	41.19	54.00	-12.81	Average	Vertical

Channel 40 / 5200 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	45.87	33.21	35.82	9.52	52.78	74.00	-21.22	Peak	Horizontal
10.44	34.92	33.21	35.82	9.52	41.83	54.00	-12.17	Average	Horizontal
10.44	46.87	32.82	35.82	9.52	53.39	74.00	-20.61	Peak	Vertical
10.44	35.51	32.82	35.82	9.52	42.03	54.00	-11.97	Average	Vertical

Channel 48 / 5240 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.22	33.21	35.82	9.52	53.13	74.00	-20.87	Peak	Horizontal
10.48	35.36	33.21	35.82	9.52	42.27	54.00	-11.73	Average	Horizontal
10.48	47.52	32.82	35.82	9.52	54.04	74.00	-19.96	Peak	Vertical
10.48	35.79	32.82	35.82	9.52	42.31	54.00	-11.69	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 70

IEEE 802.11n HT40

Channel 38 / 5190 MHz

Freq GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.38	45.80	33.21	35.82	9.52	52.71	74.00	-21.29	Peak	Horizontal
10.38	35.17	33.21	35.82	9.52	42.08	54.00	-11.92	Average	Horizontal
10.38	3 47.04	32.82	35.82	9.52	53.56	74.00	-20.44	Peak	Vertical
10.38	35.74	32.82	35.82	9.52	42.26	54.00	-11.74	Average	Vertical

Channel 46 / 5230 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.46	45.95	33.21	35.82	9.52	52.86	74.00	-21.14	Peak	Horizontal
10.46	35.41	33.21	35.82	9.52	42.32	54.00	-11.68	Average	Horizontal
10.46	47.38	32.82	35.82	9.52	53.90	74.00	-20.10	Peak	Vertical
10.46	35.75	32.82	35.82	9.52	42.27	54.00	-11.73	Average	Vertical

IEEE 802.11ac VHT20

Channel 36 / 5180 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.37	33.21	35.82	9.52	52.28	74.00	-21.72	Peak	Horizontal
10.36	34.43	33.21	35.82	9.52	41.34	54.00	-12.66	Average	Horizontal
10.36	46.34	32.82	35.82	9.52	52.86	74.00	-21.14	Peak	Vertical
10.36	35.19	32.82	35.82	9.52	41.71	54.00	-12.29	Average	Vertical

Channel 40 / 5200 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	45.70	33.21	35.82	9.52	52.61	74.00	-21.39	Peak	Horizontal
10.44	34.98	33.21	35.82	9.52	41.89	54.00	-12.11	Average	Horizontal
10.44	47.16	32.82	35.82	9.52	53.68	74.00	-20.32	Peak	Vertical
10.44	35.49	32.82	35.82	9.52	42.01	54.00	-11.99	Average	Vertical

Channel 48 / 5240 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.42	33.21	35.82	9.52	53.33	74.00	-20.67	Peak	Horizontal
10.48	35.37	33.21	35.82	9.52	42.28	54.00	-11.72	Average	Horizontal
10.48	47.64	32.82	35.82	9.52	54.16	74.00	-19.84	Peak	Vertical
10.48	36.20	32.82	35.82	9.52	42.72	54.00	-11.28	Average	Vertical

IEEE 802.11ac VHT40

Channel 38 / 5190 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.38	45.50	33.21	35.82	9.52	52.41	68.20	-15.79	Peak	Horizontal
10.38	34.82	33.21	35.82	9.52	41.73	54.00	-12.27	Average	Horizontal
10.38	46.79	32.82	35.82	9.52	53.31	68.20	-14.89	Peak	Vertical
10.38	35.00	32.82	35.82	9.52	41.52	54.00	-12.48	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 70

enam	101 107 020								
Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.46	45.70	33.21	35.82	9.52	52.61	68.20	-15.59	Peak	Horizontal
10.46	35.40	33.21	35.82	9.52	42.31	54.00	-11.69	Average	Horizontal
10.46	47.28	32.82	35.82	9.52	53.80	68.20	-14.40	Peak	Vertical
10.46	35.52	32.82	35.82	9.52	42.04	54.00	-11.96	Average	Vertical

Channel 46 / 5230 MHz

IEEE 802.11ac VHT80

Channel 42 / 5210 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.42	45.15	33.21	35.82	9.52	52.06	68.20	-16.14	Peak	Horizontal
10.42	34.17	33.21	35.82	9.52	41.08	54.00	-12.92	Average	Horizontal
10.42	46.52	32.82	35.82	9.52	53.04	68.20	-15.16	Peak	Vertical
10.42	34.54	32.82	35.82	9.52	41.06	54.00	-12.94	Average	Vertical

Notes:

1). Measuring frequencies from 9 KHz ~ 40 GHz, No emission found between lowest internal used/generated frequency to 30MHz.

- 2). Radiated emissions measured in frequency range from 9 KHz ~ 40 GHz were made with an instrument using Peak detector mode.
- 3). 18~40GHz at least have 20dB margin. No recording in the test report.
- 4). Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 5). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.6.8.2 UNII Band 3

IEEE 802.11a

Channel 149 / 5745 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.49	47.06	33.92	36.09	10.26	55.15	74.00	-18.85	Peak	Horizontal
11.49	36.51	33.92	36.09	10.26	44.60	54.00	-9.40	Average	Horizontal
11.49	48.14	33.99	35.99	10.26	56.40	74.00	-17.60	Peak	Vertical
11.49	36.96	33.99	35.99	10.26	45.22	54.00	-8.78	Average	Vertical

Channel 157 / 5785 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	46.67	33.92	36.09	10.26	54.76	74.00	-19.24	Peak	Horizontal
11.57	35.81	33.92	36.09	10.26	43.90	54.00	-10.10	Average	Horizontal
11.57	47.91	33.99	35.99	10.26	56.17	74.00	-17.83	Peak	Vertical
11.57	36.23	33.99	35.99	10.26	44.49	54.00	-9.51	Average	Vertical

Channel 163 / 5825 MHz

 		-							
Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.65	46.50	33.92	36.09	10.26	54.59	74.00	-19.41	Peak	Horizontal
11.65	35.79	33.92	36.09	10.26	43.88	54.00	-10.12	Average	Horizontal
11.65	47.37	33.99	35.99	10.26	55.63	74.00	-18.37	Peak	Vertical
11.65	35.93	33.99	35.99	10.26	44.19	54.00	-9.81	Average	Vertical

IEEE 802.11n HT20

Channel 149 / 5745 MHz

Freq.	Reading Level	Ant. Fac.	Pre. Fac.	Cab. Loss	Measured	Limit	Margin	Remark	Pol.
GHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
11.49	46.80	33.92	36.09	10.26	54.89	74.00	-19.11	Peak	Horizontal
11.49	36.24	33.92	36.09	10.26	44.33	54.00	-9.67	Average	Horizontal
11.49	48.11	33.99	35.99	10.26	56.37	74.00	-17.63	Peak	Vertical
11.49	36.67	33.99	35.99	10.26	44.93	54.00	-9.07	Average	Vertical

Channel 157 / 5785 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	46.96	33.92	36.09	10.26	55.05	74.00	-18.95	Peak	Horizontal
11.57	36.46	33.92	36.09	10.26	44.55	54.00	-9.45	Average	Horizontal
11.57	48.15	33.99	35.99	10.26	56.41	74.00	-17.59	Peak	Vertical
11.57	36.60	33.99	35.99	10.26	44.86	54.00	-9.14	Average	Vertical

Channel 163 / 5825 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.65	46.45	33.92	36.09	10.26	54.54	74.00	-19.46	Peak	Horizontal
11.65	35.79	33.92	36.09	10.26	43.88	54.00	-10.12	Average	Horizontal
11.65	47.60	33.99	35.99	10.26	55.86	74.00	-18.14	Peak	Vertical
11.65	36.23	33.99	35.99	10.26	44.49	54.00	-9.51	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 70

IEEE 802.11n HT40

Channel 151 / 5755 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.51	50.04	33.92	36.09	10.26	58.13	74.00	-15.87	Peak	Horizontal
11.51	39.20	33.92	36.09	10.26	47.29	54.00	-6.71	Average	Horizontal
11.51	50.75	33.99	35.99	10.26	59.01	74.00	-14.99	Peak	Vertical
11.51	39.32	33.99	35.99	10.26	47.58	54.00	-6.42	Average	Vertical

Channel 159 / 5795 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.59	49.79	33.92	36.09	10.26	57.88	74.00	-16.12	Peak	Horizontal
11.59	38.80	33.92	36.09	10.26	46.89	54.00	-7.11	Average	Horizontal
11.59	50.57	33.99	35.99	10.26	58.83	74.00	-15.17	Peak	Vertical
11.59	39.19	33.99	35.99	10.26	47.45	54.00	-6.55	Average	Vertical

IEEE 802.11ac VHT20

Channel 149 / 5745 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.49	49.57	33.92	36.09	10.26	57.66	74.00	-16.34	Peak	Horizontal
11.49	38.80	33.92	36.09	10.26	46.89	54.00	-7.11	Average	Horizontal
11.49	50.65	33.99	35.99	10.26	58.91	74.00	-15.09	Peak	Vertical
11.49	39.54	33.99	35.99	10.26	47.80	54.00	-6.20	Average	Vertical

Channel 157 / 5785 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	49.27	33.92	36.09	10.26	57.36	74.00	-16.64	Peak	Horizontal
11.57	38.88	33.92	36.09	10.26	46.97	54.00	-7.03	Average	Horizontal
11.57	50.45	33.99	35.99	10.26	58.71	74.00	-15.29	Peak	Vertical
11.57	39.36	33.99	35.99	10.26	47.62	54.00	-6.38	Average	Vertical

Channel 163 / 5825 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.65	49.12	33.92	36.09	10.26	57.21	74.00	-16.79	Peak	Horizontal
11.65	38.44	33.92	36.09	10.26	46.53	54.00	-7.47	Average	Horizontal
11.65	50.06	33.99	35.99	10.26	58.32	74.00	-15.68	Peak	Vertical
11.65	39.09	33.99	35.99	10.26	47.35	54.00	-6.65	Average	Vertical

IEEE 802.11ac VHT40

Channel 151 / 5755 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.51	49.24	33.92	36.09	10.26	57.33	74.00	-16.67	Peak	Horizontal
11.51	38.78	33.92	36.09	10.26	46.87	54.00	-7.13	Average	Horizontal
11.51	50.67	33.99	35.99	10.26	58.93	74.00	-15.07	Peak	Vertical
11.51	38.84	33.99	35.99	10.26	47.10	54.00	-6.90	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 70

Channel 159 / 5795 MHz

	Deeding	Ant	Dro	Cab					
Freq. GHz	Reading Level dBuV	Ant. Fac.	Pre. Fac.	Cab. Loss	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.50		dB/m	dB	dB	57.40	74.00	10.00	Deels	Llarizantal
11.59	49.01	33.92	36.09	10.26	57.10	74.00	-16.90	Peak	Horizontal
11.59	38.41	33.92	36.09	10.26	46.50	54.00	-7.50	Average	Horizontal
11.59	50.09	33.99	35.99	10.26	58.35	74.00	-15.65	Peak	Vertical
11.59	38.79	33.99	35.99	10.26	47.05	54.00	-6.95	Average	Vertical

IEEE 802.11ac VHT80

Channel 155 / 5775 MHz

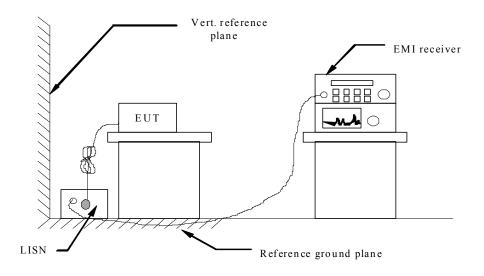
Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.51	49.51	33.92	36.09	10.26	57.60	74.00	-16.40	Peak	Horizontal
11.51	38.71	33.92	36.09	10.26	46.80	54.00	-7.20	Average	Horizontal
11.51	50.21	33.99	35.99	10.26	58.47	74.00	-15.53	Peak	Vertical
11.51	38.74	33.99	35.99	10.26	47.00	54.00	-7.00	Average	Vertical

Notes:

1). Measuring frequencies from 9 KHz ~ 40 GHz, No emission found between lowest internal used/generated frequency to 30MHz.

- 2). Radiated emissions measured in frequency range from 9 KHz ~ 40 GHz were made with an instrument using Peak detector mode.
- 3). 18~40GHz at least have 20dB margin. No recording in the test report.
- 4). Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

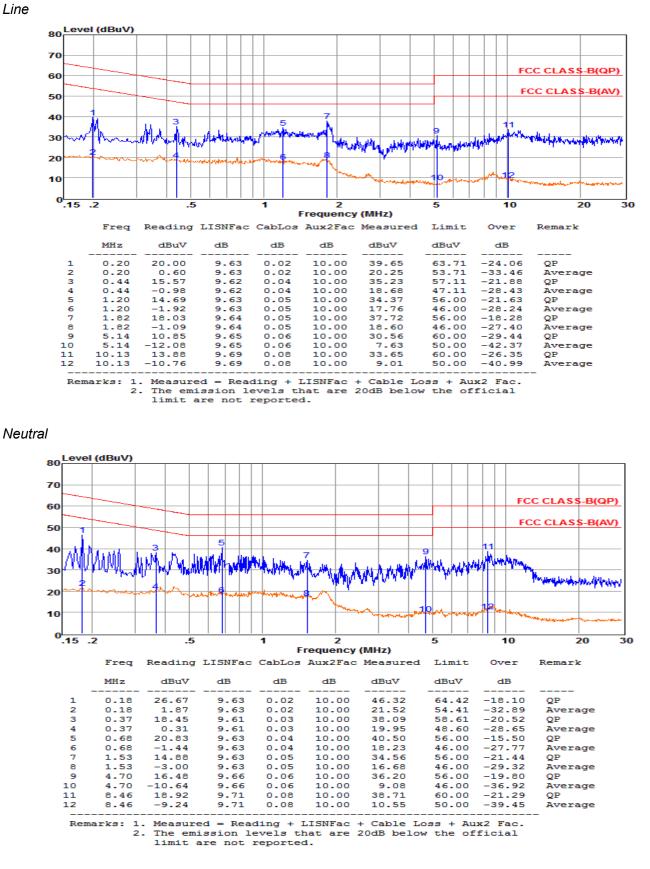
5.7. Power line conducted emissions


5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµ	V)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency


5.7.2 Block Diagram of Test Setup

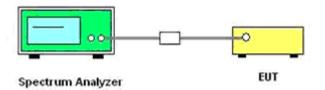
5.7.3 Test Results

PASS.

The test data please refer to following page.

AC Conducted Emission of power by adapter @ AC 120V/60Hz @ IEEE 802.11a (worst case)

***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11a).


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 70

5.8 Undesirable Emissions Measurement

5.8.1 Limit

According to ξ 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (a) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (b) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (c) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (d) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
 - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (e) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (f) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (g) The provisions of §15.205 apply to intentional radiators operating under this section.
- (h) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.
- 5.8.2 Test Configuration

5.8.3 Test Procedure

According to KDB789033 D02 General UNII Test Procedures New Rules Section G: Unwanted Emission Measurement

- 1. Unwanted Emissions in the Restricted Bands
- a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
- c) At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5. and II.G.6, respectively, must satisfy the respective peak and average limits. If all peak measurements satisfy the average limit, then average measurements are not required.
- d) For conducted measurements above 1000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172):
 - i) E[dBµV/m] = EIRP[dBm] 20 log (d[meters]) + 104.77, where E = field strength and d = distance at which field strength limit is specified in the rules;
 - ii) $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 70

- e) For conducted measurements below 1000 MHz, the field strength shall be computed as specified in d), above, and then an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test range with a ground plane for frequencies between 30 MHz and 1000 MHz, or an additional 6 dB shall be added for frequencies below 30 MHz.
- 2. Unwanted Emissions that fall Outside of the Restricted Bands
- a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
- c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., "Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1000 MHz."
- d) Section 15.407(b) (1-3) specifies the unwanted emissions limit for the U-NII-1 and 2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz. However, an out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz dBm/MHz peak emission limit.
 - i) Section 15.407(b) (4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b) (4) (i). An alternative to the band emissions mask is specified in Section 15.407(b) (4) (ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the alternative limit.
- e) If radiated measurements are performed, field strength is then converted to EIRP as follows: i) EIRP = ((E×d) ^2) / 30
 - Where:
 - E is the field strength in V/m;
 - d is the measurement distance in meters;
 - EIRP is the equivalent isotopically radiated power in watts;
 ii) Working in dB units, the above equation is equivalent to: EIRP [dBm] = E [dBµV/m] + 20 log (d [meters]) - 104.77
 - iii) Or, if d is 3 meters:
 - EIRP [dBm] = E [dBµV/m] 95.23
- 3) Radiated versus Conducted Measurements. The unwanted emission limits in both the restricted and non-restricted bands are based on radiated measurements; however, as an alternative, antenna-port conducted measurements in conjunction with cabinet emissions tests will be permitted to demonstrate compliance provided that the following steps are performed:
- (i) Cabinet emissions measurements. A radiated test shall be performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna may be replaced by a termination matching the nominal impedance of the antenna.
- (ii) Impedance matching. Conducted tests shall be performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT.
- (iii) EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.3 However, for devices that operate in multiple bands using the same transmit antenna, the highest gain of the antenna within the operating band nearest to the out-of-band frequency being measured may be used in lieu of the overall highest gain when measuring emissions at frequencies within 20% of the absolute frequency at the nearest edge of that band, but in no case shall a value less than 2 dBi be selected.
- (iv) EIRP adjustments for multiple outputs. For devices with multiple outputs occupying the same or overlapping frequency ranges in the same band (e.g., MIMO or beamforming devices), compute the total EIRP as follows:
 - Compute EIRP for each output, as described in (iii), above.
 - Follow the procedures specified in KDB Publication 662911 for summing emissions across the outputs or adjusting emission levels measured on individual outputs by 10 log (N_{ANT}), where N_{ANT} is the number of outputs.
 - Add the array gain term specified in KDB Publication 662911 for out-of-band and spurious signals.
 (v) Direction of maximum emission.

For all radiated emissions tests, measurements shall correspond to the direction of maximum emission level for each measured emission (see ANSI C63.10 for guidance).

5.8.4 Test Results

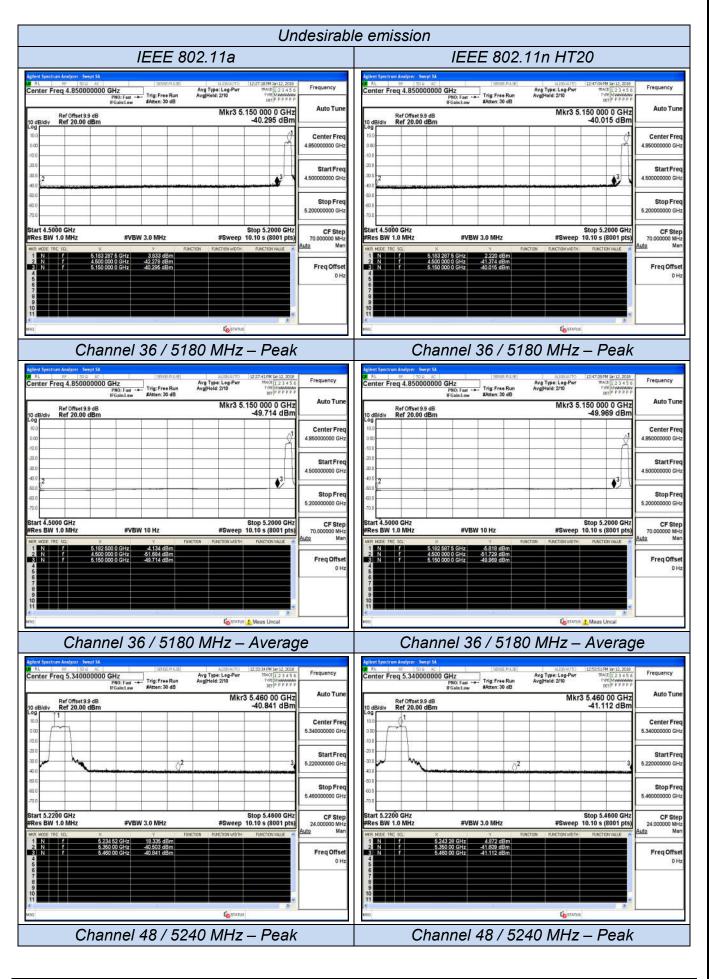
5.8.4.1 UNII Band 1

			IEEE 80	2.11a			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
4500.000	-42.28	5.00	0.00	57.92	Peak	74.00	PASS
4500.000	-51.68	5.00	0.00	48.52	Average	54.00	PASS
5150.000	-40.30	5.00	0.00	59.90	Peak	74.00	PASS
5150.000	-49.71	5.00	0.00	50.49	Average	54.00	PASS
5350.000	-40.50	5.00	0.00	59.70	Peak	74.00	PASS
5350.000	-51.65	5.00	0.00	48.55	Average	54.00	PASS
5460.000	-40.84	5.00	0.00	59.36	Peak	74.00	PASS
5460.000	-52.03	5.00	0.00	48.17	Average	54.00	PASS

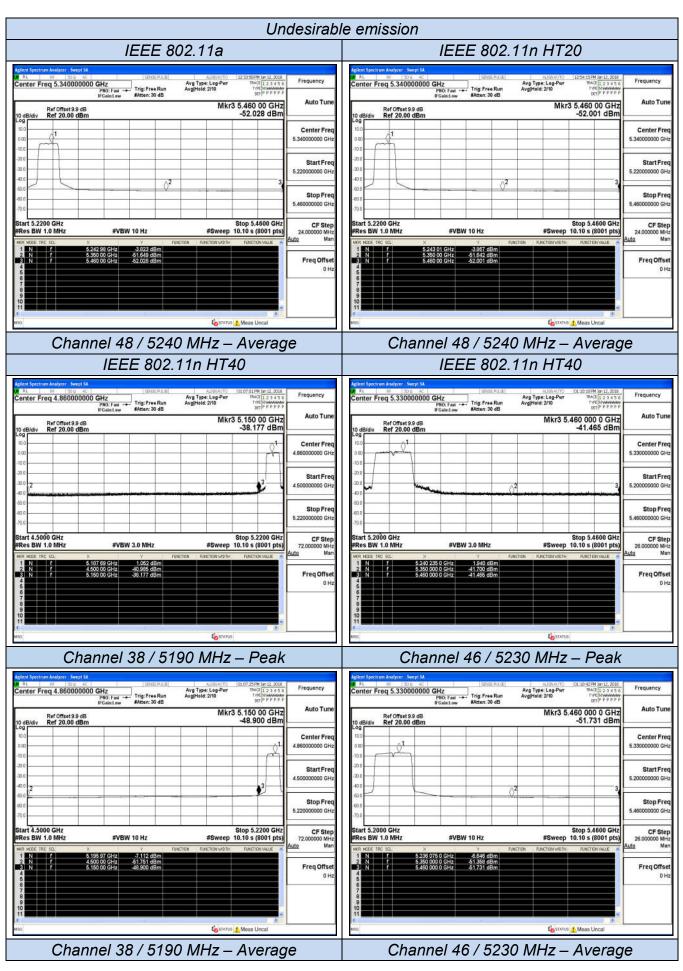
	IEEE 802.11n HT20												
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
4500.000	-41.37	5.00	0.00	58.83	Peak	74.00	PASS						
4500.000	-51.73	5.00	0.00	48.47	Average	54.00	PASS						
5150.000	-40.02	5.00	0.00	60.18	Peak	74.00	PASS						
5150.000	-49.97	5.00	0.00	50.23	Average	54.00	PASS						
5350.000	-41.61	5.00	0.00	58.59	Peak	74.00	PASS						
5350.000	-51.64	5.00	0.00	48.56	Average	54.00	PASS						
5460.000	-41.11	5.00	0.00	59.09	Peak	74.00	PASS						
5460.000	-52.00	5.00	0.00	48.20	Average	54.00	PASS						

	IEEE 802.11n HT40											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
4500.000	-40.99	5.00	0.00	59.21	Peak	74.00	PASS					
4500.000	-51.75	5.00	0.00	48.45	Average	54.00	PASS					
5150.000	-38.18	5.00	0.00	62.02	Peak	74.00	PASS					
5150.000	-48.90	5.00	0.00	51.30	Average	54.00	PASS					
5350.000	-41.70	5.00	0.00	58.50	Peak	74.00	PASS					
5350.000	-51.36	5.00	0.00	48.84	Average	54.00	PASS					
5460.000	-41.47	5.00	0.00	58.73	Peak	74.00	PASS					
5460.000	-51.73	5.00	0.00	48.47	Average	54.00	PASS					

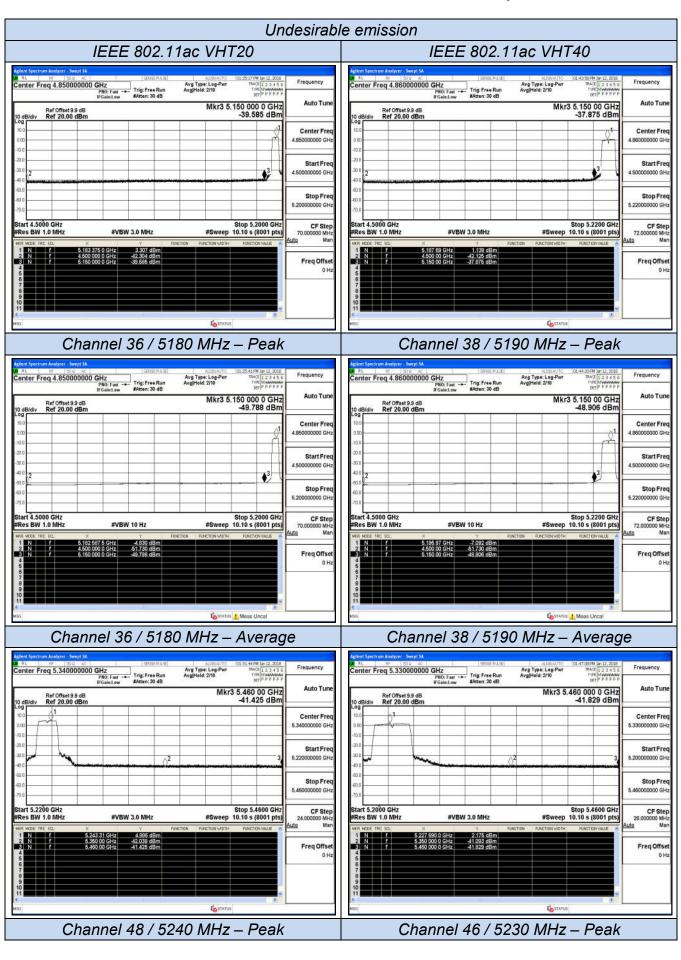
	IEEE 802.11ac VHT20											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
4500.000	-42.30	5.00	0.00	57.90	Peak	74.00	PASS					
4500.000	-51.73	5.00	0.00	48.47	Average	54.00	PASS					
5150.000	-39.59	5.00	0.00	60.61	Peak	74.00	PASS					
5150.000	-49.79	5.00	0.00	50.41	Average	54.00	PASS					
5350.000	-42.04	5.00	0.00	58.16	Peak	74.00	PASS					
5350.000	-51.66	5.00	0.00	48.54	Average	54.00	PASS					
5460.000	-41.43	5.00	0.00	58.77	Peak	74.00	PASS					
5460.000	-52.02	5.00	0.00	48.18	Average	54.00	PASS					

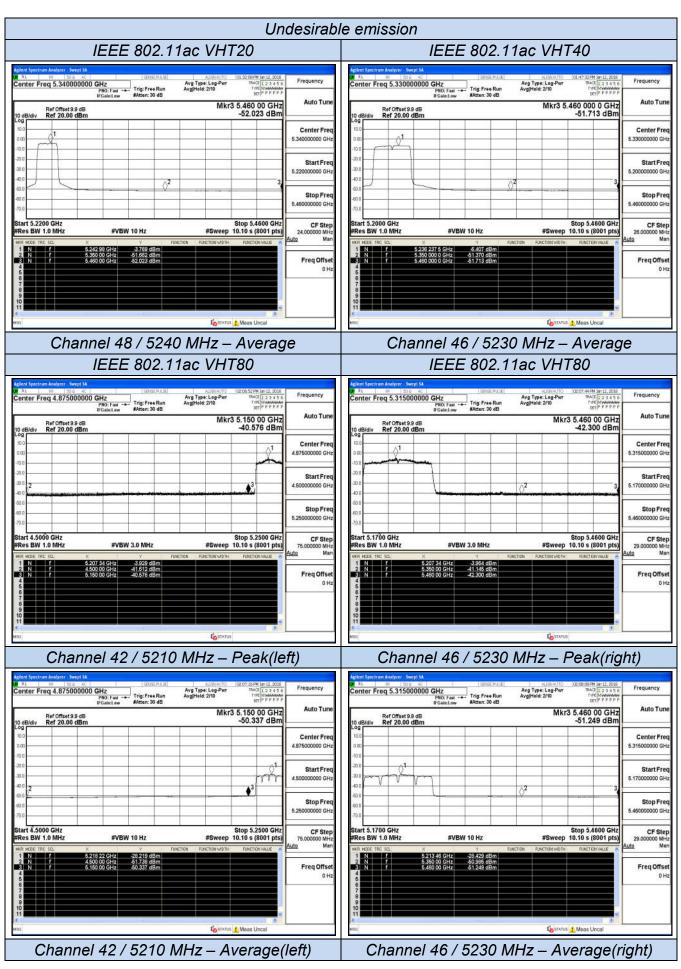

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 70

	IEEE 802.11ac VHT40											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
4500.000	-42.13	5.00	0.00	58.07	Peak	74.00	PASS					
4500.000	-51.73	5.00	0.00	48.47	Average	54.00	PASS					
5150.000	-37.88	5.00	0.00	62.32	Peak	74.00	PASS					
5150.000	-48.91	5.00	0.00	51.29	Average	54.00	PASS					
5350.000	-41.09	5.00	0.00	59.11	Peak	74.00	PASS					
5350.000	-51.37	5.00	0.00	48.83	Average	54.00	PASS					
5460.000	-41.83	5.00	0.00	58.37	Peak	74.00	PASS					
5460.000	-51.71	5.00	0.00	48.49	Average	54.00	PASS					


	IEEE 802.11ac VHT80											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
4500.000	-41.61	5.00	0.00	58.59	Peak	74.00	PASS					
4500.000	-51.74	5.00	0.00	48.46	Average	54.00	PASS					
5150.000	-40.58	5.00	0.00	59.62	Peak	74.00	PASS					
5150.000	-50.34	5.00	0.00	49.86	Average	54.00	PASS					
5350.000	-41.15	5.00	0.00	59.05	Peak	74.00	PASS					
5350.000	-50.99	5.00	0.00	49.21	Average	54.00	PASS					
5460.000	-42.30	5.00	0.00	57.90	Peak	74.00	PASS					
5460.000	-51.25	5.00	0.00	48.95	Average	54.00	PASS					

Remark:


- 1. Measured Undesirable emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. Covert Radiated E Level At 3m = Conducted average power + Directional Gain + 104.77-20*log(3);
- 5. Please refer to following test plots;


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 70

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 61 of 70

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 70

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 70

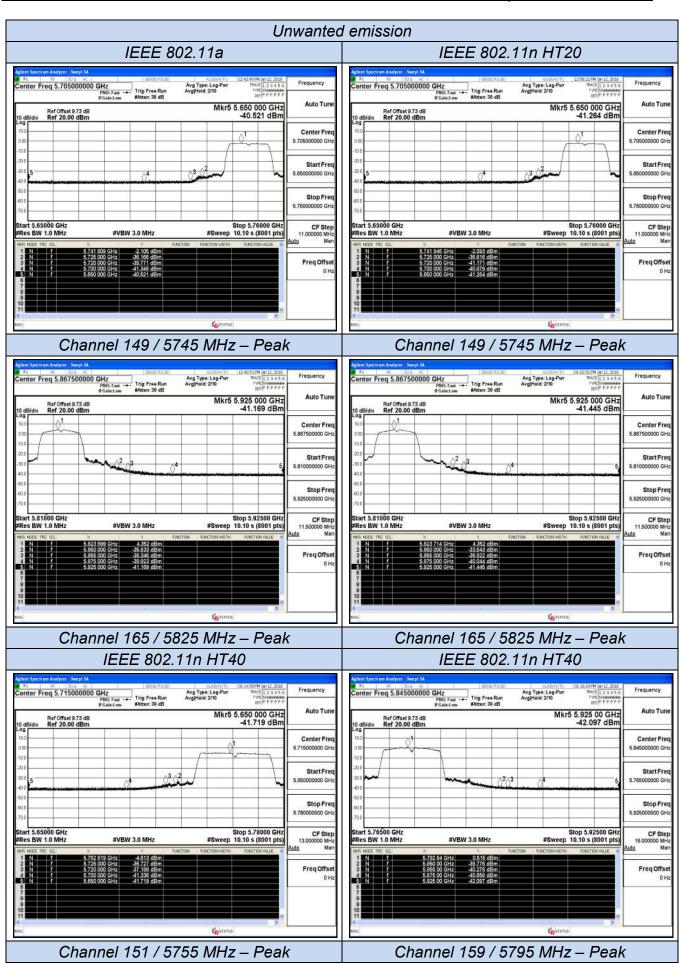
5.8.4.2 UNII Band 3

	IEEE 802.11a										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict				
5650.000	-40.52	5.00	-35.52	Peak	-27.00	-8.52	PASS				
5700.000	-41.35	5.00	-36.35	Peak	10.00	-46.35	PASS				
5720.000	-39.77	5.00	-34.77	Peak	15.60	-50.37	PASS				
5725.000	-36.17	5.00	-31.17	Peak	27.00	-58.17	PASS				
5850.000	-35.63	5.00	-30.63	Peak	27.00	-57.63	PASS				
5855.000	-38.35	5.00	-33.35	Peak	15.60	-48.95	PASS				
5875.000	-39.82	5.00	-34.82	Peak	10.00	-44.82	PASS				
5925.000	-41.17	5.00	-36.17	Peak	-27.00	-9.17	PASS				

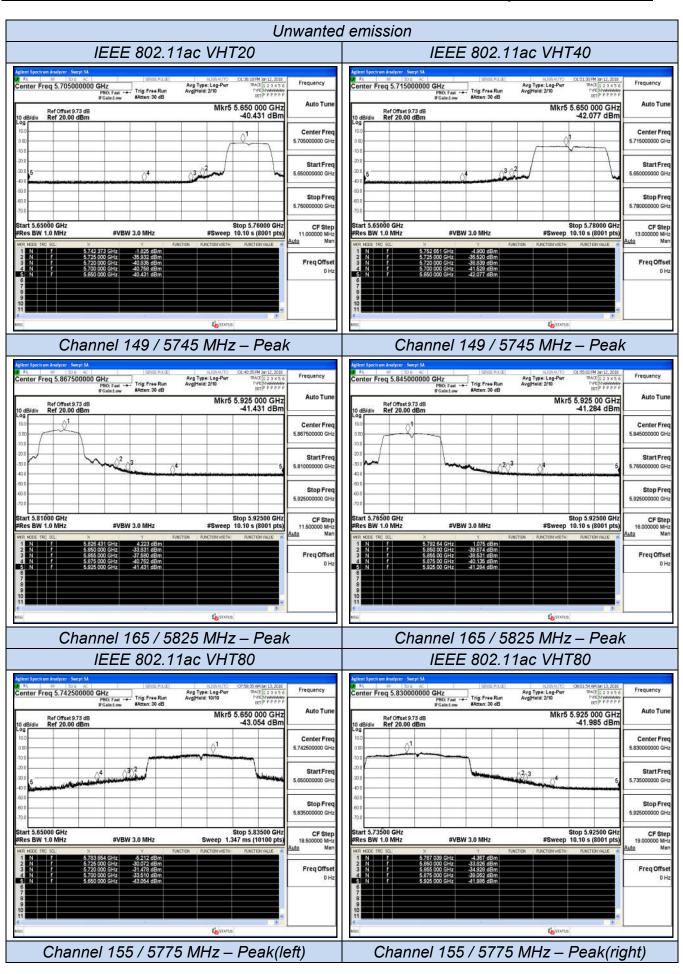
	IEEE 802.11n HT20										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict				
5650.000	-41.26	5.00	-36.26	Peak	-27.00	-9.26	PASS				
5700.000	-40.88	5.00	-35.88	Peak	10.00	-45.88	PASS				
5720.000	-41.17	5.00	-36.17	Peak	15.60	-51.77	PASS				
5725.000	-36.62	5.00	-31.62	Peak	27.00	-58.62	PASS				
5850.000	-33.64	5.00	-28.64	Peak	27.00	-55.64	PASS				
5855.000	-36.82	5.00	-31.82	Peak	15.60	-47.42	PASS				
5875.000	-40.04	5.00	-35.04	Peak	10.00	-45.04	PASS				
5925.000	-41.45	5.00	-36.45	Peak	-27.00	-9.45	PASS				

	IEEE 802.11n HT40										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict				
5650.000	-41.72	5.00	-36.72	Peak	-27.00	-9.72	PASS				
5700.000	-41.34	5.00	-36.34	Peak	10.00	-46.34	PASS				
5720.000	-37.19	5.00	-32.19	Peak	15.60	-47.79	PASS				
5725.000	-36.73	5.00	-31.73	Peak	27.00	-58.73	PASS				
5850.000	-39.78	5.00	-34.78	Peak	27.00	-61.78	PASS				
5855.000	-40.28	5.00	-35.28	Peak	15.60	-50.88	PASS				
5875.000	-40.66	5.00	-35.66	Peak	10.00	-45.66	PASS				
5925.000	-42.10	5.00	-37.10	Peak	-27.00	-10.10	PASS				

IEEE 802.11ac VHT20							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict
5650.000	-40.43	5.00	-35.43	Peak	-27.00	-8.43	PASS
5700.000	-40.76	5.00	-35.76	Peak	10.00	-45.76	PASS
5720.000	-40.84	5.00	-35.84	Peak	15.60	-51.44	PASS
5725.000	-35.93	5.00	-30.93	Peak	27.00	-57.93	PASS
5850.000	-33.83	5.00	-28.83	Peak	27.00	-55.83	PASS
5855.000	-37.58	5.00	-32.58	Peak	15.60	-48.18	PASS
5875.000	-40.76	5.00	-35.76	Peak	10.00	-45.76	PASS
5925.000	-41.43	5.00	-36.43	Peak	-27.00	-9.43	PASS


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 70

IEEE 802.11ac VHT40							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict
5650.000	-42.08	5.00	-37.08	Peak	-27.00	-10.08	PASS
5700.000	-41.53	5.00	-36.53	Peak	10.00	-46.53	PASS
5720.000	-38.84	5.00	-33.84	Peak	15.60	-49.44	PASS
5725.000	-36.52	5.00	-31.52	Peak	27.00	-58.52	PASS
5850.000	-39.67	5.00	-34.67	Peak	27.00	-61.67	PASS
5855.000	-38.53	5.00	-33.53	Peak	15.60	-49.13	PASS
5875.000	-40.14	5.00	-35.14	Peak	10.00	-45.14	PASS
5925.000	-41.28	5.00	-36.28	Peak	-27.00	-9.28	PASS


IEEE 802.11ac VHT80							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict
5650.000	-43.05	5.00	-38.05	Peak	-27.00	-11.05	PASS
5700.000	-33.51	5.00	-28.51	Peak	10.00	-38.51	PASS
5720.000	-31.48	5.00	-26.48	Peak	15.60	-42.08	PASS
5725.000	-30.07	5.00	-25.07	Peak	27.00	-52.07	PASS
5850.000	-33.83	5.00	-28.83	Peak	27.00	-55.83	PASS
5855.000	-34.93	5.00	-29.93	Peak	15.60	-45.53	PASS
5875.000	-39.06	5.00	-34.06	Peak	10.00	-44.06	PASS
5925.000	-41.99	5.00	-36.99	Peak	-27.00	-9.99	PASS

Remark:

- 1. Measured unwanted emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. EIRP = Conducted power + Directional Gain
- 5. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.3 However, for devices that operate in multiple bands using the same transmit antenna, the highest gain of the antenna within the operating band nearest to the out-of-band frequency being measured may be used in lieu of the overall highest gain when measuring emissions at frequencies within 20% of the absolute frequency at the nearest edge of that band, but in no case shall a value less than 2 dBi be selected.
- 6. Over limit = EIRP Limit
- 7. Please refer to following test plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 70

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 70

5.9. Antenna Requirements

5.9.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is an external antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for NII devices. Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter					
Detector:	Peak				
Sweep Time:	Auto				
Resolution bandwidth:	1MHz				
Video bandwidth:	3MHz				
Trace-Mode:	Max hold				

Limits

FCC	ISED				
Antenna Gain					
6 dBi					

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For WLAN devices, the OFDM (IEEE 802.11a) mode is used;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 70

T _{nom}	V _{nom}	Lowest Channel 5180 MHz	Middle Channel 5200 MHz	Highest Channel 5240 MHz	
Conducted power [dBm] Measured with DSSS modulation		2.312	2.141	2.473	
Radiated power [dBm] Measured with DSSS modulation		4.854	4.749	4.953	
Gain [dBi] Calculated		2.542	2.608	2.480	
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

T _{nom}	V _{nom}	Lowest Channel 5745 MHz	Middle Channel 5785 MHz	Highest Channel 5825 MHz	
Conducted power [dBm] Measured with DSSS modulation		1.836	1.752	1.914	
Radiated power [dBm] Measured with DSSS modulation		3.725	3.881	4.074	
Gain [dBi] Calculated		1.889	2.129	2.160	
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

6. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separate file for test setup photos.

7. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separate file for exterior photos of eut.

8. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separate file for interior photos of eut.

-----THE END OF REPORT------