

# **FCC Test Report**

| Equipment                 | : | MiniStation Air                                                                      |
|---------------------------|---|--------------------------------------------------------------------------------------|
| Brand Name                | : | Buffalo Inc.                                                                         |
| Model No.                 | : | HDW-PDU3                                                                             |
| FCC ID                    | : | FDI00000021                                                                          |
| Standard                  | : | 47 CFR FCC Part 15.247                                                               |
| Operating Band            | : | 2400 MHz – 2483.5 MHz                                                                |
| FCC Classification        | : | DTS                                                                                  |
| Applicant<br>Manufacturer | : | Buffalo Inc.<br>Akamon-dori Bldg 30-20,Ohsu<br>3-chome,Naka-ku,Nagoya 460-8315,Japan |

The product sample received on Dec. 05, 2013 and completely tested on Jan. 08, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

**Reviewed by:** 

Wayne Hsu / Assistant Manager





## **Table of Contents**

| 1   | GENERAL DESCRIPTION                        |
|-----|--------------------------------------------|
| 1.1 | Information5                               |
| 1.2 | Accessories7                               |
| 1.3 | Support Equipment7                         |
| 1.4 | Testing Applied Standards7                 |
| 1.5 | Testing Location Information7              |
| 1.6 | Measurement Uncertainty8                   |
| 2   | TEST CONFIGURATION OF EUT                  |
| 2.1 | The Worst Case Modulation Configuration9   |
| 2.2 | The Worst Case Power Setting Parameter     |
| 2.3 | The Worst Case Measurement Configuration10 |
| 2.4 | Test Setup Diagram11                       |
| 3   | TRANSMITTER TEST RESULT13                  |
| 3.1 | AC Power-line Conducted Emissions13        |
| 3.2 | 6dB Bandwidth16                            |
| 3.3 | RF Output Power18                          |
| 3.4 | Power Spectral Density                     |
| 3.5 | Transmitter Bandedge Emissions24           |
| 3.6 | Transmitter Unwanted Emissions27           |
| 4   | TEST EQUIPMENT AND CALIBRATION DATA        |

#### **APPENDIX A. TEST PHOTOS**

APPENDIX B. PHOTOGRAPHS OF EUT





## Summary of Test Result

|                  | Conformance Test Specifications |                                                             |                                                                                                                                                                  |                                                                      |          |  |
|------------------|---------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------|--|
| Report<br>Clause | Ref. Std.<br>Clause             | Description                                                 | Measured                                                                                                                                                         | Limit                                                                | Result   |  |
| 1.1.2            | 15.203                          | Antenna Requirement                                         | Antenna connector<br>mechanism complied                                                                                                                          | FCC 15.203                                                           | Complied |  |
| 3.1              | 15.207                          | AC Power-line Conducted<br>Emissions                        | [dBuV]: 0.1934380MHz<br>41.27 (Margin 12.62dB) - AV<br>51.86 (Margin 12.03dB) - QP                                                                               | FCC 15.207                                                           | Complied |  |
| 3.2              | 15.247(a)                       | 6dB Bandwidth                                               | 6dB Bandwidth Unit [MHz]<br>20M: 9.06/ 40M: 32.56                                                                                                                | ≥500kHz                                                              | Complied |  |
| 3.3              | 15.247(b)                       | RF Output Power<br>(Maximum Peak<br>Conducted Output Power) | Power [dBm]: 17.08                                                                                                                                               | Power [dBm]:30                                                       | Complied |  |
| 3.4              | 15.247(d)                       | Power Spectral Density                                      | PSD [dBm/100kHz]: -10.96                                                                                                                                         | PSD [dBm/3kHz]:8                                                     | Complied |  |
| 3.5              | 15.247(c)                       | Transmitter Radiated<br>Bandedge Emissions                  | Non-Restricted Bands:<br>2399.490MHz: 27.16dB<br>Restricted Bands<br>[dBuV/m at 3m]:<br>2386.380MHz<br>61.72 (Margin 12.28dB) - PK<br>51.54 (Margin 2.46dB) - AV | Non-Restricted<br>Bands: > 20 dBc<br>Restricted Bands:<br>FCC 15.209 | Complied |  |
| 3.6              | 15.247(c)                       | Transmitter Radiated<br>Unwanted Emissions                  | [dBuV/m at 3m]: 455.830MHz<br>45.00 (Margin 1.00dB) - QP                                                                                                         | Non-Restricted<br>Bands: > 20 dBc<br>Restricted Bands:<br>FCC 15.209 | Complied |  |



## **Revision History**

| Report No. | Version | Description             | Issued Date   |
|------------|---------|-------------------------|---------------|
| FR3D0715   | Rev. 01 | Initial issue of report | Jan. 23, 2013 |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |



## **1** General Description

### 1.1 Information

#### 1.1.1 RF General Information

| RF General Information   |                     |                 |                   |                                       |                          |
|--------------------------|---------------------|-----------------|-------------------|---------------------------------------|--------------------------|
| Frequency<br>Range (MHz) | IEEE Std.<br>802.11 | Ch. Freq. (MHz) | Channel<br>Number | Transmit<br>Chains (N <sub>⊤x</sub> ) | RF Output<br>Power (dBm) |
| 2400-2483.5              | b                   | 2412-2462       | 1-11 [11]         | 1                                     | 16.84                    |
| 2400-2483.5              | g                   | 2412-2462       | 1-11 [11]         | 1                                     | 17.08                    |
| 2400-2483.5              | n (HT20)            | 2412-2462       | 1-11 [11]         | 1                                     | 14.98                    |
| 2400-2483.5              | n (HT40)            | 2422-2452       | 3-9 [7]           | 1                                     | 15.08                    |

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

#### 1.1.2 Antenna Information

|             | Antenna Category                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\boxtimes$ | Integral antenna (antenna permanently attached)                                                                                                                                                                                                                                                                         |  |  |  |  |
|             | Temporary RF connector provided                                                                                                                                                                                                                                                                                         |  |  |  |  |
|             | No temporary RF connector provided<br>Transmit chains bypass antenna and soldered temporary RF connector provided for connected<br>measurement. In case of conducted measurements the transmitter shall be connected to the<br>measuring equipment via a suitable attenuator and correct for all losses in the RF path. |  |  |  |  |

|     | Antenna General Information        |      |      |  |  |
|-----|------------------------------------|------|------|--|--|
| No. | No. Ant. Cat. Ant. Type Gain (dBi) |      |      |  |  |
| 1   | Integral                           | Chip | 0.95 |  |  |



### 1.1.3 Type of EUT

|           | Identify EUT                                                                  |                                         |  |  |  |
|-----------|-------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| EUT       | F Serial Number                                                               | N/A                                     |  |  |  |
| Pre       | sentation of Equipment                                                        | Production ; Pre-Production ; Prototype |  |  |  |
|           |                                                                               | Type of EUT                             |  |  |  |
| $\square$ | Stand-alone                                                                   |                                         |  |  |  |
|           | Combined (EUT where the radio part is fully integrated within another device) |                                         |  |  |  |
|           | Combined Equipment - Brand Name / Model No.:                                  |                                         |  |  |  |
|           | Plug-in radio (EUT intended for a variety of host systems)                    |                                         |  |  |  |
|           | Host System - Brand Name / Model No.:                                         |                                         |  |  |  |
|           | Other:                                                                        |                                         |  |  |  |

### 1.1.4 Test Signal Duty Cycle

| Operated Mode for Worst Duty Cycle                             |                                             |      |  |  |
|----------------------------------------------------------------|---------------------------------------------|------|--|--|
| Operated norm                                                  | Operated normally mode for worst duty cycle |      |  |  |
| Operated test                                                  | Operated test mode for worst duty cycle     |      |  |  |
| Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x) |                                             |      |  |  |
| 🛛 97.70% - IEEE                                                | 802.11b                                     | 0.10 |  |  |
| 🛛 86.75% - IEEE                                                | 802.11g                                     | 0.62 |  |  |
| 🛛 87.18% - IEEE                                                | 802.11n (HT20)                              | 0.60 |  |  |
| 🛛 77.78% - IEEE                                                | 802.11n (HT40)                              | 1.09 |  |  |

Note 1: RF Output Power Plots w/o Duty Factor

#### 1.1.5 EUT Operational Condition

| Supply Voltage    | AC mains           | DC                  | System  |
|-------------------|--------------------|---------------------|---------|
| Type of DC Source | Internal DC supply | External DC adapter | Battery |



#### 1.2 Accessories

| Accessories Information                                                |            |                     |            |            |
|------------------------------------------------------------------------|------------|---------------------|------------|------------|
|                                                                        | Brand Name | Asian Power Devices | Model Name | WA-10K05FU |
| AC Adapter Power Rating I/P: 100-240V~ 50-60Hz 0.3A Max ; O/P: 5V===2A |            |                     |            |            |

Note: Regarding to more detail and other information, please refer to user manual.

### 1.3 Support Equipment

|     | Support Equipment                          |      |       |     |  |
|-----|--------------------------------------------|------|-------|-----|--|
| No. | No. Equipment Brand Name Model Name FCC ID |      |       |     |  |
| 1   | Notebook                                   | DELL | E5530 | DoC |  |

## **1.4 Testing Applied Standards**

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911

### **1.5 Testing Location Information**

|               | Testing Location                                            |         |                                                                                                                 |      |              |  |  |  |  |
|---------------|-------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|------|--------------|--|--|--|--|
|               | HWA YA                                                      | ADD     | No. 52, Hwa Ya 1 <sup>st</sup> Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang,<br>Tao Yuan Hsien, Taiwan, R.O.C. |      |              |  |  |  |  |
|               | TEL : 886-3-327-3456 FAX : 886-3-327-0973                   |         |                                                                                                                 |      |              |  |  |  |  |
|               | Test Condition Test Site No. Test Engineer Test Environment |         |                                                                                                                 |      |              |  |  |  |  |
| AC Conduction |                                                             |         | CO04-HY                                                                                                         | Zeus | 24°C / 51%   |  |  |  |  |
| RF Conducted  |                                                             |         | TH06-HY                                                                                                         | Cain | 22°C / 62%   |  |  |  |  |
|               | Radiated Err                                                | nission | 03CH03-HY                                                                                                       | Leo  | 24.5°C / 48% |  |  |  |  |



### **1.6 Measurement Uncertainty**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

| Ν                                 | leasurement Uncertainty |             |
|-----------------------------------|-------------------------|-------------|
| Test Item                         |                         | Uncertainty |
| AC power-line conducted emissions |                         | ±2.26 dB    |
| Emission bandwidth, 6dB bandwidth | ±1.42 %                 |             |
| RF output power, conducted        |                         | ±0.63 dB    |
| Power density, conducted          |                         | ±0.81 dB    |
| Unwanted emissions, conducted     | 9 – 150 kHz             | ±0.38 dB    |
|                                   | 0.15 – 30 MHz           | ±0.42 dB    |
|                                   | 30 – 1000 MHz           | ±0.51 dB    |
|                                   | 1 – 18 GHz              | ±0.67 dB    |
|                                   | 18 – 40 GHz             | ±0.83 dB    |
|                                   | 40 – 200 GHz            | N/A         |
| All emissions, radiated           | 9 – 150 kHz             | ±2.49 dB    |
|                                   | 0.15 – 30 MHz           | ±2.28 dB    |
|                                   | 30 – 1000 MHz           | ±2.56 dB    |
|                                   | 1 – 18 GHz              | ±3.59 dB    |
|                                   | 18 – 40 GHz             | ±3.82 dB    |
|                                   | 40 – 200 GHz            | N/A         |
| Temperature                       |                         | ±0.8 °C     |
| Humidity                          |                         | ±3 %        |
| DC and low frequency voltages     |                         | ±3 %        |
| Time                              |                         | ±1.42 %     |
| Duty Cycle                        |                         | ±1.42 %     |



## 2 Test Configuration of EUT

## 2.1 The Worst Case Modulation Configuration

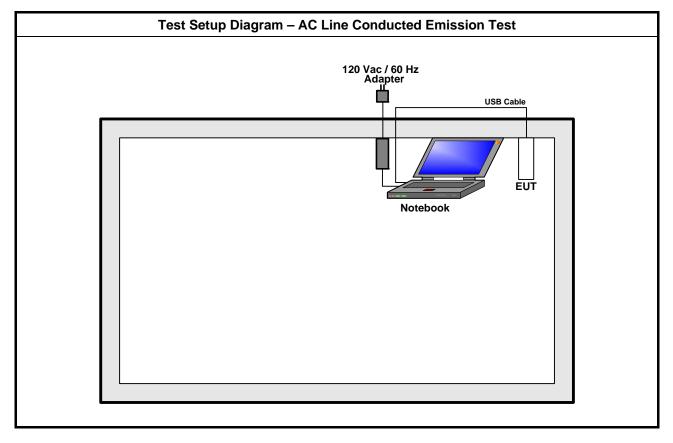
|                 | Worst Modulation Used for Conformance Testing |                 |                       |  |  |  |  |  |
|-----------------|-----------------------------------------------|-----------------|-----------------------|--|--|--|--|--|
| Modulation Mode | Transmit Chains ( $N_{TX}$ )                  | Data Rate / MCS | Worst Data Rate / MCS |  |  |  |  |  |
| 11b,1-11Mbps    | 1                                             | 1-11 Mbps       | 1 Mbps                |  |  |  |  |  |
| 11g,6-54Mbps    | 1                                             | 6-54 Mbps       | 6 Mbps                |  |  |  |  |  |
| HT20,M0-7       | 1                                             | MCS 0-7         | MCS 0                 |  |  |  |  |  |
| HT40,M0-7       | 1                                             | MCS 0-7         | MCS 0                 |  |  |  |  |  |

## 2.2 The Worst Case Power Setting Parameter

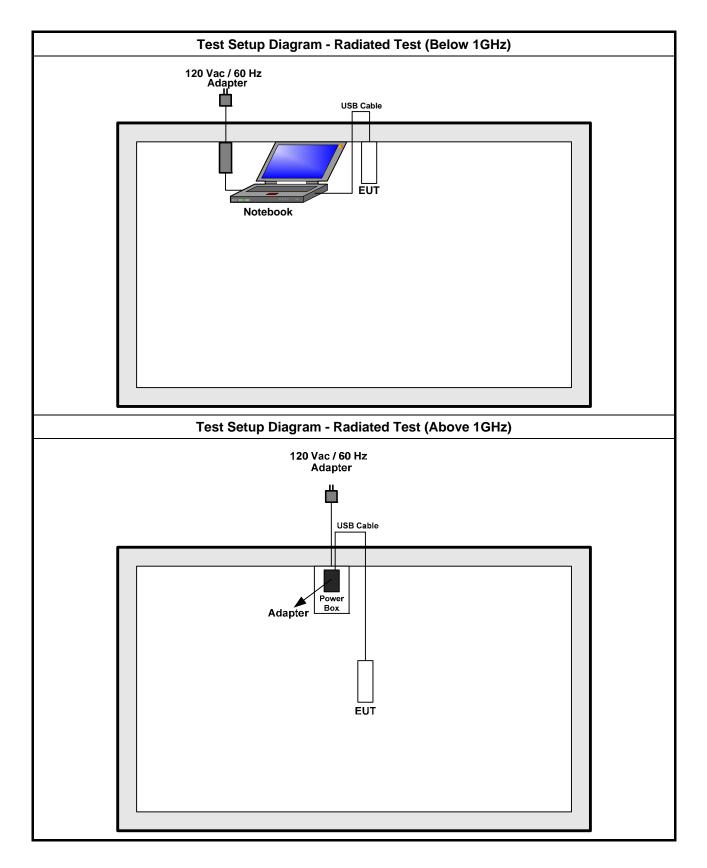
| The Worst Case Power Setting Parameter (2400-2483.5MHz band) |     |      |           |            |            |      |      |  |
|--------------------------------------------------------------|-----|------|-----------|------------|------------|------|------|--|
| Test Software Version Putty                                  |     |      |           |            |            |      |      |  |
|                                                              |     |      |           | Test Frequ | ency (MHz) |      |      |  |
| Modulation Mode                                              | Ντχ |      | NCB: 20MH | z          | NCB: 40MHz |      |      |  |
|                                                              |     | 2412 | 2437      | 2462       | 2422       | 2437 | 2452 |  |
| 11b                                                          | 1   | 16   | 16        | 16         | -          | -    | -    |  |
| 11g                                                          | 1   | 14   | 14        | 14         | -          | -    | -    |  |
| HT-20                                                        | 1   | 12   | 12        | 12         | -          | -    | -    |  |
| HT-40                                                        | 1   | -    | -         | -          | 17         | 17   | 17   |  |



## 2.3 The Worst Case Measurement Configuration


| Th                                           | The Worst Case Mode for Following Conformance Tests                                     |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| Tests Item AC power-line conducted emissions |                                                                                         |  |  |  |  |  |
| Condition                                    | AC power-line conducted measurement for line and neutral<br>Test Voltage: 120Vac / 60Hz |  |  |  |  |  |
| Operating Mode                               | Operating Mode Operating Mode Description                                               |  |  |  |  |  |
| 1                                            | AC Power & Radio link (WLAN)                                                            |  |  |  |  |  |
| 2                                            | 2 USB Power & Radio link (WLAN)                                                         |  |  |  |  |  |
| For operating mode 2 is th                   | e worst case and it was record in this test report.                                     |  |  |  |  |  |

| The Worst Case Mode for Following Conformance Tests |                                                         |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------|--|--|--|
| Tests Item                                          | RF Output Power, Power Spectral Density, 6 dB Bandwidth |  |  |  |
| Test Condition                                      | Conducted measurement at transmit chains                |  |  |  |
| Modulation Mode                                     | 11b, 11g, HT20, HT40                                    |  |  |  |


| Th                                                                                                                                                    | e Worst Case Mode for Fo                                                                                                                                                                                                                                  | ollowing Conformance Te  | sts     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|--|--|
| Tests Item                                                                                                                                            | Transmitter Radiated Unwanted Emissions<br>Transmitter Radiated Bandedge Emissions                                                                                                                                                                        |                          |         |  |  |  |
| Test Condition                                                                                                                                        | Radiated measurement<br>If EUT consist of multiple antenna assembly (multiple antenna are used in EUT<br>regardless of spatial multiplexing MIMO configuration), the radiated test should<br>be performed with highest antenna gain of each antenna type. |                          |         |  |  |  |
|                                                                                                                                                       | EUT will be placed in                                                                                                                                                                                                                                     | fixed position.          |         |  |  |  |
| User Position                                                                                                                                         | EUT will be placed in mobile position and operating multiple positions. EUT shall be performed three orthogonal planes. The worst planes is Y.                                                                                                            |                          |         |  |  |  |
| EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. |                                                                                                                                                                                                                                                           |                          |         |  |  |  |
| Operating Mode                                                                                                                                        | 1. AC Power & Radio link (WLAN)                                                                                                                                                                                                                           |                          |         |  |  |  |
| (Below 1GHz)                                                                                                                                          | 2. USB Power & Radio link (WLAN)                                                                                                                                                                                                                          |                          |         |  |  |  |
| For operating mode 2 is th                                                                                                                            | e worst case and it was rec                                                                                                                                                                                                                               | ord in this test report. |         |  |  |  |
| Operating Mode<br>(Above 1GHz)                                                                                                                        | I. AC Power & Radio link (WLAN)                                                                                                                                                                                                                           |                          |         |  |  |  |
| Modulation Mode                                                                                                                                       | 11b, 11g, HT20, HT40                                                                                                                                                                                                                                      |                          |         |  |  |  |
|                                                                                                                                                       | X Plane                                                                                                                                                                                                                                                   | Y Plane                  | Z Plane |  |  |  |
| Orthogonal Planes of<br>EUT                                                                                                                           |                                                                                                                                                                                                                                                           |                          |         |  |  |  |



## 2.4 Test Setup Diagram









#### **Transmitter Test Result** 3

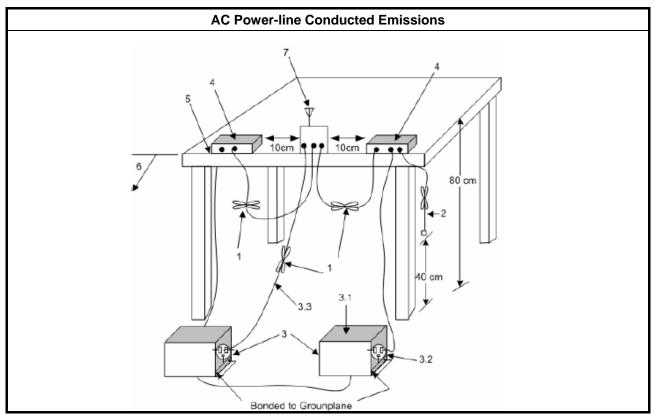
#### 3.1 **AC Power-line Conducted Emissions**

#### 3.1.1 **AC Power-line Conducted Emissions Limit**

| AC Power-line Conducted Emissions Limit |                     |           |  |  |  |  |
|-----------------------------------------|---------------------|-----------|--|--|--|--|
| Frequency Emission (MHz)                | Quasi-Peak          | Average   |  |  |  |  |
| 0.15-0.5                                | 66 - 56 *           | 56 - 46 * |  |  |  |  |
| 0.5-5                                   | 56                  | 46        |  |  |  |  |
| 5-30                                    | 60                  | 50        |  |  |  |  |
| Note 1: * Decreases with the logarithn  | n of the frequency. |           |  |  |  |  |

creases with the logarithm of the frequency

#### 3.1.2 Measuring Instruments

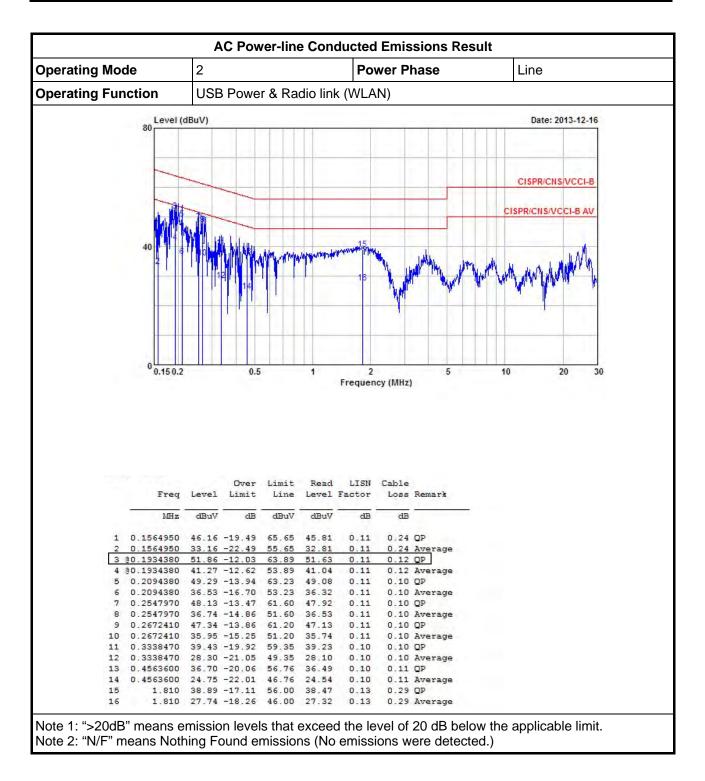

Refer a test equipment and calibration data table in this test report.

#### 3.1.3 Test Procedures

**Test Method** 

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

#### 3.1.4 Test Setup






| Operating Mode                                                                                                                                                                                           | 2                                                                                                                                  |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | Po                                                                                                   | wer Pl                                                                                              | hase                                                                                                                |         | Ne        | utral        |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------|-----------|--------------|------|
| Operating Function                                                                                                                                                                                       | US                                                                                                                                 | B Powe                                                                                                                                                          | er & Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | adio lin                                                                                                                                                      | ık (WLA                                                                                              | N)                                                                                                  |                                                                                                                     |         |           |              |      |
| Level                                                                                                                                                                                                    | (dBuV)                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     | 3633                                                                                                                |         | 1         | Date: 2013-1 | 2-16 |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         |           |              |      |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                             |                                                                                                      |                                                                                                     |                                                                                                                     |         |           |              | _    |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         |           | ann an an an |      |
|                                                                                                                                                                                                          |                                                                                                                                    | -                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         | CI        | SPR/CNS/VCC  | ,I-B |
| h                                                                                                                                                                                                        | -                                                                                                                                  |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         | CISPR     | CNS/VCCI-B   | AV   |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         | CIGIN     | Charroer-b   | - AV |
|                                                                                                                                                                                                          | <b>ILAN</b>                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         |           | 14           |      |
| 40                                                                                                                                                                                                       | MINE                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         | 1.00      | When h       | h    |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 | hand at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |                                                                                                      | ad the state                                                                                        | MARKA                                                                                                               | the set | Martha    | W1PHL L      | MA L |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 | PHI N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Withhat                                                                                                                                                       | ni di                                                                                                |                                                                                                     | A.                                                                                                                  | - Alas  | Mar. Inst | 1 14         | 1    |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 | a la balla de la calega de la c |                                                                                                                                                               | A Date                                                                                               | 12                                                                                                  | 11                                                                                                                  |         |           |              |      |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                                                                                                                                                           | I THE                                                                                                |                                                                                                     | The second se     |         |           |              |      |
|                                                                                                                                                                                                          |                                                                                                                                    | -                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | -                                                                                                    |                                                                                                     |                                                                                                                     |         |           |              |      |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         |           |              |      |
|                                                                                                                                                                                                          |                                                                                                                                    | 1                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                                                            |                                                                                                      |                                                                                                     | 1.1                                                                                                                 |         |           |              |      |
|                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                      |                                                                                                     |                                                                                                                     |         |           |              |      |
| 0.15 0.                                                                                                                                                                                                  | 2                                                                                                                                  | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             | 2                                                                                                    |                                                                                                     | 5                                                                                                                   |         | 10        | 20           | 30   |
| 0.150                                                                                                                                                                                                    | 2                                                                                                                                  | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             | 2<br>Frequen                                                                                         | cy (MHz)                                                                                            |                                                                                                                     |         | 10        | 20           | 30   |
| 0.150.                                                                                                                                                                                                   | 2                                                                                                                                  | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             |                                                                                                      | cy (MHz)                                                                                            |                                                                                                                     |         | 10        | 20           | 30   |
| <sup>0</sup> 0.15 0.                                                                                                                                                                                     | 2                                                                                                                                  | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             |                                                                                                      | cy (MHz)                                                                                            |                                                                                                                     |         | 10        | 20           | 30   |
| <sup>0</sup> 0.15 0.                                                                                                                                                                                     | 2                                                                                                                                  | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             |                                                                                                      | cy (MHz)                                                                                            |                                                                                                                     |         | 10        | 20           | 30   |
| <sup>0</sup> 0.15 0.                                                                                                                                                                                     | 2                                                                                                                                  | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             |                                                                                                      | cy (MHz)                                                                                            |                                                                                                                     |         | 10        | 20           | 30   |
| <sup>0</sup> 0.15 0.                                                                                                                                                                                     | 2                                                                                                                                  | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             |                                                                                                      | cy (MHz)                                                                                            |                                                                                                                     |         | 10        | 20           | 30   |
| 0.150                                                                                                                                                                                                    | 2                                                                                                                                  |                                                                                                                                                                 | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>Read                                                                                                                                                     | Frequen                                                                                              | cy (MHz)<br>Cable                                                                                   | )                                                                                                                   |         | 10        | 20           | 30   |
|                                                                                                                                                                                                          | 2<br>Level                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Read                                                                                                                                                          | Frequen                                                                                              | Cable                                                                                               | )                                                                                                                   |         | 10        | 20           | 30   |
|                                                                                                                                                                                                          | Level                                                                                                                              | Over                                                                                                                                                            | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Read                                                                                                                                                          | Frequen                                                                                              | Cable                                                                                               | )                                                                                                                   |         | 10        | 20           | 30   |
| Freq<br>MHz                                                                                                                                                                                              | Level<br>dBuV                                                                                                                      | Over<br>Limit<br>dB                                                                                                                                             | Limit<br>Line<br>dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Read<br>Level<br>dBuV                                                                                                                                         | LISN<br>Factor<br>dB                                                                                 | Cable<br>Loss<br>dB                                                                                 | )<br>Remark                                                                                                         |         | 10        | 20           | 30   |
| Free<br>MHz<br>1 0.1515980                                                                                                                                                                               | Level<br>dBuV<br>34.49                                                                                                             | Over<br>Limit<br>dB<br>-21.42                                                                                                                                   | Limit<br>Line<br>dBuV<br>55.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Read<br>Level<br>dBuV<br>33.99                                                                                                                                | LISN<br>Factor<br>dB<br>0.24                                                                         | Cable<br>Loss<br>dB<br>0.26                                                                         | Remark<br>Average                                                                                                   |         | 10        | 20           | 30   |
| Freq<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850                                                                                                                                                 | Level<br>dBuV<br>34.49<br>46.03<br>39.20                                                                                           | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.95                                                                                                               | Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>54.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83                                                                                                              | LISN<br>Factor<br>dB<br>0.24<br>0.23                                                                 | Cable<br>Loss<br>dB<br>0.26<br>0.26<br>0.14                                                         | Remark<br>Average                                                                                                   |         | 10        | 20           | 30   |
| Freq<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 00.1873850                                                                                                                                 | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34                                                                                  | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.95<br>-12.81                                                                                                     | Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>54.15<br>64.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97                                                                                                     | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23                                                         | Cable<br>Loss<br>dB<br>0.26<br>0.26<br>0.14<br>0.14                                                 | Remark<br>Average<br>OP<br>Average<br>OP                                                                            |         | 10        | 20           | 30   |
| Freq<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 0.1873850<br>5 0.2072310                                                                                                                          | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89                                                                         | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.95<br>-12.81<br>-14.43                                                                                           | Limit<br>Line<br>dBuV<br>55.91<br>54.15<br>64.15<br>63.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97<br>48.56                                                                                            | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23                                                 | Cable<br>Loss<br>dB<br>0.26<br>0.26<br>0.14<br>0.14<br>0.14                                         | Remark<br>Average<br>OP<br>Average<br>OP                                                                            |         | 10        | 20           | 30   |
| Freq<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 80.1873850<br>5 0.2072310<br>6 0.2072310                                                                                                   | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89<br>38.06                                                                | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.85<br>-12.81<br>-14.43<br>-15.26                                                                                 | Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>54.15<br>64.15<br>63.32<br>53.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97<br>48.56<br>37.73                                                                                   | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23<br>0.23                                         | Cable<br>Loss<br>0.26<br>0.26<br>0.14<br>0.14<br>0.10<br>0.10                                       | Average<br>OP<br>Average<br>OP<br>OP<br>Average                                                                     |         | 10        | 20           | 30   |
| Free<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 @0.1873850<br>5 0.2072310<br>6 0.2072310<br>7 0.2547970                                                                                    | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89<br>38.06<br>46.18                                                       | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.95<br>-12.81<br>-14.43<br>-15.26<br>-15.42                                                                       | Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>54.15<br>63.32<br>63.32<br>61.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97<br>48.56<br>37.73<br>48.56                                                                          | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23                                 | Cable<br>Loss<br>dB<br>0.26<br>0.14<br>0.14<br>0.10<br>0.10<br>0.10                                 | Average<br>QP<br>Average<br>QP<br>QP<br>QP<br>QP<br>QP<br>QP                                                        |         | 10        | 20           | 30   |
| Freq<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 80.1873850<br>5 0.2072310<br>6 0.2072310                                                                                                   | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89<br>38.06<br>46.18<br>34.36                                              | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.95<br>-12.81<br>-14.43<br>-15.26<br>-15.42<br>-17.24                                                             | Limit<br>Line<br>dBuV<br>55.91<br>54.15<br>64.15<br>63.32<br>53.32<br>53.32<br>51.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97<br>48.56<br>37.73<br>45.85<br>34.03                                                                 | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23                 | Cable<br>Loss<br>dB<br>0.26<br>0.14<br>0.14<br>0.10<br>0.10<br>0.10<br>0.10                         | Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average                                         |         | 10        | 20           | 30   |
| Freq<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 @0.1873850<br>5 0.2072310<br>6 0.2072310<br>7 0.2547970<br>8 0.2547970                                                                     | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89<br>38.06<br>46.18<br>34.36<br>36.58                                     | Over<br>Limit<br>-21.42<br>-19.88<br>-14.95<br>-12.81<br>-14.43<br>-15.26<br>-15.42<br>-17.24<br>-21.45                                                         | Limit<br>Line<br>dBuV<br>55.91<br>54.15<br>64.15<br>63.32<br>53.32<br>53.32<br>51.60<br>51.60<br>51.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97<br>48.56<br>37.73<br>45.85<br>34.03<br>36.26                                                        | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23         | Cable<br>Loss<br>dB<br>0.26<br>0.14<br>0.14<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                 | Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP                                   |         | 10        | 20           | 30   |
| Freq<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 @0.1873850<br>5 0.2072310<br>6 0.2072310<br>6 0.2072310<br>7 0.2547970<br>8 0.2547970<br>8 0.2547970<br>9 0.3913610<br>10 0.3913610<br>11 2.450   | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89<br>38.06<br>46.18<br>34.36<br>36.58<br>24.75<br>32.79                   | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-19.88<br>-12.81<br>-14.43<br>-15.26<br>-15.42<br>-17.24<br>-21.45<br>-23.28<br>-23.21                               | Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>54.15<br>64.15<br>63.32<br>53.32<br>61.60<br>51.60<br>58.03<br>58.03<br>56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.85<br>50.97<br>48.56<br>37.73<br>45.85<br>34.03<br>36.26<br>24.43<br>32.26                                      | LISM<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.22<br>0.22 | Cable<br>Loss<br>dB<br>0.26<br>0.26<br>0.14<br>0.14<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10 | Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP                  |         | 10        | 20           | 30   |
| Freq<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 @0.1873850<br>5 0.2072310<br>6 0.2072310<br>7 0.2547970<br>8 0.2547970<br>9 0.3913610<br>10 0.3913610<br>11 2.450<br>12 2.450              | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89<br>38.06<br>46.18<br>34.36<br>34.36<br>36.58<br>24.75<br>32.79<br>22.14 | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.95<br>-12.81<br>-14.43<br>-15.26<br>-15.42<br>-17.24<br>-21.45<br>-23.28<br>-23.21<br>-23.86                     | Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>54.15<br>64.15<br>63.32<br>53.32<br>61.60<br>51.60<br>58.03<br>48.03<br>56.00<br>46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97<br>48.56<br>37.73<br>48.56<br>37.73<br>48.56<br>37.73<br>36.26<br>24.43<br>32.26<br>21.61           | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.22<br>0.22         | Cable<br>Loss<br>dB<br>0.26<br>0.14<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10         | Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average<br>OP<br>Average       |         | 10        | 20           | 30   |
| Freq<br>MHz<br>1 0.1515980<br>2 0.1515980<br>3 0.1873850<br>4 @0.1873850<br>5 0.2072310<br>7 0.2547970<br>8 0.2547970<br>8 0.2547970<br>9 0.3913610<br>10 0.3913610<br>11 2.450<br>12 2.450<br>13 15.230 | Level<br>dBuV<br>34.49<br>46.03<br>39.20<br>51.34<br>48.89<br>38.06<br>46.18<br>34.36<br>34.36<br>36.58<br>24.75<br>32.79<br>22.14 | Over<br>Limit<br>dB<br>-21.42<br>-19.88<br>-14.95<br>-12.81<br>-14.43<br>-15.26<br>-15.42<br>-17.24<br>-21.45<br>-23.28<br>-23.28<br>-23.21<br>-23.86<br>-17.35 | Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>54.15<br>63.32<br>61.60<br>53.32<br>61.60<br>51.60<br>58.03<br>48.03<br>56.00<br>56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Read<br>Level<br>dBuV<br>33.99<br>45.53<br>38.83<br>50.97<br>48.56<br>37.73<br>48.56<br>37.73<br>45.85<br>34.03<br>36.26<br>24.43<br>32.266<br>21.61<br>31.95 | LISN<br>Factor<br>dB<br>0.24<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.22<br>0.22 | Cable<br>Loss<br>dB<br>0.26<br>0.14<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.27<br>0.27 | Average<br>QP<br>Average<br>QP<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average |         | 10        | 20           | 30   |

#### 3.1.5 Test Result of AC Power-line Conducted Emissions







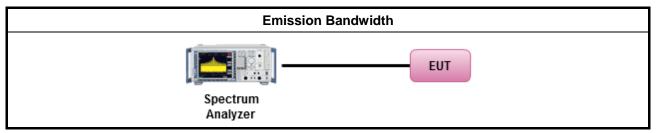
#### 3.2 6dB Bandwidth

#### 3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

#### Systems using digital modulation techniques:

 $\boxtimes$  6 dB bandwidth ≥ 500 kHz.

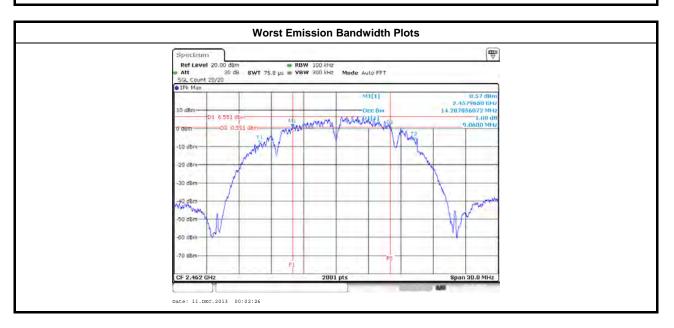

#### 3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

#### 3.2.3 Test Procedures

|           | Test Method                                                                                                                                                                         |                                                                                                                                                                                       |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| $\square$ | For the emission bandwidth shall be measured using one of the options below:                                                                                                        |                                                                                                                                                                                       |  |  |  |  |  |  |  |
|           | $\square$                                                                                                                                                                           | Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.                                                                                                          |  |  |  |  |  |  |  |
|           | Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.                                                                                                        |                                                                                                                                                                                       |  |  |  |  |  |  |  |
|           |                                                                                                                                                                                     | Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.                                                                                                                    |  |  |  |  |  |  |  |
| $\square$ | For conducted measurement.                                                                                                                                                          |                                                                                                                                                                                       |  |  |  |  |  |  |  |
|           | $\square$                                                                                                                                                                           | The EUT supports single transmit chain and measurements performed on this transmit chain.                                                                                             |  |  |  |  |  |  |  |
|           |                                                                                                                                                                                     | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                   |  |  |  |  |  |  |  |
|           |                                                                                                                                                                                     | The EUT supports multiple transmit chains using options given below:                                                                                                                  |  |  |  |  |  |  |  |
|           | Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1. |                                                                                                                                                                                       |  |  |  |  |  |  |  |
|           |                                                                                                                                                                                     | Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains. |  |  |  |  |  |  |  |

#### 3.2.4 Test Setup








#### 3.2.5 Test Result of Emission Bandwidth

|                 |                                            |      | Emission Bandwidth Result |               |  |  |
|-----------------|--------------------------------------------|------|---------------------------|---------------|--|--|
| Condit          | ion                                        |      | Emission Ba               | ndwidth (MHz) |  |  |
| Modulation Mode | lation Mode N <sub>TX</sub> Freq.<br>(MHz) |      | 99% Bandwidth             | 6dB Bandwidth |  |  |
| 11b             | 1                                          | 2412 | 14.67                     | 9.75          |  |  |
| 11b             | 1                                          | 2437 | 14.66                     | 9.33          |  |  |
| 11b             | 1                                          | 2462 | 14.28                     | 9.06          |  |  |
| 11g             | 1                                          | 2412 | 16.29                     | 13.74         |  |  |
| 11g             | 1                                          | 2437 | 16.35                     | 15.43         |  |  |
| 11g             | 1                                          | 2462 | 16.28                     | 15.03         |  |  |
| HT20            | 1                                          | 2412 | 17.51                     | 16.65         |  |  |
| HT20            | 1                                          | 2437 | 17.52                     | 15.03         |  |  |
| HT20            | 1                                          | 2462 | 17.30                     | 14.64         |  |  |
| HT40            | 1                                          | 2422 | 35.82                     | 32.56         |  |  |
| HT40            | 1                                          | 2437 | 35.70                     | 34.12         |  |  |
| HT40            | 1                                          | 2452 | 35.70                     | 35.28         |  |  |
| Limi            | t                                          |      | N/A                       | ≥500 kHz      |  |  |
| Resu            | lt                                         |      | Com                       | plied         |  |  |



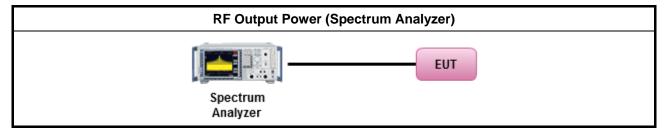


### 3.3 RF Output Power

#### 3.3.1 RF Output Power Limit

|                 |             | RF Output Power Limit                                                                                                                                           |
|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max             | cimu        | m Peak Conducted Output Power or Maximum Conducted Output Power Limit                                                                                           |
| $\boxtimes$     | 240         | 0-2483.5 MHz Band:                                                                                                                                              |
|                 | $\boxtimes$ | If $G_{TX} \le 6 \text{ dBi}$ , then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$                                                                                 |
|                 | $\square$   | Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm                                                                  |
|                 |             | Point-to-point systems (P2P): If $G_{TX} > 6 \text{ dBi}$ , then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$                                                    |
|                 |             | Smart antenna system (SAS):                                                                                                                                     |
|                 |             | Single beam: If $G_{TX} > 6 \text{ dBi}$ , then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$                                                                     |
|                 |             | Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm                                                                                     |
|                 |             | Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$ , then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$                                                 |
| e.i.r           | .p. P       | Power Limit:                                                                                                                                                    |
| $\square$       | 240         | 0-2483.5 MHz Band                                                                                                                                               |
|                 | $\boxtimes$ | Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$                                                                                  |
|                 |             | Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$                                                                                   |
|                 |             | Smart antenna system (SAS)                                                                                                                                      |
|                 |             | Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$                                                                                                       |
|                 |             | □ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$                                                                                                    |
|                 |             | Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$                                                                               |
| G <sub>TX</sub> | = the       | aximum peak conducted output power or maximum conducted output power in dBm,<br>e maximum transmitting antenna directional gain in dBi.<br>i.r.p. Power in dBm. |

#### 3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.



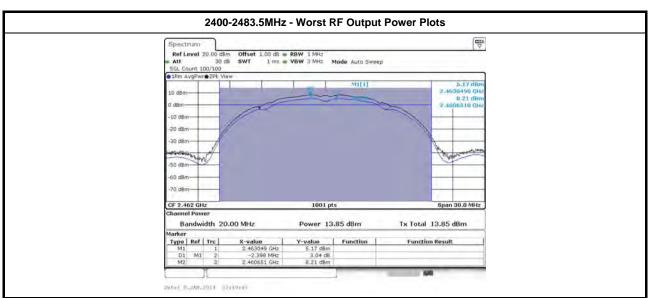
#### 3.3.3 Test Procedures

|           |                                                                                  | Test Method                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\bowtie$ | Мах                                                                              | imum Peak Conducted Output Power                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|           |                                                                                  | Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW $\ge$ EBW method).                                                                                                                                                                                                                                                 |  |  |  |  |  |
|           | $\boxtimes$                                                                      | Refer as FCC KDB 558074, clause 9.1.2 Option 2 (integrated band power method).                                                                                                                                                                                                                                         |  |  |  |  |  |
|           |                                                                                  | Refer as FCC KDB 558074, clause 9.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)                                                                                                                                                                                                                                     |  |  |  |  |  |
| $\square$ | Max                                                                              | imum Conducted Output Power                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|           | [dut                                                                             | y cycle ≥ 98% or external video / power trigger]                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|           |                                                                                  | Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).                                                                                                                                                                                                                                     |  |  |  |  |  |
|           |                                                                                  | Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)                                                                                                                                                                                                                                         |  |  |  |  |  |
|           | duty                                                                             | cycle < 98% and average over on/off periods with duty factor                                                                                                                                                                                                                                                           |  |  |  |  |  |
|           | $\square$                                                                        | Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).                                                                                                                                                                                                                                     |  |  |  |  |  |
|           |                                                                                  | Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)                                                                                                                                                                                                                                         |  |  |  |  |  |
|           | RF power meter and average over on/off periods with duty factor or gated trigger |                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|           |                                                                                  | Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).                                                                                                                                                                                                                                  |  |  |  |  |  |
| $\square$ | For                                                                              | conducted measurement.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|           | $\square$                                                                        | The EUT supports single transmit chain and measurements performed on this transmit chain.                                                                                                                                                                                                                              |  |  |  |  |  |
|           |                                                                                  | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                                                                                                                                                    |  |  |  |  |  |
|           |                                                                                  | The EUT supports multiple transmit chains using options given below:<br>Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum<br>approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW)<br>of all ports for each individual sample and save them. |  |  |  |  |  |
|           |                                                                                  | If multiple transmit chains, EIRP calculation could be following as methods:<br>$P_{total} = P_1 + P_2 + + P_n$<br>(calculated in linear unit [mW] and transfer to log unit [dBm])<br>EIRP <sub>total</sub> = P <sub>total</sub> + DG                                                                                  |  |  |  |  |  |

## 3.3.4 Test Setup






| Maximum Peak Conducted Output Power Result |     |                |                       |             |                       |            |            |  |
|--------------------------------------------|-----|----------------|-----------------------|-------------|-----------------------|------------|------------|--|
| Condit                                     | ion |                | RF Output Power (dBm) |             |                       |            |            |  |
| Modulation Mode                            | Ντχ | Freq.<br>(MHz) | RF Output<br>Power    | Power Limit | Antenna Gain<br>(dBi) | EIRP Power | EIRP Limit |  |
| 11b                                        | 1   | 2412           | 16.76                 | 30.00       | 0.95                  | 17.71      | 36.00      |  |
| 11b                                        | 1   | 2437           | 16.78                 | 30.00       | 0.95                  | 17.73      | 36.00      |  |
| 11b                                        | 1   | 2462           | 16.84                 | 30.00       | 0.95                  | 17.79      | 36.00      |  |
| 11g                                        | 1   | 2412           | 17.08                 | 30.00       | 0.95                  | 18.03      | 36.00      |  |
| 11g                                        | 1   | 2437           | 17.00                 | 30.00       | 0.95                  | 17.95      | 36.00      |  |
| 11g                                        | 1   | 2462           | 16.65                 | 30.00       | 0.95                  | 17.60      | 36.00      |  |
| HT20                                       | 1   | 2412           | 14.98                 | 30.00       | 0.95                  | 15.93      | 36.00      |  |
| HT20                                       | 1   | 2437           | 14.93                 | 30.00       | 0.95                  | 15.88      | 36.00      |  |
| HT20                                       | 1   | 2462           | 14.75                 | 30.00       | 0.95                  | 15.70      | 36.00      |  |
| HT40                                       | 1   | 2422           | 15.08                 | 30.00       | 0.95                  | 16.03      | 36.00      |  |
| HT40                                       | 1   | 2437           | 14.98                 | 30.00       | 0.95                  | 15.93      | 36.00      |  |
| HT40                                       | 1   | 2452           | 15.05                 | 30.00       | 0.95                  | 16.00      | 36.00      |  |
| Resu                                       | lt  |                |                       |             | Complied              |            | 1          |  |

#### 3.3.5 Test Result of Maximum Peak Conducted Output Power

### 3.3.6 Test Result of Maximum Conducted Output Power

|                 | Maximum Conducted Output Power |                |                    |                       |                       |            |            |  |  |
|-----------------|--------------------------------|----------------|--------------------|-----------------------|-----------------------|------------|------------|--|--|
| Condit          | tion                           |                |                    | RF Output Power (dBm) |                       |            |            |  |  |
| Modulation Mode | Ντχ                            | Freq.<br>(MHz) | RF Output<br>Power | Power Limit           | Antenna Gain<br>(dBi) | EIRP Power | EIRP Limit |  |  |
| 11b             | 1                              | 2412           | 13.89              | 30.00                 | 0.95                  | 14.84      | 36.00      |  |  |
| 11b             | 1                              | 2437           | 13.85              | 30.00                 | 0.95                  | 14.80      | 36.00      |  |  |
| 11b             | 1                              | 2462           | 13.95              | 30.00                 | 0.95                  | 14.90      | 36.00      |  |  |
| 11g             | 1                              | 2412           | 12.47              | 30.00                 | 0.95                  | 13.42      | 36.00      |  |  |
| 11g             | 1                              | 2437           | 12.50              | 30.00                 | 0.95                  | 13.45      | 36.00      |  |  |
| 11g             | 1                              | 2462           | 11.72              | 30.00                 | 0.95                  | 12.67      | 36.00      |  |  |
| HT20            | 1                              | 2412           | 10.04              | 30.00                 | 0.95                  | 10.99      | 36.00      |  |  |
| HT20            | 1                              | 2437           | 9.98               | 30.00                 | 0.95                  | 10.93      | 36.00      |  |  |
| HT20            | 1                              | 2462           | 9.84               | 30.00                 | 0.95                  | 10.79      | 36.00      |  |  |
| HT40            | 1                              | 2422           | 10.20              | 30.00                 | 0.95                  | 11.15      | 36.00      |  |  |
| HT40            | 1                              | 2437           | 10.10              | 30.00                 | 0.95                  | 11.05      | 36.00      |  |  |
| HT40            | 1                              | 2452           | 10.27              | 30.00                 | 0.95                  | 11.22      | 36.00      |  |  |
| Resu            | ılt                            |                |                    |                       | Complied              |            |            |  |  |





Note 1: RF Output Power Plots w/o Duty Factor



#### **Power Spectral Density** 3.4

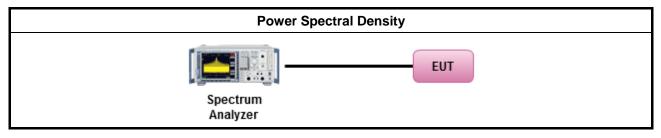
#### 3.4.1 **Power Spectral Density Limit**

**Power Spectral Density Limit** 

 $\boxtimes$ Power Spectral Density (PSD) ≤ 8 dBm/3kHz

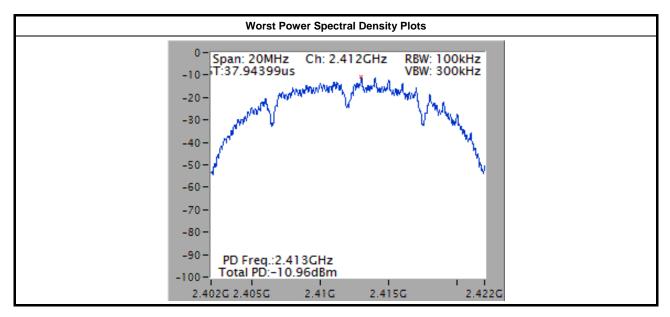
#### 3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


#### 3.4.3 Test Procedures

Г

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\boxtimes$ | output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                           | Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|             | [duty                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y cycle ≥ 98% or external video / power trigger]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|             | duty                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cycle < 98% and average over on/off periods with duty factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|             | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| $\bowtie$   | For conducted measurement.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|             | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                             | The EUT supports single transmit chain and measurements performed on this transmit chain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The EUT supports multiple transmit chains using options given below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911,<br>In-band power spectral density (PSD). Sample all transmit ports simultaneously using a<br>spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port<br>summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the<br>first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the<br>N <sub>TX</sub> output to obtain the value for the first frequency bin of the summed spectrum.). Add up the<br>amplitude (power) values for the different transmit chains and use this as the new data trace. |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |




#### 3.4.4 Test Setup



#### 3.4.5 Test Result of Power Spectral Density


|                 | Power Spectral Density Result |                |                           |                         |  |  |  |  |  |
|-----------------|-------------------------------|----------------|---------------------------|-------------------------|--|--|--|--|--|
| Condi           | tion                          |                | Power Spectral Density    |                         |  |  |  |  |  |
| Modulation Mode | Ντχ                           | Freq.<br>(MHz) | Sum Chain<br>(dBm/100kHz) | PSD Limit<br>(dBm/3kHz) |  |  |  |  |  |
| 11b             | 1                             | 2412           | -10.96                    | 8                       |  |  |  |  |  |
| 11b             | 1                             | 2437           | -11.27                    | 8                       |  |  |  |  |  |
| 11b             | 1                             | 2462           | -12.30                    | 8                       |  |  |  |  |  |
| 11g             | 1                             | 2412           | -15.10                    | 8                       |  |  |  |  |  |
| 11g             | 1                             | 2437           | -16.72                    | 8                       |  |  |  |  |  |
| 11g             | 1                             | 2462           | -16.85                    | 8                       |  |  |  |  |  |
| HT20            | 1                             | 2412           | -18.99                    | 8                       |  |  |  |  |  |
| HT20            | 1                             | 2437           | -17.46                    | 8                       |  |  |  |  |  |
| HT20            | 1                             | 2462           | -18.87                    | 8                       |  |  |  |  |  |
| HT40            | 1                             | 2422           | -20.93                    | 8                       |  |  |  |  |  |
| HT40            | 1                             | 2437           | -21.27                    | 8                       |  |  |  |  |  |
| HT40            | 1                             | 2452           | -20.37                    | 8                       |  |  |  |  |  |
| Resu            | ult                           |                | Com                       | plied                   |  |  |  |  |  |



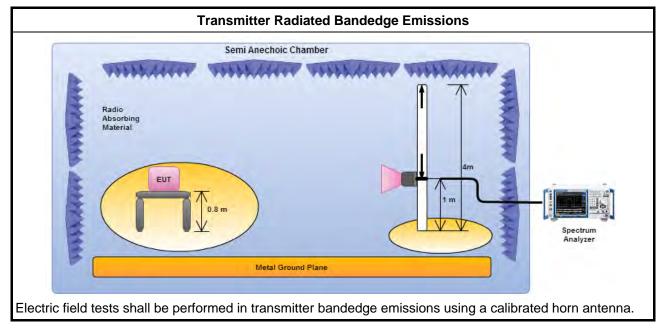


## 3.5 Transmitter Bandedge Emissions

#### 3.5.1 Transmitter Radiated Bandedge Emissions Limit



#### 3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.



#### 3.5.3 Test Procedures

|             |                                                                                                                                                                           | Test Method                                                                                                                                         |  |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\square$   | The                                                                                                                                                                       | average emission levels shall be measured in [duty cycle $\geq$ 98 or duty factor].                                                                 |  |  |  |  |  |  |
| $\square$   | Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band. |                                                                                                                                                     |  |  |  |  |  |  |
| $\boxtimes$ | For                                                                                                                                                                       | the transmitter unwanted emissions shall be measured using following options below:                                                                 |  |  |  |  |  |  |
|             | $\square$                                                                                                                                                                 | Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.                                                                |  |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                               | Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.                                                                    |  |  |  |  |  |  |
|             | ☐ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)                                                                                 |                                                                                                                                                     |  |  |  |  |  |  |
|             | Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).                                                                                        |                                                                                                                                                     |  |  |  |  |  |  |
|             | □ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).                                                                                                    |                                                                                                                                                     |  |  |  |  |  |  |
|             |                                                                                                                                                                           | Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW $\geq$ 1/T, where T is pulse time.                                                        |  |  |  |  |  |  |
|             |                                                                                                                                                                           | Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.                                                                           |  |  |  |  |  |  |
|             |                                                                                                                                                                           | Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.                                                                   |  |  |  |  |  |  |
| $\boxtimes$ | For                                                                                                                                                                       | the transmitter bandedge emissions shall be measured using following options below:                                                                 |  |  |  |  |  |  |
|             |                                                                                                                                                                           | Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). |  |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                               | Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.                                                                                           |  |  |  |  |  |  |
|             |                                                                                                                                                                           | Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.                                                              |  |  |  |  |  |  |
| $\square$   |                                                                                                                                                                           | radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. distance is 3m.                                           |  |  |  |  |  |  |

#### 3.5.4 Test Setup





### 3.5.5 Transmitter Radiated Bandedge Emissions

| Modulation | N <sub>TX</sub> | Test<br>Freq.<br>(MHz) | In-band PSD<br>[i]<br>(dBuV/100kHz) | Freq. (MHz) | Out-band<br>PSD [o]<br>(dBuV/100kHz) | [i] – [o] (dB) | Limit (dB) | Pol. |
|------------|-----------------|------------------------|-------------------------------------|-------------|--------------------------------------|----------------|------------|------|
| 11b        | 1               | 2412                   | 105.61                              | 2393.550    | 61.41                                | 44.20          | 20         | Н    |
| 11b        | 1               | 2462                   | 104.48                              | 2513.100    | 59.97                                | 44.51          | 20         | Н    |
| 11g        | 1               | 2412                   | 98.09                               | 2399.490    | 70.93                                | 27.16          | 20         | Н    |
| 11g        | 1               | 2462                   | 96.65                               | 2539.900    | 59.12                                | 37.53          | 20         | Н    |
| HT20,M0-7  | 1               | 2412                   | 95.73                               | 2400.000    | 65.81                                | 29.92          | 20         | Н    |
| HT20,M0-7  | 1               | 2462                   | 94.34                               | 2507.000    | 60.43                                | 33.91          | 20         | Н    |
| HT40,M0-7  | 1               | 2422                   | 92.58                               | 2400.000    | 61.46                                | 31.12          | 20         | Н    |
| HT40,M0-7  | 1               | 2452                   | 92.27                               | 2534.120    | 60.07                                | 32.20          | 20         | Н    |

| Modulation<br>Mode | Ντχ | Freq.<br>(MHz) | Measure<br>Distance<br>(m) | Freq.<br>(MHz)<br>PK | Level<br>(dBuV/m)<br>PK | Limit<br>(dBuV/m)<br>PK | Freq.<br>(MHz)<br>AV | Level<br>(dBuV/m)<br>AV | Limit<br>(dBuV/m)<br>AV | Pol. |
|--------------------|-----|----------------|----------------------------|----------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|------|
| 11b                | 1   | 2412           | 3                          | 2385.940             | 61.72                   | 74                      | 2386.380             | 51.54                   | 54                      | Н    |
| 11b                | 1   | 2462           | 3                          | 2488.200             | 60.52                   | 74                      | 2488.600             | 48.26                   | 54                      | Н    |
| 11g                | 1   | 2412           | 3                          | 2389.630             | 72.22                   | 74                      | 2389.970             | 49.22                   | 54                      | Н    |
| 11g                | 1   | 2462           | 3                          | 2483.800             | 69.49                   | 74                      | 2483.500             | 47.47                   | 54                      | Н    |
| HT20,M0-7          | 1   | 2412           | 3                          | 2390.000             | 68.31                   | 74                      | 2390.000             | 46.63                   | 54                      | Н    |
| HT20,M0-7          | 1   | 2462           | 3                          | 2483.900             | 67.99                   | 74                      | 2483.500             | 46.05                   | 54                      | Н    |
| HT40,M0-7          | 1   | 2422           | 3                          | 2387.350             | 70.77                   | 74                      | 2390.000             | 46.07                   | 54                      | Н    |
| HT40,M0-7          | 1   | 2452           | 3                          | 2484.200             | 68.43                   | 74                      | 2483.500             | 46.08                   | 54                      | Н    |



## 3.6 Transmitter Unwanted Emissions

#### 3.6.1 Transmitter Radiated Unwanted Emissions Limit

| Restricted Band Emissions Limit |                       |                         |                      |  |  |  |
|---------------------------------|-----------------------|-------------------------|----------------------|--|--|--|
| Frequency Range (MHz)           | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) |  |  |  |
| 0.009~0.490                     | 2400/F(kHz)           | 48.5 - 13.8             | 300                  |  |  |  |
| 0.490~1.705                     | 24000/F(kHz)          | 33.8 - 23               | 30                   |  |  |  |
| 1.705~30.0                      | 30                    | 29                      | 30                   |  |  |  |
| 30~88                           | 100                   | 40                      | 3                    |  |  |  |
| 88~216                          | 150                   | 43.5                    | 3                    |  |  |  |
| 216~960                         | 200                   | 46                      | 3                    |  |  |  |
| Above 960                       | 500                   | 54                      | 3                    |  |  |  |

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

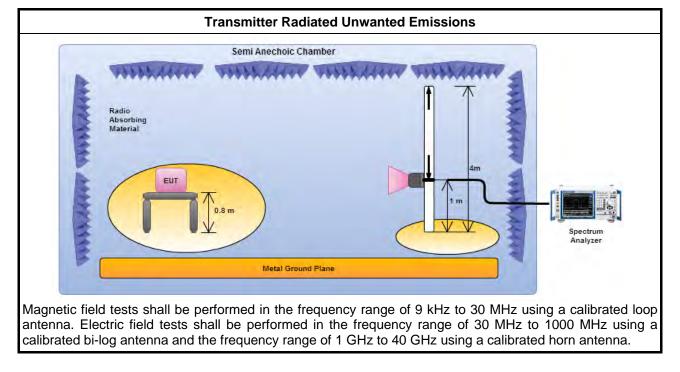
| Un-restricted Band Emissions Limit                                                                                                                                                           |    |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| RF output power procedure Limit (dB)                                                                                                                                                         |    |  |  |  |  |  |
| Peak output power procedure 20                                                                                                                                                               |    |  |  |  |  |  |
| Average output power procedure                                                                                                                                                               | 30 |  |  |  |  |  |
| Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within |    |  |  |  |  |  |

any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

#### **3.6.2 Measuring Instruments**

Refer a test equipment and calibration data table in this test report.




#### 3.6.3 Test Procedures

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Method                                                                                                               |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             | Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). |                                                                                                                           |  |  |  |  |  |
| $\square$   | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | average emission levels shall be measured in [duty cycle $\geq$ 98 or duty factor].                                       |  |  |  |  |  |
| $\square$   | For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the transmitter unwanted emissions shall be measured using following options below:                                       |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.                                      |  |  |  |  |  |
|             | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.                                          |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)                                 |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).                                        |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).                                                    |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW $\geq$ 1/T, where T is pulse time.                              |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.                                                 |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.                                         |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.                                            |  |  |  |  |  |
| $\boxtimes$ | For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | radiated measurement, refer as FCC KDB 558074, clause 12.2.7.                                                             |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.                             |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.                          |  |  |  |  |  |
|             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.                              |  |  |  |  |  |
| $\square$   | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | any unwanted emissions level shall not exceed the fundamental emission level.                                             |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported. |  |  |  |  |  |

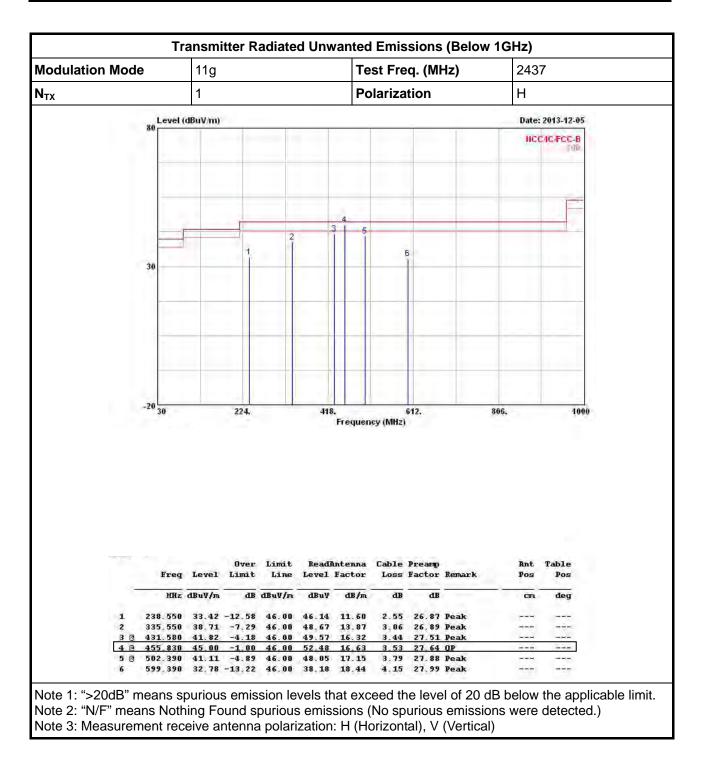



#### 3.6.4 Test Setup



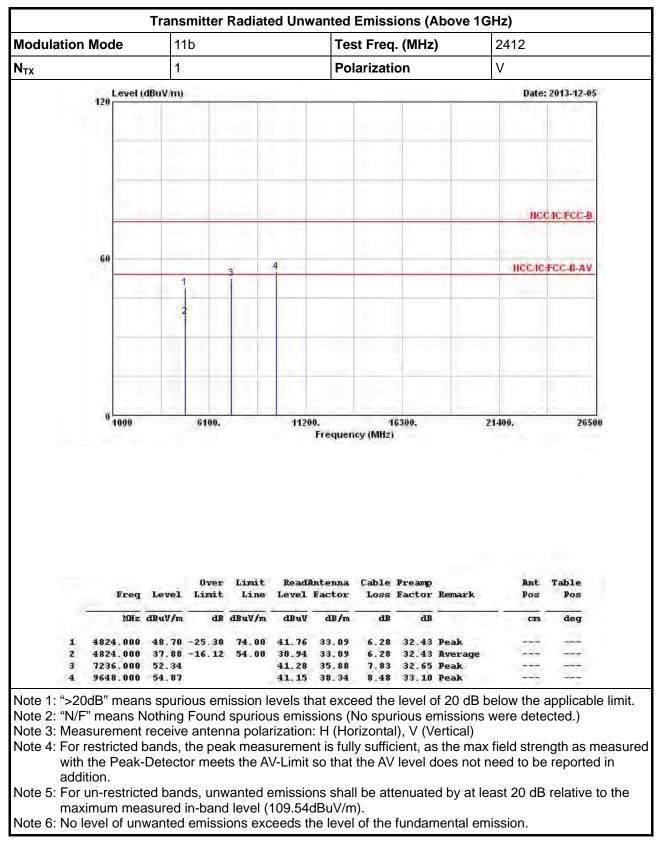
#### 3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



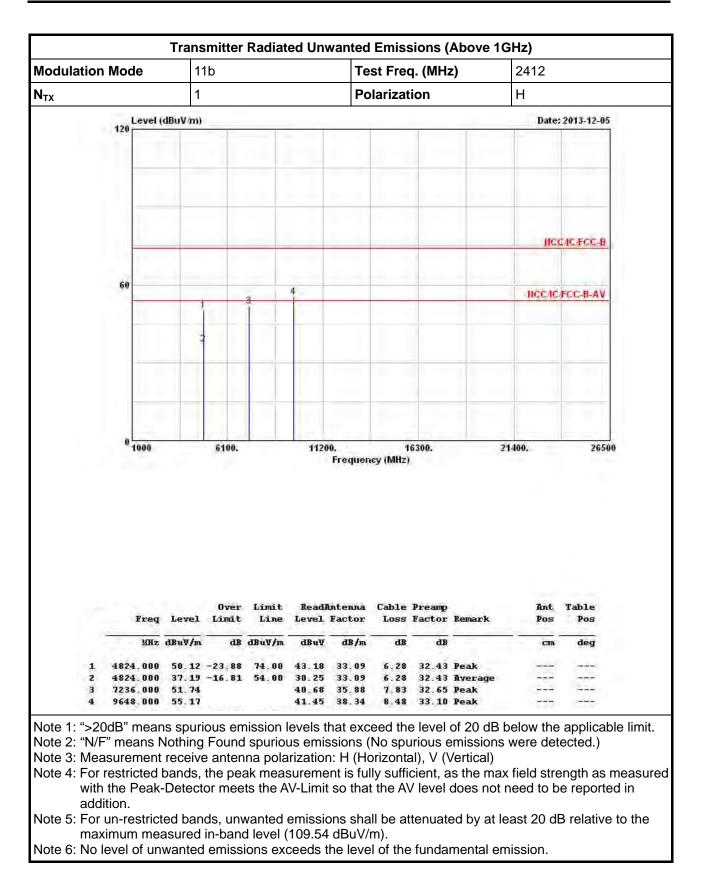



#### 3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)



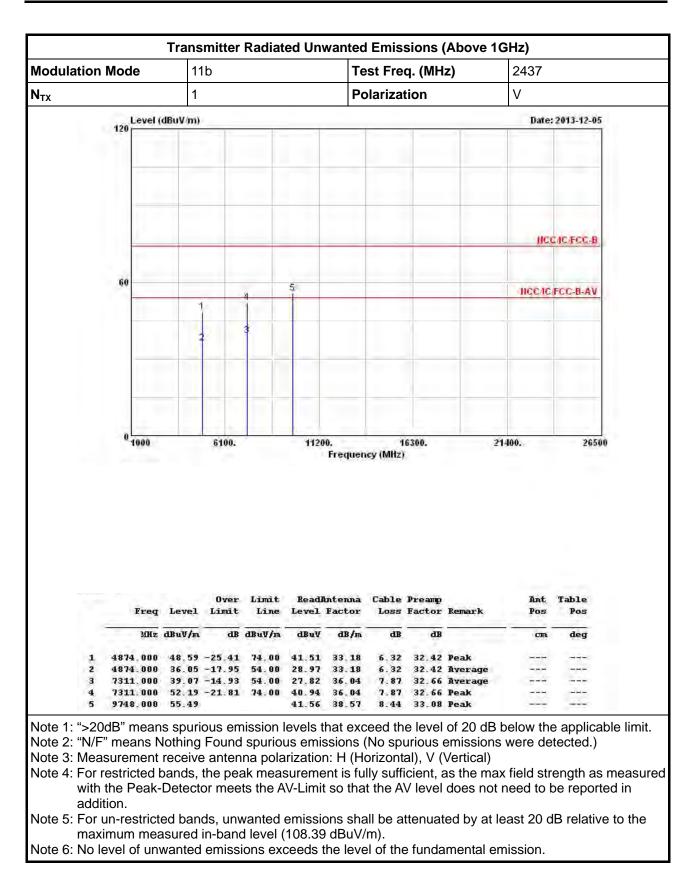




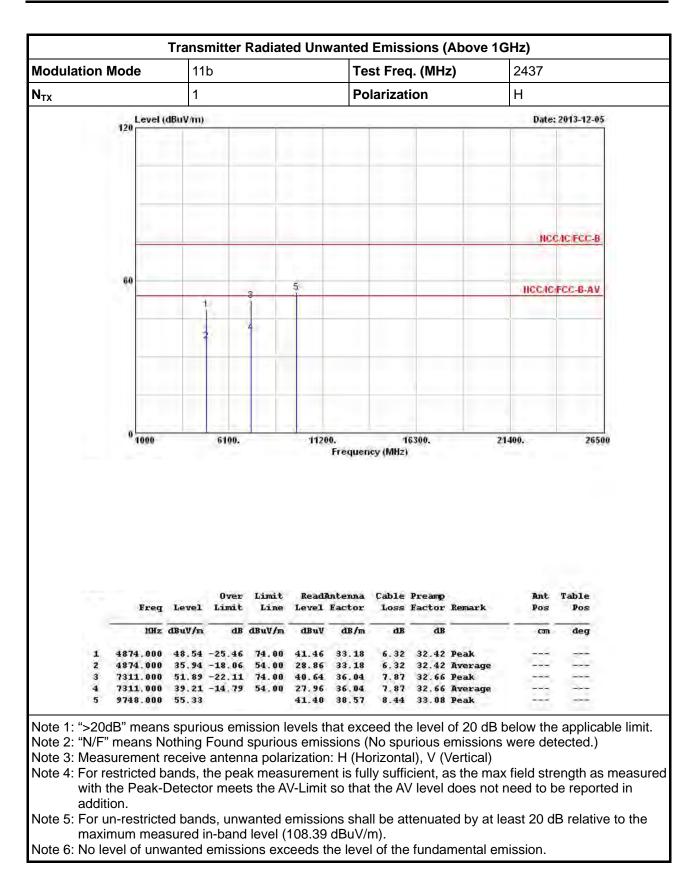

| 3.6.7 | Transmitter Radiated | <b>Unwanted Emissions</b> | (Above 1GHz) fe | or 2400-2483.5MHz |
|-------|----------------------|---------------------------|-----------------|-------------------|
|-------|----------------------|---------------------------|-----------------|-------------------|

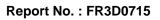




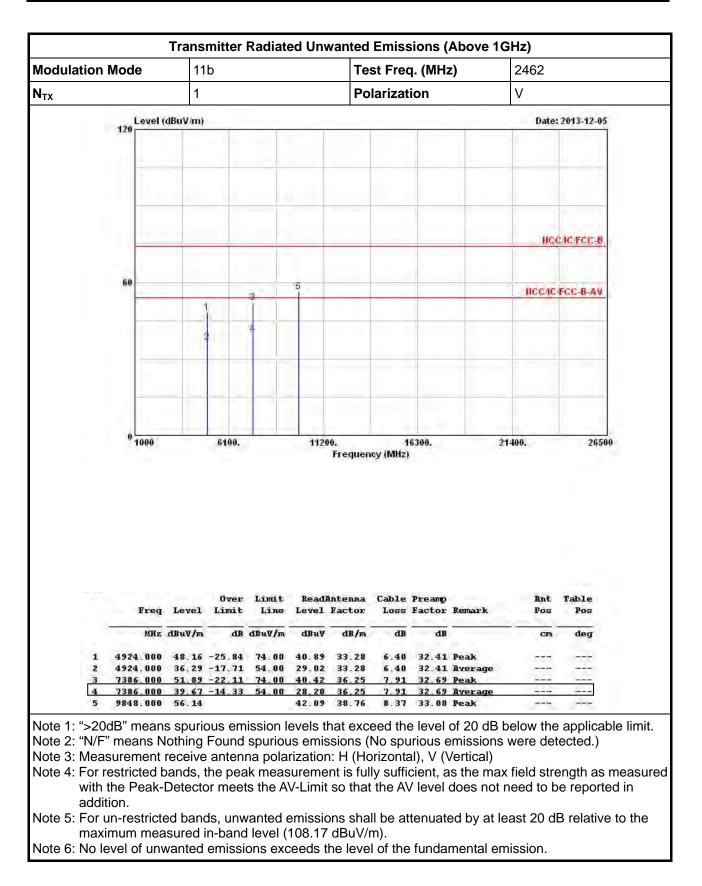


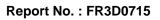


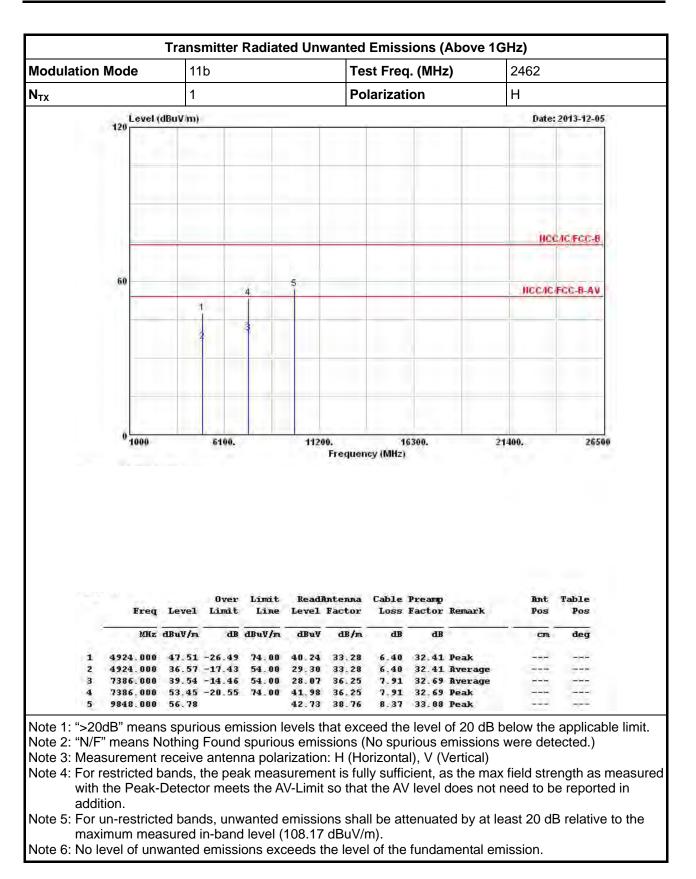





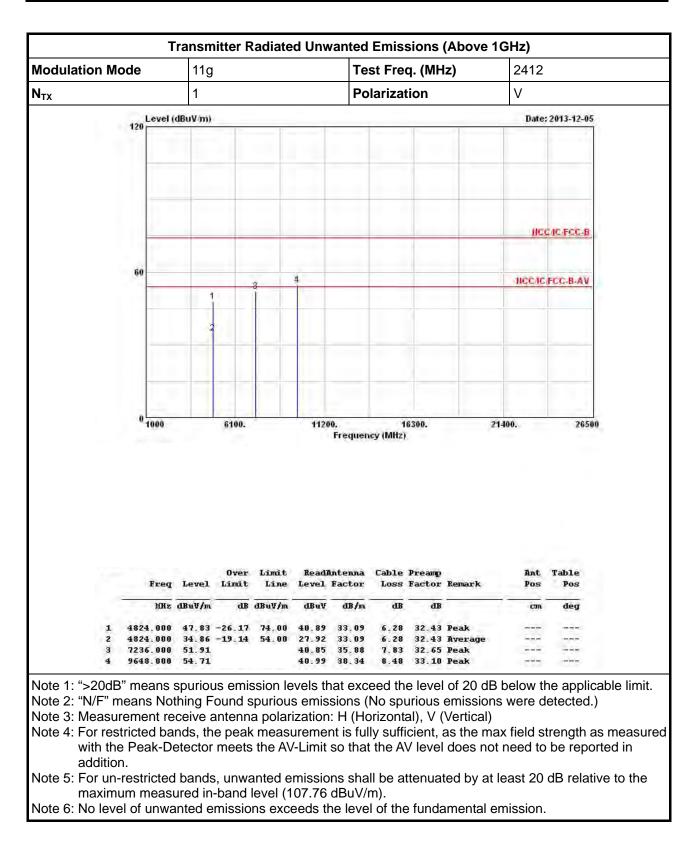





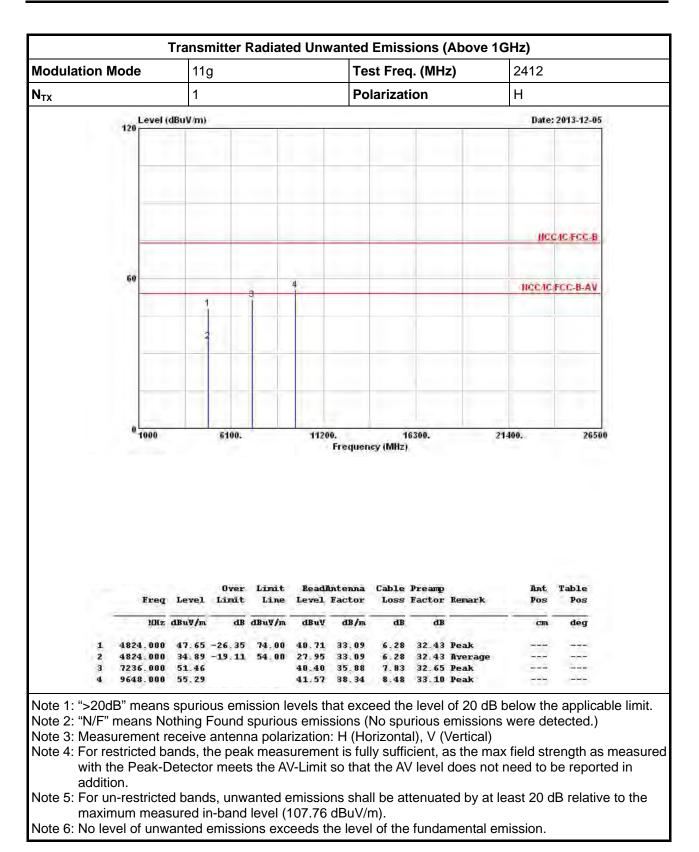





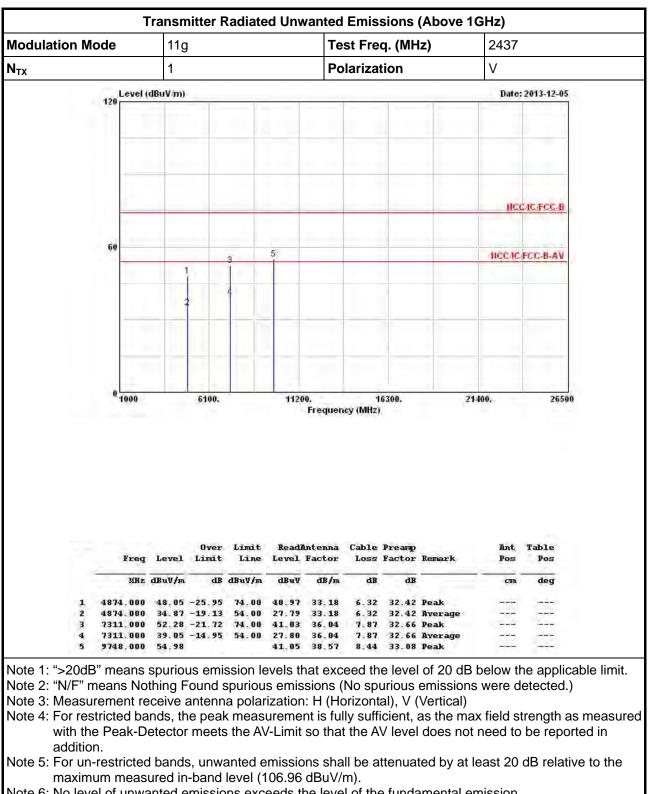




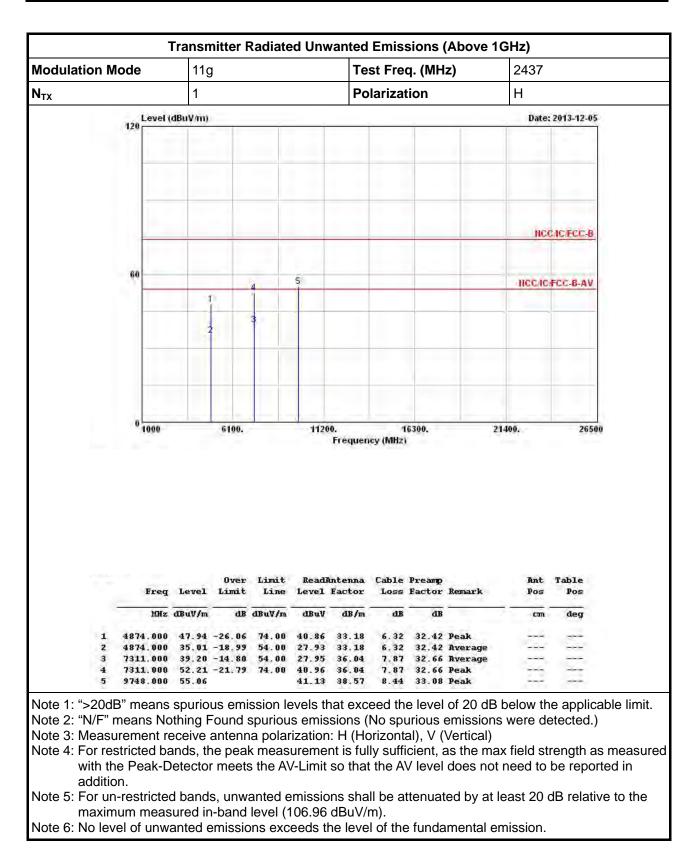



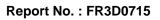




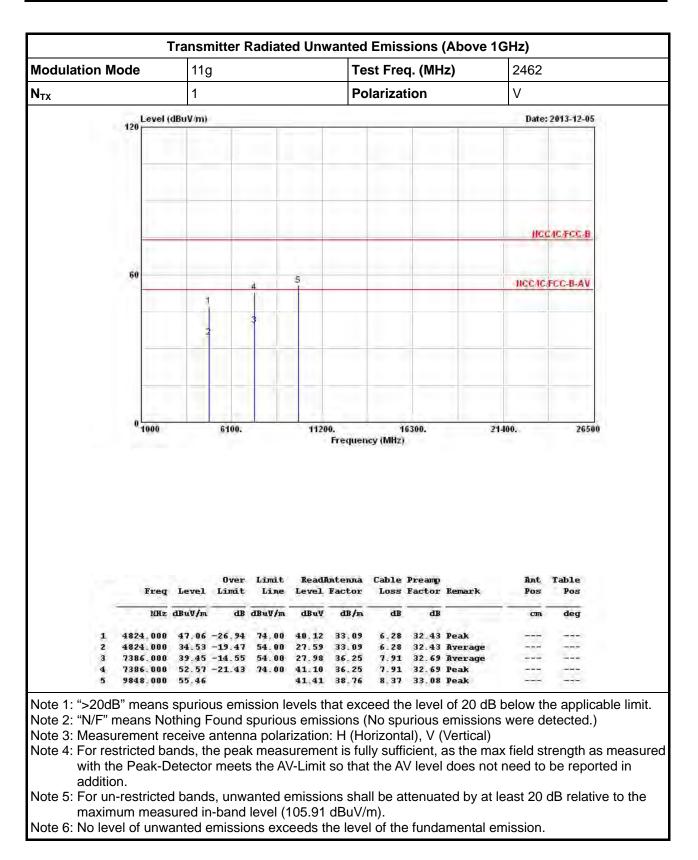





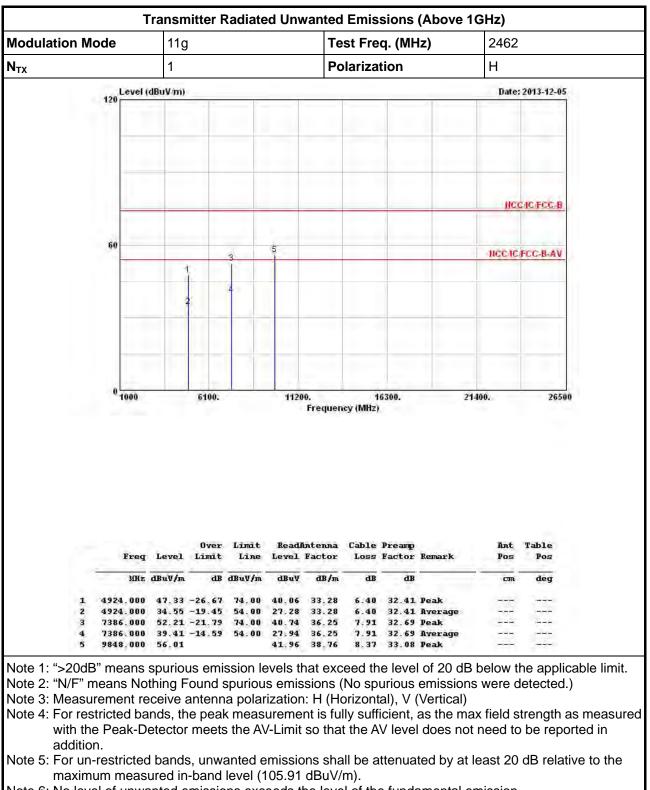





FAX: 886-3-327-0973

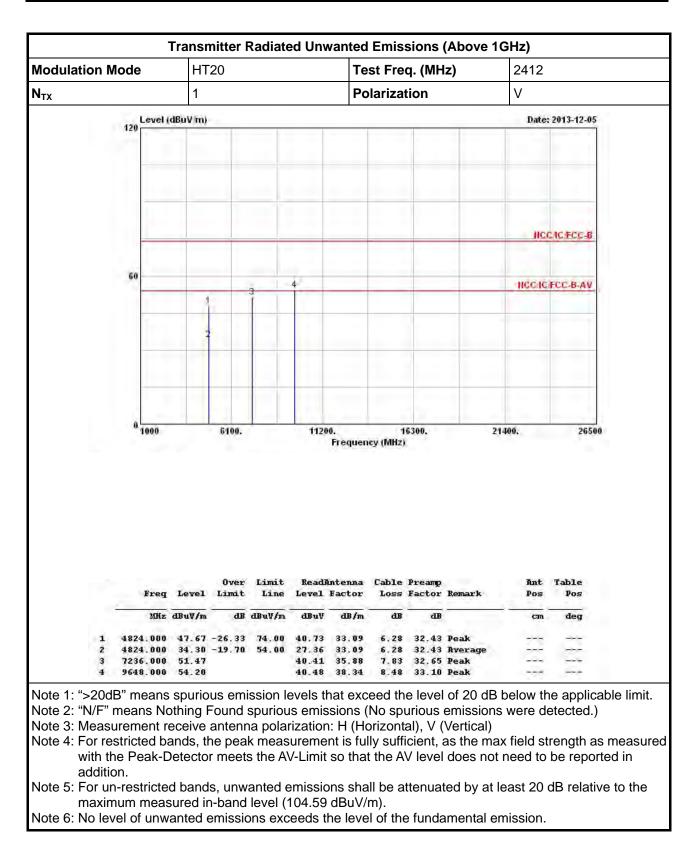




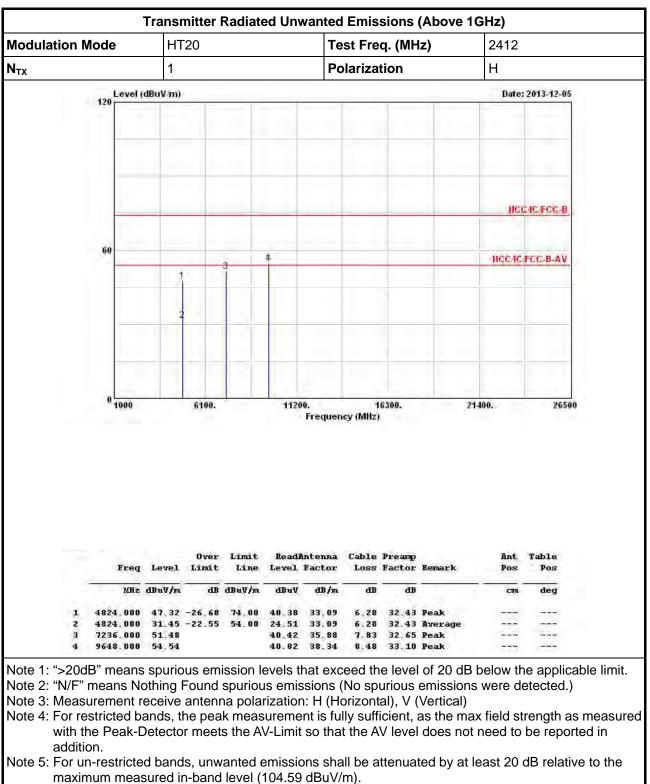




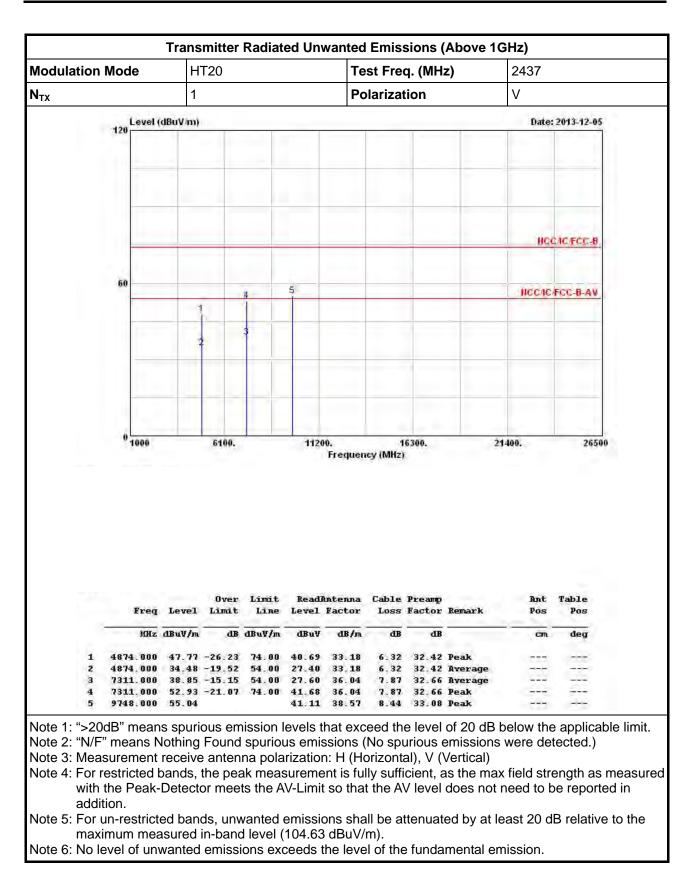




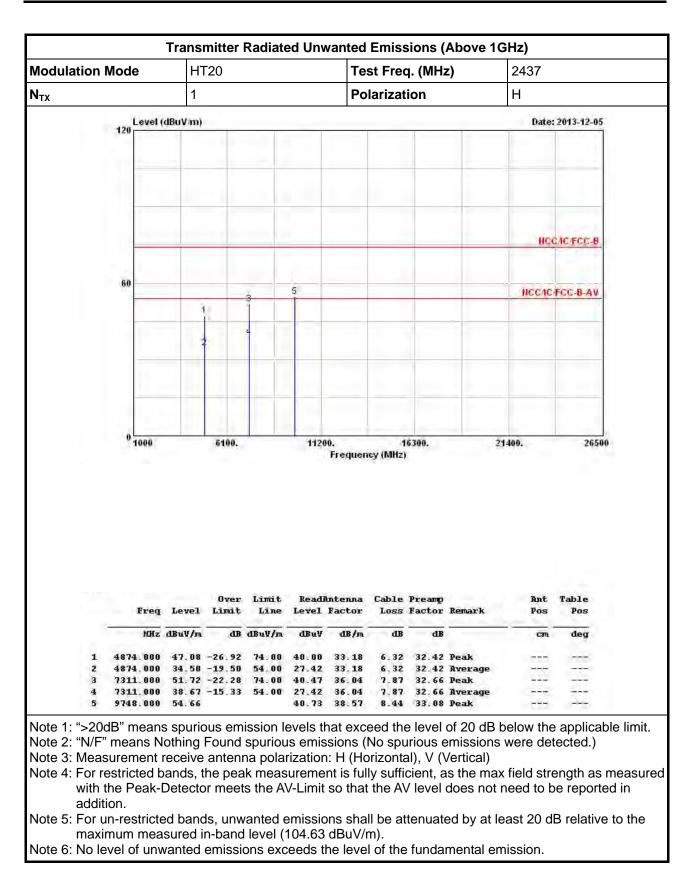


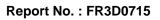


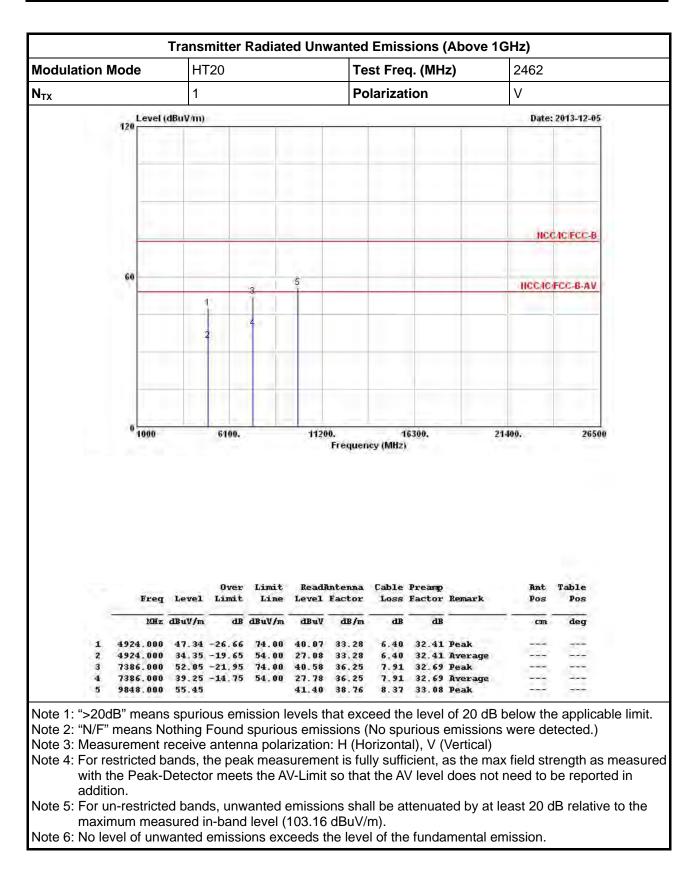



Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

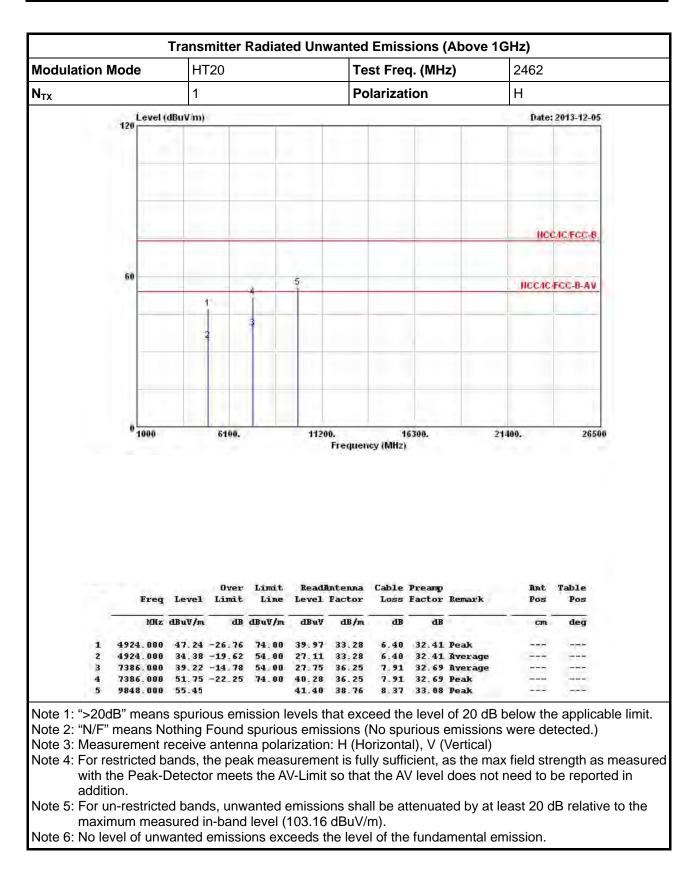


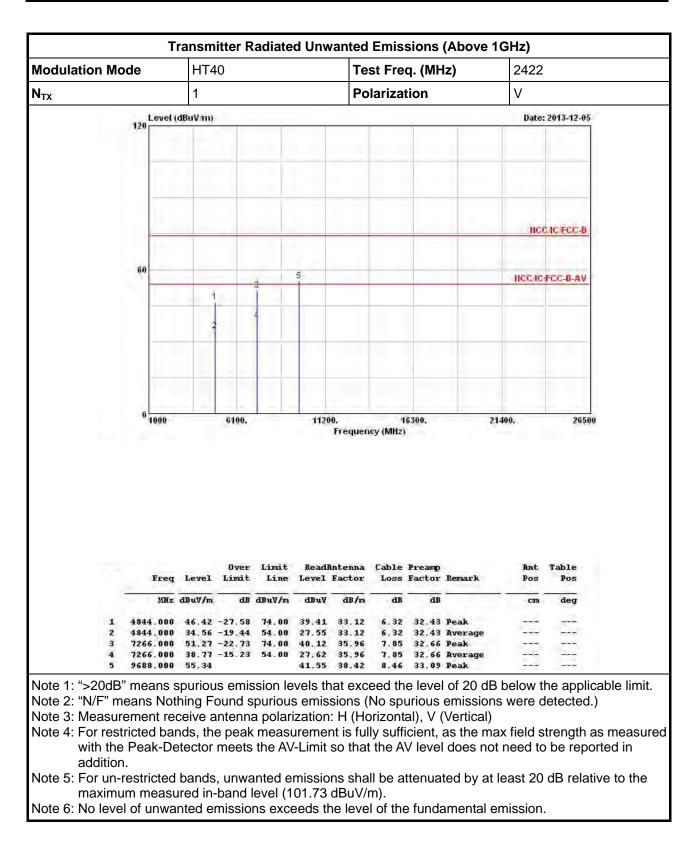






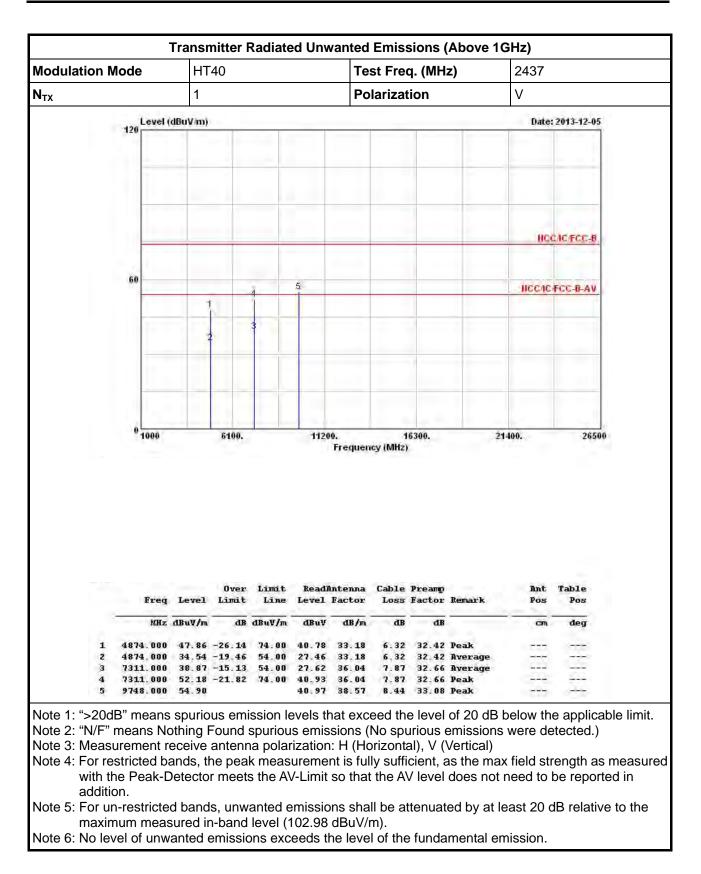




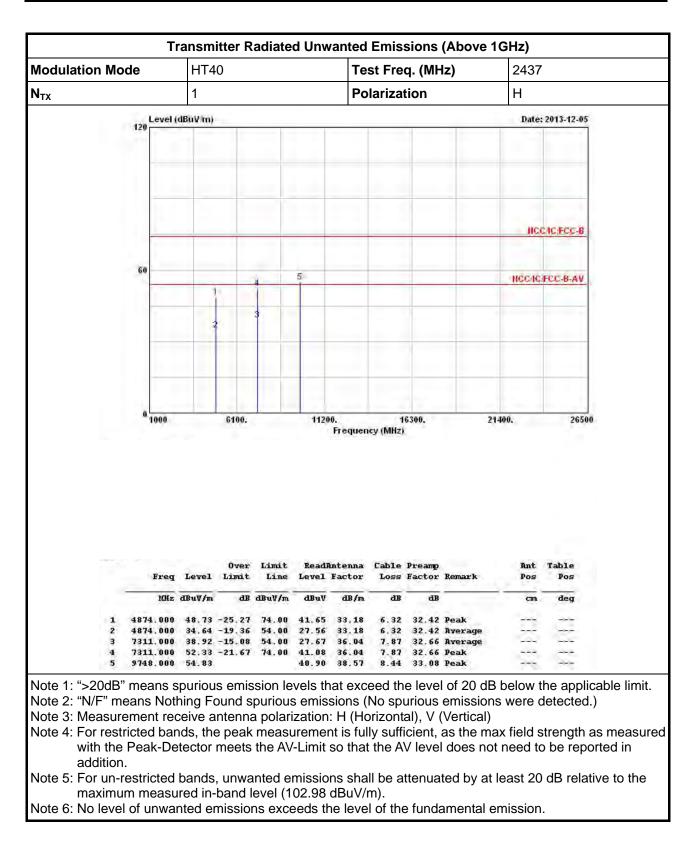






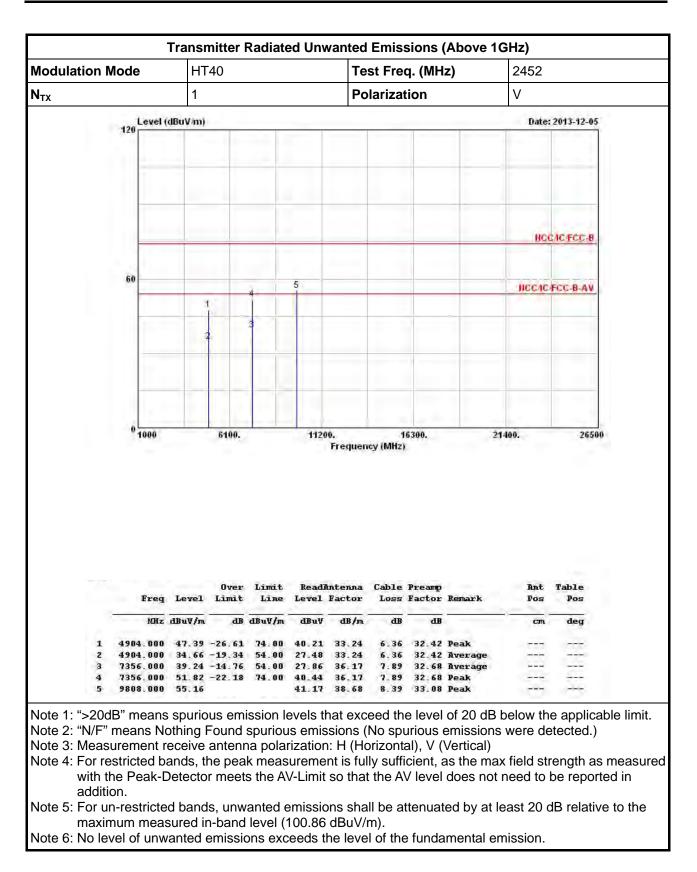




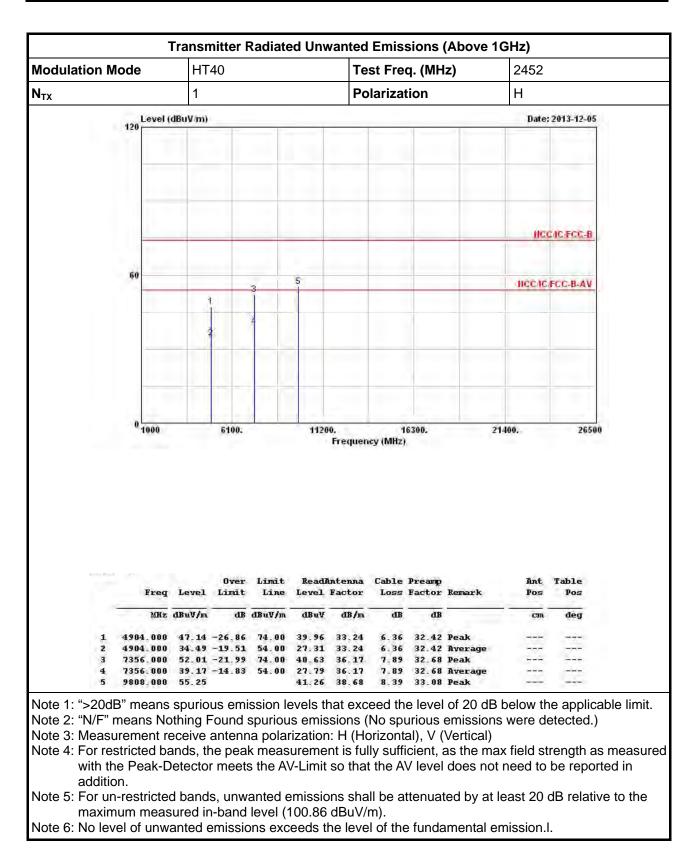






















## 4 Test Equipment and Calibration Data

| Instrument   | Manufacturer                   | Model No. | Serial No.      | Characteristics | Calibration Date | Remark                  |
|--------------|--------------------------------|-----------|-----------------|-----------------|------------------|-------------------------|
| EMC Receiver | R&S                            | ESCS 30   | 100174          | 9kHz ~ 2.75GHz  | Mar. 26, 2013    | Conduction<br>(CO04-HY) |
| LISN         | SCHWARZBECK<br>MESS-ELEKTRONIK | NSLK 8127 | 8127-477        | 9kHz ~ 30MHz    | Jan. 21, 2013    | Conduction<br>(CO04-HY) |
| RF Cable-CON | HUBER+SUHNER                   | RG213/U   | 7.61183201e+012 | 9kHz ~ 30MHz    | Oct. 30, 2013    | Conduction<br>(CO04-HY) |
| EMI Filter   | LINDGREN                       | LRE-2030  | 2651            | < 450 Hz        | N/A              | Conduction<br>(CO04-HY) |

Note: Calibration Interval of instruments listed above is one year.

| Instrument           | Manufacturer | Model No.    | Serial No.  | Characteristics | Calibration Date | Remark                 |
|----------------------|--------------|--------------|-------------|-----------------|------------------|------------------------|
| Spectrum<br>Analyzer | R&S          | FSV 40       | 101013      | 9KHz~40GHz      | Jan. 29, 2013    | Conducted<br>(TH06-HY) |
| Signal<br>Generator  | R&S          | SMR40        | 100116      | 10MHz ~ 40GHz   | Jun. 27, 2013    | Conducted<br>(TH06-HY) |
| RF Cable-2m          | HUBER+SUHNER | SUCOFLEX_104 | SN 345673/4 | 30MHz ~ 26.5GHz | Dec. 02, 2013    | Conducted<br>(TH06-HY) |

Note: Calibration Interval of instruments listed above is one year.



| Instrument                     | Manufacturer   | Model No.      | Serial No.  | Characteristics    | Calibration Date | Remark                   |
|--------------------------------|----------------|----------------|-------------|--------------------|------------------|--------------------------|
| 3m Semi<br>Anechoic<br>Chamber | SIDT FRANKONIA | SAC-3M         | 03CH03-HY   | 30MHz ~ 1GHz<br>3m | Nov. 30, 2013    | Radiation<br>(03CH03-HY) |
| Amplifier                      | HP             | 8447D          | 2944A08033  | 10kHz ~ 1.3GHz     | May 03, 2013     | Radiation<br>(03CH03-HY) |
| Amplifier                      | Agilent        | 8449B          | 3008A02120  | 1GHz ~ 26.5GHz     | Aug. 20, 2013    | Radiation<br>(03CH03-HY) |
| Spectrum                       | R&S            | FSP40          | 100004      | 9kHz ~ 40GHz       | Mar. 11, 2013    | Radiation<br>(03CH03-HY) |
| Bilog Antenna                  | SCHAFFNER      | CBL 6112D      | 22237       | 30MHz ~ 1GHz       | Sep. 21, 2013    | Radiation<br>(03CH03-HY) |
| Horn Antenna                   | EMCO           | 3115           | 6741        | 1GHz ~ 18GHz       | May 31, 2013     | Radiation<br>(03CH03-HY) |
| Horn Antenna                   | SCHWARZBECK    | BBHA9170       | BBHA9170154 | 15GHz ~ 40GHz      | Jan. 08, 2013    | Radiation<br>(03CH03-HY) |
| RF Cable-R03m                  | Jye Bao        | RG142          | CB021       | 9kHz ~ 1GHz        | Jan. 17, 2013    | Radiation<br>(03CH03-HY) |
| RF Cable-high                  | SUHNER         | SUCOFLEX 106   | 03CH03-HY   | 1GHz ~ 40GHz       | Jan. 17, 2013    | Radiation<br>(03CH03-HY) |
| Turn Table                     | EM Electronics | EM Electronics | 060615      | 0 ~ 360 degree     | N/A              | Radiation<br>(03CH03-HY) |
| Antenna Mast                   | MF             | MF-7802        | MF780208179 | 1 ~ 4 m            | N/A              | Radiation<br>(03CH03-HY) |

Note: Calibration Interval of instruments listed above is one year.

| Instrument   | Manufacturer | Model No. | Serial No. | Characteristics | Calibration Date | Remark                   |
|--------------|--------------|-----------|------------|-----------------|------------------|--------------------------|
| Loop Antenna | TESEQ        | HLA 6120  | 31244      | 9kHz ~ 30MHz    | Dec. 02, 2012    | Radiation<br>(03CH03-HY) |

Note: Calibration Interval of instruments listed above is two year.