

FCC Test Report

Equipment	:	AirStation
Brand Name	:	BUFFALO INC.
Model No.	:	WMR-300
FCC ID	:	FDI00000012
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
Equipment Class	2	DTS
Applicant Manufacturer	:	BUFFALO INC. Akamon-dori Bldg, 30-20, Ohsu 3-chome, Naka-ku, Nagoya 460-8315, Japan

The product sample received on Feb. 28, 2013 and completely tested on Mar. 22, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Frequencies Configuration	9
2.3	The Worst Case Power Setting Parameter	9
2.4	The Worst Case Measurement Configuration	10
2.5	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	6dB Bandwidth	16
3.3	RF Output Power	19
3.4	Power Spectral Density	23
3.5	Transmitter Radiated Bandedge Emissions	
3.6	Transmitter Radiated Unwanted Emissions	
4	TEST EQUIPMENT AND CALIBRATION DATA	61
APPI	ENDIX A. TEST PHOTOS	A1
APPI	ENDIX B. PHOTOGRAPHS OF EUT	B1

Summary	of	Test	Result
---------	----	------	--------

	Conformance Test Specifications				
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.4636720MHz 41.80 (Margin 14.83dB) - QP 36.05 (Margin 10.58dB) - AV	FCC 15.207	Complied
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M: 17.68 / 40M: 36.87	≥500kHz	Complied
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]: 27.76	Power [dBm]: 30	Complied
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz]: -5.18	PSD [dBm/3kHz]: 8	Complied
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2398.83MHz: 35.08dB Restricted Bands [dBuV/m at 3m]: 2483.60MHz 67.26 (Margin 6.74dB) - PK 52.84 (Margin 1.16dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 4924.00MHz 56.13 (Margin 17.87dB) - PK 53.00 (Margin 1.00dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied

Revision History

Report No.	Version	Description	Issued Date
FR330515	Rev. 01	Initial issue of report	Mar. 27, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	RF Output Power (dBm)	Co-location
2400-2483.5	b	2412-2462	1-11 [11]	2	20.72	N/A
2400-2483.5	g	2412-2462	1-11 [11]	2	27.76	N/A
2400-2483.5	n (HT-20)	2412-2462	1-11 [11]	2	27.64	N/A
2400-2483.5	n (HT-40)	2422-2452	3-9 [7]	2	25.05	N/A

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating

2.4GHz and 5GHz.)

1.1.2 Antenna Information

		Antenna Category				
	Equipment placed on the market without antennas					
\square	Inte	gral antenna (antenna permanently attached)				
		Temporary RF connector provided				
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
	Exte	ernal antenna (dedicated antennas)				
		Single power level with corresponding antenna(s).				
		Multiple power level and corresponding antenna(s).				
		RF connector provided				
		Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)				
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)				

Antenna General Information				
No.	Ant. Cat.	Ant. Type	Gain (dBi)	
1	Integral	PIFA	2	
2	Integral	PIFA	2	

1.1.3 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
	Type of EUT				
\square	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle	Operated test mode for worst duty cycle			
Test Signal Duty Cycle (x)Power Duty Factor [dB] – (10 log 1/x)				
⊠ 100% - IEEE 802.11b	0			
⊠ 100% - IEEE 802.11g	0			
⊠ 100% - IEEE 802.11n (HT-20)	0			
🔀 100% - IEEE 802.11n (HT-40)	0			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 Accessories and Support Equipment

Accessories				
No. Equipment Brand Name Model Name Spec.				
1	USB cable	-	-	0.08m Non-shielded

	Support Equipment							
No.	Equipment	Model Name	Serial No.					
1	Notebook	DELL	Latitude E5430	DoC				
2	Notebook DELL		Latitude E5430	DoC				
3	Mouse Lenovo		MOEUUO	-				
4	iPod	Apple	A1050	-				

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911
- FCC KDB 412172

1.4 Testing Location Information

	Testing Location									
\bowtie	HWA YA	VA YA ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.								
		TEL	. : 886-3-327-34	56 FAX : 8	886-3-327-0973					
Т	Test Condition Test Site No. Test Engineer Test Environment Test Date									
F	RF Conducte	d	TH01-HY	lan Du	22°C / 61%	Mar. 22, 2013				
A	C Conductic	n	CO04-HY	Bill Hsiao	22°C / 54%	Mar. 18, 2013				
Ra	Radiated Emission 03CH05-HY Daniel Hsu 25°C / 65% Feb. 28 ~ Mar. 04, 2013									
	Test site registered number [643075] with FCC. Test site registered number [4086B-1] with IC.									

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

	Measurement Uncertainty	1	
Test Item		Uncertainty	Limit
AC power-line conducted emissions	±2.26 dB	N/A	
Emission bandwidth, 6dB bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature		±0.8 °C	N/A
Humidity	±3 %	N/A	
DC and low frequency voltages	±3 %	N/A	
Time	±1.42 %	N/A	
Duty Cycle		±1.42 %	N/A

Test Configuration of EUT 2

2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing								
Modulation Mode	Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	RF Output Power (dBm)				
11b,1-11Mbps	2	1-11 Mbps	11 Mbps	20.72				
11g,6-54Mbps	11g,6-54Mbps 2		6 Mbps	27.76				
HT20,M0-15	HT20,M0-15 2		MCS 0	27.64				
HT40,M0-15 2 MCS 0-15 MCS 0 25.05								
Note 1: IEEE Std. 802.11n modulation consists of HT-20 and HT-40 (HT: High Throughput). Then EUT support HT-20 and HT-40. Note 2: Modulation modes consist below configuration:								

11b: IEEE 802.11b, 11g: IEEE 802.11g, HT-20/HT-40: IEEE 802.11n Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

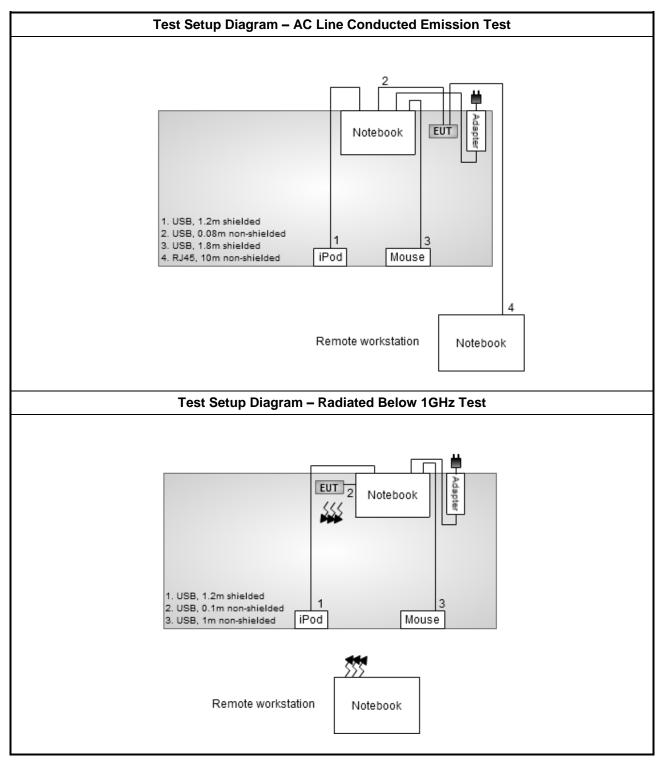
Test Channel Frequencies Configuration 2.2

Test Channel Frequencies Configuration					
IEEE Std. 802.11 Test Channel Frequencies (MHz)					
b, g, n (HT-20)	2412-(F1), 2437-(F2), 2462-(F3)				
n (HT-40)	2422-(F4), 2437-(F5), 2452-(F6)				

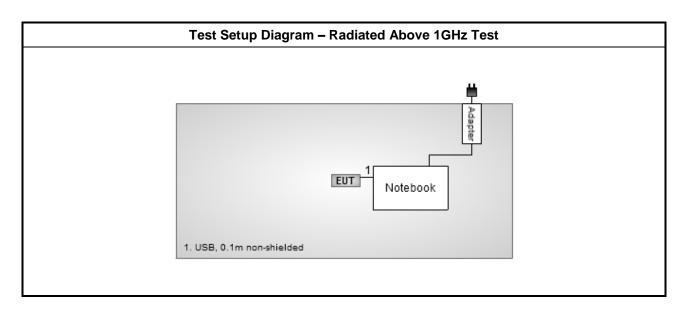
The Worst Case Power Setting Parameter 2.3

The Worst Case Power Setting Parameter (2400-2483.5MHz band)									
Test Software Version	Ralir	Ralink QA							
Test Frequency (MHz)									
Modulation Mode	N _{TX}	NCB: 20MHz			NCB: 40MHz				
		2412	2437	2462	2422	2437	2452		
11b,1-11Mbps	2	09/09	0B/0B	0B/0B	-	-	-		
11g,6-54Mbps	2	0C/0B	17/17	0D/0C	-	-	-		
HT20,M0-15	2	0A/0A	17/17	0D/0C	-	-	-		
HT40,M0-15	2	-	-	-	06/06	0D/0C	06/06		

2.4 The Worst Case Measurement Configuration


т	The Worst Case Mode for Following Conformance Tests						
Tests Item	AC power-line conducted emissions						
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz						
Operating Mode	Operating Mode Description						
1	DC Power & Radio link (WLAN)						

The Worst Case Mode for Following Conformance Tests							
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth						
Test Condition	Conducted measurement at transmit chains						
Modulation Mode	Modulation Mode 11b, 11g, HT-20, HT-40						


Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts					
Tests Item		Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions						
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.							
	EUT will be placed in	fixed position.						
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes. The worst planes is Y.							
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.							
Operating Mode < 1GHz	🛛 1. DC Power & Radi	io link (WLAN)						
Modulation Mode	11b, 11g, HT-20, HT-40							
	X Plane	Y Plane	Z Plane					
Orthogonal Planes of EUT								

2.5 Test Setup Diagram

Transmitter Test Result 3

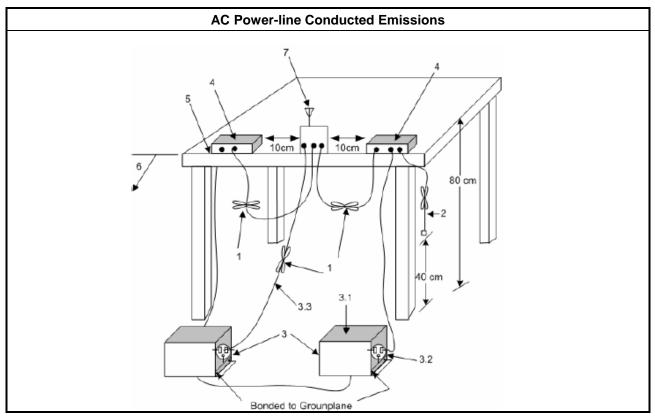
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

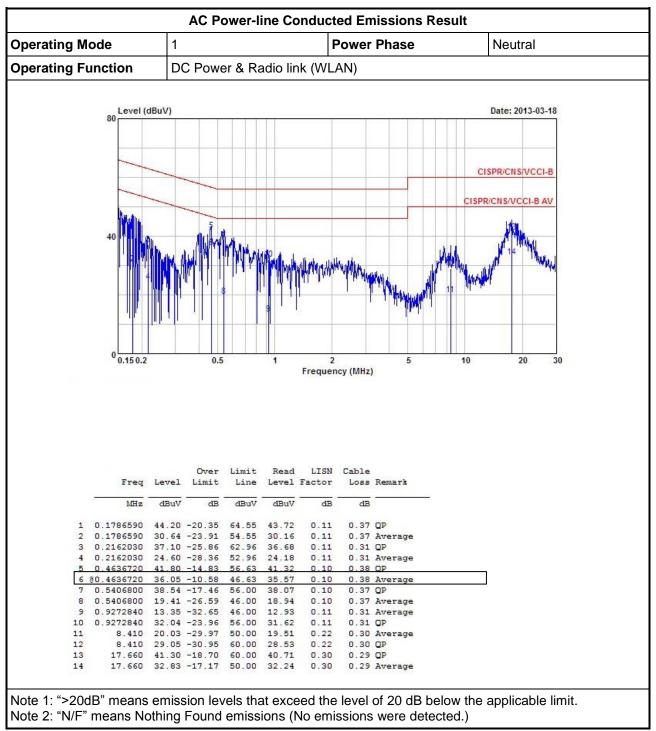
AC Power-line Conducted Emissions Limit								
Frequency Emission (MHz) Quasi-Peak Average								
0.15-0.5 66 - 56 * 56 - 46 *								
0.5-5	56	46						
5-30 60 50								
Note 1: * Decreases with the logarithm c	of the frequency							

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

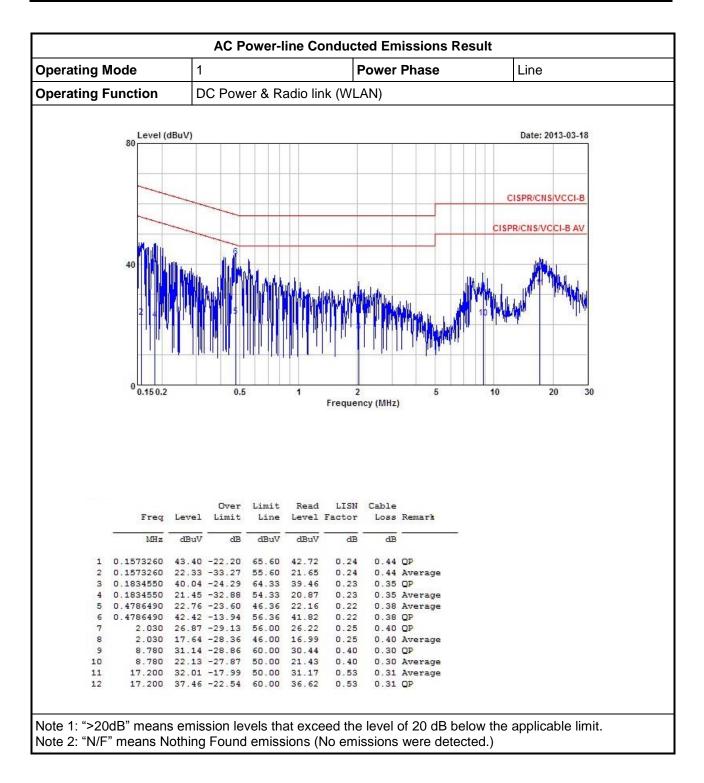

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



3.1.5 Test Result of AC Power-line Conducted Emissions

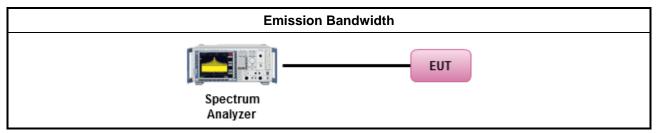
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

 \boxtimes 6 dB bandwidth ≥ 500 kHz.

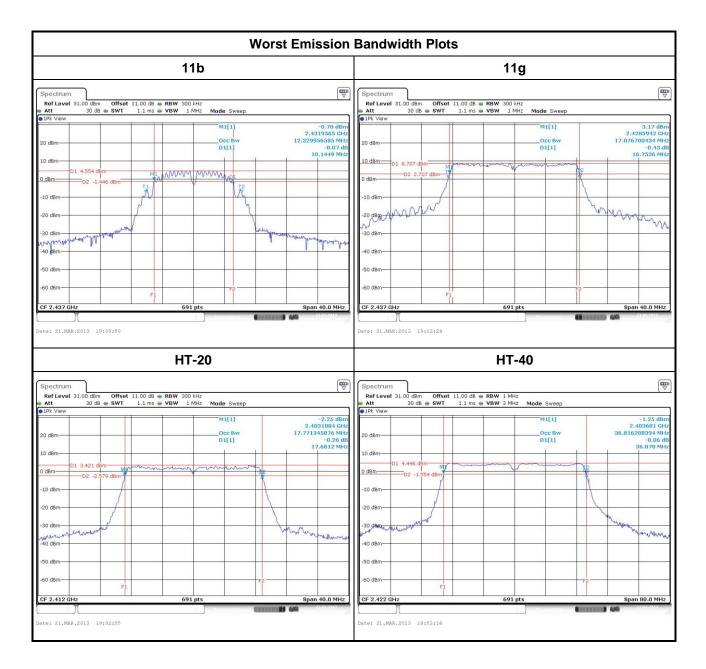

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method								
\square	For	the emission bandwidth shall be measured using one of the options below:								
	Refer as FCC KDB 558074, clause 7.1 Option 1 for 6 dB bandwidth measurement.									
	Refer as FCC KDB 558074, clause 7.2 Option 2 for 6 dB bandwidth measurement.									
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.								
\boxtimes	For	conducted measurement.								
		The EUT supports single transmit chain and measurements performed on this transmit chain.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
	\boxtimes	The EUT supports multiple transmit chains using options given below:								
	Option 1: Multiple transmit chains measurements need to be performed on one of the activ transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.									
	Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.									

3.2.4 Test Setup



3.2.5 Test Result of Emission Bandwidth

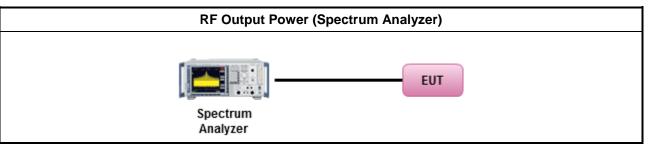
	Emission Bandwidth Result										
Condi	tion		Emission Bandwidth (MHz)								
Modulation		From		99% Bandwidth				6dB Bandwidth			
Modulation	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	-	-	Chain- Port 1	Chain- Port 2	-	-	
11b	2	2412	12.33	12.33	-	-	10.14	10.14	-	-	
11b	2	2437	12.21	12.33	-	-	10.14	10.14	-	-	
11b	2	2462	12.21	12.33	-	-	10.14	10.14	-	-	
11g	2	2412	16.96	17.02	-	-	16.64	16.64	-	-	
11g	2	2437	17.19	17.08	-	-	16.64	16.75	-	-	
11g	2	2462	16.96	16.90	-	-	16.70	16.70	-	-	
HT-20	2	2412	17.77	17.77	-	-	17.62	17.68	-	-	
HT-20	2	2437	18.06	17.89	-	-	17.62	17.62	-	-	
HT-20	2	2462	17.71	17.77	-	-	17.62	17.62	-	-	
HT-40	2	2422	36.82	36.82	-	-	36.87	36.75	-	-	
HT-40	2	2437	36.82	36.82	-	-	36.75	36.41	-	-	
HT-40	2	2452	36.82	36.70	-	-	36.64	36.75	-	-	
Limit			N/A ≥500 kHz								
Result			Complied								
Note 1: N _{TX} = Nu	mber c	of Transm	it Chains								

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

		RF Output Power Limit
Max	cimu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit
\square	240	0-2483.5 MHz Band:
	\boxtimes	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Smart antenna system (SAS):
		Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm
e.i.r	.p. P	ower Limit:
\square	240	0-2483.5 MHz Band
	\square	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$
		Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$
		Smart antenna system (SAS)
		Single beam: $P_{eirp} \leq MAX(36, P_{Out} + G_{TX}) dBm$
		□ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.1.1 Option 1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 8.1.2 Option 2 (integrated band power method).
	\boxtimes	Refer as FCC KDB 558074, clause 8.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)
\square	Max	imum Conducted (Average) Output Power
		Refer as FCC KDB 558074, clause 8.2.1 Option 1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 8.2.2 Option 2 (slow sweep speed).
	\boxtimes	Refer as FCC KDB 558074, clause 8.2.3 Option 3 (average power meter).
\square	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

	Dire	ectional Gain (D	G) Result		
Transmit Chains No.		1	2	-	-
Maximum G _{ANT} (dBi)		2	2	-	-
Modulation Mode	DG (dBi)	Ν _{τχ}	N _{ss}	STBC	Array Gain (dB)
11b,1-11Mbps	2.0	2	1	-	-
11g,6-54Mbps	2.0	2	1	-	-
HT-20,M0-M7	2.0	2	1	-	-
HT-20,M8-M15	2.0	2	2	-	-
HT-40,M0-M7	2.0	2	1	-	-
HT-40,M8-M15	2.0	2	2	-	-
Note 1: For all transmitter outputs Any transmit signals are co All transmit signals are co Note 2: For all transmitter outputs Any transmit signals are co All transmit signals are co Note 3: For Spatial Multiplexing, D where Nss = the number co Note 4: For CDD transmissions, di Directional Gain (DG) = G Array Gain = 0 dB (i.e., no Array Gain = 0 dB (i.e., no	orrelated mpletely with une orrelated npletely irectional f indepe rectional ANT + Arra array ga	, Directional Gai uncorrelated, Dir qual antenna gai , Directional Gai uncorrelated, Dir I Gain (DG) = G, ndent spatial stre gain is calculate ay Gain, where A in) for $N_{TX} \leq 4$;	n = G_{ANT} + 10 log rectional Gain = ins, directional gain n =10 log[(10 ^{G1/2} rectional Gain = T_{ANT} + 10 log(N _{TX} /1 eams data. ed as power mea Array Gain is as f	$\begin{array}{l} g(N_{TX}) \\ G_{ANT} \\ ain is to be comp \\ {}^0 + \ldots + 10^{GN/20})^2 \\ 10 \log[(10^{G1/10} + . N_{SS}), \\ N_{SS}), \end{array}$	

3.3.5 Directional Gain for Power Measurement

		Maxin	num Pea	k Cond	ucted O	utput Po	ower Re	sult			
Condi	tion					RF Outp	out Pow	er (dBm))		
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	-	-	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11b	2	2412	16.48	16.36	-	-	19.43	30.00	2.0	20.93	36.00
11b	2	2437	17.72	17.54	-	-	20.64	30.00	2.0	22.14	36.00
11b	2	2462	17.89	17.52	-	-	20.72	30.00	2.0	22.22	36.00
11g	2	2412	22.13	22.15	-	-	25.15	30.00	2.0	26.65	36.00
11g	2	2437	24.61	24.88	-	-	27.76	30.00	2.0	29.26	36.00
11g	2	2462	22.41	22.63	-	-	25.53	30.00	2.0	27.03	36.00
HT-20	2	2412	21.33	21.25	-	-	24.30	30.00	2.0	25.80	36.00
HT-20	2	2437	24.52	24.74	-	-	27.64	30.00	2.0	29.14	36.00
HT-20	2	2462	21.95	22.01	-	-	24.99	30.00	2.0	26.49	36.00
HT-40	2	2422	19.23	19.02	-	-	22.14	30.00	2.0	23.64	36.00
HT-40	2	2437	21.93	22.14	-	-	25.05	30.00	2.0	26.55	36.00
HT-40	2	2452	19.14	18.92	-	-	22.04	30.00	2.0	23.54	36.00
Res	ult					C	Complie	d			

3.3.6 Test Result of Maximum Peak Conducted Output Power

3.3.7 Test Result of Maximum Conducted Output Power

			Maximu	ım Cond	ducted C	Dutput P	ower				
Condi	ition					RF Outp	out Pow	er (dBm)			
Modulation Mode	Ν _{τχ}	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	-	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11b	2	2412	12.65	12.61	-		15.64	30.00	2.0	17.14	36.00
11b	2	2437	13.86	13.81	-		16.85	30.00	2.0	18.35	36.00
11b	2	2462	13.86	13.65	-		16.77	30.00	2.0	18.27	36.00
11g	2	2412	13.84	13.51	-		16.69	30.00	2.0	18.19	36.00
11g	2	2437	18.43	18.48	-		21.47	30.00	2.0	22.97	36.00
11g	2	2462	14.01	14.13	-		17.08	30.00	2.0	18.58	36.00
HT-20	2	2412	12.75	12.42	-		15.60	30.00	2.0	17.10	36.00
HT-20	2	2437	18.31	18.38	-		21.36	30.00	2.0	22.86	36.00
HT-20	2	2462	13.62	13.54	-		16.59	30.00	2.0	18.09	36.00
HT-40	2	2422	10.62	10.24	-		13.44	30.00	2.0	14.94	36.00
HT-40	2	2437	13.68	13.62	-		16.66	30.00	2.0	18.16	36.00
HT-40	2	2452	10.52	10.43	-		13.49	30.00	2.0	14.99	36.00
Res	ult					C	Complie	d			

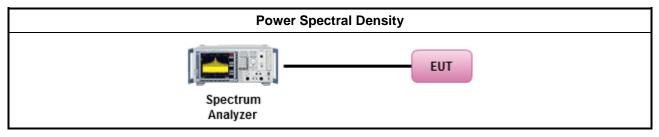
3.4 **Power Spectral Density**

3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

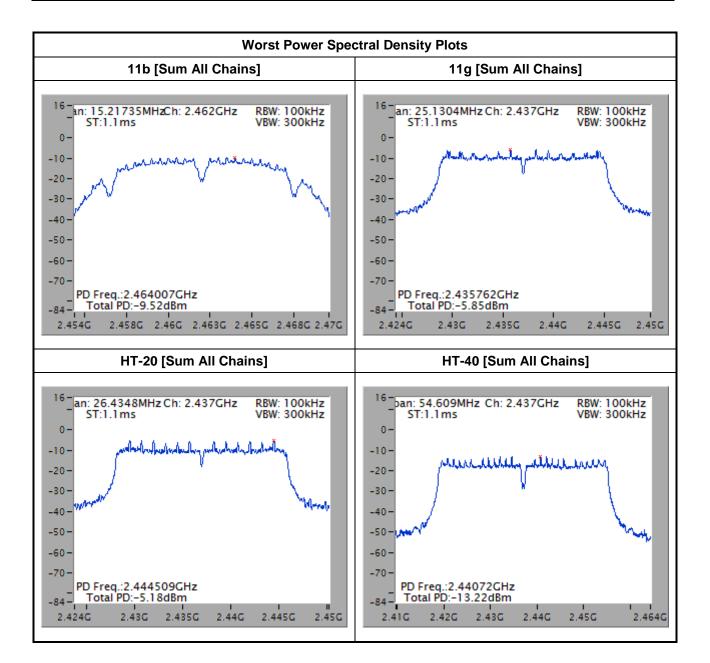
3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 **Test Procedures**

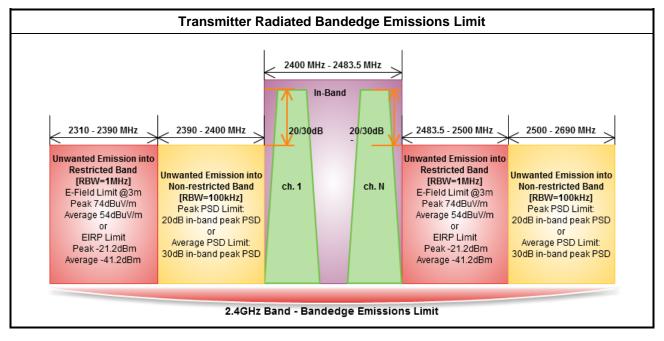
		Test Method
	pow proc whe dem	ver spectral density procedures that the same method as used to determine the conducted output ver shall be used to determine the power spectral density. In addition, the use of a peak PSD cedure will always result in a "worst-case" measured level for comparison to the limit. Therefore, enever the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to nonstrate compliance to the PSD limit, regardless of how the fundamental output power was asured. For the power spectral density shall be measured using below options:
	\boxtimes	Refer as FCC KDB 558074, clause 9.1 Option 1 - (RBW≥3kHz; sweep=auto, detector=peak).
		Refer as FCC KDB 558074, clause 9.2 Option 2 - (RBW≥3kHz; sweep=auto, average=100).
		Refer as FCC KDB 558074, clause 9.3 Option 3 - (RBW≥3kHz; slow sweep speed).
		Refer as FCC KDB 558074, clause 9.4 Alternative 1 (average PSD; Add 10log (1/duty cycle).
	\bowtie	RBW>3kHz, add the bandwidth correction factor (BWCF) adjusting in PSD per 3kHz.
\square	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.

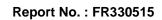
3.4.4 Test Setup



3.4.5 Test Result of Power Spectral Density

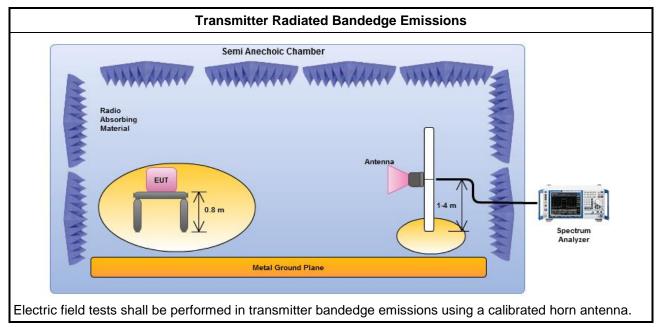
			Power S	pectral Dens	sity Result			
Cond	ition			Power	Spectral D	ensity (dBı	n/3kHz)	
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	-	-	Sum Chain	Power Limit
11b	2	2412	-10.40	-11.06	-	-	-10.77	8
11b	2	2437	-9.57	-9.79	-	-	-9.68	8
11b	2	2462	-9.48	-9.57	-	-	-9.52	8
11g	2	2412	-9.42	-10.25	-	-	-9.81	8
11g	2	2437	-4.85	-4.88	-	-	-5.85	8
11g	2	2462	-9.46	-9.90	-	-	-9.67	8
HT-20	2	2412	-10.09	-10.83	-	-	-10.44	8
HT-20	2	2437	-4.60	-5.21	-	-	-5.18	8
HT-20	2	2462	-9.56	-9.81	-	-	-9.68	8
HT-40	2	2422	-15.24	-15.79	-	-	-15.57	8
HT-40	2	2437	-12.28	-12.98	-	-	-13.22	8
HT-40	2	2452	-15.19	-15.72	-	-	-15.49	8
Res	ult				Com	plied		
Note 1: PSD [dBn	n/3kHz]	= sum ea	ich transmit	chains by bir	n-to-bin PSD	0 [dBm/100k	(Hz] + BWFC	[-15.2 dB]





3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nonel and highest frequency channel within the allowed operating band.
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\square	Refer as FCC KDB 558074, clause 10.1 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 1 (spectral trace averaging)
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 2 (slow sweep speed).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW).
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 10.2.3.2 and 8.1.1 measurement procedure peak limit.
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 558074, clause 10.2.5.2 for narrower resolution bandwidth using the band power and summing the spectral levels (i.e., 100 kHz or 1 MHz).
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\square	For	radiated measurement, refer as FCC KDB 558074, clause 10.2.1.
\square	For	conducted measurement, refer as FCC KDB 558074, clause 10.2.2.

3.5.4 Test Setup

	Tra	ansmitter Ra	iulateu Dai			•		
Modulation		11b		Ντχ	2			
lon-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	P
2390-2400	2412	102.85	2398.20	54.70	48.15	20	PK	,
2500-2690	2462	101.94	2502.60	40.57	61.37	20	PK	,
			2002.00		00.	20		
	Low Bando	edge			Up Ba	Indedge	I	
117 Level (dBuV/m)	_	edge	Date: 2013-02-28	117 ^{Level} (dBuV/r	Up Ba		Date: 20	
	_	edge			Up Ba		I	
117 Level (dBuVim) 105.3 93.6 81.9	_	edge		117 Level (dBaV/r 105.3 93.6 81.9	Up Ba		Date: 20	13-02-2
117 Level (dBuVim) 105.3 93.6	_		Date: 2013-02-28	117 Level (dBuV/r 105.3 93.6	Up Ba		Date: 20	13-02-2 :LASS-E
117 Level (dBuV/m) 105.3 33.6 81.9 70.2 58.5	Low Bande		Date: 2013-02-28	117 Level (dBuV/r 1053 93,6 81,9 70,2	Up Ba	Indedge	Date: 20	13-02-2 :LASS-E
117 Level (dBuV/m) 105.3 33.6 81.9 70.2 58.5	Low Bande		Date: 2013-02-28	117 1053 93.6 70.2 58.5	Up Ba	Indedge	Date: 20	13-02-2
117 Level (dBuV/m) 105.3 93.6 81.9 70.2 58.5	_		Date: 2013-02-28	117 Level (dBuV/r 105.3 93.6 70.2 58.5 46.8	Up Ba	Indedge	Date: 20	13-02-2

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

	Tra	ansmitter Ra	diated Bar	ndedge Emis	sions Result					
Modulation		11b		N _{TX}	2					
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.		
2310-2390	2412	106.11	2390.00	3	65.21	74.00	PK	V		
2310-2390	2412	103.12	2389.40	3	37.38	54.00	AV	V		
2483.5-2500	2462	104.65	2483.70	3	62.31	74.00	PK	V		
2483.5-2500	2462	101.90	2483.60	3	36.22	54.00	AV	V		
Note 1: Measurem	ent worst e	missions of r	eceive ante	nna polarizat	ion: H (Horizo	ntal) or V (Ve	ertical).			

Modula	tion		11g		N _{TX}	2			
Non-resti Band (N		Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
2390-24	400	2412	103.01	2398.80	66.61	36.40	20	PK	V
2500-26	690	2462	101.55	2502.90	44.07	57.48	20	PK	V
		Low Band	edge			Up Ba	andedge		
93.6 81.9 70.2 58.5 46.8		and person and a second s	and and a second	FCC CLASS.B	93.6 81.9 70.2 58.5 46.8	and the second s	3	FCC CLASS	ELASS B
35.1 23.4 11.7					35.1 23.4 11.7				
0 <mark>2322 233</mark>	0. 2340.	2350. 2360. 2370. Frequency	2380. 2390. 2400. (MHz)	2410. 2422	02452 2460.	2470. 2480. 2490.	2500. 2510. 2520. Frequency (MHz)	2530. 2540.	2552

Modulation		11g		N _{TX}	2				
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1	
2310-2390	2412	110.33	2390.00	3	67.92	74.00	PK	V	
2310-2390	2412	99.65	2390.00	3	50.20	54.00	AV	V	
2483.5-2500	2462	108.67	2484.50	3	64.59	74.00	PK	V	
2483.5-2500	2462	97.82	2484.50	3	46.37	54.00	AV	V	

Modulation HT-20		N _{TX}	2					
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol note
2390-2400	2412	103.76	2399.90	66.05	37.71	20	PK	V
2500-2690	2462	104.07	2501.20	44.69	59.38	20	PK	V
	Low Band	edge			Up Ba	indedge		
93.6 81.9 70.2 58.5 46.9 35.1 <i>Mr. Andrew Street My Content of the Street Stree</i>	apraventing to a start of the s	and a second second	FCC CLASS B	93.6 81.9 70.2 58.5 46.8 35.1	Marry and	3 ************************************	FCC CLASS	LASS.B B (AVG)
23.4	340. 2360.	2380. 2400 (MHz)	. 2422	23.4 11.7 0 2452 2460.	2470. 2480. 2490.	2500. 2510. 2520. Frequency (MHz)	2530. 2540.	2552

Modulation		HT-20		Ντχ	2			
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	2412	109.01	2388.51	3	68.06	74.00	PK	V
2310-2390	2412	99.35	2389.97	3	51.06	54.00	AV	V
2483.5-2500	2462	109.45	2484.10	3	72.56	74.00	PK	V
2483.5-2500	2462	99.77	2483.40	3	52.64	54.00	AV	V

Modulation		HT-40		Ντχ	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
2390-2400	2422	96.60	2398.83	61.52	35.08	20	PK	V
2500-2690	2452	97.20	2500.40	43.63	53.57	20	PK	V
Low Bandedge					Up Ba	ndedge		
93.6 81.9 70.2 58.5 46.8		while and the second se	FCC CLASS B CC CLASS B (AVG)	93.6 14 17 44 17 	and allowed the second	2 MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	FCC C	LASS-B B (AVG)
35.1 with mand of your dates	and mental desidence and the good			35.1			er neuron of manufacture and the	har har my

Modulation		HT-40		Ντχ	2			
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1
2310-2390	2422	103.61	2389.73	3	67.97	74.00	PK	V
2310-2390	2422	93.67	2389.99	3	52.35	54.00	AV	V
2483.5-2500	2452	103.08	2484.44	3	67.26	74.00	PK	V
2483.5-2500	2452	94.15	2483.60	3	52.84	54.00	AV	V

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit					
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)		
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300		
0.490~1.705	24000/F(kHz)	33.8 - 23	30		
1.705~30.0	30	29	30		
30~88	100	40	3		
88~216	150	43.5	3		
216~960	200	46	3		
Above 960	500	54	3		
Above 960		_	3		

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

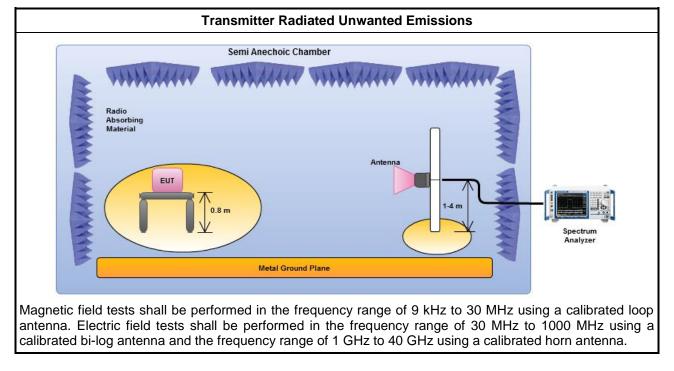
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Ban	d Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
	n the peak conducted output power measured within band shall be attenuated by at least 20 dB relative to vel.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

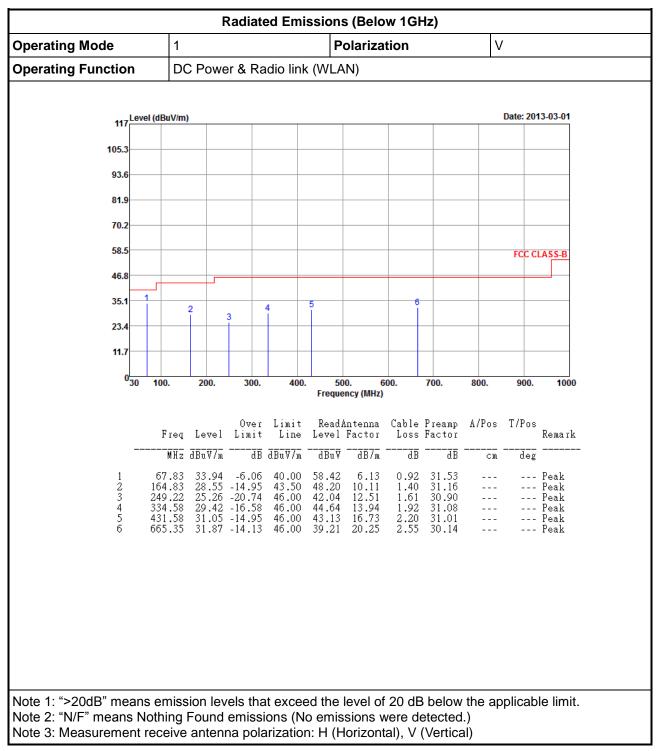
Refer a test equipment and calibration data table in this test report.



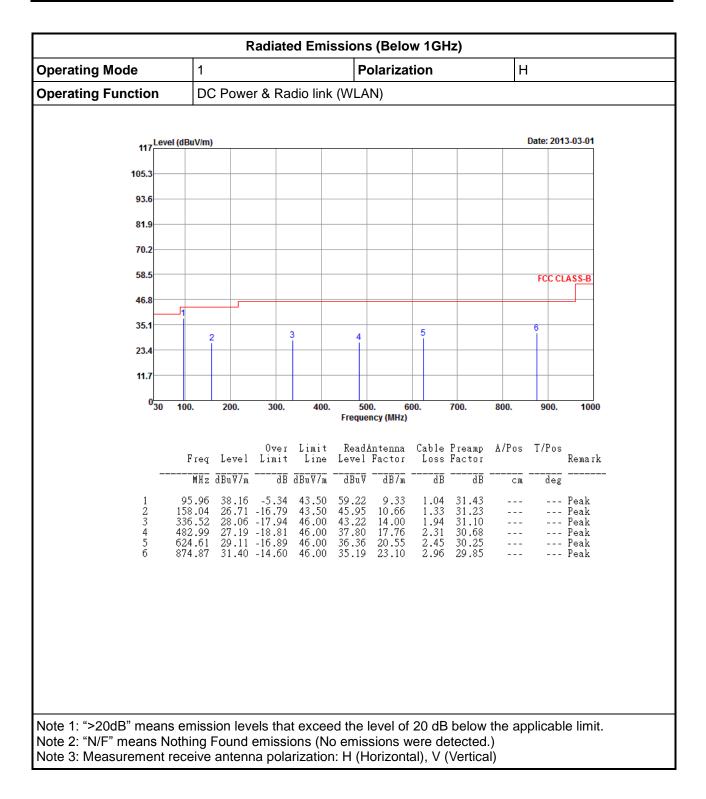
3.6.3 Test Procedures

		Test Method
	perf equi extra dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements).
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
		Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 10.1 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 1 (spectral trace averaging)
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 2 (slow sweep speed).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle \ge 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 10.2.3.2 and 8.1.1 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 10.2.3.1 measurement procedure Quasi-Peak limit.
\square	For	radiated measurement, refer as FCC KDB 558074, clause 10.2.1.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.
	For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 10.2.2.
		For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
		For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB

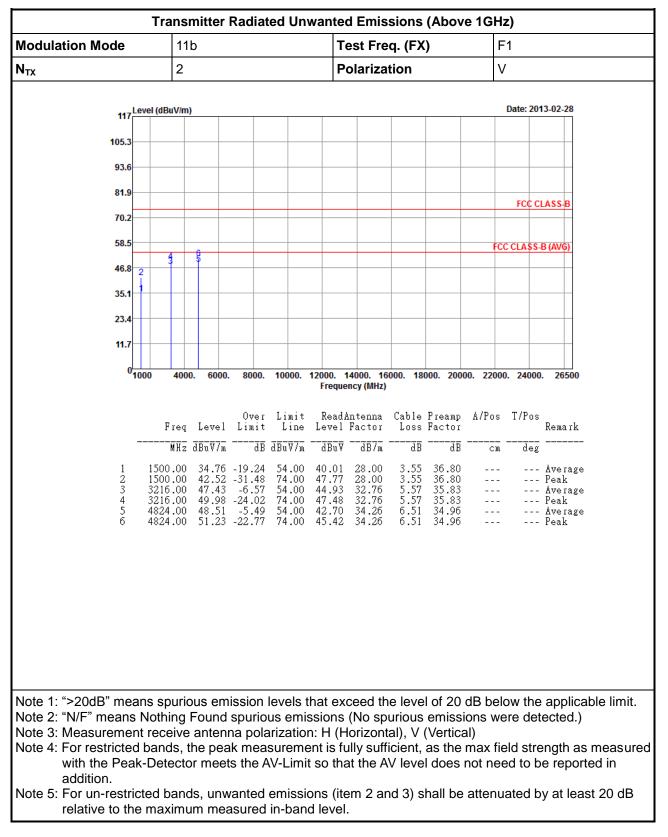
3.6.4 Test Setup



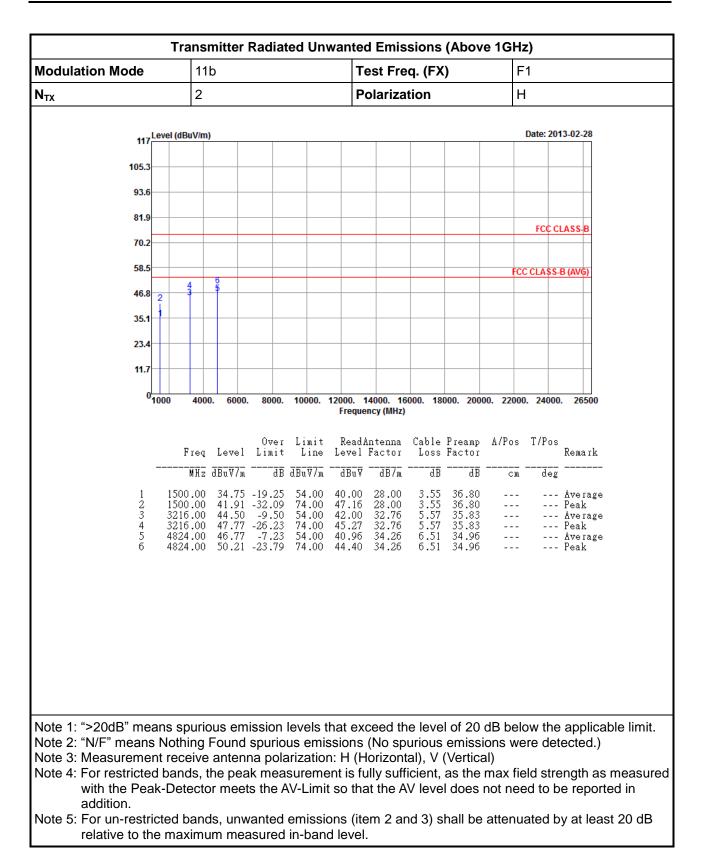
3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)


All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

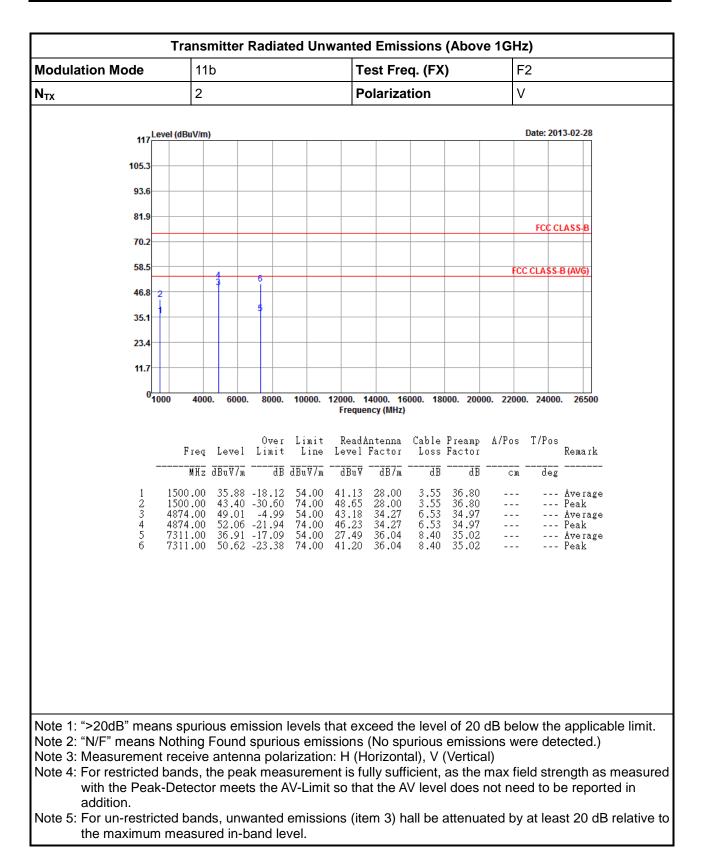
3.6.6 Radiated Emissions (Below 1GHz)



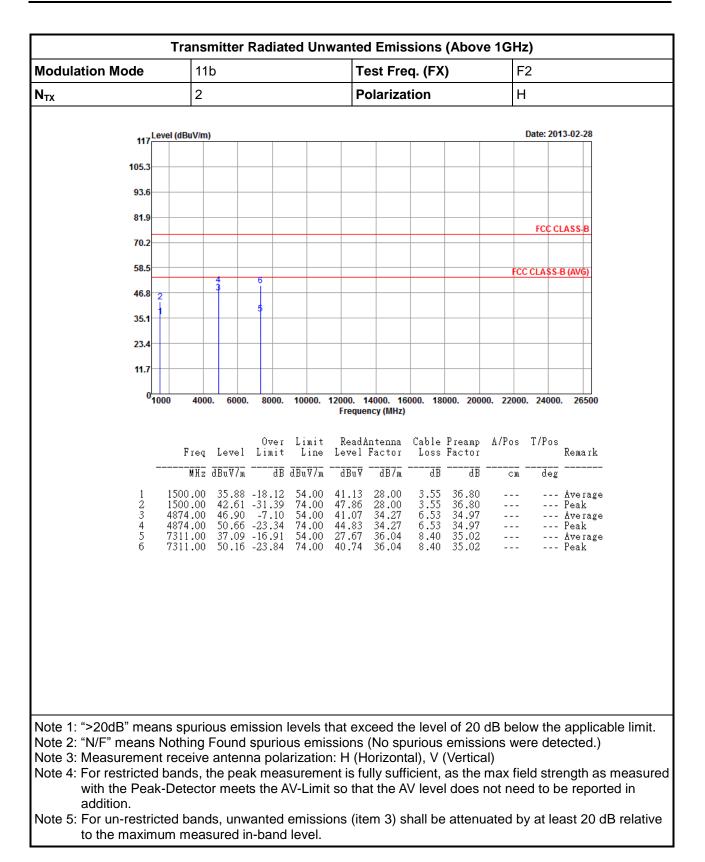




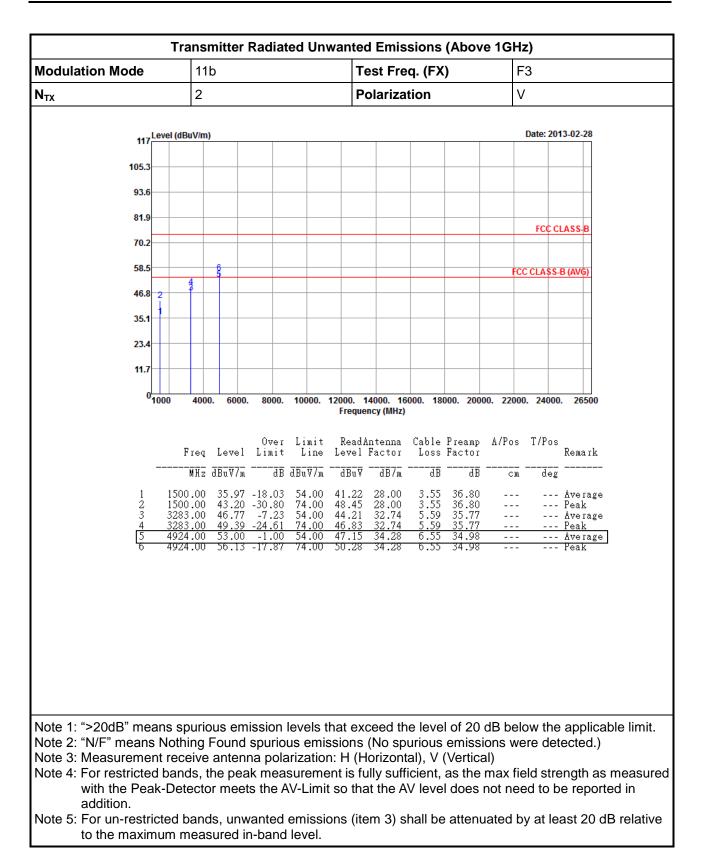
3.6.7	Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b
-------	--



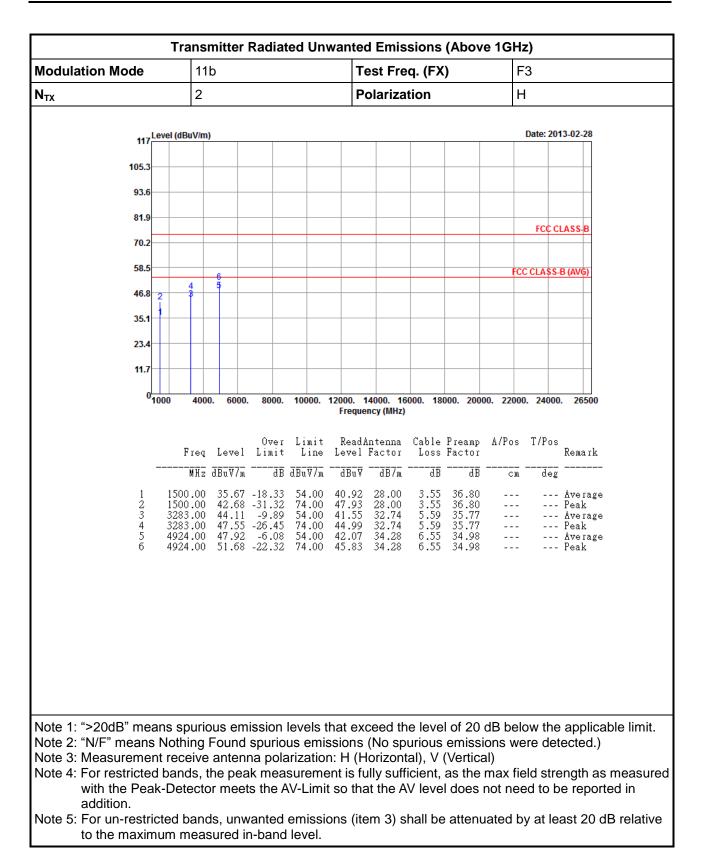


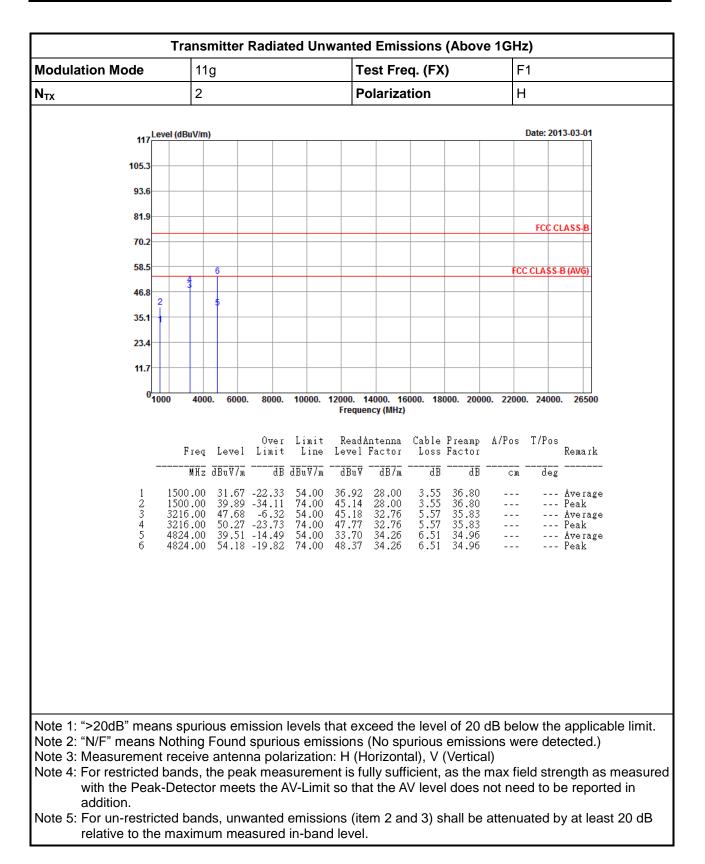






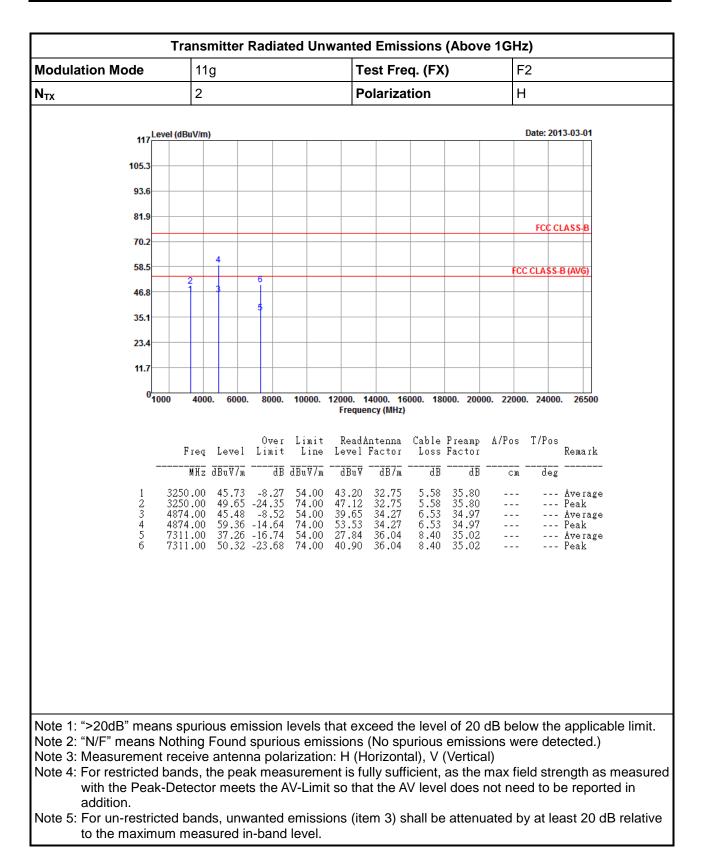


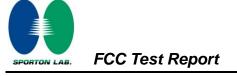


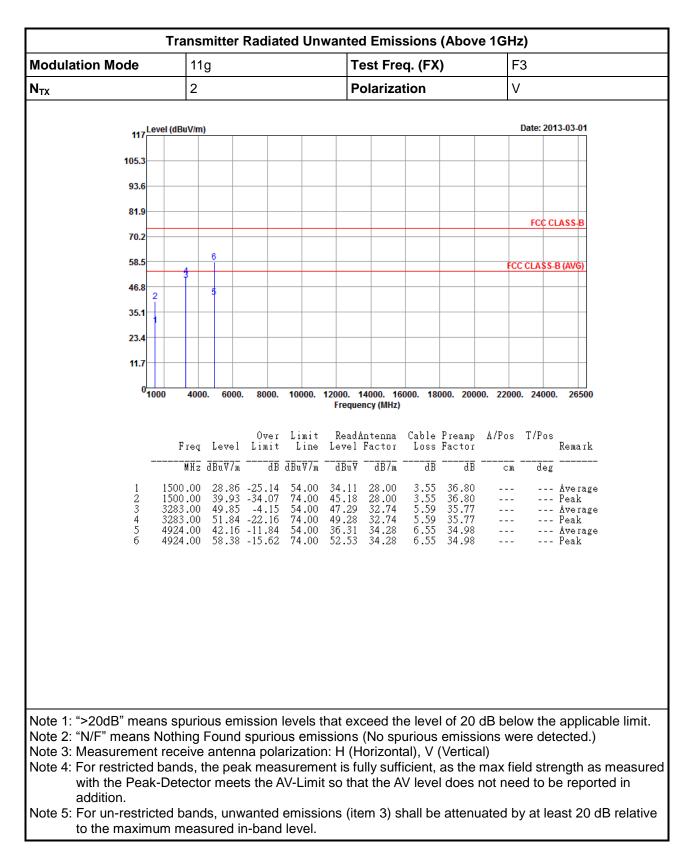


Transmitter Radiated Unwanted Emissions (Above 1GHz) **Modulation Mode** Test Freq. (FX) F1 11g \mathbf{N}_{TX} 2 V Polarization 117 Date: 2013-03-01 105.3 93.6 81.9 FCC CLASS 70.2 58.5 CC CLASS-B (AVG) 46.8 35.1 23.4 11.7 ⁰1000 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 24000. 26500 4000. 6000. Frequency (MHz) ReadAntenna Cable Preamp A/Pos T/Pos Over Limit Freq Level Limit Remark Line Level Factor Loss Factor <u>dB dBuV7m dBuV dB7m </u> MHz dBuV/m dB <u>dB</u> deg сm 54.00 74.00 54.00 74.00 3.55 3.55 5.57 5.57 33.13 28.00 36.80 - - ---- Åverage 44.20 44.65 47.44 36.80 35.83 35.83 28.00 32.76 32.76 - - -2 3 4 5 6 --- Peak --- Average - - ---- Peak - - -54.00 74.00 34.66 34.26 6.51 34.96 - - ---- Average 6.51 4824.00 53.51 -20.49 47.70 34.26 34.96 --- Peak - - -Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. Note 5: For un-restricted bands, unwanted emissions (item 2 and 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

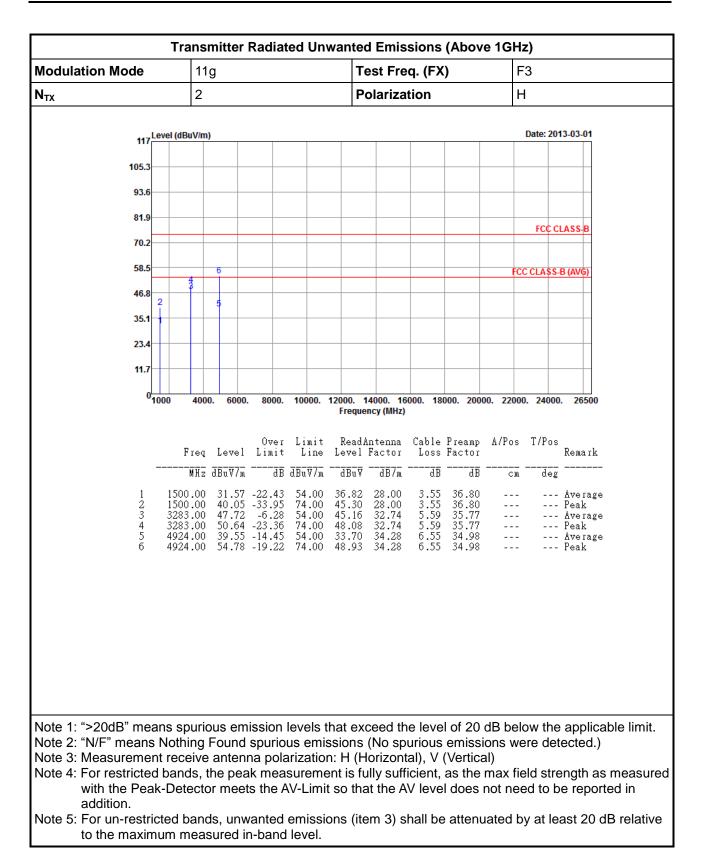
3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g



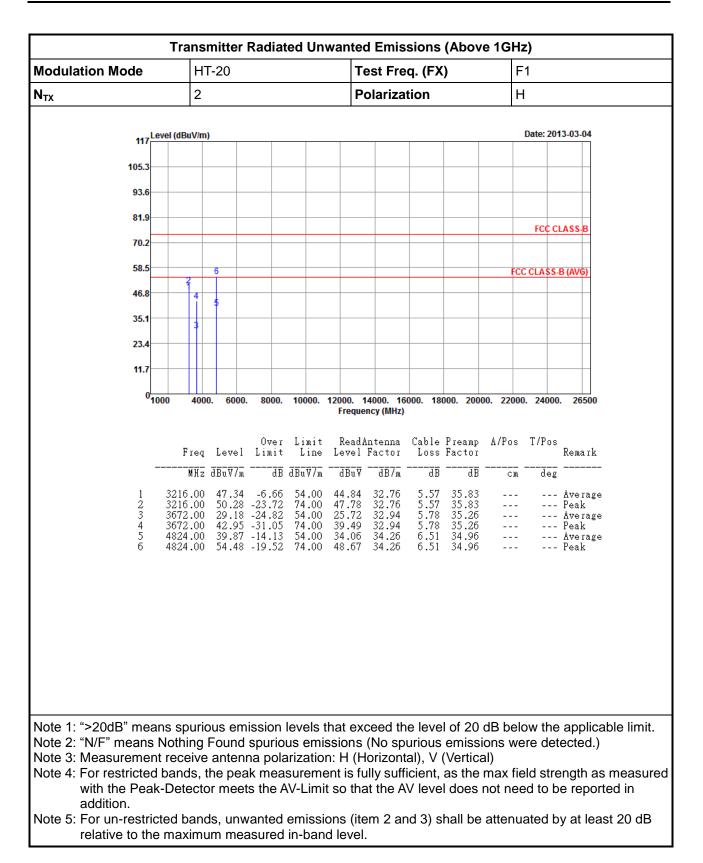

Report No. : FR330515





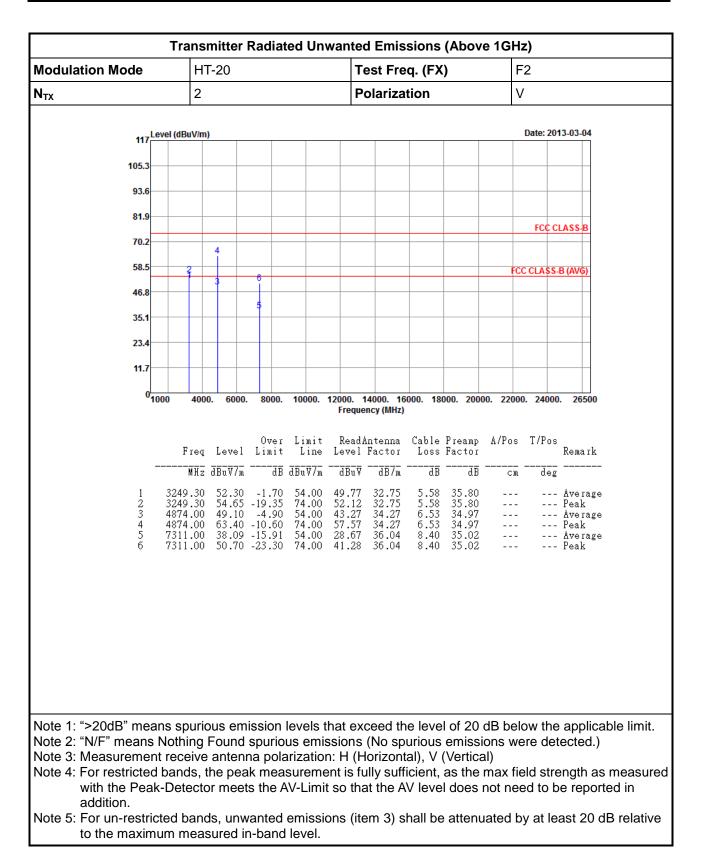




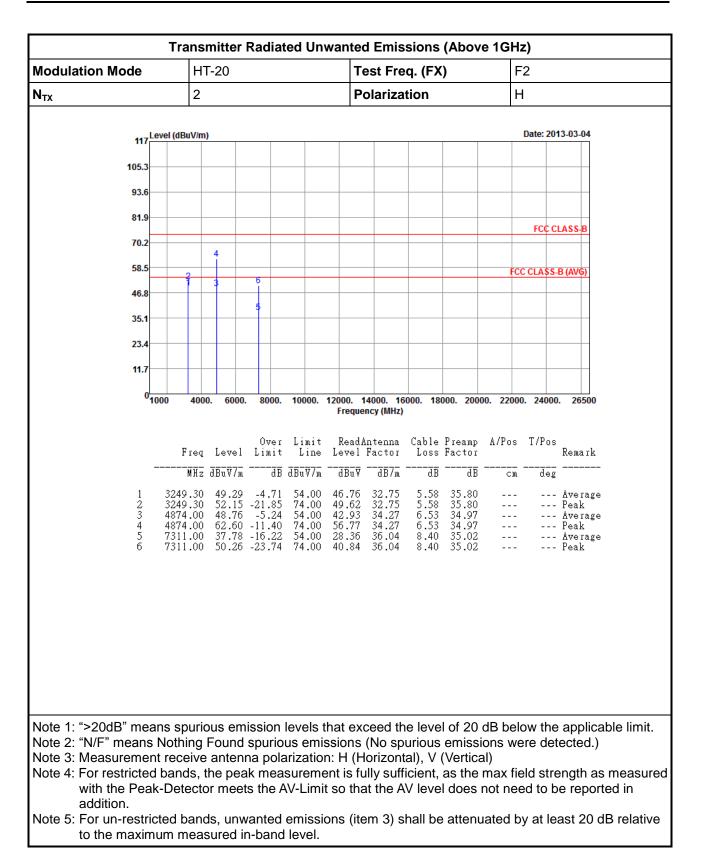



Modulation Mode		HT-20)		Т	est Fre	q. (FX	()	F	1	
N _{TX}		2			Р	olariza	tion		V		
117	Level (dBu	V/m)								Date: 201	13-03-04
105.3											
93.6											
81.9											
										FCC C	LASS-B
70.2		6									
58.5	2								FCC	CLASS-	B (AVG)
46.8		4									
35.1		3									
23.4											
11.7											
C	1000	4000. 6	5000. 800	0 10000	12000	14000 16	000 49	000. 2000	0 22000	24000	26500
		10001				ency (MHz)		2000	. 22000		20000
				er Limit	t Read.	Antenna	Cable	Preamp	A/Pos	T/Pos	
				it Line							Remark
1				<u>∃B</u> dBuV77 92 54.00				<u>dB</u>	CM	deg	
1 2 3	3216	.00 53	.38 -20.6	52 74.00 52 74.00 04 54.00	50.88	32.76	5.57	35.83 35.83 35.26			Average Peak Average
4 5 6	3672	.00 42	.28 -31.	72 74.00 29 54.00) 38.82	32.94	5.78	35.26 34.96			Peak Average
ŏ	4824	.00 60	.94 -13.0	06 74.00	55.13	34.26		34.96			Peak
Note 1: ">20dB" me	ans sp	urious	emissio	n levels	that ex	ceed th	e leve	l of 20 d	dB belo	ow the	applic
lote 2: "N/F" means										re det	tected.)
	nt rece	ive an								d etre	angth a
Note 3: Measureme		s. the	oeak me	easurem	ient is i	unv sun	IUIEIII.	as 1110 I		มน อแต	511UULI a
Note 3: Measureme Note 4: For restricte with the Pea	d band										
Note 3: Measureme Note 4: For restricte	d band ak-Dete	ector m	eets the	e AV-Lim	it so th	at the A	V leve	l does r	not nee	ed to b	e repoi

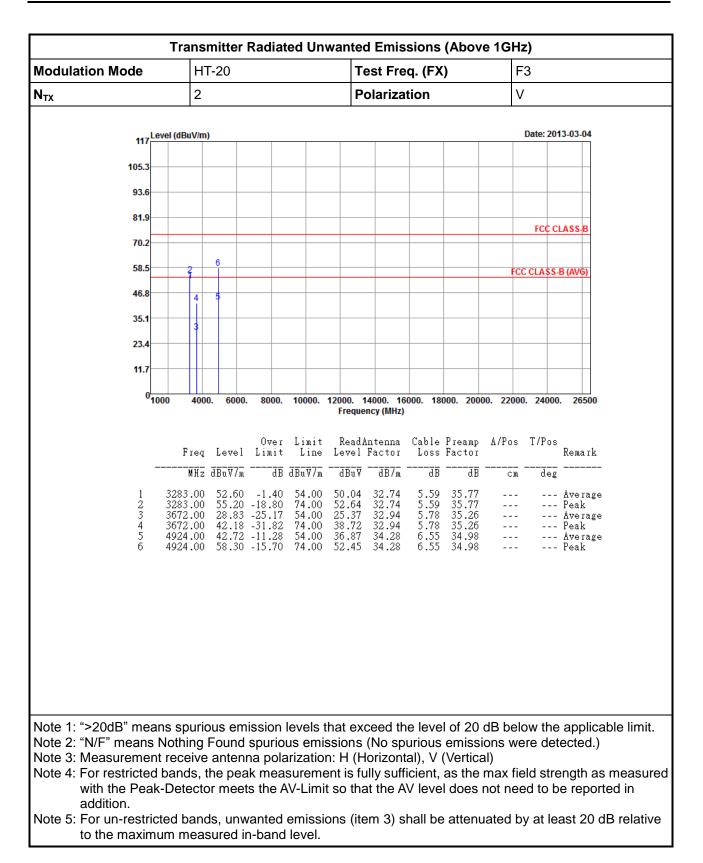
3.6.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-20



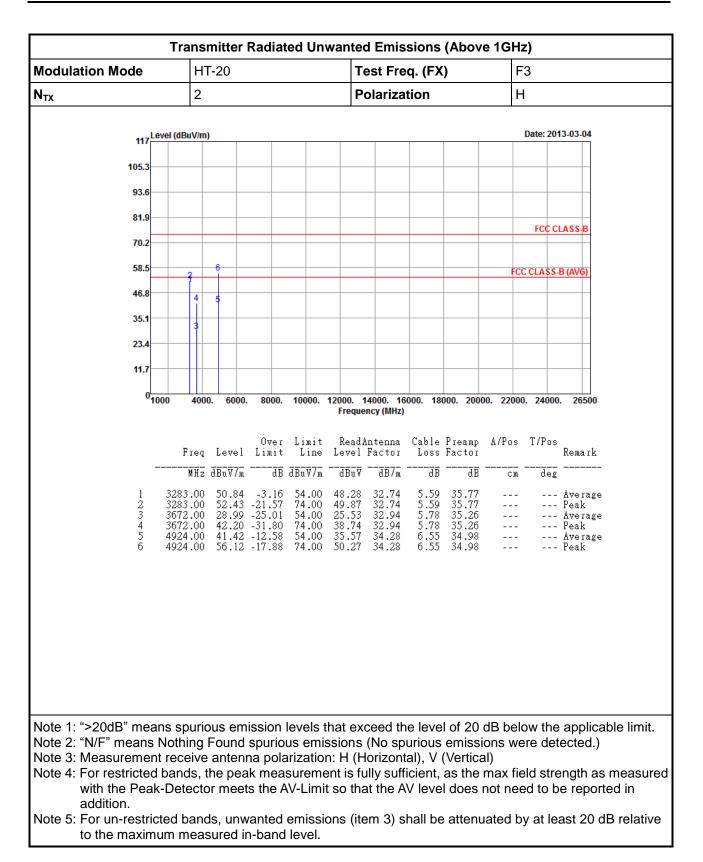




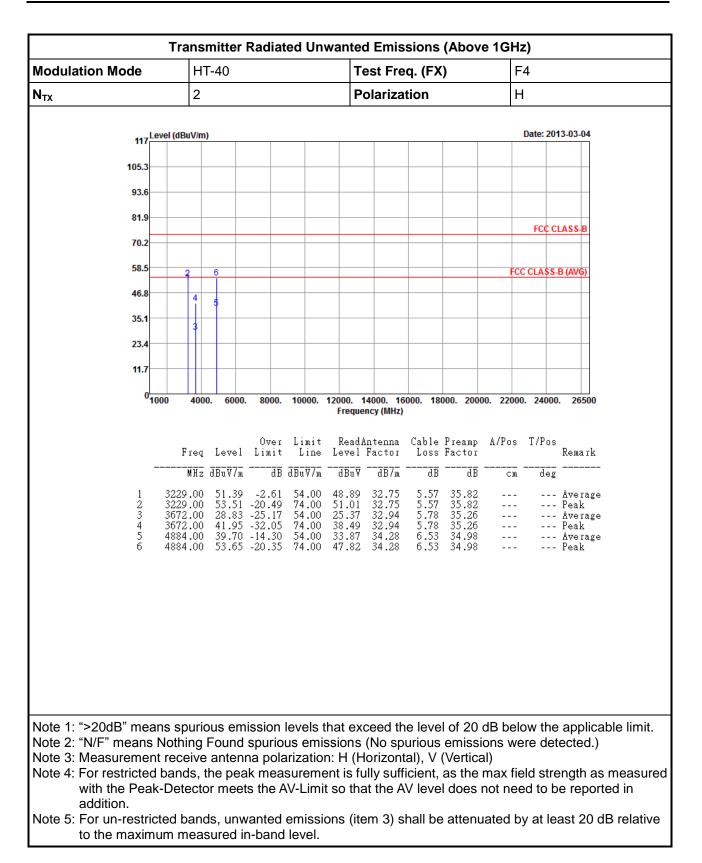






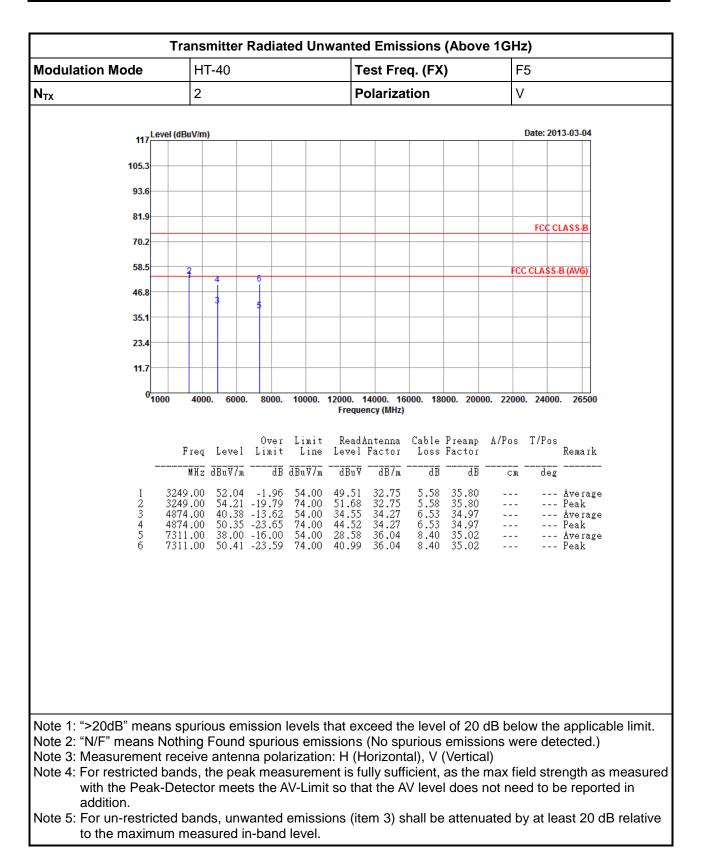




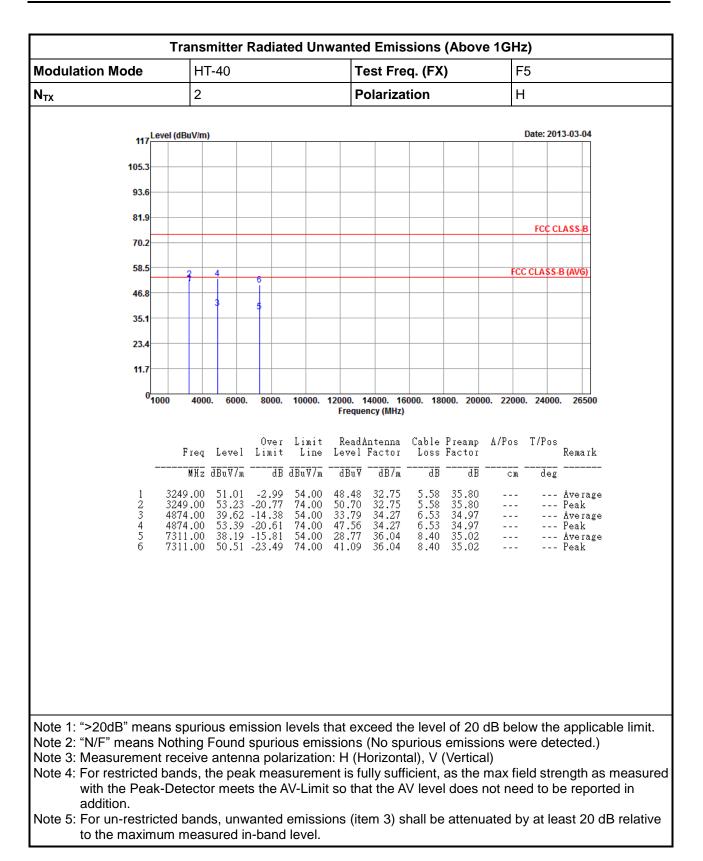



			Naulai					(Abov		-		
Modulation Mode		HT-40				Test Freq. (FX)				F4		
N _{TX}	2				P	olariza	tion		V	/		
1	_evel (dBuV/m)								Date: 20	13-03-04	
117												
105.3												
93.6												
81.9										FCCC	LASS-B	
70.2											.LA33-D	
58.5	2	6							FC	C CLASS	-B (AVG)	
46.8												
35.1	4	5										
	3											
23.4												
11.7												
0,	1000 400	0. 6000.	8000.	10000.		4000. 16 ncy (MHz)		000. 2000	00. 2200	0. 24000). 26500	
					rieque	iicy (wriz)						
	Freq	Level	Over Limit	Limit Line	Read <i>l</i> Level	intenna Factor	Cable Loss	Preamp Factor	A/Pos	T/Pos	Remark	
	MHz	<u>dBu∀7m</u>	āB	<u>dBuV7m</u>		<u>d</u> B/m	<u>dB</u>	dB	cm	deg		
1	3229.00	51.64	-2.36	54.00	49.14 51.27	32.75 32.75	5.57	35.82 35.82			Average	
2 3 4	3229.00 3672.00 3672.00	28.44	-20.23	74.00 54.00 74.00	24.98	32.94	5.78	35.26 35.26			Peak Average Peak	
2 3 4 5 6	4844.00	39.98	-14.02	54.00 74.00	34.16	34.27	6.52	34.97 34.97			Average Peak	
Ŭ	4044.00	55.05	-20.15	74.00	40.00	54.27	0.52	54.97			lean	
ote 1: ">20dB" mea												
ote 2: "N/F" means ote 3: Measureme										ere de	tected.)	
lote 4: For restricted	d bands, t	the pea	k mea	sureme	ent is fu	ully suff	icient,	as the	max fie			
with the Pea addition.	k-Detecto	or meet	s the A	V-Limi	t so tha	at the A	V leve	I does	not nee	ed to b	be report	
ote 5: For un-restri					ons (ite	em 3) s	hall be	e attenu	uated b	y at le	ast 20 d	
to the maxim	num meas	sured in	n-band	level.								

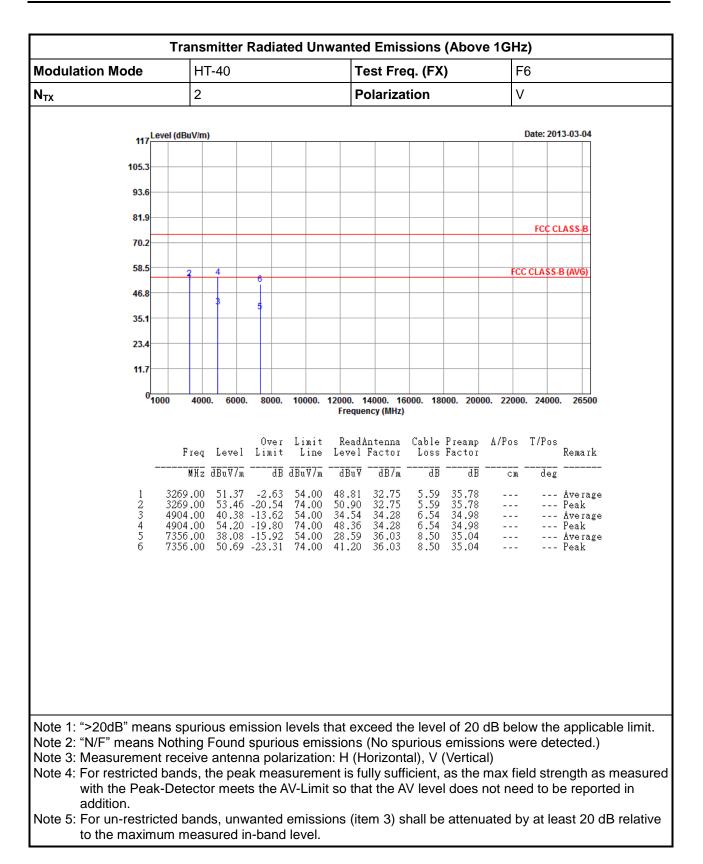
3.6.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-40



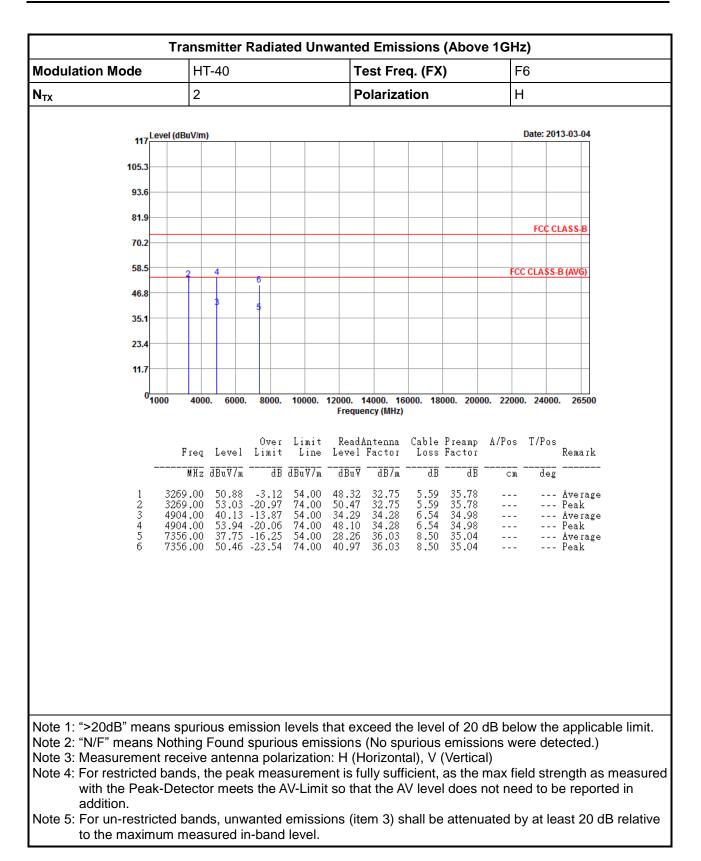












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 kHz ~ 2.75 GHz	Nov. 22, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRO NIK	NSLK 8127	8127-477	9kHz – 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Nov. 09, 2012	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
R&S	FSP 30	100023/030	9KHz ~ 30GHz	Apr. 27, 2012	Conducted (TH01-HY)
G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
Giant Force	GTH-225-20- SP-SD	MAA1112-007	-20 ~ 100 ℃	Nov. 21, 2012	Conducted (TH01-HY)
R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Sep. 08, 2012	Conducted (TH01-HY)
Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Sep. 08, 2012	Conducted (TH01-HY)
HUBER+SUHNER	SUCOFLEX_ 104	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
HUBER+SUHNER	SUCOFLEX_ 104	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
	R&S G.W. Giant Force R&S Anritsu Anritsu HUBER+SUHNER	R&SFSP 30G.W.GPC-6030DGiant ForceGTH-225-20- SP-SDR&SSMR40AnritsuMA2411BAnritsuML2495AHUBER+SUHNERSUCOFLEX_ 104HUBER+SUHNERSUCOFLEX_	R&S FSP 30 100023/030 G.W. GPC-6030D C671845 Giant Force GTH-225-20- SP-SD MAA1112-007 R&S SMR40 100116 Anritsu MA2411B 1027452 Anritsu ML2495A 1124009 HUBER+SUHNER SUCOFLEX_ 104 SN 345675/4	R&S FSP 30 100023/030 9KHz ~ 30GHz G.W. GPC-6030D C671845 DC 1V ~ 60V Giant Force GTH-225-20- SP-SD MAA1112-007 -20 ~ 100°C R&S SMR40 100116 10MHz ~ 40GHz Anritsu MA2411B 1027452 300MHz ~ 40GHz HUBER+SUHNER SUCOFLEX_ 104 SN 345675/4 1GHz ~ 26.5GHz	R&S FSP 30 100023/030 9KHz ~ 30GHz Apr. 27, 2012 G.W. GPC-6030D C671845 DC 1V ~ 60V Jun. 19, 2012 Giant Force GTH-225-20- SP-SD MAA1112-007 -20 ~ 100°C Nov. 21, 2012 R&S SMR40 100116 10MHz ~ 40GHz Jun. 26, 2012 Anritsu MA2411B 1027452 300MHz ~ 40GHz Sep. 08, 2012 HUBER+SUHNER SUCOFLEX_ 104 SN 345669/4 1GHz ~ 26.5GHz NA

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP	100055	9Kz – 40GHz	Jun. 06, 2012	Radiation (03CH05-HY)
Receiver	R&S	ESIB26	100337	20Hz – 26.5GHz	Jun. 21, 2012	Radiation (03CH05-HY)
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH05-HY	30 MHz - 1 GHz 3m	N/A	Radiation (03CH05-HY)
Amplifier	COM-POWER	PA-103	161241	1 MHz ~ 1 GHz	Feb. 26, 2013	Radiation (03CH05-HY)
Amplifier	Agilent	8449B	3008A02665	1GHz – 26.5 GHz	Aug. 28, 2012	Radiation (03CH05-HY)
Horn Antenna	ETS-LINDGREN	3117	66584	1GHz~18GHz	Aug. 09, 2012	Radiation (03CH05-HY)
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170517	18G~40G	Jan. 14, 2013	Radiation (03CH05-HY)
RF Cable-R03m	Jye Bao	RG142	03CH05-HY	30 MHz - 1 GHz	Oct. 14, 2012	Radiation (03CH05-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX104	03CH05-HY	1GHz~40GHz	Oct. 14, 2012	Radiation (03CH05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2725	30 MHz - 1 GHz	Oct. 06, 2012	Radiation (03CH05-HY)
Turn Table	HD	HD100	420/611	0 - 360 degree	N/A	Radiation (03CH05-HY)
Antenna Mast	HD	HD100	240/666	1 m - 4 m	N/A	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna *(note 1)	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is two year.