

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.:1809WSU018-U1Report Version:V02Issue Date:07-01-2019

MEASUREMENT REPORT

FCC Part 15 Subpart B

FCC ID: FHO-F1730

Applicant: IKEA of Sweden AB

Application Type: Certification

Product: FREKVENS Subwoofer

Model No.: F1730

Brand Name: IKEA

- FCC Rule Part(s): FCC Part 15 Subpart B: 2018 Class B
- Test Procedure(s): ANSI C63.4: 2014

Result: Complies

Test Date:

March 08 ~ March 14, 2019

Approved By

Reviewed By

(Robin Wu)

(Kevin Guo)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1809WSU002-U1	Rev. 01	Initial report	05-21-2019	Invalid
1809WSU002-U1	Rev. 02	Remove Bluetooth description	07-01-2019	Valid

CONTENTS

Des	scriptio	n Pa	age
§2.1	1033 Ge	eneral Information	4
1.	INTRO	DDUCTION	5
	1.1.	Scope	5
	1.2.	MRT Test Location	
2.	PROD	UCT INFORMATION	6
	2.1.	Equipment Description	6
	2.2.	Test Mode	
	2.3.	Configuration of Tested System	
	2.4.	Test System Details	7
	2.5.	Test Procedure	7
	2.6.	EMI Suppression Device(s)/Modifications	7
3.	DESC	RIPTION OF TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	AC Line Conducted Emissions	8
	3.3.	Radiated Emissions	9
4.	TEST	EQUIPMENT CALIBRATION DATE	. 10
5.	MEAS	UREMENT UNCERTAINTY	. 12
6.	TEST	RESULT	. 13
	6.1.	Summary	. 13
	6.2.	Conducted Emission Measurement	. 14
	6.2.1.	Test Limit	. 14
	6.2.2.	Test Setup	. 14
	6.2.3.	Test Result of Conducted Emissions	. 15
	6.3.	Radiated Emission Measurement	. 17
	6.3.1.	Test Limit	. 17
	6.3.2.	Test Setup	. 17
	6.3.3.	Test Result of Radiated Emissions	. 19
7.	CONC	CLUSION	. 23
Арр	pendix /	A – Test Setup Photograph	. 24
Арр	pendix	B – EUT Photograph	. 25

Applicant:	IKEA of Sweden AB		
Applicant Address:	SE-343 81, Älmhult, Sweden		
Manufacturer:	IKEA of Sweden AB		
Manufacturer Address:	SE-343 81, Älmhult, Sweden		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development		
	Zone, Suzhou, China		
FCC Registration No.:	893164		
Test Device Serial No.:	N/A Production Pre-Production Engineering		

§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

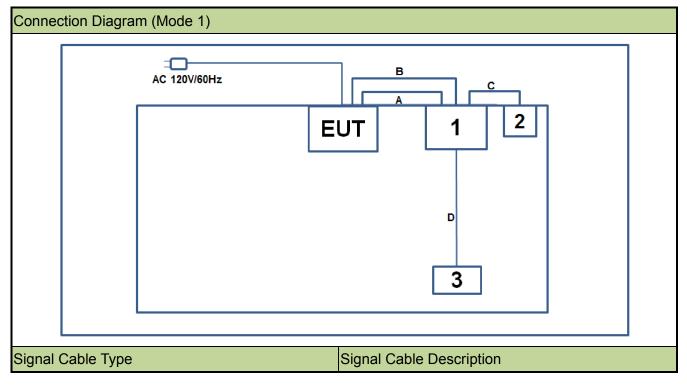
Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description


Product Name:	FREKVENS Subwoofer		
Model No.:	-1730		
Brand Name:	IKEA		
Working Voltage:	AC120V/60Hz		
Accessory			
	Model: ICBL14.4-36-A1		
Potton <i>i</i> :	Capacity: 2600mAh, 16.8V, 37.4WH		
Battery:	Input: DC16.8V/2.0A max		
	Output: 14.4V DC/3.1A max		

2.2. Test Mode

EMI Mode	Mode 1: Power on & Connect to Bluetooth Speaker through Audio cable
	and play music

2.3. Configuration of Tested System

The **FREKVENS Subwoofer** was tested per the guidance FCC Part 15 Subpart B: 2018 Class B and ANSI C63.4: 2014 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

FCC ID: FHO-F1730

А	Power Cable	Non-Shielding, 0.5m
В	Audio Cable	Shielding, 0.6m
С	Audio Cable	Shielding, 0.6m
D	Audio Cable	Shielding, 0.6m

2.4. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pr	roduct	Manufacturer	Model No.	Serial No.	Power Cord
1	FREKVENS Speaker	IKEA	F1720	N/A	N/A
2	2 Speaker	BOSH	Soundlink Mini	N/A	N/A
3	3 Mobilephone	OPPO	X9009	N/A	N/A

2.5. Test Procedure

1	Setup the EUT and simulators as shown on above.
2	Configure the EUT according to test mode of section 2.2 and testing.
3	Begin to test.

2.6. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical Equipment in the Range of 9kHz to 18GHz (ANSI C63.4-2014) was used in the measurement of the device.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the

warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150 kHz to 30 MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30 MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30 MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found. Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB beam-width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2019/04/20
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2019/06/15
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2019/06/15
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2019/08/15
Shielding Anechoic Chamber	Mikebang	Chamber-SR2	MRTSUE06214	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2019/08/14
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2019/09/14
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/20
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2019/04/12
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2019/10/20
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Broadband Coaxial Preamplifier	Agilent	83017A	MRTSUE06076	1 year	2019/11/16
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2019/06/12
Digitial Thermometer & Hygrometer	Testo	608-H1	MRTSUE06403	1 year	2019/08/15
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06213	1 year	2019/05/02

Radiated Emissions - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2019/08/14
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2019/10/20
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2019/11/09
Broadband Horn Antenna	Schwarzbeck	BBHA9170	MRTSUE06024	1 year	2019/12/17
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2019/11/16
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2019/06/13
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2019/12/13
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2019/05/02

Software	Version	Function
e3	V 8.3.5	EMI Test Software

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 3.46dB
Radiated Emission Measurement - AC1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.18dB
1GHz ~ 25GHz: 4.76dB
Radiated Emission Measurement - AC2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 3.86dB
1GHz ~ 25GHz: 4.33dB

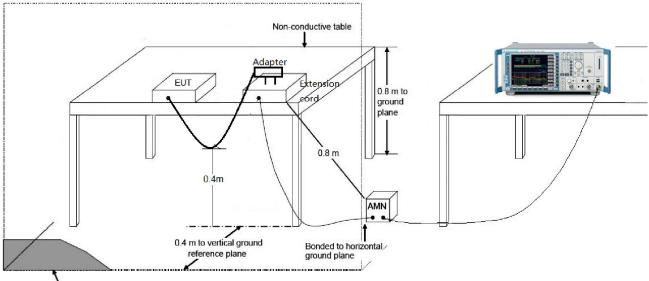
6. TEST RESULT

6.1. Summary

Product Name:FREKVENS SubwooferFCC ID:FHO-F1730

FCC Part Section(s)	Test Description	Test Result
15.107	Conducted Emissions	Pass
15.109	Radiated Emissions	Pass

6.2. Conducted Emission Measurement


6.2.1.Test Limit

FCC Part 15.107 Limits								
Frequency (MHz)	QP (dBµV)	AV (dBµV)						
0.15 - 0.50	66 - 56	56 - 46						
0.50 - 5.0	56	46						
5.0 - 30	60	50						

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

6.2.2.Test Setup

Vertical ground reference plane

6.2.3.Test Result

Site	: SR2				1	- ime: 2019/03	/08 - 18:05				
Limi	it: FCC	_Part15	5.107_CE_AC	Power_Cla	ss B E	Engineer: Lia Yuan					
Probe: ENV216_101683_Filter On						Polarity: Line					
EUT	: FRE	VENS	Subwoofer		F	Power: AC 12	0V/60Hz				
Test	Mode	1									
Level(dBuV)	80 70 60 50 $\frac{A}{\sqrt{2}}$ 40 2 30 $\frac{10}{\sqrt{2}}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		athun Min Min Min Min Min Min Min Min Min Mi	^{Na} lyn yffrag a Maaing fyslai						
	-10							_			
5	-10 -20 0.15			1		ncy(MHz)		10	30		
No	-20	Mark	Frequency	1 Measure		ncy(MHz)	Limit	10 Factor	30 Type		
No	-20 0.15	Mark	Frequency (MHz)		Freque		Limit (dBuV)				
No	-20 0.15	Mark		Measure	Freque	Over Limit		Factor			
No 1	-20 0.15	Mark		Measure Level	Freque Reading Level	Over Limit		Factor			
	-20 0.15	Mark	(MHz)	Measure Level (dBuV)	Freque Reading Level (dBuV)	Over Limit (dB)	(dBuV)	Factor (dB)	Туре		
1	-20 0.15	Mark	(MHz) 0.158	Measure Level (dBuV) 46.192	Freque Reading Level (dBuV) 35.835	Over Limit (dB) -19.399	(dBuV) 65.591	Factor (dB) 10.356	Type QP		
1	-20 0.15	Mark	(MHz) 0.158 0.158	Measure Level (dBuV) 46.192 29.483	Freque Reading Level (dBuV) 35.835 19.127	Over Limit (dB) -19.399 -26.107	(dBuV) 65.591 55.591	Factor (dB) 10.356 10.356	Type QP AV		
1 2 3	-20 0.15	Mark	(MHz) 0.158 0.158 0.382	Measure Level (dBuV) 46.192 29.483 41.548	Freque Reading Level (dBuV) 35.835 19.127 31.477	Over Limit (dB) -19.399 -26.107 -16.688	(dBuV) 65.591 55.591 58.236	Factor (dB) 10.356 10.356 10.071	Type QP AV QP		
1 2 3 4	-20 0.15		(MHz) 0.158 0.158 0.382 0.382	Measure Level (dBuV) 46.192 29.483 41.548 31.136	Freque Reading Level (dBuV) 35.835 19.127 31.477 21.065	Over Limit (dB) -19.399 -26.107 -16.688 -17.100	(dBuV) 65.591 55.591 58.236 48.236	Factor (dB) 10.356 10.356 10.071 10.071	Type QP AV QP AV		
1 2 3 4 5	-20 0.15		(MHz) 0.158 0.158 0.382 0.382 0.382 0.464	Measure Level (dBuV) 46.192 29.483 41.548 31.136 44.337	Freque Reading Level (dBuV) 35.835 19.127 31.477 21.065 34.200	Over Limit (dB) -19.399 -26.107 -16.688 -17.100 -12.283	(dBuV) 65.591 55.591 58.236 48.236 56.621	Factor (dB) 10.356 10.356 10.071 10.071 10.137	Type QP AV QP AV QP AV QP		
1 2 3 4 5 6	-20 0.15		(MHz) 0.158 0.382 0.382 0.464 0.464	Measure Level (dBuV) 46.192 29.483 41.548 31.136 44.337 33.537	Freque Reading Level (dBuV) 35.835 19.127 31.477 21.065 34.200 23.400	Over Limit (dB) -19.399 -26.107 -16.688 -17.100 -12.283 -13.083	(dBuV) 65.591 55.591 58.236 48.236 56.621 46.621	Factor (dB) 10.356 10.356 10.071 10.071 10.137 10.137	TypeQPAVQPAVQPAVAVQPAV		
1 2 3 4 5 6 7	-20 0.15		(MHz) 0.158 0.158 0.382 0.382 0.464 0.464 0.464	Measure Level (dBuV) 46.192 29.483 41.548 31.136 44.337 33.537 43.973	Freque Reading Level (dBuV) 35.835 19.127 31.477 21.065 34.200 23.400 33.821	Over Limit (dB) -19.399 -26.107 -16.688 -17.100 -12.283 -13.083 -12.331	(dBuV) 65.591 55.591 58.236 48.236 56.621 46.621 56.305	Factor (dB) 10.356 10.356 10.071 10.071 10.137 10.137 10.152	Type QP AV QP AV QP AV QP AV QP		
1 2 3 4 5 6 7 8	-20 0.15		(MHz) 0.158 0.158 0.382 0.382 0.464 0.464 0.464 0.482 0.482	Measure Level (dBuV) 46.192 29.483 41.548 31.136 44.337 33.537 43.973 31.324	Freque Reading Level (dBuV) 35.835 19.127 31.477 21.065 34.200 23.400 33.821 21.173	Over Limit (dB) -19.399 -26.107 -16.688 -17.100 -12.283 -13.083 -12.331 -14.980	(dBuV) 65.591 55.591 58.236 48.236 56.621 46.621 56.305 46.305	Factor (dB) 10.356 10.356 10.071 10.071 10.137 10.137 10.152 10.152	TypeQPAVQPAVQPAVQPAVAVQPAVQPAVQP		
1 2 3 4 5 6 7 8 9	-20 0.15		(MHz) 0.158 0.158 0.382 0.382 0.464 0.464 0.464 0.482 0.482 0.482	Measure Level (dBuV) 46.192 29.483 41.548 31.136 44.337 33.537 43.973 31.324 39.881	Freque Reading Level (dBuV) 35.835 19.127 31.477 21.065 34.200 23.400 33.821 21.173 29.726	Over Limit (dB) -19.399 -26.107 -16.688 -17.100 -12.283 -13.083 -12.331 -14.980 -16.119	(dBuV) 65.591 55.591 58.236 48.236 56.621 46.621 56.305 46.305 56.000	Factor (dB) 10.356 10.356 10.071 10.071 10.137 10.137 10.152 10.152 10.155	TypeQPAVQPAVQPAVQPAVQPAVQPQPAVQPAVQP		

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

22.413

12.261

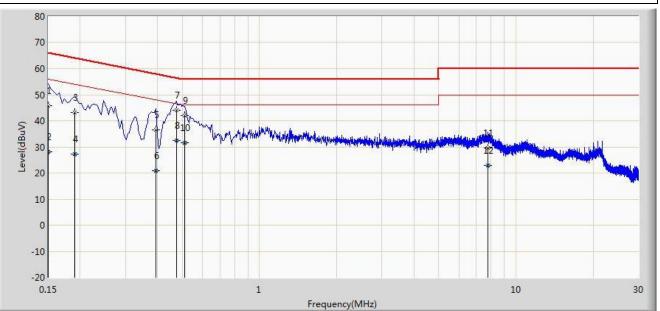
-27.587

50.000

10.152

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

6.850


12

AV

EUT: FREKVENS Subwoofer	Power: AC 120V/60Hz
Probe: ENV216_101683_Filter On	Polarity: Neutral
Limit: FCC_Part15.107_CE_AC Power_ Class B	Engineer: Lia Yuan
Site: SR2	Time: 2019/03/08 - 18:11

Test Mode 1

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1			0.150	45.819	34.677	-20.181	66.000	11.142	QP
2			0.150	28.198	17.056	-27.802	56.000	11.142	AV
3			0.190	43.224	33.196	-20.813	64.037	10.028	QP
4			0.190	27.177	17.149	-26.859	54.037	10.028	AV
5			0.394	36.648	26.541	-21.330	57.979	10.108	QP
6			0.394	20.976	10.869	-27.003	47.979	10.108	AV
7		*	0.474	44.101	33.933	-12.343	56.444	10.167	QP
8			0.474	32.404	22.237	-14.039	46.444	10.167	AV
9			0.510	42.109	31.933	-13.891	56.000	10.176	QP
10			0.510	31.508	21.332	-14.492	46.000	10.176	AV
11			7.758	29.466	19.279	-30.534	60.000	10.187	QP
12			7.758	23.042	12.855	-26.958	50.000	10.187	AV

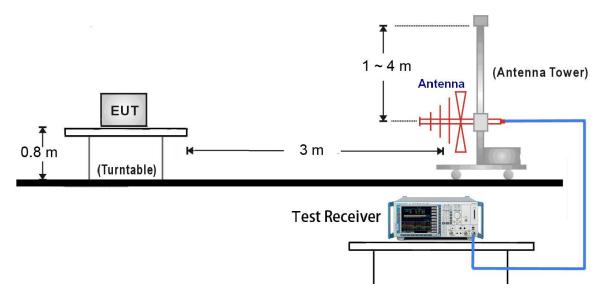
Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

6.3. Radiated Emission Measurement

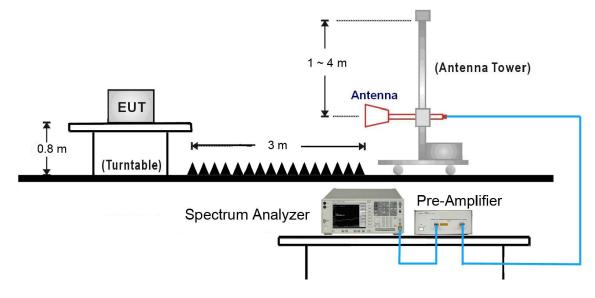
6.3.1.Test Limit

	FCC Part 15.109 Limits								
Frequency (MHz)	Distance (m)	Level (dBµV/m)							
30 - 88	3	40							
88 - 216	3	43.5							
216 - 960	3	46							
Above 960	3	54							


Note 1: The lower limit shall apply at the transition frequency.

Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)


6.3.2.Test Setup

<u>30MHz ~ 1GHz Test Setup:</u>

1GHz ~18GHz Test Setup:

6.3.3.Test Result

Site:	AC1				1	Time: 2019/03	/14 - 07:31			
Limi	t: FCC	_Part15	.109_RE(3m)_ Class B	E	Engineer: David Lv				
Prob	e: VU	LB 9168	3_20-2000MH	Ηz	F	Polarity: Horiz	ontal			
EUT	: FRE	VENS	Subwoofer		F	Power: AC 120	0V/60Hz			
Test	Mode	1			·					
	90									
	80									
	70									
	60									
Ē	50								f	
Level(dBuV/m)	40									
	30				4	5	6			
-					*	*	*	*		
	20									
	10									
	0									
	-10 30			100					1000	
					Freque	ncy(MHz)			1	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1		*	85.775	31.108	20.875	-8.892	40.000	10.234	QP	
2			107.904	32.575	20.700	-10.925	43.500	11.875	QP	
3			122.150	28.150	14.780	-15.350	43.500	13.369	QP	
4			191.990	26.459	14.835	-17.041	43.500	11.624	QP	
5			393.265	25.492	9.040	-20.508	46.000	16.452	QP	

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

26.266

4.787

-19.734

46.000

21.479

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

651.770

6

QP

Site	AC1					Time: 2019/03	/14 - 07:31			
Limi	t: FCC	_Part15	5.109_RE(3m)_ Class B	Engineer: David Lv					
Prot	e: VU	LB 9168	3_20-2000MI	Ηz		Polarity: Vertic	al			
EUT	: FRE	VENS	Subwoofer			Power: AC 120)V/60Hz			
Test	Mode	1								
	90									
	80									
	70									-
	60								_	
Ê	50									_ _
BuV/	40				4					
Level(dBuV/m)	30	1		3	*	5		6		
	20	*	- *							
	10									
	0									
	-10 30	1.1		100		H				1000
						iency(MHz)				
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
4			40.040	(dBuV/m)	(dBuV)	40.750	40.000	44.450	0.0	
1			42.610	27.247	12.794	-12.753	40.000	14.452	QP	
2			55.220	28.640	14.830	-11.360	40.000	13.810	QP	
3			85.775	31.163	20.930	-8.837	40.000	10.234	QP	
4		*	111.739	36.794	24.500	-6.706	43.500	12.294	QP	
5			196.355	30.086	18.694	-13.414	43.500	11.392	QP	
6			602.300	29.827	9.195	-16.173	46.000	20.631	QP	

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site	AC1					Time: 2019/03/14 - 07:32					
Limit: FCC_Part15.109_RE(3m)_ Class B						Engineer: David Lv					
Prob	be: BBI	HA9120	D_1-18GHz			Polarity: Horizontal					
EUT	: FRE	VENS	Subwoofer			Power: AC 12	0V/60Hz				
Test	Mode	1			·						
	90				1				1		
	80						· /				
	70			6							
	60										
(E	50			 	1	3 5 7	9 *				
Level(dBuV/m)	40				Ť	* * *	10 12				
Level(30				2	4 6 *	* 1				
	20										
	10										
	0										
	-10										
	1000				Frequ	iency(MHz)		10000	<mark>180</mark> 00		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
NO	Tidg	Wark	(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	Type		
			(11112)	(dBuV/m)	(dBuV)	(42)		(ub)			
1			3813.500	42.051	39.237	-31.949	74.000	2.814	PK		
2			3814.250	30.605	27.790	-23.395	54.000	2.815	AV		
3			4332.000	41.844	37.446	-32.156	74.000	4.398	PK		
4			4333.025	28.421	24.030	-25.579	54.000	4.391	AV		
5			4884.500	42.836	36.862	-31.164	74.000	5.974	PK		
6			4885.030	29.964	23.990	-24.036	54.000	5.974	AV		
7			5615.500	43.667	36.671	-30.333	74.000	6.995	РК		
8			5615.750	32.873	25.877	-21.127	54.000	6.996	AV		
9			6508.000	46.787	36.891	-27.213	74.000	9.896	РК		
10			6509.250	35.036	25.133	-18.964	54.000	9.903	AV		
11			7400.500	49.948	37.336	-24.052	74.000	12.612	РК		
		1					1	+	1		

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Site: AC1						Time: 2019/03/14 - 07:32					
Limit: FCC_Part15.109_RE(3m)_ Class B						Engineer: David Lv					
Probe: BBHA9120D_1-18GHz						Polari	ty: Ve	ertic	al		
EUT	EUT: FREKVENS Subwoofer						r: AC	120	0V/60Hz		
Test	Mode	1									
	90					1		1			
	80						-				
	70			6	-			_			
	60									11	
Ē	50						1	3	5 5 *	9	
dBuV/	40						*	*	6 8	12 10 12	
Level(dBuV/m)	30						*	*	* *		
	20										
	10										
	0										
	-10										
	1000							to-tu		10000	18000
					[uency(MH		.,			
No	Flag	Mark	Frequency	Measure	Reading		er Lir	nit	Limit	Factor	Туре
			(MHz)			(dE	3)		(dBuV/m)	(dB)	
4			5027 500	(dBuV/m) 42.884	(dBuV)		110		74.000	C 450	
1 2			5037.500	42.884 33.361	36.433		.116		74.000 54.000	6.450	PK
			5037.500		26.910					6.450	AV
3 4			5794.000 5794.000	44.235 34.447	36.698		0.765		74.000 54.000	7.537 7.537	PK AV
4 5			6941.500	47.382	26.910 36.259		0.553 6.618		74.000	11.122	PK
5 6			6941.500 6941.500	35.883	24.760		5.018 5.117		54.000	11.122	AV
0 7			7876.500	50.203	36.857		6.797		74.000	13.347	PK
7 8			7876.500	37.496	24.150		6.7 <i>97</i> 6.504		54.000	13.347	AV
o 9			8820.000	48.992	35.657		5.004 5.008		74.000	13.335	PK
9 10			8820.000	48.992 39.515	26.180		.485		54.000	13.335	AV
10			9857.000	52.027	35.358		.973		74.000	16.669	PK
11		*	9857.000	40.629	23.960		.973		54.000	16.669	AV
			9057.000						54.000	10.009	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

7. CONCLUSION

The data collected relate only the item(s) tested and show that the FREKVENS Subwoofer has

been tested to comply with the requirements specified in Part 15B of the FCC Rules.

Appendix A – Test Setup Photograph

Refer to "1809WSU018-UT" file.

Appendix B – EUT Photograph

Refer to "1809WSU018-UE" file.