|       |           |            | 1100 Coa<br>(<br>FA)                           | E Chalk Creek R<br>alville, UT 8401<br>435) 336-4433<br>X (435) 336-443 | Road<br>7<br>86 | Pea            | ak Output             | Powe          | r (Con                | d)                  |
|-------|-----------|------------|------------------------------------------------|-------------------------------------------------------------------------|-----------------|----------------|-----------------------|---------------|-----------------------|---------------------|
| DNB   | Job Num   | ber:       | 06022                                          |                                                                         |                 | Date:          | 10 Oct 20             | 19            | Conform               | nance               |
| Custo | omer:     |            | Transcor                                       | Transcore                                                               |                 |                |                       |               | Stand                 | ard                 |
| Mode  | el Number | •          | MPRXF                                          | MPRXFH                                                                  |                 |                |                       |               | FCC Pa                | art 15              |
| Desci | ription:  |            | Multiprotocol Reader Extreme- Frequency Hopper |                                                                         |                 |                |                       |               | <b>Clau</b><br>15.247 | <b>ise</b><br>(b,2) |
|       |           |            | 1                                              | Environ                                                                 | mental Co       | onditions      |                       |               |                       |                     |
|       | Ambient   | Temper     | ature                                          | ture Relative Humidity Barometric Pre                                   |                 |                | c Pressu              | e             |                       |                     |
|       | ,         | 24 °C      |                                                |                                                                         | 32 %            |                |                       | 101.3         | 0 kPa                 |                     |
| EUT   | performed | l within t | the require                                    | ments of the applie                                                     | cable star      | dard [X        | ]Yes []No             | J Payr        | ıe                    |                     |
| Port  | Channel   | Mod        | Freq<br>(MHz)                                  | Meas Peak Pwr<br>(dBm)                                                  | Limit<br>(dBm)  | Delta<br>(dBm) | Meas Peak Pwr<br>(mW) | Limit<br>(mW) | Delta<br>(mW)         | Pass/Fail           |
| 0     | High      | iag        | 927.500 28.79 30 -1.21 756.833                 |                                                                         |                 |                | 1000                  | -243          | Pass                  |                     |
| 1     | High      | iag        | 927.500                                        | 28.94                                                                   | 30              | -1.06          | 783.430               | 1000          | -217                  | Pass                |
| 2     | High      | iag        | 927.500                                        | 28.68                                                                   | 30              | -1.32          | 737.904               | 1000          | -262                  | Pass                |
| 3     | High      | iag        | 927.500                                        | 28.79                                                                   | 30              | -1.21          | 756.833               | 1000          | -243                  | Pass                |



Date: 8.0CT.2019 10:21:23











|       |           |            | 1100 Coa<br>(<br>FA)                    | E Chalk Creek R<br>alville, UT 8401<br>435) 336-4433<br>X (435) 336-443 | coad<br>7<br>66 | Pea            | ak Output             | Powe          | r (Con                | d)                  |
|-------|-----------|------------|-----------------------------------------|-------------------------------------------------------------------------|-----------------|----------------|-----------------------|---------------|-----------------------|---------------------|
| DNB   | Job Num   | ber:       | 06022                                   |                                                                         |                 | Date:          | 10 Oct 20             | 19            | Conform               | nance               |
| Custo | omer:     |            | Transcore                               |                                                                         |                 |                |                       |               | Stand                 | ard                 |
| Mode  | el Number | :          | MPRXF                                   | MPRXFH                                                                  |                 |                |                       |               | FCC Pa                | art 15              |
| Desci | ription:  |            | Multipro                                | otocol Reader Ext                                                       | reme- Fre       | quency Ho      | opper                 |               | <b>Clau</b><br>15.247 | <b>ise</b><br>(b,2) |
|       |           |            | 1                                       | Environ                                                                 | nental Co       | onditions      |                       |               |                       |                     |
|       | Ambient   | Temper     | erature Relative Humidity Barometric Pr |                                                                         |                 | c Pressu       | e                     |               |                       |                     |
|       | ,         | 24 °C      |                                         |                                                                         | 32 %            |                |                       | 101.3         | 0 kPa                 |                     |
| EUT   | performed | l within t | the require                             | ments of the applie                                                     | cable stan      | dard [X        | ]Yes []No             | J Payr        | ıe                    |                     |
| Port  | Channel   | Mod        | Freq<br>(MHz)                           | Meas Peak Pwr<br>(dBm)                                                  | Limit<br>(dBm)  | Delta<br>(dBm) | Meas Peak Pwr<br>(mW) | Limit<br>(mW) | Delta<br>(mW)         | Pass/Fail           |
| 0     | Low       | Sego       | 902.500 28.99 30 -1.01 792.501          |                                                                         |                 |                | 1000                  | -207          | Pass                  |                     |
| 1     | Low       | Sego       | 902.500                                 | 28.98                                                                   | 30              | -1.02          | 790.679               | 1000          | -209                  | Pass                |
| 2     | Low       | Sego       | 902.500                                 | 28.90                                                                   | 30              | -1.1           | 776.247               | 1000          | -224                  | Pass                |
| 3     | Low       | Sego       | 902.500                                 | 28.93                                                                   | 30              | -1.07          | 781.628               | 1000          | -218                  | Pass                |



Date: 8.0CT.2019 08:35:09







Date: 9.0CT.2019 09:22:05





|       |           |            | 1100 Coa<br>(<br>FA)           | E Chalk Creek R<br>alville, UT 8401<br>435) 336-4433<br>X (435) 336-443 | Road<br>7<br>86 | Pea            | ak Output             | Powe          | r (Con                | d)                  |
|-------|-----------|------------|--------------------------------|-------------------------------------------------------------------------|-----------------|----------------|-----------------------|---------------|-----------------------|---------------------|
| DNB   | Job Num   | ber:       | 06022                          |                                                                         |                 | Date:          | 10 Oct 20             | 19            | Conform               | nance               |
| Custo | omer:     |            | Transcore                      |                                                                         |                 |                |                       |               | Stand                 | ard                 |
| Mode  | el Number | :          | MPRXF                          | MPRXFH                                                                  |                 |                |                       |               | FCC Pa                | art 15              |
| Desci | ription:  |            | Multipro                       | otocol Reader Ext                                                       | reme- Fre       | equency Ho     | opper                 |               | <b>Clau</b><br>15.247 | <b>ise</b><br>(b,2) |
|       |           |            | 1                              | Environ                                                                 | mental Co       | onditions      |                       |               |                       |                     |
|       | Ambient   | Temper     | ature                          | Relative Humidity Barometric                                            |                 |                | c Pressu              | e             |                       |                     |
|       | ,         | 24 °C      |                                |                                                                         | 32 %            |                |                       | 101.3         | 0 kPa                 |                     |
| EUT   | performed | l within t | the require                    | ments of the applie                                                     | cable star      | ndard [X       | ]Yes []No             | J Payr        | ne                    |                     |
| Port  | Channel   | Mod        | Freq<br>(MHz)                  | Meas Peak Pwr<br>(dBm)                                                  | Limit<br>(dBm)  | Delta<br>(dBm) | Meas Peak Pwr<br>(mW) | Limit<br>(mW) | Delta<br>(mW)         | Pass/Fail           |
| 0     | Mid       | Sego       | 915.750 28.92 30 -1.08 779.830 |                                                                         |                 |                | 1000                  | -220          | Pass                  |                     |
| 1     | Mid       | Sego       | 915.750                        | 29.02                                                                   | 30              | -0.98          | 797.995               | 1000          | -202                  | Pass                |
| 2     | Mid       | Sego       | 915.750                        | 28.80                                                                   | 30              | -1.2           | 758.578               | 1000          | -241                  | Pass                |
| 3     | Mid       | Sego       | 915.750                        | 28.99                                                                   | 30              | -1.01          | 792.501               | 1000          | -207                  | Pass                |



Date: 8.0CI.2019 08:37:22





 
 Spectrum

 RefLevel 40.00 dbm
 Offset 40.00 dbm
 RBW 100 HH:

 Att
 20 db
 SWT
 8 ms + VBW 300 kH:
 Mode Sweep

 el/PLM Mace/Pik View

 8 ms + VBW 300 kH:
 Mode Sweep
 28.99 dBm 915.750000 MHz 17.71 dBm 915.750000 MHz M1[1] io.dBi M2[2] n dBrr 0 dBn dBm -10 dBm -20 dBm-40 dBm--S0 dBm CF 915.75 MHz 8001 pts Span 5.0 MHz 
 X-value
 Y-value
 Function

 915.75
 MHz
 28.99 dBm

 915.75
 MHz
 17.71 dBm

 913.25
 MHz
 -28.19 dBm

 Marker

 Type
 Ref
 Trc

 M1
 1

 M2
 2

 M3
 1
 Function Result Measuring.... 10.10.2019 Date: 10.0CT.2019 12:55:07

Page 70 of 152

|       |           |            | 1100 Coa<br>(<br>FA)                           | E Chalk Creek R<br>alville, UT 8401<br>435) 336-4433<br>X (435) 336-443 | coad<br>7<br>66 | Pea            | ak Output 1           | Powe          | r (Con                | d)                  |
|-------|-----------|------------|------------------------------------------------|-------------------------------------------------------------------------|-----------------|----------------|-----------------------|---------------|-----------------------|---------------------|
| DNB   | Job Num   | ber:       | 06022                                          |                                                                         |                 | Date:          | 10 Oct 20             | 19            | Conform               | nance               |
| Custo | omer:     |            | Transcor                                       | Transcore                                                               |                 |                |                       |               | Stand                 | ard                 |
| Mode  | el Number | :          | MPRXF                                          | MPRXFH                                                                  |                 |                |                       |               | FCC Pa                | art 15              |
| Desci | ription:  |            | Multiprotocol Reader Extreme- Frequency Hopper |                                                                         |                 |                |                       |               | <b>Clau</b><br>15.247 | <b>ise</b><br>(b,2) |
|       |           |            | 1                                              | Environ                                                                 | nental Co       | onditions      |                       |               |                       |                     |
|       | Ambient   | Temper     | ature                                          | Rela                                                                    | tive Hum        | idity          | Ba                    | arometri      | c Pressu              | e                   |
|       | ,         | 24 °C      |                                                |                                                                         | 32 %            |                |                       | 101.3         | 0 kPa                 |                     |
| EUT   | performed | l within t | the require                                    | ments of the appli                                                      | cable star      | ndard [X       | ]Yes []No             | J Payr        | ıe                    |                     |
| Port  | Channel   | Mod        | Freq<br>(MHz)                                  | Meas Peak Pwr<br>(dBm)                                                  | Limit<br>(dBm)  | Delta<br>(dBm) | Meas Peak Pwr<br>(mW) | Limit<br>(mW) | Delta<br>(mW)         | Pass/Fail           |
| 0     | High      | Sego       | 927.500 28.90 30 -1.1 776.247                  |                                                                         |                 |                | 1000                  | -224          | Pass                  |                     |
| 1     | High      | Sego       | 927.500                                        | 28.80                                                                   | 30              | -1.2           | 758.578               | 1000          | -241                  | Pass                |
| 2     | High      | Sego       | 927.500                                        | 28.83                                                                   | 30              | -1.17          | 763.836               | 1000          | -236                  | Pass                |
| 3     | High      | Sego       | 927.500                                        | 29.01                                                                   | 30              | -0.99          | 796.159               | 1000          | -204                  | Pass                |



Date: 8.007.2019 08:39:00









15.247 (d) Conducted Band Edge and Out of Band Emissions

Test Procedure: ANSI C63.10-2013

# Band-edge Compliance of RF Conducted Emissions

Tested in accordance with ANSI C63.10-2013 Clause 6.10.4 - Relative Method

Test Set Up: Same as 15.247 (a,2) 20dB Emission Bandwidth

|               |                      | 1100<br>C<br>FA                      | ) E Chalk Creel<br>oalville, UT 84<br>(435) 336-443<br>AX (435) 336-4 | k Road<br>017<br>3<br>1436 |        | Band   | Edge  | e Mea        | surem                      | nents      |
|---------------|----------------------|--------------------------------------|-----------------------------------------------------------------------|----------------------------|--------|--------|-------|--------------|----------------------------|------------|
| DNB Job Numb  | ber:                 | 06022                                |                                                                       |                            | Date:  |        | 10 Oc | t 2019       | Con                        | formance   |
| Customer:     |                      | Transco                              | Franscore                                                             |                            |        |        |       |              | St                         | andard     |
| Model Number  |                      | MPRX                                 | MPRXFH                                                                |                            |        |        |       |              | FC                         | C Part 15  |
| Description:  |                      | Multip                               | Multiprotocol Reader Extreme- Frequency Hopper                        |                            |        |        |       | 15           | C <b>lause</b><br>5.247(d) |            |
| Ambient       | Temper               | ature                                | R                                                                     | elative Hur                | nidity |        |       | Baron        | netric Pre                 | essure     |
|               | 24 °C                |                                      |                                                                       | 32 %                       |        |        |       | 1            | 01.30 kP                   | a          |
| EUT performed | l within t           | he requir                            | ements of the ap                                                      | plicable sta               | undard | [X] Ye | s []] | No J         | Payne                      |            |
|               |                      | Conduct                              | ed Band Edge Measu                                                    | urement                    |        |        |       | Fi           | req                        | Dass /Eail |
| Port          | Modu                 | lation Limit Lower (MHz) Upper (MHz) |                                                                       |                            |        | (N     | 1Hz)  | F 033/ 1 011 |                            |            |
| 0             | eç                   | ego 902 902                          |                                                                       |                            | 44     |        |       | 0.           | 334                        | Pass       |
| 1             | eç                   | jo                                   | 902                                                                   | 902.340                    | 77     |        |       | 0.           | 341                        | Pass       |
| 2             | ego 902 902.3294 0.3 |                                      |                                                                       | 329                        | Pass   |        |       |              |                            |            |
| 3             | eç                   | ego 902 902.33565                    |                                                                       |                            |        | 0.     | 336   | Pass         |                            |            |



Date: 0.007.2019 00:27:00









Page 73 of 152

|               |            | 1100<br>Co<br>FA        | ) E Chalk Creel<br>oalville, UT 84<br>(435) 336-443<br>AX (435) 336-4 | k Road<br>017<br>3<br>1436 |          | Band           | Edge  | e Mea  | surem      | ients                      |
|---------------|------------|-------------------------|-----------------------------------------------------------------------|----------------------------|----------|----------------|-------|--------|------------|----------------------------|
| DNB Job Numb  | ber:       | 06022                   |                                                                       |                            | Date:    |                | 10 Oc | t 2019 | Con        | formance                   |
| Customer:     |            | Transco                 | Franscore                                                             |                            |          |                |       |        | St         | andard                     |
| Model Number  | •          | MPRX                    | MPRXFH                                                                |                            |          |                |       |        | FC         | C Part 15                  |
| Description:  |            | Multipr                 | rotocol Reader E                                                      | Extreme- Fr                | equenc   | y Hopper       |       |        | 15         | C <b>lause</b><br>5.247(d) |
| Ambient       | Temper     | ature                   | R                                                                     | elative Hur                | nidity   |                |       | Baron  | netric Pre | essure                     |
| 2             | 24 °C      |                         |                                                                       | 32 %                       |          |                |       | 1      | 01.30 kP   | a                          |
| EUT performed | l within t | he requir               | ements of the ap                                                      | plicable sta               | indard   | [X] Ye         | s []] | No J   | Payne      |                            |
|               |            | Conducte                | ed Band Edge Measu                                                    | urement                    |          |                |       | Fr     | eq         | Dace /Eail                 |
| Port          | Modu       | ation Limit Lower (MHz) |                                                                       |                            | 1Hz)     | Upper (MHz) (f |       | (N     | IHz)       | F 033/ 1 011               |
| 0             | ерс 902    |                         |                                                                       | 902.331                    | 27       |                |       | 0.3    | 331        | Pass                       |
| 1             | e          | C                       | 902                                                                   | 902.226                    | 91 0.227 |                | Pass  |        |            |                            |
| 2             | e          | C                       | 902                                                                   | 902.331                    | 90       |                |       | 0.3    | 332        | Pass                       |
| 3             | e          | epc 902 902.33565       |                                                                       |                            |          | 0.3            | 336   | Pass   |            |                            |



Date: 8.0CT.2019 13:25:01









|               |            | 1100<br>Co<br>FA                   | E Chalk Creel<br>oalville, UT 84<br>(435) 336-443<br>AX (435) 336-4 | k Road<br>017<br>3<br>1436 |        | Band   | Edge  | e Mea  | surem                      | nents      |
|---------------|------------|------------------------------------|---------------------------------------------------------------------|----------------------------|--------|--------|-------|--------|----------------------------|------------|
| DNB Job Numb  | ber:       | 06022                              |                                                                     |                            | Date:  |        | 10 Oc | t 2019 | Con                        | formance   |
| Customer:     |            | Transco                            | Transcore                                                           |                            |        |        |       |        | St                         | andard     |
| Model Number  | :          | MPRX                               | MPRXFH                                                              |                            |        |        |       |        | FC                         | C Part 15  |
| Description:  |            | Multipr                            | Multiprotocol Reader Extreme- Frequency Hopper                      |                            |        |        |       | 15     | C <b>lause</b><br>5.247(d) |            |
| Ambient       | Temper     | ature                              | R                                                                   | elative Hur                | nidity |        |       | Baron  | netric Pre                 | essure     |
|               | 24 °C      |                                    |                                                                     | 32 %                       |        |        |       | 1      | 01.30 kP                   | a          |
| EUT performed | l within t | he require                         | ements of the ap                                                    | plicable sta               | indard | [X] Ye | s []] | No J   | Payne                      |            |
|               |            | Conducte                           | ed Band Edge Measu                                                  | urement                    |        |        |       | Fr     | eq                         | Dass /Eail |
| Port          | Modu       | Ilation Limit Lower (MHz) Upper (M |                                                                     |                            |        | MHz)   | (N    | IHz)   | F 033/ 1 011               |            |
| 0             | ia         | iag 902                            |                                                                     |                            | 53     |        |       | 0.2    | 233                        | Pass       |
| 1             | ia         | Ig                                 | 902                                                                 | 902.360                    | 89     |        |       | 0.3    | 361                        | Pass       |
| 2             | ia         | ig                                 | 902                                                                 | 902.330                    | 15     |        |       | 0.3    | 330                        | Pass       |
| 3             | ia         | iag 902 902.33627                  |                                                                     |                            |        |        | 0.3   | 336    | Pass                       |            |



Date: 0.007.2019 11:20:35





Date: 8.0CT.2019 16:17:40



|               |            | 1100<br>Co<br>FA                           | E Chalk Creel<br>balville, UT 84<br>(435) 336-443<br>XX (435) 336-4 | x Road<br>017<br>3<br>4436 |          | Band     | Edge  | e Mea  | surem        | nents                      |
|---------------|------------|--------------------------------------------|---------------------------------------------------------------------|----------------------------|----------|----------|-------|--------|--------------|----------------------------|
| DNB Job Num   | ber:       | 06022                                      |                                                                     |                            | Date:    |          | 10 Oc | t 2019 | Con          | formance                   |
| Customer:     |            | Transco                                    | Transcore                                                           |                            |          |          |       |        | St           | andard                     |
| Model Number  | :          | MPRXI                                      | MPRXFH                                                              |                            |          |          |       |        | FC           | C Part 15                  |
| Description:  |            | Multiprotocol Reader Extreme- Frequency Ho |                                                                     |                            |          | y Hopper |       |        | 15           | C <b>lause</b><br>5.247(d) |
| Ambient       | Temper     | ature                                      | R                                                                   | elative Hur                | nidity   |          |       | Baron  | netric Pre   | essure                     |
| 2             | 24 °C      |                                            |                                                                     | 32 %                       |          |          |       | 1      | 01.30 kP     | a                          |
| EUT performed | l within t | he require                                 | ements of the ap                                                    | plicable sta               | indard   | [X] Ye   | s []] | No J   | Payne        |                            |
|               |            | Conducte                                   | ed Band Edge Measu                                                  | urement                    |          |          |       | Fi     | eq           | Dass /Eail                 |
| Port          | Modu       | lation Limit Lower (MHz) U                 |                                                                     |                            | Upper (I | MHz)     | (N    | IHz)   | F 033/ 1 011 |                            |
| 0             | Se         | Sego 902                                   |                                                                     |                            | 52       |          |       | 0.     | 348          | Pass                       |
| 1             | Se         | go                                         | 902                                                                 | 902.337                    | 0.33     |          | 338   | Pass   |              |                            |
| 2             | Se         | go                                         | 902                                                                 | 902.333                    | 15       |          |       | 0.     | 333          | Pass                       |
| 3             | Se         | Sego 902 902.33440                         |                                                                     |                            |          | 0.       | 334   | Pass   |              |                            |



Date: 8.0CT.2019 09:38:12









|               |                       | 1100<br>C<br>Fz | ) E Chalk Cree<br>oalville, UT 84<br>(435) 336-443<br>AX (435) 336-4 | k Road<br>017<br>33<br>4436 |        | Band         | Edge  | e Mea          | surem                      | ients      |
|---------------|-----------------------|-----------------|----------------------------------------------------------------------|-----------------------------|--------|--------------|-------|----------------|----------------------------|------------|
| DNB Job Numb  | ber:                  | 06022           |                                                                      |                             | Date:  |              | 10 Oc | t 2019         | Con                        | formance   |
| Customer:     |                       | Transc          | ore                                                                  |                             |        |              |       |                | St                         | andard     |
| Model Number  | :                     | MPRX            | MPRXFH                                                               |                             |        |              |       | FC             | C Part 15                  |            |
| Description:  |                       | Multip          | Multiprotocol Reader Extreme- Frequency Hopper                       |                             |        |              |       | <b>(</b><br>15 | C <b>lause</b><br>5.247(d) |            |
| Ambient       | Temper                | ature           | R                                                                    | elative Hu                  | midity |              |       | Baron          | netric Pre                 | essure     |
| 2             | 24 °C                 |                 |                                                                      | 32 %                        |        |              |       | 10             | 01.30 kP                   | a          |
| EUT performed | l within t            | he requir       | rements of the ap                                                    | plicable sta                | andard | [X] Ye       | s []] | No J           | Payne                      |            |
|               |                       | Conduct         | ed Band Edge Meas                                                    | urement                     |        |              |       | Fr             | eq                         | Dace /Eail |
| Port          | Modu                  | lation          | ation Limit Lower (MHz) Upper (MH                                    |                             |        | MHz)         | (M    | IHz)           | F 033/ 1 011               |            |
| 0             | eç                    | jo              | 928                                                                  |                             |        | 927.65       | 990   | -0.            | 340                        | Pass       |
| 1             | eç                    | jo              | 928                                                                  |                             |        | 927.64311 -0 |       | -0.            | 357                        | Pass       |
| 2             | ego 928 927.66373 -0. |                 |                                                                      | -0.                         | 336    | Pass         |       |                |                            |            |
| 3             | eç                    | ego 928 927.6   |                                                                      |                             | 936    | -0.          | 341   | Pass           |                            |            |



Date: 8.0CT.2019 08:29:02



Date: 9.0CT.2019 11:55:37



Date: 9.0CT.2019 09:18:52



Date: 10.0CT.2019 14:17:33

|               |                      | 1100<br>C<br>FA                      | ) E Chalk Creel<br>oalville, UT 84<br>(435) 336-443<br>AX (435) 336-4 | k Road<br>017<br>3<br>1436 |        | Band         | Edge         | e Mea          | surem                      | ients      |
|---------------|----------------------|--------------------------------------|-----------------------------------------------------------------------|----------------------------|--------|--------------|--------------|----------------|----------------------------|------------|
| DNB Job Numb  | ber:                 | 06022                                |                                                                       |                            | Date:  |              | 10 Oc        | t 2019         | Con                        | formance   |
| Customer:     |                      | Transco                              | ore                                                                   |                            | 1      |              |              |                | St                         | andard     |
| Model Number  | :                    | MPRX                                 | MPRXFH                                                                |                            |        |              |              | FC             | C Part 15                  |            |
| Description:  |                      | Multip                               | Multiprotocol Reader Extreme- Frequency Hopper                        |                            |        |              |              | <b>(</b><br>15 | C <b>lause</b><br>5.247(d) |            |
| Ambient       | Temper               | rature Relative Humidity Baron       |                                                                       |                            | Baron  | netric Pre   | essure       |                |                            |            |
| 2             | 24 °C                |                                      |                                                                       | 32 %                       |        |              |              | 10             | 01.30 kP                   | a          |
| EUT performed | l within t           | he requir                            | rements of the ap                                                     | plicable sta               | undard | [X] Ye       | s []]        | No J           | Payne                      | -          |
|               |                      | Conduct                              | ed Band Edge Measu                                                    | urement                    |        |              |              | Fr             | eq                         | Dass /Fail |
| Port          | Modu                 | lation Limit Lower (MHz) Upper (MHz) |                                                                       |                            | (M     | IHz)         | F 033/ 1 011 |                |                            |            |
| 0             | ep                   | C                                    | 928                                                                   |                            |        | 927.64       | 498          | -0.            | 355                        | Pass       |
| 1             | ep                   | C                                    | 928                                                                   |                            |        | 927.75497 -( |              | -0.            | 245                        | Pass       |
| 2             | ерс 928 927.66310 -0 |                                      |                                                                       | -0.                        | 337    | Pass         |              |                |                            |            |
| 3             | ep                   | pc 928                               |                                                                       |                            |        | 927.65       | 811          | -0.            | 342                        | Pass       |



Date: 8.0CT.2019 13:27:17









Page 78 of 152

|               |            | 1100<br>C<br>Fz                     | D E Chalk Cree<br>oalville, UT 84<br>(435) 336-443<br>AX (435) 336-4 | k Road<br>017<br>33<br>1436 |        | Band   | Edge  | e Mea                      | surem      | nents      |
|---------------|------------|-------------------------------------|----------------------------------------------------------------------|-----------------------------|--------|--------|-------|----------------------------|------------|------------|
| DNB Job Numl  | ber:       | 06022                               |                                                                      |                             | Date:  |        | 10 Oc | t 2019                     | Con        | formance   |
| Customer:     |            | Transc                              | ore                                                                  |                             | 1      |        |       |                            | St         | andard     |
| Model Number  | :          | MPRX                                | MPRXFH                                                               |                             |        |        |       | FC                         | C Part 15  |            |
| Description:  |            | Multip                              | Multiprotocol Reader Extreme- Frequency Hopper                       |                             |        |        | 15    | C <b>lause</b><br>5.247(d) |            |            |
| Ambient       | Temper     | ature                               | R                                                                    | elative Hu                  | nidity |        |       | Baron                      | netric Pre | essure     |
| 2             | 24 °C      |                                     |                                                                      | 32 %                        |        |        |       | 1                          | 01.30 kP   | a          |
| EUT performed | l within t | he requir                           | rements of the ap                                                    | plicable sta                | andard | [X] Ye | s []] | No J                       | Payne      |            |
|               |            | Conduct                             | ted Band Edge Meas                                                   | urement                     |        |        |       | F                          | req        | Dass /Fail |
| Port          | Modu       | lation Limit Lower (MHz) Upper (MHz |                                                                      |                             | MHz)   | (N     | 1Hz)  | F 033/ 1 011               |            |            |
| 0             | ia         | g                                   | 928                                                                  |                             |        | 927.73 | 685   | -0                         | .263       | Pass       |
| 1             | ia         | g                                   | 928                                                                  |                             |        | 927.64 | 311   | -0                         | .357       | Pass       |
| 2             | ia         | iag 928 927.64811 -0.35             |                                                                      |                             | .352   | Pass   |       |                            |            |            |
| 3             | ia         | ag 928 927.64936 -                  |                                                                      |                             | -0     | .351   | Pass  |                            |            |            |



Date: 8.0CI.2019 12:05:54





Date: 8.0CT.2019 16:31:15



Page 79 of 152

|               |            | 1100<br>Co<br>FA | E Chalk Creel<br>oalville, UT 84<br>(435) 336-443<br>AX (435) 336-4 | x Road<br>017<br>3<br>4436 |        | Band     | Edge        | e Mea  | surem          | ients                      |
|---------------|------------|------------------|---------------------------------------------------------------------|----------------------------|--------|----------|-------------|--------|----------------|----------------------------|
| DNB Job Numb  | ber:       | 06022            |                                                                     |                            | Date:  |          | 10 Oc       | t 2019 | Con            | formance                   |
| Customer:     |            | Transco          | ore                                                                 |                            | I.     |          |             |        | St             | andard                     |
| Model Number  | :          | MPRX             | MPRXFH                                                              |                            |        |          |             |        | FC             | C Part 15                  |
| Description:  |            | Multipr          | otocol Reader E                                                     | xtreme- Fr                 | equenc | y Hopper |             |        | <b>(</b><br>15 | C <b>lause</b><br>5.247(d) |
| Ambient       | Temper     | ature            | R                                                                   | elative Hur                | nidity |          |             | Baron  | netric Pre     | essure                     |
| 2             | 24 °C      |                  |                                                                     | 32 %                       |        |          |             | 10     | 01.30 kP       | a                          |
| EUT performed | l within t | he require       | ements of the ap                                                    | plicable sta               | undard | [X] Ye   | s []]       | No J   | Payne          |                            |
|               |            | Conducte         | ed Band Edge Measu                                                  | urement                    |        |          |             | Fr     | eq             | Dace /Eail                 |
| Port          | Modu       | lation           | Limit                                                               | Lower (N                   | 1Hz)   | Upper (  | Ipper (MHz) |        | IHz)           | F 033/ 1 011               |
| 0             | Se         | go               | 928                                                                 |                            |        | 927.65   | 248         | -0.    | 348            | Pass                       |
| 1             | Se         | go               | 928                                                                 |                            |        | 927.65   | 811         | -0.    | 342            | Pass                       |
| 2             | Se         | Sego 928 927.66  |                                                                     |                            | 185    | -0.      | 338         | Pass   |                |                            |
| 3             | Se         | go               | 928                                                                 |                            |        | 927.66   | 123         | -0.    | 339            | Pass                       |



Date: 8.0CT.2019 09:36:08







Page 80 of 152

|                                                                                          | 1100 E Chalk Creek Road<br>Coalville, UT 84017<br>(435) 336-4433<br>FAX (435) 336-4436 | ] ]                                                   | FHSS Charac | teristics   |  |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|-------------|--|--|--|--|
| DNB Job Number:                                                                          | 06022                                                                                  | Date:                                                 | 19 Nov 2019 | Conformance |  |  |  |  |
| Customer:                                                                                | Transcore                                                                              | Transcore                                             |             |             |  |  |  |  |
| Model Number:                                                                            | MPRXFH                                                                                 |                                                       |             | FCC Part 15 |  |  |  |  |
| Description:                                                                             | Multiprotocol Reader Extreme- F                                                        | Multiprotocol Reader Extreme- Frequency Hopper (FHSS) |             |             |  |  |  |  |
| EUT performed within the requirements of the applicable standard [X] Yes [] No Les Payne |                                                                                        |                                                       |             |             |  |  |  |  |

### 15.247g,h FHSS Characteristics

#### **Frequency Hop Timing**

The timing is handled in the high level state machine. Every time through the high level state machine, the Realtime Clock is read. The time read from the Realtime Clock is compared to see if the tenths of seconds is not equal to the previous tenths of seconds value. If not equal, it hops to the next hop channel. The average hop rate is 100 ms. This high level state machine does not override tag encoders/decoders, so depending on a tag in the field, it will vary a bit from hop to hop, but no more than 15% on a single given hop.

#### **Select of Hop Frequency**

The Encompass 4H operates in the 902 to 928 MHz industrial, scientific, and medical radio band. The channel frequencies are defined by an algorithm below. There is no ability to synchronize this hopping with other devices. Therefore the Encompass 4H does not have the ability to be coordinated with other systems. Each frequency is used equally on average by the transmitter.

#### **Frequency Hop Sequence**

There are 101 unique frequency steps from 902.5 to 927.5 MHz with a step size of 250kHz, Channel 0=902.5 MHz, Channel 1=902.75 MHz, Channel 2=903 MHz, ...Channel 100=927.5 MHz. The reader has a Real Time Clock (RTC) that is continually running independently of the frequency setting, and is read many independent times in between the reader setting the transceiver to a new frequency. The RTC has a hundredth of a second field that will be a number between 00 and 99. The reader software will add 1 to the currently read value of this hundredth value resulting in a random number between 1 and 100. It will then add this value to the current RF frequency channel. If the resulting channel is out of range, it will roll around to the first channel and add the remainder of the number of channels that it was out of range. This will result in a 50/50 chance of the new frequency ending up being a forward hop or a backwards hop. Statistically, over the short term, the frequency hopping is completely random and the resultant end value of a given RF frequency is further randomized as the algorithm is influenced by every single random step that occurred since the reader was powered up. Over the long term, every channel will statistically be occupied the same amount of time as every other channel.

#### **Additional Information**

All frequency hopping modes were evaluated, there was no significant difference in timing or hopping sequencing between frequency hopping modes. FHSS mode represented in the plotted data was taken with FHSS mode SeGo.

|                        | 1100 E C<br>Coalv<br>(43<br>FAX ( | Chalk Creek Road<br>ille, UT 84017<br>5) 336-4433<br>(435) 336-4436 | E             | lopping Ch  | annels         |  |
|------------------------|-----------------------------------|---------------------------------------------------------------------|---------------|-------------|----------------|--|
| DNB Job Number:        | 06022                             |                                                                     | Date:         | 10 Oct 2019 | Conformance    |  |
| Customer:              | Transcore                         |                                                                     |               | Standard    |                |  |
| Model Number:          | MPRXFH                            |                                                                     |               | FCC Part 15 |                |  |
| Description:           | Multiproto                        | Multiprotocol Reader Extreme- Frequency Hopper (FHSS)               |               |             |                |  |
|                        |                                   | Environmental C                                                     | Conditions    |             |                |  |
| Ambient Temper         | ature                             | Relative Hur                                                        | nidity        | Barom       | etric Pressure |  |
| 24 °C 32 %             |                                   |                                                                     |               | 10          | )1.30 kPa      |  |
| EUT performed within t | he requirement                    | nts of the applicable sta                                           | undard [X] Ye | es []No Le  | s Payne        |  |

# 15.247 Number of Hopping Frequencies

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = the frequency band of operation RBW 1% of the span VBW RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

|                      | 1100 E C<br>Coalvi<br>(435<br>FAX (4 | Thalk C<br>Ile, U7<br>5) 336-<br>435) 33              | Creek Road<br>F 84017<br>4433<br>36-4436 |             | annels |                     |             |
|----------------------|--------------------------------------|-------------------------------------------------------|------------------------------------------|-------------|--------|---------------------|-------------|
| DNB Job Number:      | 06022                                |                                                       |                                          | Date:       |        | 7 Oct 2019          | Conformance |
| Customer:            | Transcore                            | Franscore                                             |                                          |             |        |                     |             |
| Model Number:        | MPRXFH                               |                                                       |                                          | FCC Part 15 |        |                     |             |
| Description:         | Multiprotoc                          | Multiprotocol Reader Extreme- Frequency Hopper (FHSS) |                                          |             |        |                     |             |
|                      |                                      | E                                                     | nvironmental C                           | Condition   | ıs     |                     |             |
| Ambient Tempe        | erature                              |                                                       | Relative Hur                             | nidity      |        | Barometric Pressure |             |
| 21 °C                |                                      |                                                       | 25 %                                     |             |        | 1                   | 01.2 kPa    |
| EUT performed within | the requiremen                       | ts of th                                              | e applicable sta                         | indard      | [X] Ye | s []No Le           | es Payne    |
| Center Frequency     | Frequency S                          | Frequency Span Hopping Channels Min Limit             |                                          | Pass/Fail   |        |                     |             |
| 915.000 MHz          | 26 MHz                               |                                                       | 101                                      |             |        | 50                  | Pass        |



Date: 7.0CT.2019 13:23:27

|                      | 1100 E C<br>Coalv<br>(43<br>FAX ( | Chalk Creek Road<br>ille, UT 84017<br>5) 336-4433<br>(435) 336-4436 | Max T          | Time on Ch          | annel Freq                       |  |  |
|----------------------|-----------------------------------|---------------------------------------------------------------------|----------------|---------------------|----------------------------------|--|--|
| DNB Job Number:      | 06022                             |                                                                     | Date:          | 10 Oct 2019         | Conformance                      |  |  |
| Customer:            | Transcore                         |                                                                     | Standard       |                     |                                  |  |  |
| Model Number:        | MPRXFH                            | MPRXFH                                                              |                |                     |                                  |  |  |
| Description:         | Multiprotoc                       | col Reader Extreme- Fr                                              | equency Hopper | ·(FHSS)             | <b>Clause</b><br>15.247(a.1.iii) |  |  |
|                      |                                   |                                                                     |                |                     |                                  |  |  |
|                      |                                   | Environmental C                                                     | Conditions     | -                   |                                  |  |  |
| Ambient Temper       | ature                             | Relative Hu                                                         | nidity         | Barometric Pressure |                                  |  |  |
| 21 °C                |                                   | 25 %                                                                |                | 1                   | 101.2 kPa                        |  |  |
| EUT performed within | the requirement                   | nts of the applicable sta                                           | undard [X] Ye  | es []No Le          | s Payne                          |  |  |

# 15.247 Time of Occupancy (Dwell Time)

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel

RBW = 1 MHz VBW RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Trigger = video (positive trace)

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

|                 |          | 1100 E<br>Coalv<br>(43<br>FAX                         | Chalk Creek Road<br>ville, UT 84017<br>35) 336-4433<br>(435) 336-4436 | Max T                 | ime on Channel Freq |                                             |        |  |  |  |
|-----------------|----------|-------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|---------------------|---------------------------------------------|--------|--|--|--|
| DNB Job Number  | r:       | 06022                                                 |                                                                       | Date:                 | 10 Oct 2019         | Confo                                       | rmance |  |  |  |
| Customer:       |          | Transcore                                             |                                                                       |                       |                     | Standard                                    |        |  |  |  |
| Model Number:   |          | MPRXFH                                                |                                                                       |                       |                     | FCC Part 15                                 |        |  |  |  |
| Description:    |          | Multiprotocol Reader Extreme- Frequency Hopper (FHSS) |                                                                       |                       |                     | ler Extreme- Frequency Hopper (FHSS) Clause |        |  |  |  |
|                 |          | SeGo mode                                             | SeGo mode ( representative of all hopping modes) 15.247(a,1           |                       |                     |                                             |        |  |  |  |
|                 |          |                                                       | Environmental                                                         | Conditions            |                     |                                             |        |  |  |  |
| Ambient T       | emper    | ature                                                 | Relative Hu                                                           | midity                | Baron               | netric Press                                | ure    |  |  |  |
| 24              | °C       |                                                       | 32 %                                                                  |                       | 1                   | 01.30 kPa                                   |        |  |  |  |
| EUT performed v | vithin t | he requireme                                          | ents of the applicable st                                             | andard [X] Ye         | 5 []No Le           | es Payne                                    |        |  |  |  |
| Center Freq Chl | Puls     | e Duration                                            | Number of Pulses<br>in 20 Seconds                                     | Calculated<br>on time | Allowed C           | Allowed On Time                             |        |  |  |  |
| 915.750MHz      | 0.0      | )975 Sec                                              | 4                                                                     | 0.390 Sec             | 0.4sec in<br>wind   | 20 sec<br>ow                                | Pass   |  |  |  |



Date: 10.0CT.2019 15:40:35

|                      | 1100 E C<br>Coalv<br>(43<br>FAX ( | Chalk Creek Road<br>ille, UT 84017<br>5) 336-4433<br>(435) 336-4436 | (            | Channel Sep | aration        |  |
|----------------------|-----------------------------------|---------------------------------------------------------------------|--------------|-------------|----------------|--|
| DNB Job Number:      | 06022                             |                                                                     | Date:        | 19 Nov 2019 | Conformance    |  |
| Customer:            | Transcore                         |                                                                     |              | Standard    |                |  |
| Model Number:        | MPRXFH                            | MPRXFH                                                              |              |             |                |  |
| Description:         | Multiprotoc                       | ol Reader Extreme- Fr                                               | equency Hopp | er (FHSS)   | Clause         |  |
|                      | SeGo mode                         | ( representative of all                                             | hopping mode | 5)          | 15.247(a,1)    |  |
|                      |                                   | Environmental C                                                     | Conditions   |             |                |  |
| Ambient Tempe        | rature                            | Relative Hu                                                         | midity       | Barom       | etric Pressure |  |
| 21 °C                |                                   | 25 %                                                                |              | 1           | 01.2 kPa       |  |
| EUT performed within | the requireme                     | nts of the applicable sta                                           | andard [X] Y | es []No Le  | es Payne       |  |

### 15.247 Carrier Frequency Separation

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) 1% of the span Video (or Average) Bandwidth (VBW) RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

|                      | 1100 E C<br>Coalv<br>(43<br>FAX ( | Chalk C<br>ille, U7<br>5) 336-<br>(435) 33            | Creek Road<br>F 84017<br>4433<br>36-4436 | Channel Sepa            |                    |            |    | aration         |  |
|----------------------|-----------------------------------|-------------------------------------------------------|------------------------------------------|-------------------------|--------------------|------------|----|-----------------|--|
| DNB Job Number:      | 06022                             |                                                       |                                          | Date:                   |                    | 19 Nov 201 | 9  | Conformance     |  |
| Customer:            | Transcore                         |                                                       |                                          |                         |                    |            |    | Standard        |  |
| Model Number:        | MPRXFH                            | 1PRXFH                                                |                                          |                         |                    |            |    | FCC Part 15     |  |
| Description:         | Multiprotoc                       | Aultiprotocol Reader Extreme- Frequency Hopper (FHSS) |                                          |                         |                    |            |    | Clause          |  |
|                      | SeGo mode                         | SeGo mode (representative of all hopping modes)       |                                          |                         |                    |            |    | 15.247(a,1)     |  |
|                      |                                   | E                                                     | nvironmental C                           | Condition               | 15                 |            |    |                 |  |
| Ambient Tempe        | erature                           |                                                       | Relative Hur                             | Relative Humidity Barom |                    |            | om | netric Pressure |  |
| 20 °C                |                                   |                                                       | 35 %                                     |                         |                    |            | 10 | 01.0 kPa        |  |
| EUT performed within | the requirement                   | nts of th                                             | e applicable sta                         | undard                  | [X] Yes            | [ ] No     | Le | s Payne         |  |
| Hopping Channel 1    | Hopping Cha                       | Hopping Channel 2                                     |                                          |                         | Limit<br>(20dB BW) |            |    | Pass/Fail       |  |
| 902.496910           | 902.747                           |                                                       | 250.09 kl                                | Hz                      | 2                  | 50kHz      |    | Pass            |  |



Date: 19.NOV.2019 12:06:33

|                        | 1100 E C<br>Coalv<br>(43)<br>FAX ( | Chalk Creek Road<br>ille, UT 84017<br>5) 336-4433<br>435) 336-4436 |                        | Conducted S | purious     |
|------------------------|------------------------------------|--------------------------------------------------------------------|------------------------|-------------|-------------|
| DNB Job Number:        | 06022                              |                                                                    | Date:                  | 10 Oct 2019 | Conformance |
| Customer:              | Transcore                          |                                                                    | Standard               |             |             |
| Model Number:          | MPRXFH                             |                                                                    |                        |             | FCC Part 15 |
| Description:           | Multiprotoc                        | ol Reader Extreme- Fi                                              | requency Hop           | oper        | Clause      |
|                        | Test Proced                        | ure                                                                |                        |             | 15.247(d)   |
| Ambient Temper         | ature                              | Relative Hu                                                        | Relative Humidity Baro |             |             |
| 24 °C 32 %             |                                    |                                                                    |                        | 10          | 01.30 kPa   |
| EUT performed within t | he requirement                     | nts of the applicable st                                           | andard [X]             | Yes [] No J | Payne       |

Test Procedure: ANSI C63.10-2013

15.247 (d) Spurious RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10<sup>th</sup> harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz VBW RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section. Submit these plots.

|        |           |          | 1100 E C<br>Coalv<br>(43)<br>FAX ( | Chalk Creek Road<br>ille, UT 84017<br>5) 336-4433<br>435) 336-4436 |                                     | Co     | Spurious    | ourious        |           |  |
|--------|-----------|----------|------------------------------------|--------------------------------------------------------------------|-------------------------------------|--------|-------------|----------------|-----------|--|
| DNB J  | Job Numb  | er:      | 06022                              |                                                                    | Date:                               |        | 10 Oct 2019 | Confor         | mance     |  |
| Custor | mer:      |          | Transcore                          |                                                                    |                                     |        | Standard    |                |           |  |
| Model  | Number:   |          | MPRXFH                             |                                                                    | FCC Part 15                         |        |             |                |           |  |
| Descri | ption:    |          | Multiprotoc                        | ol Reader Extreme- Fro                                             | - Frequency Hopper Clause 15.247(d) |        |             |                |           |  |
|        | Ambient ' | Temper   | ature                              | Relative Hur                                                       | nidity                              |        | Bar         | ometric Pressu | re        |  |
|        | 2         | 4 °C     |                                    | 32 %                                                               |                                     |        |             | 101.30 kPa     |           |  |
| EUT p  | performed | within t | he requiremer                      | nts of the applicable sta                                          | ndard                               | [X] Ye | s []No      | J Payne        |           |  |
| Port   | Channel   | M        | odulation                          | Peak Output Power (d                                               | Bm)                                 | Read   | ding (dBm)  | -20dBc (dBm)   | Pass/Fall |  |
| 0      | Low       |          | ego                                | 28.44                                                              |                                     |        | 28.77       | 8.77           | Pass      |  |
| 1      | Low       |          | ego                                | 28.90                                                              |                                     |        | 29.01       | 9.01           | Pass      |  |
| 2      | Low       |          | ego                                | 28.94                                                              |                                     | 28.90  |             | 8.9            | Pass      |  |
| 3      | Low       |          | ego                                | 28.90                                                              |                                     |        | 29.12       | 9.12           | Pass      |  |



Date: 7.0CI.2019 14:55:56

| Spectrum       |          |                                         |                                 |            |                                  | (The second seco |
|----------------|----------|-----------------------------------------|---------------------------------|------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level      | 40.00 di | offset 40.00 dB                         | <ul> <li>RBW 100 kHz</li> </ul> |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Att            | 20       | dB SWT 250 ms                           | VBW 300 kHz                     | Mode Sweep |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IPk View       |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10             |          |                                         |                                 | M1[1]      |                                  | 28.90 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30 <b>x</b> Bm |          |                                         |                                 | hand a l   |                                  | 902.30 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |          |                                         |                                 | MIX[1]     |                                  | -18,78 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20 dBm         |          |                                         |                                 |            | 1                                | Ta'99300 CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.dBm          | 1 8.98   | 0 dBm                                   |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a dam          |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| usio           |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBm         |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |          | 202                                     |                                 | M          | B N                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20 dBm-        |          | TOP:                                    |                                 | 1.00       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | -        | ALL | بالمقاصلين وحاصان               | ALL DELLAS | Contraction of the second of the | Mary Mary Marine Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ab Children    |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 dBm         |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ED dBm         |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 30.0 P   | /Hz      |                                         | 8001 n                          | ts         |                                  | Ston 25.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| larkor         |          |                                         |                                 |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type   Ref     | Tre      | X-value                                 | Y-value                         | Function   | Fun                              | ction Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MI             | 1        | 902,3 MHz                               | 28,90 dBm                       |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M2             | 1        | 19.899 GHz                              | -18.78 dBm                      |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M3             | 1        | 16.1664 GHz                             | ~19.57 dBm                      |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M4             | 1        | 6.5947 GHz                              | -21.33 dBm                      |            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 11       |                                         |                                 | Measuring  |                                  | 09.10.2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Date: 9.0CT.2019 11:49:03



Date: 9.0CT.2019 09:09:22



Date: 10.0CT.2019 14:08:27

|        |           |          | 1100 E C<br>Coalv<br>(43)<br>FAX ( | Chalk Creek Road<br>ille, UT 84017<br>5) 336-4433<br>435) 336-4436   |             | Co     | onducted    | Spurious       |             |  |
|--------|-----------|----------|------------------------------------|----------------------------------------------------------------------|-------------|--------|-------------|----------------|-------------|--|
| DNB .  | Job Numb  | er:      | 06022                              |                                                                      | Date:       |        | 10 Oct 2019 | Confor         | mance       |  |
| Custor | mer:      |          | Transcore                          |                                                                      |             |        | Standard    |                |             |  |
| Model  | Number:   |          | MPRXFH                             |                                                                      | FCC Part 15 |        |             |                |             |  |
| Descri | ption:    |          | Multiprotoc                        | Iultiprotocol Reader Extreme- Frequency Hopper     Clau       15.247 |             |        |             |                | use<br>7(d) |  |
|        | Ambient ' | Temper   | ature                              | Relative Hur                                                         | nidity      |        | Bar         | ometric Pressu | re          |  |
|        | 2         | 4 °C     |                                    | 32 %                                                                 |             |        |             | 101.30 kPa     |             |  |
| EUT p  | performed | within t | he requiremer                      | nts of the applicable sta                                            | ndard       | [X] Ye | s []No      | J Payne        |             |  |
| Port   | Channel   | Μ        | odulation                          | Peak Output Power (d                                                 | Bm)         | Read   | ding (dBm)  | -20dBc (dBm)   | Pass/Fall   |  |
| 0      | Mid       |          | ego                                | 28.55                                                                |             |        | 28.60       | 8.6            | Pass        |  |
| 1      | Mid       |          | ego                                | 28.92                                                                |             | 28.92  |             | 8.92           | Pass        |  |
| 2      | Mid       |          | ego                                | 28.79                                                                |             | 28.83  |             | 8.83           | Pass        |  |
| 3      | Mid       |          | ego                                | 28.97                                                                |             |        | 29.26       | 9.26           | Pass        |  |



Date: 7.001.2019 14:54:19



Date: 9.0CT.2019 11:50:58







Page 90 of 152

|        |           |          | 1100 E C<br>Coalv<br>(43)<br>FAX ( | Chalk Creek Road<br>ille, UT 84017<br>5) 336-4433<br>435) 336-4436 |                                       | Co     | Spurious    | purious        |           |  |
|--------|-----------|----------|------------------------------------|--------------------------------------------------------------------|---------------------------------------|--------|-------------|----------------|-----------|--|
| DNB J  | Job Numb  | er:      | 06022                              |                                                                    | Date:                                 |        | 10 Oct 2019 | Confor         | mance     |  |
| Custor | mer:      |          | Transcore                          |                                                                    |                                       |        | Standard    |                |           |  |
| Model  | Number:   |          | MPRXFH                             |                                                                    | FCC Part 15                           |        |             |                |           |  |
| Descri | ption:    |          | Multiprotoc                        | ol Reader Extreme- Fro                                             | ne- Frequency Hopper Clause 15.247(d) |        |             |                |           |  |
|        | Ambient ' | Temper   | ature                              | Relative Humidity                                                  |                                       |        | Bar         | ometric Pressu | re        |  |
|        | 24        | 4 °C     |                                    | 32 %                                                               |                                       |        |             | 101.30 kPa     |           |  |
| EUT p  | performed | within t | he requiremer                      | nts of the applicable sta                                          | ndard                                 | [X] Ye | s []No      | J Payne        |           |  |
| Port   | Channel   | M        | odulation                          | Peak Output Power (d                                               | Bm)                                   | Read   | ding (dBm)  | -20dBc (dBm)   | Pass/Fall |  |
| 0      | High      |          | ego                                | 28.56                                                              |                                       |        | 28.59       | 8.59           | Pass      |  |
| 1      | High      |          | ego                                | 28.88                                                              |                                       |        | 28.78       | 8.78           | Pass      |  |
| 2      | High      |          | ego                                | 28.84                                                              |                                       | 28.69  |             | 8.69           | Pass      |  |
| 3      | High      |          | ego                                | 29.04                                                              |                                       |        | 28.88       | 8.88           | Pass      |  |



Date: 7.001.2019 14:52:12

| Spect    | rum           |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | (m)<br>V   |  |
|----------|---------------|--------------|-----------------------|------------|--------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|--|
| Ref Le   | vel 4         | 0.00 dB      | m Offset 4            | 40.00 dB 🥌 | RBW 100 kHz        |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| Att      |               | 20 d         | B SWT                 | 250 ms 🖷   | VBW 300 kHz        | Mode 9         | weep  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| IPk Vi   | ew            |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| -140     |               |              | 1                     |            | M1[1]              |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.69 dBr       |            |  |
| an an or | $\rightarrow$ |              | _                     |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 927.20 MH       |            |  |
|          |               |              |                       |            |                    | M              | M2[1] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -19.83 dBr      |            |  |
| 20 dBm   | +             |              | -                     | -          | -                  |                |       | Υ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.5            | 6810 GH    |  |
|          |               |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| 0 dBm    | -0            | 1 8,690      | dBm                   | -          |                    |                |       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |  |
| dem-     |               |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
|          |               |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| 10 dBm   | -             |              | -                     | _          |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
|          |               | MID          |                       |            |                    | MB             |       | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | MA         |  |
| 20 dBm   | -             |              | No.                   | -          | + +                |                | -     | Lin a mist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>N</b> 1      |            |  |
|          | Sal -         | and restrict | and the second second | well and   | ALC: A DESCRIPTION | Philippensolal |       | and the second s | A CONTRACTOR OF | A COLORINA |  |
| -        |               |              |                       |            |                    | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| 40 dBm   | -             |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
|          | <u> </u>      |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| SD dBm   | 2             |              |                       | -          | + +                |                |       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |  |
|          |               |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| Start 3  | 0.0 M         | Hz           |                       |            | 8001 p             | ts             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 3          | 25.0 GHz   |  |
| larker   |               |              |                       |            |                    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| Type     | Ref           | Tre          | X-value               |            | Y-value            | Funct          | ion   | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| M1       |               | 1            | 927.2 MHz             |            | 28.69 dBm          | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| M2       |               | 1            | 19.5681 GHz           |            | ~19,83 dBm         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| M3       |               | 1            | 16.1508 GHz           |            | -20.30 dBm         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| M4       |               | 1            | 24.5584 GHz           |            | -21.39 dBm         |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
| M5       |               | 1            | 6.7                   | 414 GHz    | -22.33 dBm         | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |  |
|          |               | 10           |                       |            |                    | Mea            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 10.2019    |  |

Date: 9.0CT.2019 11:52:15



Date: 9.0CT.2019 09:03:32



Page 91 of 152