	Model:	E4V45 Reader		Test Number:	210519				
MPE Calculator	RF Exposure uses EIRP for calculation. EIRP is based on			TX power added to the antenna ga	in in dBi.				
	dBi = dB gain compared to an isotropic radiator. S = power density in mW/cm^2								
	Transmitter Output power (mW)			2000.0					
	Transmitter Output power (W		-	2.00					
Output Power for % duty Cycle operation (Watts)				2.00		Antenna Gain (dBi)			
Output Power for 100%		duty Cycle operation (Watts)		2.00	Anto	enna Gain (Numeric)	23.99		
Tx Frequency (MHz)	915	915 Calculation pow		2.00	dBd + 2.17 = dBi				
a.i	0.0 41' + 1D + /ID		22.04		Antenna Gain (dBd)				
Cable Loss (dB)	0.0 Adjusted Power (dBm) Calculated ERP (mw) 29109.182		ower (dBm)			na minus cable (dBi)			
				Antenna Gain (Numeric) EIRP = Po(dBm) + Gain (dB)					
	Calculated EIRP (mw) 47976.658				adiated (EIRP) dBm				
				K	ERP = EIRP - 2.17				
	EIRP			Radiated (ERP) dBm					
	Power density (S) mW/cm ² =			r	Cadiated (ERI) dBiii	44.040			
		4 p r^2							
	r (cm) EIRP (mW)								
	I (CIII) EIRP (INW)	I (City EIKI (IIIV)							
	Occupational Limit FCC radio fr		requency radiation exposure limits per 1.1310						
3.05 mW/cm ²		Frequency (MHz)		Occupational Limit (mW/cm ²)	Public Limit (mW/cm ²)				
31	W/m ²			1	0.2				
	General Public Limit			f/300	f/1500				
0.61		1,500-10,000		5	1				
0.01	2	1,500-10,000		3	1				
(W/m								
	Occupational Limit	nal T imit							
$0.6455f^{0.5}$				quency radiation exposure limits per	· RSS_102				
24.3									
		Frequency (MHz)		Occupational Limit (W/m²)	Public Limit (W/m ²)				
	General Public Limit	100-6,000		$0.6455 f^{0.5}$					
$0.02619f^{0.6834}$	W/m ²	6,000-15,000		50					
8.8	W/m^2	48-300			1.291				
		300-6,000			$0.02619 f^{0.6834}$				
		6,000-15,000		50	10				
f = Transmit Frequency (MHz)					f (MHz) =	915	MHz		
P _T = Power Input to Antenna (mW)	at to Antenna (mW)				P_{T} (mW) =	2,000.0000 mW			
Duty cycle (percentage of operation)					% =	100 %			
P _A = Adjusted Power due to Duty cycle or Cable Loss (mW)					$P_A(mW) =$	2,000.00 mW			
G _N = Numeric Gain of the Antenna				GN (numeric) =	23.99 numeric				
S_{20} = Power Density of device at 20 cm (mW/m ²)			$S_{20} = (P_A G_N)/(4\pi R_{20})^2$	$S_{20} (mW/m^2) =$	9.54 mW/m^2				
S_{20} = Power Density of device at $20cm (W/m^2)$				$S_{20} = (P_A G_N)/(4\pi R_{20})^2$	$S_{20} (W/m^2) =$	95.45 W/m ²			
$S_{20} = 1$ ower Density of device at 20cm (W/m') $S_{L} = $ Power Density Limit (W/m ²) FCC				-20 (* A \(\) (\) (\) (\)	$S_L (W/m^2) =$	6.100 W/m ²			
S_L = Power Density Limit (W/m²) Canada S_L = Power Density Limit (W/m²) Canada				$S_L(W/m) = S_L(W/m^2) =$					
			D =2/2 2 4		8.766 W/m ²		31.1	i	
R _C = Minimum distance to the Radiating Element for Compliance (cm) FCC			$R_C = \sqrt{(P_A G_N / 4\pi S_L)}$	R_{C} (cm) =		79.1 cm			
R _C = Minimum distance to the Radiating Element for Compliance (cm) Canada			$R_C = \sqrt{(P_A G_N / 4\pi s_L)}$	R_{C} (cm) =		66.0 cm		in	
S_C = Power Density of the device at the Compliance Distance R_C (W/m ²)		n²)		$S_C = (P_A G_N)/(4\pi R_C)^2$	$S_C (W/m^2) =$		W/m ²		
$R_{20} = 20cm$					R20=	20	cm	7.9	in
	For Compliance with Canada General Population Limits Or in Meters for Compliance with Canada			Handler of English and State o					-
				s, User Manual must indicate a minimum separation distance of a General Population Limits, a minimum separation distance of		66.0 cm 0.66 Meters			
Summary: Standalone MPE Ca	alculations and Summary								
Band (MHZ)	Tx Duty Cycle (%)	Tx Frequency	(MHz)	Power Total (mW)	Antenna Gain (numeric)	$S_L (W/m^2)$	S ₂₀ (W/m ²)	R _C (cm)	S _C (W/m ²
902-928		915	(1111L)	2,000	23.99	8.766			
902-928	100	915		2,000	43.99	0.700	95.45	66.0	8.77

Rogers Labs, Inc. Transcore
4405 West 259th Terrace HVIN: E4V4.5
Louisburg, KS 66053 Test: 210519

Phone/Fax: (913) 837-3214 Test to: 47CFR Parts 2, 90 and RSS-137

Revision 1 File: E4V45 RFExp

SN: ENG1, ENG2

FCC ID: FIHE4PT90V45 IC: 1584A-E4RSS137V45

Date: June 9, 2021

Page 1 of 1