

Appendix C. Maximum Permissible Exposure

FCC ID: FDI000000015 Page No. : C1 of C3

Report No.: FR322115

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²) Averaging Till E ², H ² or (minutes)	
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E 2, H 2 or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: FDI000000015 Page No. : C2 of C3

Report No.: FR322115

1.3. Calculated Result and Limit

For 5GHz UNII Band:

Antenna Type: PIFA Antenna

Max Conducted Power for IEEE 802.11ac MCS0/Nss1 20MHz: 16.48dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.56	2.2709	16.4777	44.4398	0.020087	1	Complies

Note: Directional gain=GANT+10log(NANT/Nss)

For 5GHz ISM Band:

Antenna Type: PIFA Antenna

Max Conducted Power for IEEE 802.11ac MCS0/Nss1 20MHz: 28.28 dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.56	2.2709	28.2768	672.4766	0.303965	1	Complies

Note: Directional gain=GANT+10log(NANT/Nss)

For 2.4GHz Band:

Antenna Type: PIFA Antenna

Max Conducted Power for IEEE 802.11n MCS0 20MHz: 26.73 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
-0.99	0.7962	26.7294	470.9149	0.074626	1	Complies

CONCULSION:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.074626 / 1 + 0.303965 / 1 = 0.378591, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

FCC ID: FDI000000015 Page No. : C3 of C3