

FCC Test Report

Equipment	:	AirStation
Trade Name	:	BUFFALO INC.
Model No.	:	WHR-600D
FCC ID	:	FDI00000011
Standard	:	47 CFR FCC Part 15.407
Operating Band	:	5150 MHz – 5250 MHz
FCC Classification	:	NII
Applicant Manufacturer	:	BUFFALO INC. Akamon-dori Bldg, 30-20, Ohsu 3-chome, Naka-ku, Nagoya 460-8315, Japan
Operate Mode	:	Master

The product sample received on Mar. 01, 2013 and completely tested on Mar. 19, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	Test Channel Frequencies Configuration	10
2.3	The Worst Case Power Setting Parameter	10
2.4	The Worst Case Measurement Configuration	11
2.5	Test Setup Diagram	12
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	Emission Bandwidth	16
3.3	RF Output Power	19
3.4	Peak Power Spectral Density	22
3.5	Peak Excursion	26
3.6	Transmitter Radiated Bandedge Emissions	28
3.7	Transmitter Radiated Unwanted Emissions	35
3.8	Frequency Stability	57
4	TEST EQUIPMENT AND CALIBRATION DATA	59
APPE	NDIX A. TEST PHOTOS	A1
APPE	NDIX B. PHOTOGRAPHS OF EUT	B1

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.3692040MHz 30.75 (Margin 17.77dB) - AV 37.57 (Margin 20.95dB) - QP	FCC 15.207	Complied		
3.2	15.407(a)	Emission Bandwidth	Bandwidth [MHz] 20M:19.48 / 40M:41.39	Information only	Complied		
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Power [dBm] 5150-5250MHz:16.51	Power [dBm] 5150-5250MHz:17	Complied		
3.4	15.407(a)	Peak Power Spectral Density	PPSD [dBm/MHz] 5150-5250MHz:2.54	PPSD [dBm/MHz] 5150-5250MHz:4	Complied		
3.5	15.407(a)	Peak Excursion	8.08 dB	13 dB	Complied		
3.6	15.407(b)	Transmitter Radiated Bandedge Emissions	Restricted Bands [dBuV/m at 3m]: 5128.10MHz 60.32 (Margin 13.68dB) - PK 44.88 (Margin 9.12dB) - AV	Non-Restricted Bands: ≤ -27dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied		
3.7	15.407(b)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 63.95MHz 38.52 (Margin 1.48dB) - QP	Non-Restricted Bands: ≤ -27dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied		
3.8	15.407(g)	Frequency Stability	11.18 ppm	Signal shall remain in-band	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR330516AN	Rev. 01	Initial issue of report	Mar. 26, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	RF Output Power (dBm)	Co-location	
5150-5250	а	5180-5240	36-48 [4]	2	15.40	Yes	
5150-5250	n (HT20)	5180-5240	36-48 [4]	2	15.44	Yes	
5150-5250	n (HT40)	5190-5230	38-46 [2]	2	16.51	N/A	

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category							
	Equ	Equipment placed on the market without antennas						
\square	Inte	gral antenna (antenna permanently attached)						
	\boxtimes	Temporary RF connector provided						
		No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.						
	Exte	ernal antenna (dedicated antennas)						
		Single power level with corresponding antenna(s).						
		Multiple power level and corresponding antenna(s).						
	RF connector provided							
	Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)							
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)						

	Antenna General Information						
No. Ant. Cat. Ant. Type Brand Model Gain							
1	Integral	Dipole	-	-	2.89		
2	Integral	PIFA	-	-	3.42		

1.1.3 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle					
Operated normally mode for worst duty cycle					
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)Power Duty Factor [dB] - (10 log 1/x)					
⊠ 100% - IEEE 802.11a	0				
□ 100% - IEEE 802.11n (HT20) 0					
⊠ 100% - IEEE 802.11n (HT40)	0				

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery
Operational Voltage	🛛 Vnom (110 V)	🛛 Vmax (126.5 V)	🛛 Vmin (93.5 V)
Operational Climatic	Tnom (20°C)	🖾 Tmax (45°C)	Tmin (-5°C)

1.2 Accessories and Support Equipment

Accessories						
No. Equipment Brand Name Model Name Serial No.						
1	Adapter	APD	WA-12M12FU	-		

	Support Equipment AC Line Conducted Emission						
No.	No. Equipment Brand Name Model Name Serial No.						
1	Notebook	DELL	E5430	DoC			
2	Notebook	DELL	E5430	DoC			
3	Load	-	-	-			

		Support Equ Radiated Below		
No.	Equipment	Brand Name	Model Name	Serial No.
1	Notebook	DELL	E5420	DoC
2	Notebook	DELL	E5420	DoC
3	Load	-	-	-

		Support Equ Radiated Above		
No.	Equipment	Brand Name	Model Name	Serial No.
1	Notebook	DELL	E5420	DoC

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 789033
- FCC KDB 662911
- FCC KDB 412172

1.4 Testing Location Information

					Testing Location		
\square	HWA YA	ADD	:	No. 52, Hwa Ya	a 1st Rd., Kwei-Shan I	Hsiang, Tao Yuan Hsie	en, Taiwan, R.O.C.
		TEL	:	886-3-327-3450	6 FAX : 886	6-3-318-0055	
	JHUBEI	ADD	:	No.8, Lane 724	, Bo-ai St., Jhubei Cit	y, HsinChu County 30	2, Taiwan, R.O.C.
		TEL	:	886-3-656-906	5 FAX : 886	6-3-656-9085	
Те	est Conditio	on	Т	est Site No.	Test Engineer	Test Environment	Test Date
R	F Conducte	d		TH01-HY	lan Du	23°C / 62%	07-Mar-13 ~ 19-Mar-13
A	C Conductio	n		CO04-HY	Bill Hsiao	24.3°C / 65%	18-Mar-13
Rad	diated Emiss	sion	()3CH05-HY	Daniel Hsu	25°C / 65%	07-Mar-13
	0			r [643075] with F r [4086B-1] with			

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

	Measurement Uncertainty	1	
Test Item		Uncertainty	Limit
AC power-line conducted emissions		±2.26 dB	N/A
Emission bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature		±0.8 °C	N/A
Humidity		±3 %	N/A
DC and low frequency voltages		±3 %	N/A
Time		±1.42 %	N/A
Duty Cycle		±1.42 %	N/A

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

W	orst Modulation Use	d for Conformance T	esting (5150-5250MH	z)
Modulation Mode	Transmit Chains (Ν _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Output Power (dBm)
11a,6-54Mbps	2	6-54Mbps	6 Mbps	15.40
HT20,M0-15	2	M0-15	MCS 0	15.44
HT40,M0-15	2	M0-15	MCS 0	16.51
HT20 and HT			0 (HT: High Throughpu	t). Then EUT support

11a: IEEE 802.11a, HT20/HT40: IEEE 802.11n.

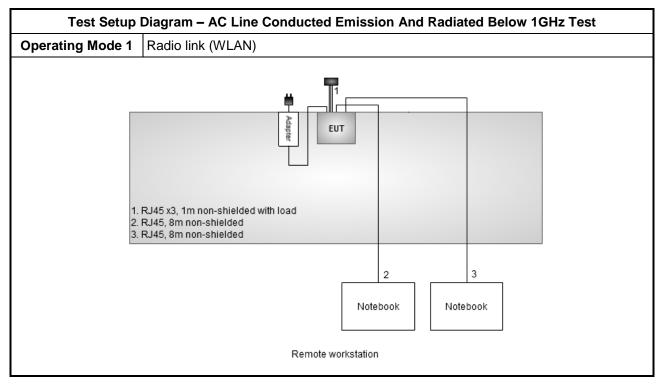
2.2 Test Channel Frequencies Configuration

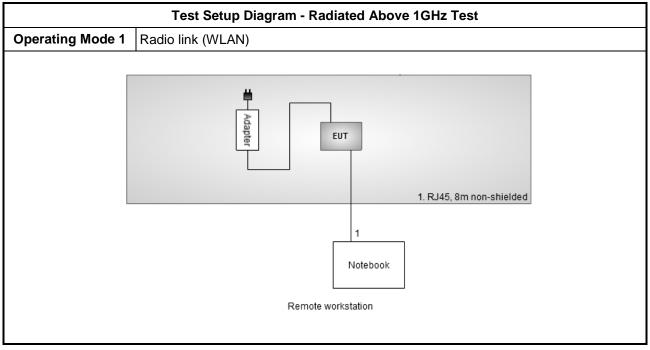
Te	st Channel Frequencies Configura	tion
Frequency Range (MHz)	IEEE Std. 802.11	Test Channel Freq. (MHz) – FX (Frequencies Abbreviations)
5150-5250	a, n (HT20)	5180-(F1), 5200-(F2), 5240-(F3)
5150-5250	n (HT40)	5190-(F1'), 5230-(F2')

2.3 The Worst Case Power Setting Parameter

The W	orst C	Case Power	Setting Para	ameter (5150)-5250 MHz k	oand)		
Test Software Version	Ralin	k QA 1.0.9.0)					
				Test Frequ	ency (MHz)			
Modulation Mode	N _{TX}		NCB: 20MH	Z	NCB: 40MHz			
		5180	5200	5240	5190	5230	-	
11a,6-54Mbps	2	11,13	12,13	12,13	-	-	-	
HT20,M0-M15	2	12,13	13,14	13,14	-	-	-	
HT40,M0-M15	2	-	-	-	0D,0F	1B,1C	-	

2.4 The Worst Case Measurement Configuration


Tł	ne Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	Radio link (WLAN)


Th	e Worst Case Mode for Following Conformance Tests
Tests Item	RF Output Power, Peak Power Spectral Density, Emission Bandwidth, Peak Excursion
Test Condition	Conducted measurement at transmit chains
Modulation Mode	11a, HT20, HT40

Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts
Tests Item	Transmitter Radiated Unwa Transmitter Radiated Banc		
Test Condition	regardless of spatial multip	plexing MIMO configuration), the radiated test should
	EUT will be placed in	fixed position.	
User Position	If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type. Image: Position Image: EUT will be placed in fixed position. Image: EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes. The worst planes is X. Image: EUT will be a hand-held or body-worn battery-powered devices and		
		sitions. EUT shall be perform	
Operating Mode < 1GHz	🛛 1. Radio link (WLAN)	
Modulation Mode	11a, HT20, HT40		
	X Plane	Y Plane	Z Plane
Orthogonal Planes of EUT			

2.5 Test Setup Diagram

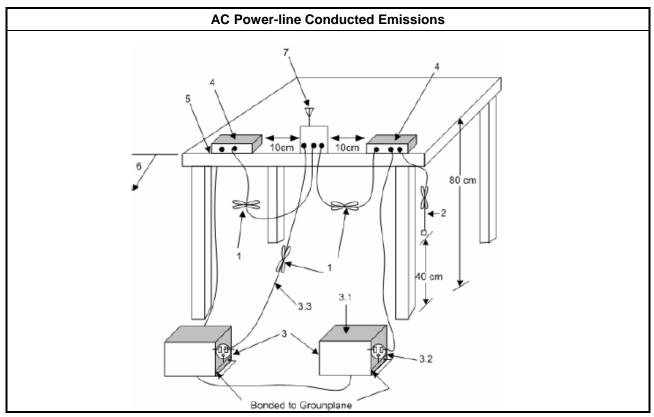
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Pow	er-line Conducted Emissions	Limit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm of	of the frequency.	•

3.1.2 Measuring Instruments

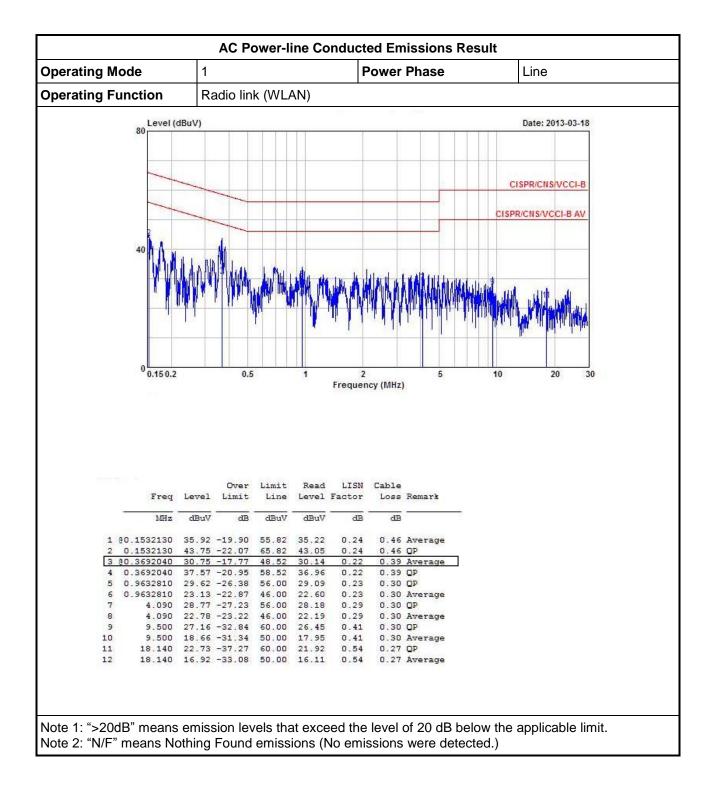

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



rating M	ode	1				F	ower	Phase		Neu	utral	
rating Fu	unction	R	adio lin	k (WL	AN)							
	Level (dBuV)						US - 15 - 77		Date	: 2013-0	3-18
			_				_			CISPR/C	NSIVCO	I-B
									CI	SPR/CNS/	VCCI-B	AV
	17											
	40	in to	3									
	MAN		Mint	247								
			W. LL.	Liller	(t)		1.151	1.11. A.A.A.				
		. .	PI'MANG.		h All	I. A. WILL	1 14 14.14.1	Meridia h L d and	a laboration	11.		
			H Y M	MY MA	MAN LU							
						MARMAN		La Manutal	UNE W	IT MILL		AL
		111					4 n H	r 0	1. 10	tr. al. I.d	i Mut di	
		<u></u>										
	0				1.1							
	0 150 2		0.5		4	2		5	10		20	2
	0.150.2		0.5	10	1	2 Frequen		5	10		20	3
	0.150.2		0.5		1		icy (MHz)		10		20	3
	0.150.2		0.5		1				10		20	3
	0.150.2		0.5		1				10		20	3
	0.150.2		0.5		1				10		20	3
	0.150.2		0.5		1				10		20	3
	0.150.2		0.5		1				10		20	3
	0.150.2		0.5		1				10		20	3
	0.150.2		0.5		1				10		20	3
	0.150.2		0.5 Over	Limit	Read	Frequen	Cable		10		20	3
	0.150.2	Level			Read	Frequen	Cable		10		20	3
	1000 conservation of the server of the serve		Over	Limit	Read	Frequen	Cable		10		20	3
	Freq MHz 0.1624080	Level dBuV 39.69	Over Limit dB -25.65	Limit Line dBuV 65.34	Read Level dBuV 39.16	LISN Factor dB 0.11	Cable Loss dB 0.42	Remark 	10		20	3
2	Freq MHz 0.1624080 0.1624080	Level dBuV 39.69 28.29	Over Limit dB -25.65 -27.05	Limit Line dBuV 65.34 55.34	Read Level dBuV 39.16 27.76	LISN Factor dB 0.11 0.11	Cable Loss dB 0.42 0.42	Remark OP Average	10		20	3
2 3 (Freq MHz 0.1624080 0.1624080 30.3557620	Level dBuV 39.69 28.29 38.35	Over Limit dB -25.65 -27.05 -20.48	Limit Line dBuV 65.34 55.34 58.83	Read Level dBuV 39.16 27.76 37.87	LISN Factor dB 0.11 0.11 0.10	Cable Loss dB 0.42 0.38	Remark OP Average OP	10		20	3
2 3 (4 (Freq MHz 0.1624080 0.1624080 0.3557620 30.3557620	Level dBuV 39.69 28.29 38.35 28.76	Over Limit -25.65 -27.05 -20.48 -20.07	Limit Line dBuV 65.34 55.34 58.83 48.83	Read Level dBuV 39.16 27.76 37.87 28.28	LISN Factor dB 0.11 0.10 0.10	Cable Loss dB 0.42 0.38 0.38	Remark OP Average OP Average			20	3
2 3 (4 (5	Freq MHz 0.1624080 0.1624080 30.3557620 0.3557620 0.7159710	Level dBuV 39.69 28.29 38.35 28.76 28.76	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92	Limit Line dBuV 65.34 55.34 58.83 48.83 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63	LISN Factor dB 0.11 0.10 0.10 0.11	Cable Loss dB 0.42 0.42 0.38 0.38	Remark OP Average OP Average OP	10		20	3
2 3 (4 (5 6	Freq MHz 0.1624080 0.1624080 0.3557620 0.3557620 0.7159710 0.7159710	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87	Over Limit dB -25.65 -27.05 -20.48 -20.04 -27.92 -27.92 -23.13	Limit Line dBuV 65.34 55.34 58.83 48.83 56.00 46.00	Read Level 39.16 27.76 37.87 28.28 27.63 22.42	LISN Factor 0.11 0.10 0.10 0.11 0.11	Cable Loss 0.42 0.42 0.38 0.38 0.34	Remark OP Average OP Average OP Average	10		20	3
2 3 (4 (5 6 7	Freq MHz 0.1624080 0.1624080 30.3557620 30.3557620 0.7159710 0.7159710 0.9735420	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36	Limit Line dBuV 65.34 55.34 58.83 48.83 56.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23	LISN Factor dB 0.11 0.10 0.10 0.10 0.11 0.11	Cable Loss dB 0.42 0.38 0.38 0.34 0.34 0.34	Remark OP Average OP Average OP Average OP	10		20	3
2 3 (4 (5 7 8	Freq MHz 0.1624080 0.3557620 0.3557620 0.7159710 0.7159710 0.9735420 0.9735420	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32	Limit Line dBuV 65.34 55.34 58.83 48.83 56.00 46.00 56.00 46.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27	LISN Factor dB 0.11 0.10 0.10 0.11 0.11 0.11 0.11	Cable Loss dB 0.42 0.38 0.34 0.34 0.34 0.30 0.30	Remark OP Average OP Average OP Average OP Average			20	3
2 3 (5 6 7 8 9	Freq MHz 0.1624080 0.1624080 0.3557620 0.3557620 0.7159710 0.9735420 0.9735420 0.9735420 4.200	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.68 18.68 22.31	Over Limit dB -25.65 -27.05 -27.05 -27.92 -23.13 -31.36 -27.32 -33.69	Limit Line dBuV 65.34 55.34 55.34 55.34 55.34 55.00 46.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86	LISN Factor dB 0.11 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.34 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP	10		20	3
2 3 (4 5 6 7 8 9 10	Freq MHz 0.1624080 0.1624080 0.3557620 0.3557620 0.7159710 0.9735420 0.9735420 4.200 4.200	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00	Over Limit dB -25.65 -27.05 -20.48 -20.07 -20.48 -20.23 -31.36 -27.32 -33.69 -30.00	Limit Line dBuV 65.34 58.83 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86 15.55	LISN Factor dB 0.11 0.10 0.10 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP Average	10		20	3
2 3 (4 5 7 8 9 10 11	Freq MHz 0.1624080 0.3557620 0.7159710 0.7159710 0.9735420 0.9735420 4.200 4.200 7.650	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00 18.29	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32 -33.69 -30.00 -41.71	Limit Line dBuV 65.34 55.34 55.34 55.30 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86 15.55 17.78	LISN Factor dB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP	10		20	3
2 3 (5 6 7 8 9 10 11	Freq MHz 0.1624080 0.3557620 0.3557620 0.7159710 0.7159710 0.9735420 4.200 4.200 7.650 7.650	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00 18.29 12.39	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32 -33.69 -30.00 -41.71 -37.61	Limit Line dBuV 65.34 55.34 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.42 24.23 18.27 21.86 15.55 17.78 11.88	LISN Factor dB 0.11 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP Average OP Average	10		20	3
2 3 4 5 6 7 8 9 10 11 11 12 13	Freq MHz 0.1624080 0.3557620 0.3557620 0.7159710 0.9735420 0.9735420 4.200 4.200 4.200 7.650 7.650 23.760	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00 18.29 12.39 18.03	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32 -33.69 -30.00 -41.71 -37.61 -37.61	Limit Line dBuV 65.34 55.34 55.34 55.34 55.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86 15.55 17.78 11.88 17.49	LISN Factor dB 0.11 0.10 0.10 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP Average OP	10		20	3
2 3 (5 6 7 8 9 10 11	Freq MHz 0.1624080 0.3557620 0.3557620 0.7159710 0.9735420 0.9735420 4.200 4.200 4.200 7.650 7.650 23.760	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00 18.29 12.39 18.03	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32 -33.69 -30.00 -41.71 -37.61	Limit Line dBuV 65.34 55.34 55.34 55.34 55.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86 15.55 17.78 11.88 17.49	LISN Factor dB 0.11 0.10 0.10 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP Average OP Average	10		20	3
2 3 4 5 6 7 8 9 10 11 11 12 13	Freq MHz 0.1624080 0.3557620 0.3557620 0.7159710 0.9735420 0.9735420 4.200 4.200 4.200 7.650 7.650 23.760	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00 18.29 12.39 18.03	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32 -33.69 -30.00 -41.71 -37.61 -37.61	Limit Line dBuV 65.34 55.34 55.34 55.34 55.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86 15.55 17.78 11.88 17.49	LISN Factor dB 0.11 0.10 0.10 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP Average OP	10		20	3
2 3 4 5 6 7 8 9 10 11 11 12 13	Freq MHz 0.1624080 0.3557620 0.3557620 0.7159710 0.9735420 0.9735420 4.200 4.200 4.200 7.650 7.650 23.760	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00 18.29 12.39 18.03	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32 -33.69 -30.00 -41.71 -37.61 -37.61	Limit Line dBuV 65.34 55.34 55.34 55.34 55.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86 15.55 17.78 11.88 17.49	LISN Factor dB 0.11 0.10 0.10 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP Average OP	10		20	3
2 3 4 5 6 7 8 9 10 11 11 12 13	Freq MHz 0.1624080 0.3557620 0.3557620 0.7159710 0.9735420 0.9735420 4.200 4.200 4.200 7.650 7.650 23.760	Level dBuV 39.69 28.29 38.35 28.76 28.08 22.87 24.64 18.68 22.31 16.00 18.29 12.39 18.03	Over Limit dB -25.65 -27.05 -20.48 -20.07 -27.92 -23.13 -31.36 -27.32 -33.69 -30.00 -41.71 -37.61 -37.61	Limit Line dBuV 65.34 55.34 55.34 55.34 55.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 39.16 27.76 37.87 28.28 27.63 22.42 24.23 18.27 21.86 15.55 17.78 11.88 17.49	LISN Factor dB 0.11 0.10 0.10 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.42 0.38 0.34 0.34 0.30 0.30 0.30 0.30 0.30 0.30	Remark OP Average OP Average OP Average OP Average OP Average OP	10		20	3

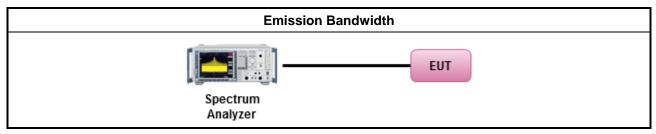
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth (EBW) Limit

GHz band, the maximum conducted output power shall not exceed the lesser of 50 0 log B, where B is the 26 dB emission bandwidth in MHz. GHz band, the maximum conducted output power shall not exceed the lesser of 250 10 log B, where B is the 26 dB emission bandwidth in MHz. 5 GHz band, the maximum conducted output power shall not exceed the lesser of 250 10 log B, where B is the 26 dB emission bandwidth in MHz. 25 GHz band, the maximum conducted output power shall not exceed the lesser of 250 10 log B, where B is the 26 dB emission bandwidth in MHz.
0 log B, where B is the 26 dB emission bandwidth in MHz. GHz band, the maximum conducted output power shall not exceed the lesser of 250 10 log B, where B is the 26 dB emission bandwidth in MHz. 5 GHz band, the maximum conducted output power shall not exceed the lesser of 250 10 log B, where B is the 26 dB emission bandwidth in MHz.
10 log B, where B is the 26 dB emission bandwidth in MHz. 5 GHz band, the maximum conducted output power shall not exceed the lesser of 250 10 log B, where B is the 26 dB emission bandwidth in MHz.
10 log B, where B is the 26 dB emission bandwidth in MHz.
25 GHz band, the maximum conducted output power shall not exceed the lesser of 1
log B, where B is the 26 dB emission bandwidth in MHz
5-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, is less. B is the 99% emission bandwidth in MHz.
GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, is less. B is the 99% emission bandwidth in MHz
GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or m, whichever power is less. B is the 99% emission bandwidth in MHz
25 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, is less. B is the 99% emission bandwidth in MHz.

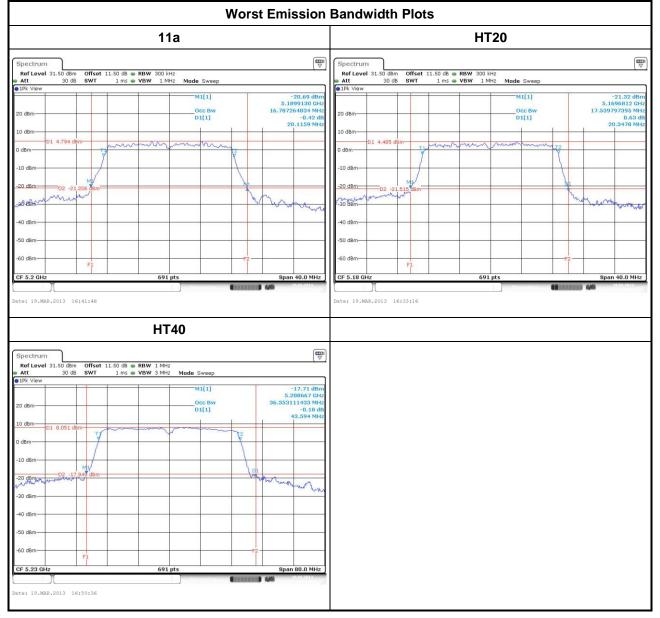
3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method									
\boxtimes	For	the emission bandwidth shall be measured using one of the options below:								
	Refer as FCC KDB 789033, clause D for EBW measurement.									
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.								
	\boxtimes	Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.								
\boxtimes	For	conducted measurement.								
		The EUT supports single transmit chain and measurements performed on this tra	ansmit chain.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is	s the worst case.							
	\boxtimes	The EUT supports multiple transmit chains using options given below:								
	Option 1: Multiple transmit chains measurements need to be performed on one of the attransmit chains (antenna outputs). All measurement had be performed on transmit chains									
		Option 2: Multiple transmit chains measurements need to be performed chains individually (antenna outputs). All measurement had be performe chains.								

3.2.4 Test Setup



3.2.5 Test Result of Emission Bandwidth

	UNII Emission Bandwidth Result (5150-5250MHz band)														
Condi	Condition				Emission Bandwidth (MHz)										
Modulation		Freg.	9	9% Ba	ndwidtl	n	2	6dB Ba	ndwidt	h	Powe	r Limit			
Mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	99% BW	26dB BW			
11a	2	5180	16.67	16.56	-	-	19.71	19.48	-	-	16.19	16.90			
11a	2	5200	16.78	16.67	-	-	20.12	19.88	-	-	16.22	16.99			
11a	2	5240	16.67	16.56	-	-	19.71	19.59	-	-	16.19	16.92			
HT20	2	5180	17.54	17.42	-	-	20.35	20.06	-	-	16.41	17.00			
HT20	2	5200	17.54	17.54	-	-	20.29	20.35	-	-	16.44	17.00			
HT20	2	5240	17.54	17.48	-	-	20.23	20.06	-	-	16.43	17.00			
HT40	2	5190	36.35	36.35	-	-	41.62	41.51	-	-	17.00	17.00			
HT40	2	5230	36.35	36.47	-	-	43.59	41.39	-	-	17.00	17.00			
Res	ult						Com	plied							

5150-5250MHz

3.3 RF Output Power

3.3.1 **RF Output Power Limit**

	Maximum Conducted Output Power Limit							
UNII	Devices							
5	For the 5.15-5.25 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.							
2	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.							
0	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.							
🗌 F	For the 5.725-5.825 GHz band:							
[Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$.							
	Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$.							
LE-L	AN Devices							
	For the 5.15-5.25 GHz band, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.							
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz							
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or I7 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz							
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.							
	Point-to-multipoint systems (P2M): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.							
	Point-to-point systems (P2P): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. If e.i.r.p. > 36 dBm, G _{TX} ≤ P _{Out}							
	= maximum conducted output power in dBm, - the maximum transmitting antenna directional gain in dBi.							

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method					
\boxtimes	Max	imum Conducted Output Power					
	[dut	y cycle ≥ 98% or external video / power trigger]					
		Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).					
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)					
	duty	cycle < 98% and average over on/off periods with duty factor					
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).					
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)					
	Wideband RF power meter and average over on/off periods with duty factor						
	\square	Refer as FCC KDB 789033, clause C Method PM (using an RF average power meter).					
\square	For	conducted measurement.					
		The EUT supports single transmit chain and measurements performed on this transmit chain.					
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.					
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.					
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$					

3.3.4 Test Setup

RF Output Power (Power Meter)						
EUT Power Meter						

Directional Gain (DG) Result								
Transmit Chains No.		1	2	-	-			
Maximum G _{ANT} (dBi)		2.89	3.42	-	-			
Modulation Mode	DG (dBi)	Ν _{τχ}	N _{ss}	STBC	Array Gain (dB)			
11a,6-54Mbps	3.42	2	1	-	-			
HT20,MCS 0-7	3.42	2	1	-	-			
HT20,MCS 8-15	3.42	2	2	-	-			
HT40,M0-M15	3.42	2	1	-	-			
HT40,MCS 8-15	3.42	2	2	-	-			
Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = G_{ANT} + 10 log(N _{TX}) All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain =10 log[($10^{G1/20} + + 10^{GN/20})^2 / N_{TX}$] All transmit signals are completely uncorrelated, Directional Gain = 10 log[($10^{G1/10} + + 10^{GN/10} / N_{TX}$] Note 3: For Spatial Multiplexing, Directional Gain (DG) = $G_{ANT} + 10 \log(N_{TX}/N_{SS})$, where Nss = the number of independent spatial streams data. Note 4: For CDD transmissions, directional gain is calculated as power measurements: Directional Gain (DG) = $G_{ANT} + Array Gain$, where Array Gain is as follows: Array Gain = 0 dB (i.e., no array gain) for N _{TX} ≤ 4; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N _{TX} ;								

3.3.5 Directional Gain for Power Measurement

3.3.6	Test Result of Maximum	Conducted Output Power
-------	------------------------	------------------------

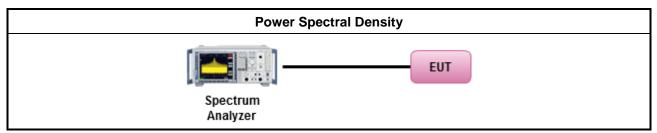
	Maximum Conducted Output Power (5150-5250MHz band)											
Condi	tion			RF Output Power (dBm)								
Modulation Mode	N _{TY} ·		Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11a	2	5180	12.01	12.12	-	-	15.08	17.0	3.42	18.50	23.0	
11a	2	5200	12.00	12.01	-	-	15.02	17.0	3.42	18.44	23.0	
11a	2	5240	12.05	12.71	-	-	15.40	17.0	3.42	18.82	23.0	
HT20	2	5180	12.37	12.06	-	-	15.23	17.0	3.42	18.65	23.0	
HT20	2	5200	12.31	12.01	-	-	15.17	17.0	3.42	18.59	23.0	
HT20	2	5240	12.31	12.55	-	-	15.44	17.0	3.42	18.86	23.0	
HT40	2	5190	9.17	9.57	-	-	12.38	17.0	3.42	15.80	23.0	
HT40	2	5230	13.56	13.44	-	-	16.51	17.0	3.42	19.93	23.0	
Resi	Result					C	Complie	d				

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

	Peak Power Spectral Density Limit
UNI	I Devices
\boxtimes	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz. If G _{TX} > 6 dBi, then PPSD = 4 - (G _{TX} - 6).
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6).
	For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 - (G _{TX} - 6).
	For the 5.725-5.825 GHz band:
	Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 17 - (G _{TX} - 6).
	□ Point-to-point systems (P2P): the peak power spectral density (PPSD) ≤ 17 dBm/MHz. If G_{TX} > 23 dBi, then PPSD = 17 – (G_{TX} – 23).
LE-	LAN Devices
\boxtimes	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 10 dBm/MHz.
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.725-5.825 GHz band, the peak power spectral density (PPSD) \leq 17 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 23 dBm/MHz.
pow	SD = peak power spectral density that he same method as used to determine the conducted output ver shall be used to determine the power spectral density. And power spectral density in dBm/MHz = the maximum transmitting antenna directional gain in dBi.

3.4.2 Measuring Instruments

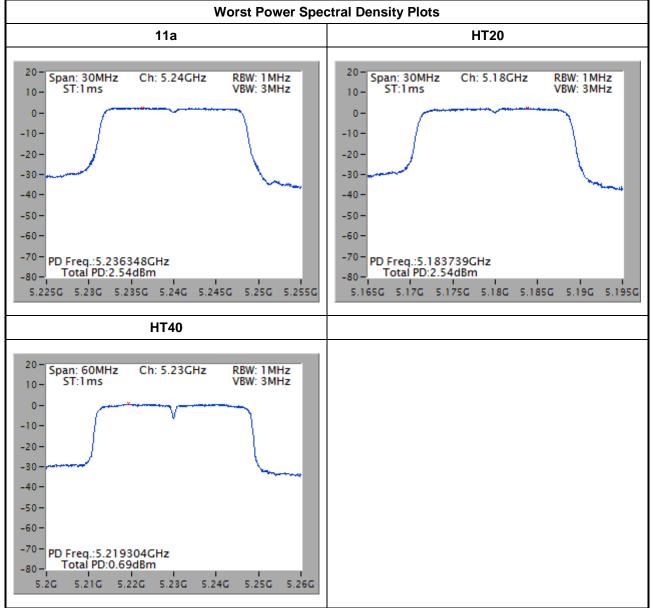

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method									
	Peak power spectral density procedures that the same method as used to determine the conducted output power shall be used to determine the peak power spectral density and use the peak search function on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density shall be measured using below options:										
	[duty cycle ≥ 98% or external video / power trigger]										
	Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).										
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)									
	duty	cycle < 98% and average over on/off periods with duty factor									
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).									
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)									
\square	For	conducted measurement.									
		The EUT supports single transmit chain and measurements performed on this transmit chain.									
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.									
	\boxtimes	The EUT supports multiple transmit chains using options given below:									
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.									
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.									
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: $PPSD_{total} = PPSD_1 + PPSD_2 + + PPSD_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = PPSD_{total} + DG$									
	\boxtimes	Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.									

3.4.4 Test Setup

Directional Gain (DG) Result								
Transmit Chains No.		1	2	-	-			
Maximum G _{ANT} (dBi)		2.89	3.42	-	-			
Modulation Mode	Ν _{τχ}	N _{SS}	STBC	Array Gain (dB)				
11a,6-54Mbps	6.43	2	1	-	3.01-			
HT-20,M0-M7	6.43	2	1	-	3.01-			
HT-20,M8-M15	3.42	2	2	-	0-			
HT-40,M0-M7	2	1	-	3.01-				
HT-40,M8-M15	3.42	2	2	-	0-			
 Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = G_{ANT} + 10 log(N_{TX}) All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain =10 log[(10^{G1/20} + + 10^{GN/20})² /N_{TX}] All transmit signals are completely uncorrelated, Directional Gain = 10 log[(10^{G1/10} + + 10^{GN/10})/N_{TX}] Note 3: For Spatial Multiplexing, Directional Gain (DG) = G_{ANT} + 10 log(N_{TX}/N_{SS}), where Nss = the number of independent spatial streams data. Note 4: For CDD transmissions, directional gain is calculated as power spectral density measurements: Directional Gain (DG) = G_{ANT} + Array Gain, where Array Gain is as follows: Array Gain = 10 log(N_{TX}/N_{SS}); 								


3.4.5 Directional Gain for Power Spectral Density Measurement

	Pe	eak Powe	er Spectr	al Dens	sity Res	ult (515	0-5250M	Hz band	ł)			
Cond	lition			Peak Power Spectral Density (dBm/MHz)								
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain	-	-	-	Sum Chain	PSD Limit	DG (dBi)	EIRP PSD	EIRP Limit	
11a	2	5180	2.42	-	-	-	2.42	3.57	6.43	8.85	9.57	
11a	2	5200	2.33	-	-	-	2.33	3.57	6.43	8.76	9.57	
11a	2	5240	2.54	-	-	-	2.54	3.57	6.43	8.97	9.57	
HT20	2	5180	2.54	-	-	-	2.54	3.57	6.43	8.97	9.57	
HT20	2	5200	2.28	-	-	-	2.28	3.57	6.43	8.71	9.57	
HT20	2	5240	2.51	-	-	-	2.51	3.57	6.43	8.94	9.57	
HT40	2	5190	-3.10	-	-	-	-3.10	3.57	6.43	3.33	9.57	
HT40	2	5230	0.69	-	-	-	0.69	3.57	6.43	7.12	9.57	
Result					•		Complie	d			•	

3.4.6 Test Result of Peak Power Spectral Density

5150-5250MHz

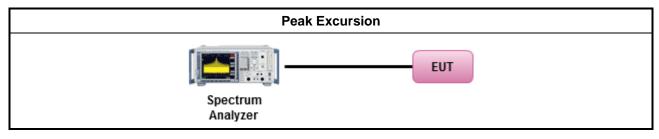
Note 1: Power Density Plots w/o Duty Factor

3.5 Peak Excursion

3.5.1 Peak Excursion Limit

	Peak Excursion Limit					
UN	UNII Devices					
	Peak excursion \leq 13 dB. The ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed 13 dB. (Earlier procedures that required computing the ratio of the two spectra at each frequency across the emission bandwidth can lead to unintended failures at band edges and will no longer be required.)					
LE-	LE-LAN Devices					

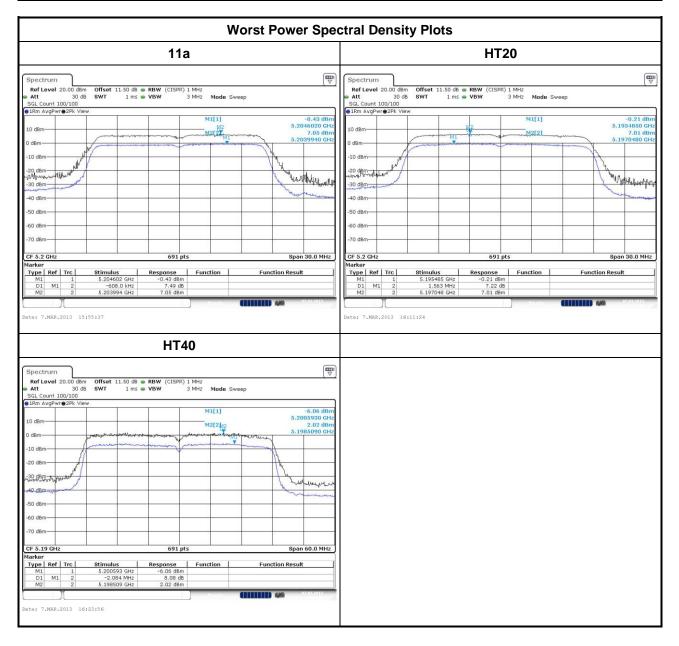
N/A


3.5.2 Measuring Instruments

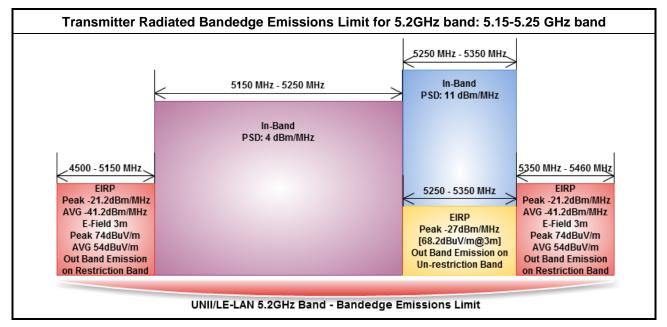
Refer a test equipment and calibration data table in this test report.

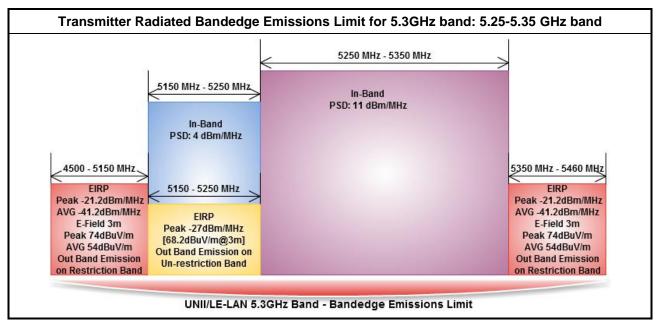
3.5.3 Test Procedures

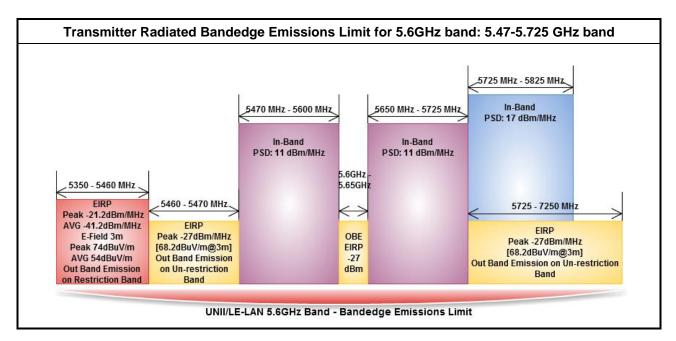
		Test Method					
\square	Refer as FCC KDB 789033, clause F peak excursion method.						
\boxtimes	Testing each modulation mode on a single channel is sufficient to demonstrate compliance with the peak excursion requirement						
\square	S For conducted measurement.						
	\boxtimes	\boxtimes The EUT supports single transmit chain and measurements performed on this transmit chain.					
	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	The EUT supports multiple transmit chains using given below method: Refer as FCC KDB 662911, when testing in-band (peak to average ratio) against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N).						
		Test result plots refer as test report clause 3.3.5 with peak excursion ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum.					

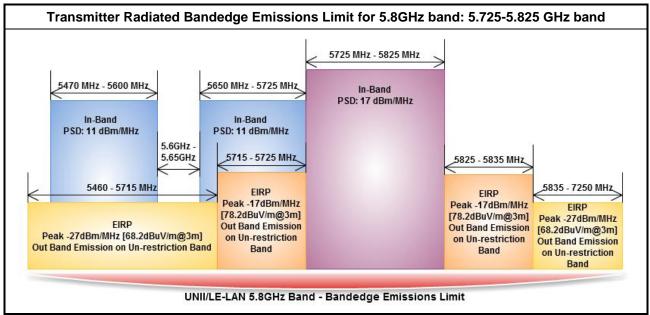

3.5.4 Test Setup

3.5.5 Test Result of Peak Excursion


	UNII Peak Excursion Result (5150-5250MHz band)						
Condi	tion			Pea	ak Excursion (dB)	
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Limit
11a	2	5200	7.02	7.49	-	-	13.0
HT20	2	5200	7.22	6.64	-	-	13.0
HT40	2	5190	8.08	7.96	-	-	13.0
Result					Complied		

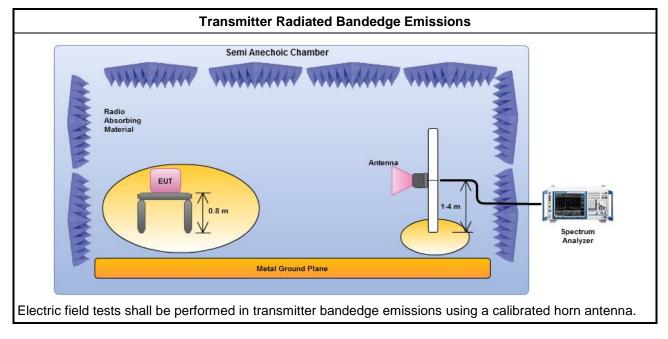



3.6 Transmitter Radiated Bandedge Emissions


3.6.1 Transmitter Radiated Bandedge Emissions Limit

3.6.2 Measuring Instruments

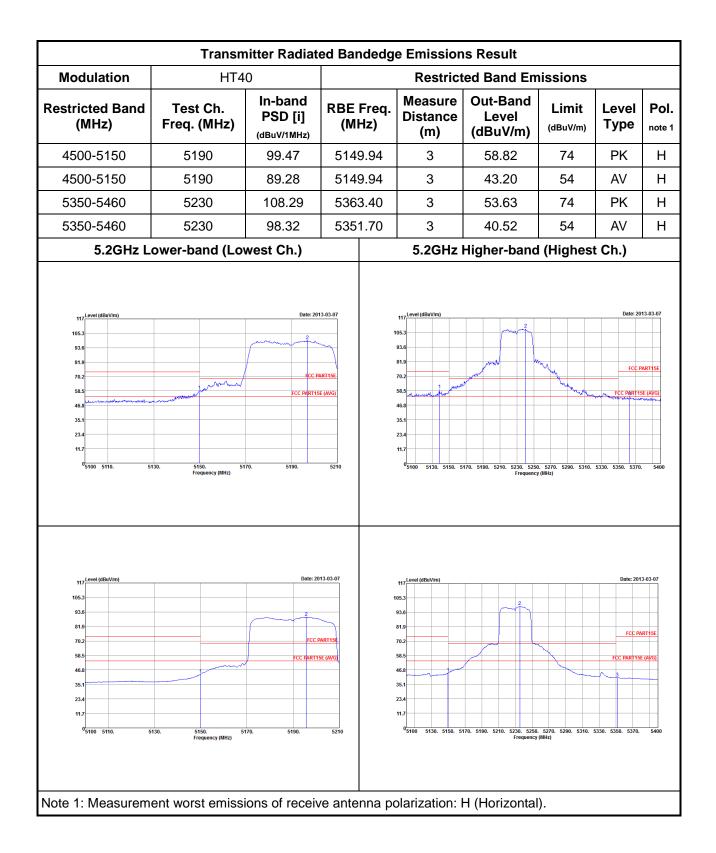
Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

		Test Method
	perfo equi extra dista mea	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density surements). Measurements in the bandedge are typically made at a closer distance 3m, because instrumentation noise floor is typically close to the radiated emission limit.
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency anel and highest frequency channel within the allowed operating band.
		If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)
		Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).
		Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).
		If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)
		Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).
		Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).
\boxtimes	For t	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\boxtimes	For t	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 789033, clause G)3)d) marker-delta method for band-edge measurements.
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\boxtimes	For	radiated measurement, refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

3.6.4 Test Setup


Transmitter Radiated Bandedge Emissions Result Modulation 11a **Restricted Band Emissions** In-band Measure **Out-Band RBE Freq. Restricted Band** Test Ch. Limit Level Pol. PSD [i] Distance Level (MHz) Freq. (MHz) (MHz) Type (dBuV/m) note 1 (m) (dBuV/m) (dBuV/1MHz) 4500-5150 5180 107.89 5149.90 59.21 74 ΡK Н 3 4500-5150 5180 98.11 5127.70 3 43.11 Н 54 AV 5350-5460 5240 107.12 5352.60 3 50.75 74 PΚ Н 5350-5460 5240 96.98 5366.10 3 37.06 54 AV Н 5.2GHz Higher-band (Highest Ch.) 5.2GHz Lower-band (Lowest Ch.) Date: 2013-03-07 117 2013-03-07 117^L 105 93. 93.6 81. 81.9 FCC PART15 FCC PART15 70.: 70.2 58. 58.5 FCC PART15E (AVC CC PART15E (AVC 46.8 35.1 35. 23.4 23.4 11. 11. 0 5100 . 5150. 5 Frequency (MHz) 5110 5120 5130 5170 5180. 5190. 520 5150. 5170. 5190. 5210. 5230. 5250. 5270. Frequency (MHz) 5290. 5310. 5330 5370 5130. 117 Level (dBuV/m) Date: 2013-03-07 117^L 105.3 105. 93.6 93.6 81.9 81.9 FCC PART15 70.2 70.2 58.5 58.5 FCC PART15E (AVC T15E (46.8 46.8 35.1 35.1 23.4 23.4 11.7 11.7 5230. 5250. 5270. 5290. 5310. 5330. 5350. 05100 5130. 5150. 5170. 5190. 5210. 5110 5120 5170. 5190 5130. 5140. 5150. 5160. Juency (MHz) 5180. Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal).

3.6.5 Test Result of Transmitter Radiated Bandedge Emissions

Modulation	HT2	0		Restrict	ed Band Err	nissions		
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol note
4500-5150	5180	106.34	5149.00	3	60.32	74	PK	Н
4500-5150	5180	96.14	5128.10	3	44.88	54	AV	Н
5350-5460	5240	108.49	5380.80	3	51.10	74	PK	Н
5350-5460	5240	98.24	5352.30	3	37.80	54	AV	Н
5.2GHz L	Lower-band (Lov	west Ch.)		5.2GHz	Higher-band	(Hiahes	t Ch.)	
81.9 70.2 58.5 46.8 35.1 23.4 11.7 0 5100 5110. 5120.	5130. 5140. 5150. 5160. Frequency (MHz)	5170. 5180. 5190	SE (AVG)	81.9 70.2 54.5 1 46.8 35.1 23.4 (5.100 5130. 5150. 1	5170. 5190. 5210. 5230. 525 Frequenc	0. 5270. 5290. 5310. y (MHz)	FCC PART	
117 105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4 11.7 5100 5110. 5120.	5130. 5140. 5150. 5160. Frequency (MHz)	Date: 201	ART15E	117 117 117 117 117 117 117 117	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5270. 5290. 5310.	FCC PARTIS	ART15E E (AVG)

3.7 Transmitter Radiated Unwanted Emissions

3.7.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

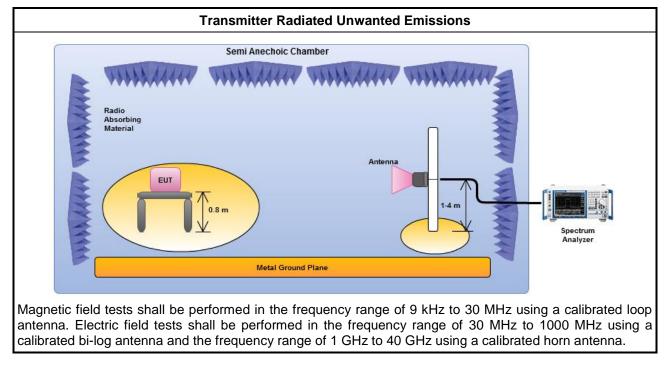
	Un-restricted band emissions above 1GHz Limit					
Operating Band	Limit					
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]					
performed in the ne equipment. When p	y be performed at a distance other than the limit distance provided they are not ear field and the emissions to be measured can be detected by the measuremen performing measurements at a distance other than that specified, the results sha the specified distance using an extrapolation factor of 20 dB/decade (inverse of					

be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

3.7.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

٦

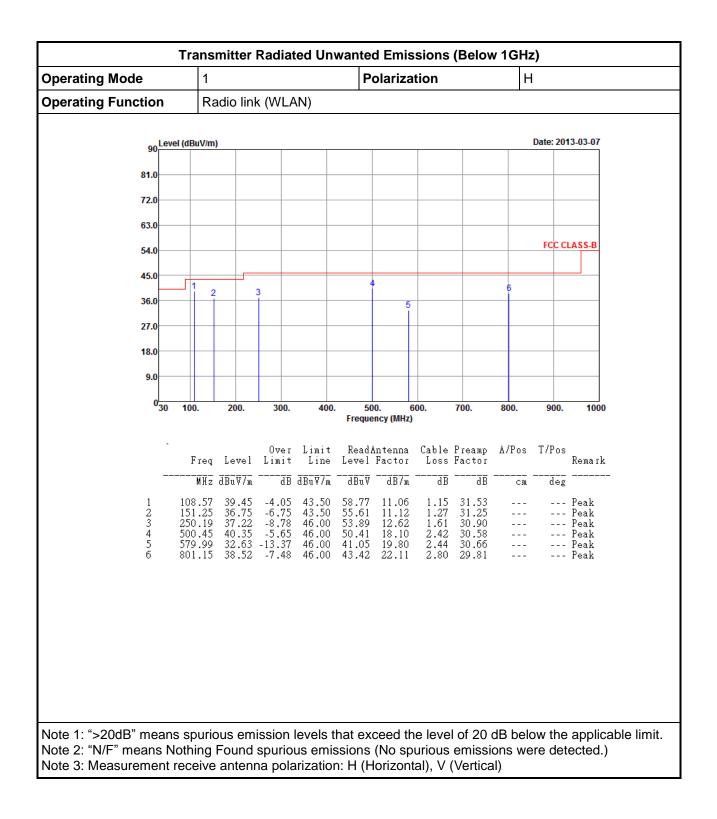

3.7.3 Test Procedures

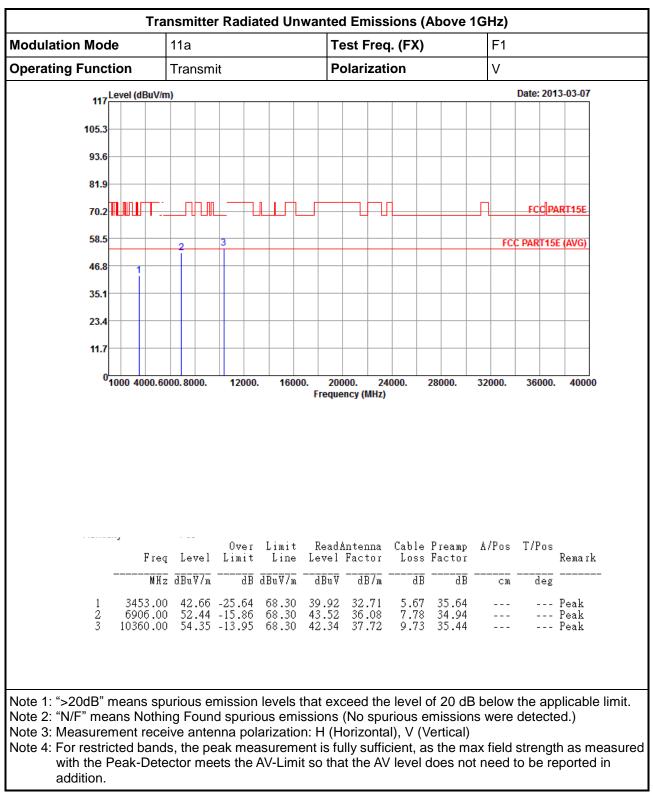
Г

		Test Method								
	performed in the near field and the emissions to be measured can be detected by the measurem equipment. Measurements shall not be performed at a distance greater than 30 m for frequent above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or l are impractical. When performing measurements at a distance other than that specified, the results s be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of lin distance for field-strength measurements, inverse of linear distance-squared for power-der measurements).									
	\boxtimes	Measurements in the frequency range 5 GHz - 10GHz are typically made at a closer distance 3m, because the instrumentation noise floor is typically close to the radiated emission limit.								
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.								
		Measurements in the frequency range above 18 GHz - 40GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.								
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].								
\square	For	the transmitter unwanted emissions shall be measured using following options below:								
	\square	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.								
	\square	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.								
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).								
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).								
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.								
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.								
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.								
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.								
\square	For	radiated measurement.								
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.								
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.								
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.								

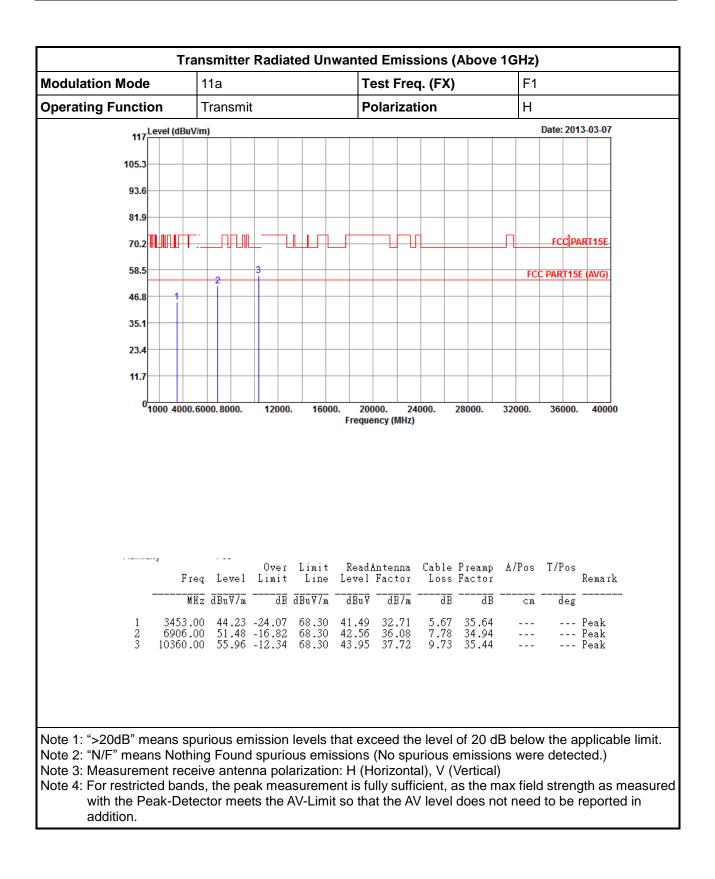
3.7.4 Test Setup

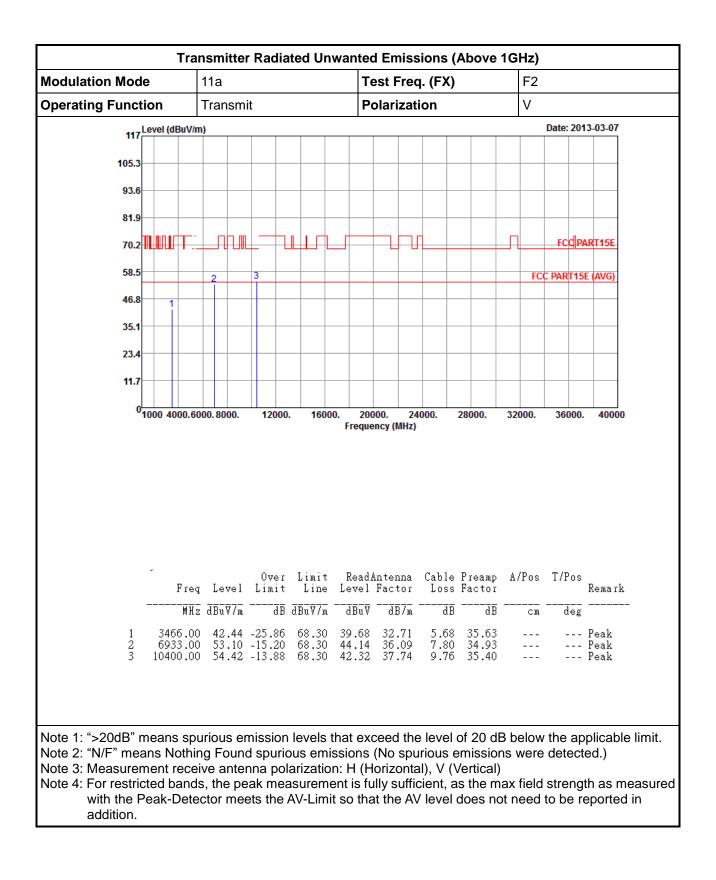
3.7.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)


All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

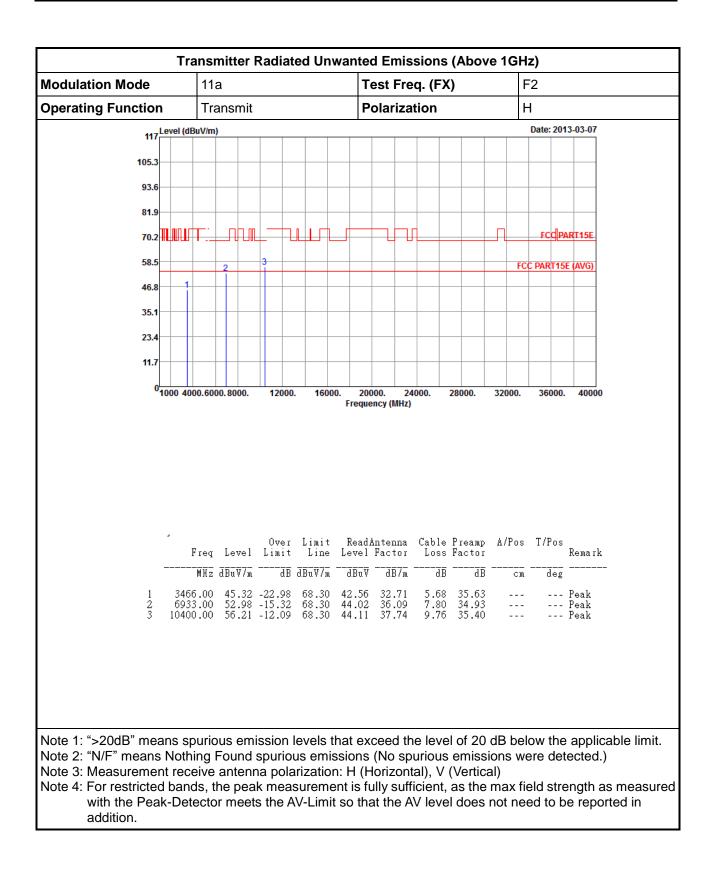

perating Function Radio link (WLAN) 90 Level (dBuV/m) Date: 2013-03-07 81.0 72.0 0 0 72.0 63.0 63.0 FCC CLASS-B 63.0 5 0 FCC CLASS-B 63.0 5 0 0 63.0 5 0 0 63.0 5 0 0 63.0 5 0 0 63.0 5 0 0 63.0 5 0 0 63.0 5 0 0 63.0 5 0 0 18.0 0 0 0 0 9.0 0 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 0ver Limit ReadAntenna Cable Preamp A/Pos T/Pos
81.0 72.0 63.0 64.0 54.0 54.0 54.0 55.0 64.0 55.0 64.0 55.0 64.0 55.0 64.0 55.0 64.0 65.0 64.0 65.0 66.0 70. 800. 900. 1000 FCC CLASS-B 66.0 70. 800. 900. 1000 FCC CLASS-B 66.0 70. 800. 900. 1000 FCC CLASS-B 66.0 70. 800. 900. 1000 FCC CLASS-B 66.0 70. 800. 900. 1000 FCC CLASS-B 66.0 FCC CLASS-B 70. 800. 900. 1000 FCC CLASS-B 70.
72.0 63.0 54.0 54.0 55.0 56.0 70. 800. 900. 1000 70.0 70. 800. 900. 1000 70. 800. 900. 1000 70.0 70. 800. 900. 1000 70.0 70. 800. 900. 1000 70.0 70
72.0 63.0 54.0 54.0 55.0 56.0 70. 800. 900. 1000 70.0 70. 800. 900. 1000 70. 800. 900. 1000 70.0 70. 800. 900. 1000 70.0 70. 800. 900. 1000 70.0 70
63.0 54.0 55.0 56.0 56.0 56.0 57.0
54.0 54.0 54.0 55.0 56.0 57.0 18.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9
45.0 46.0 36.0 27.0 18.0 9.0 0 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
36.0 27.0 18.0 9.0 0 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
36.0 27.0 18.0 9.0 0 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
18.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0
9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 30 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
Frequency (MHz)
Frequency (MHz) - Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
Freq Level Limit Line Level Factor Loss Factor Remark
1 63.95 38.52 -1.48 40.00 63.28 5.92 0.87 31.55 QP
2 106.63 31.42 -2.08 43.50 60.93 10.86 1.14 31.51 -P QP 3 151.25 37.66 -5.84 43.50 56.52 11.12 1.27 31.25 Peak 4 250.19 33.52 -12.48 46.00 50.19 12.62 1.61 30.90 Peak 5 500.45 38.26 -7.74 46.00 48.32 18.10 2.42 30.58 Peak 6 802.12 42.96 -3.04 46.00 47.82 22.12 2.82 29.80 Peak

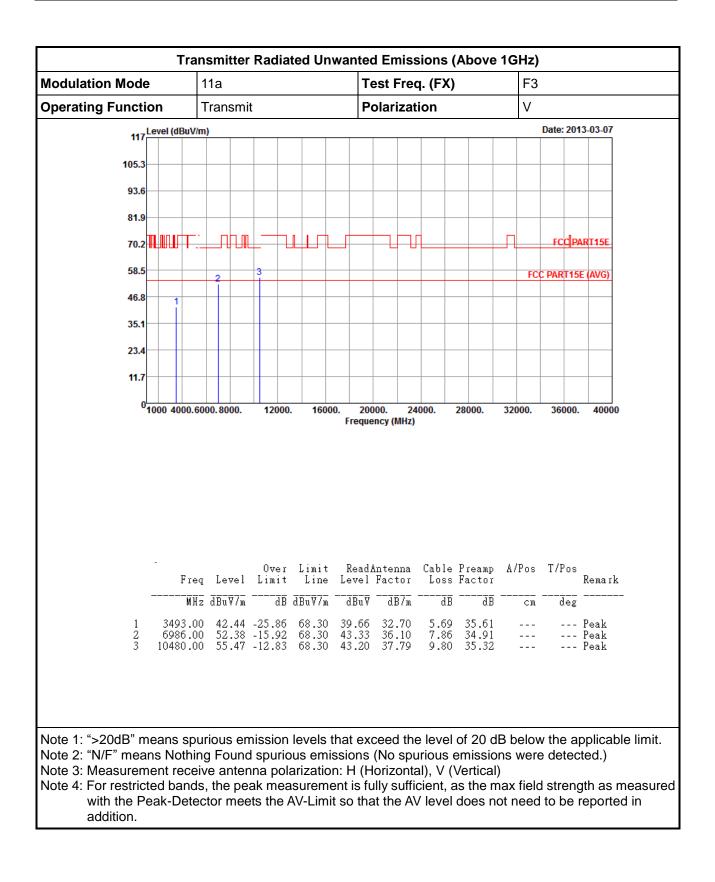
3.7.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

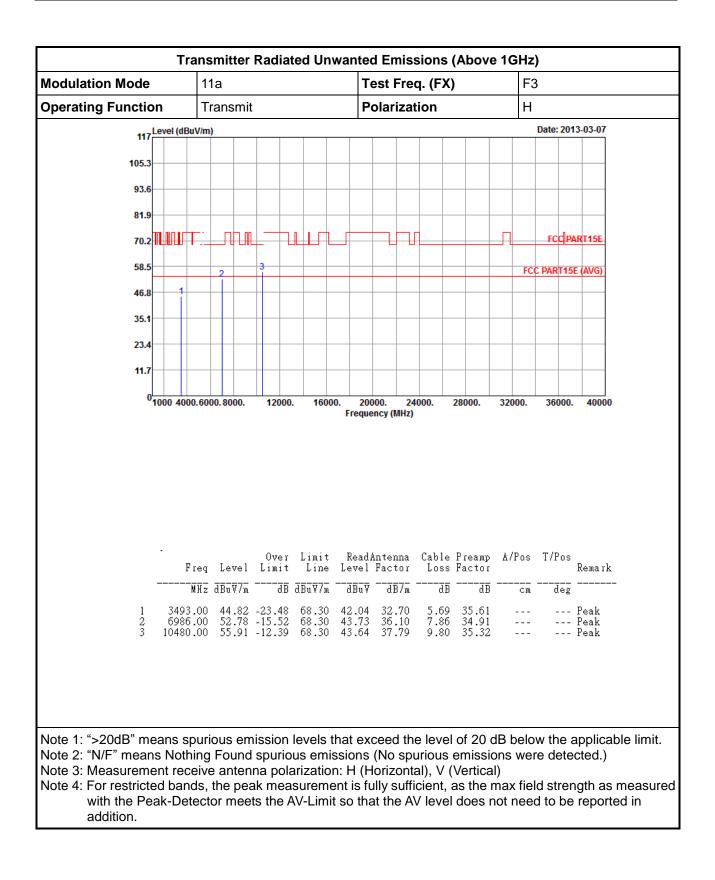


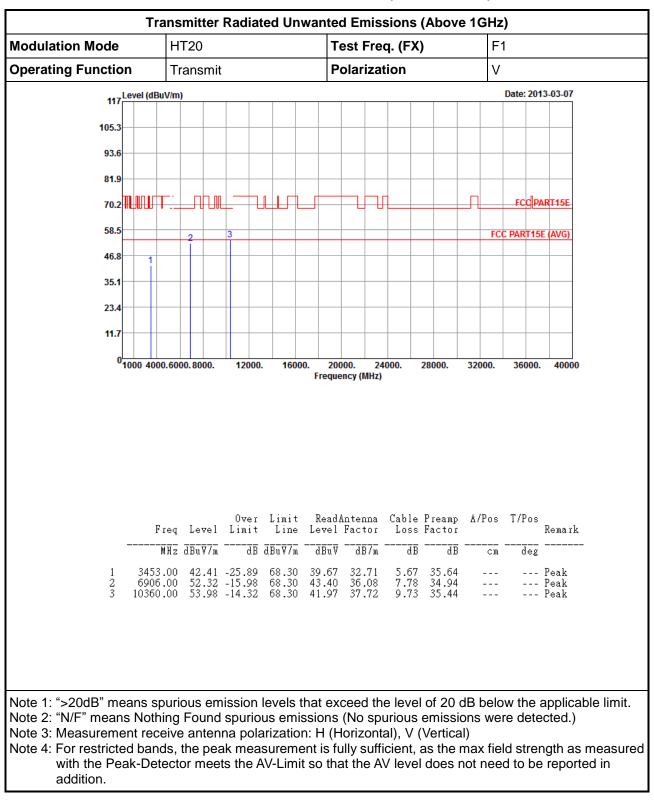


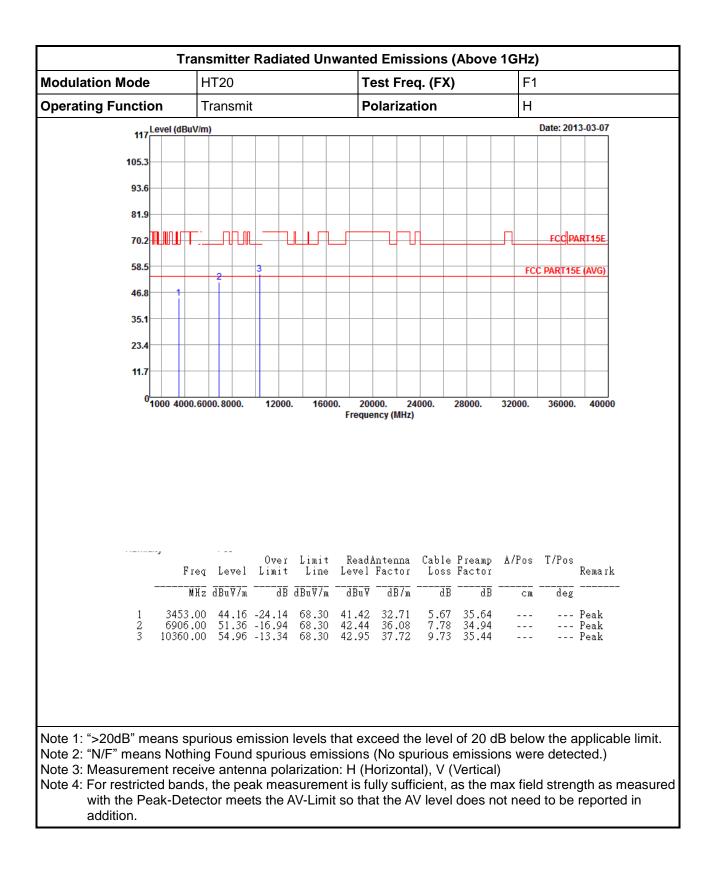
3.7.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

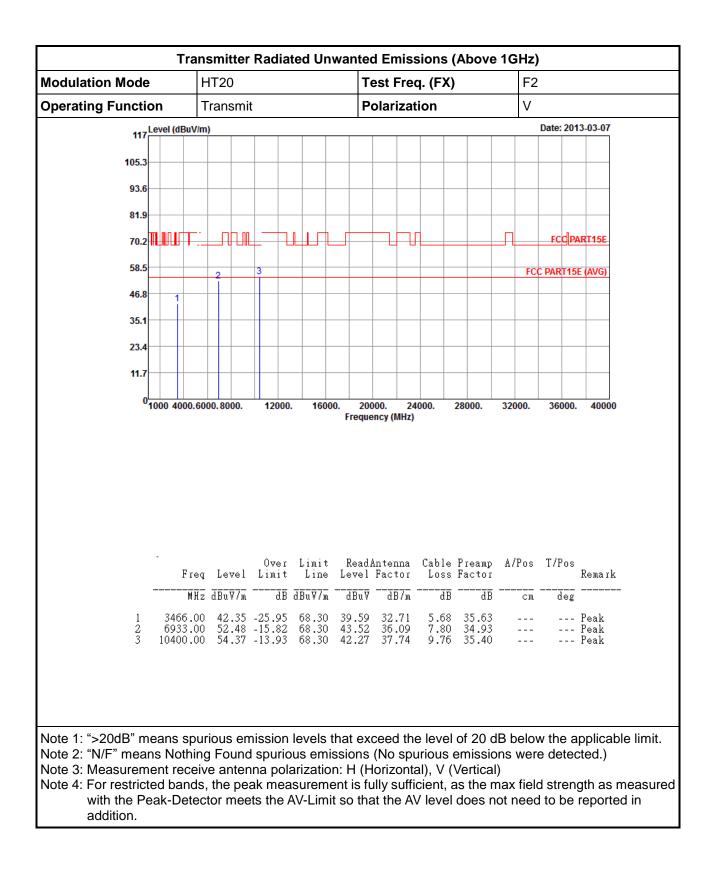




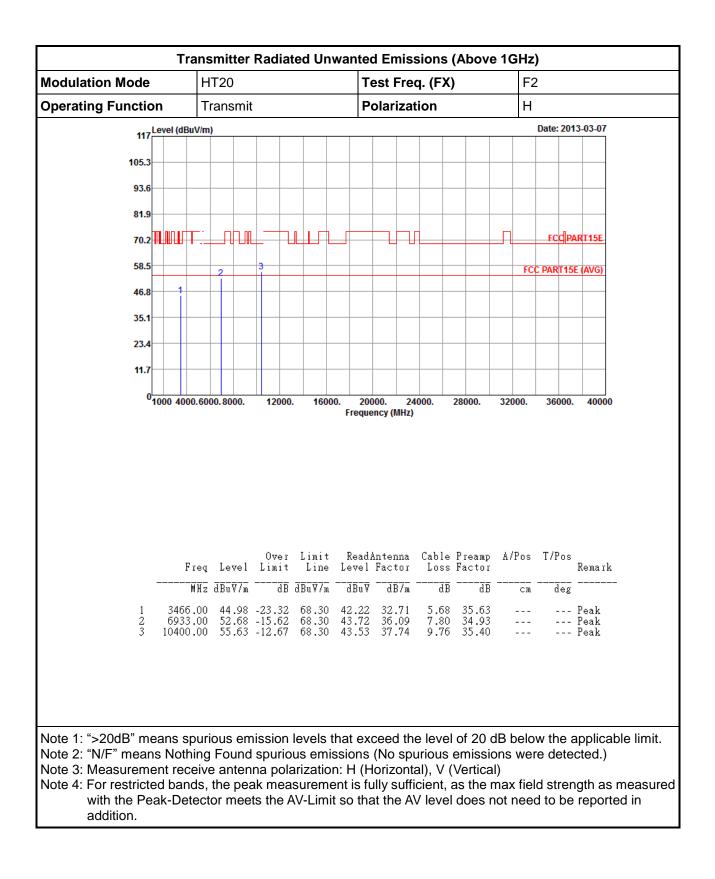


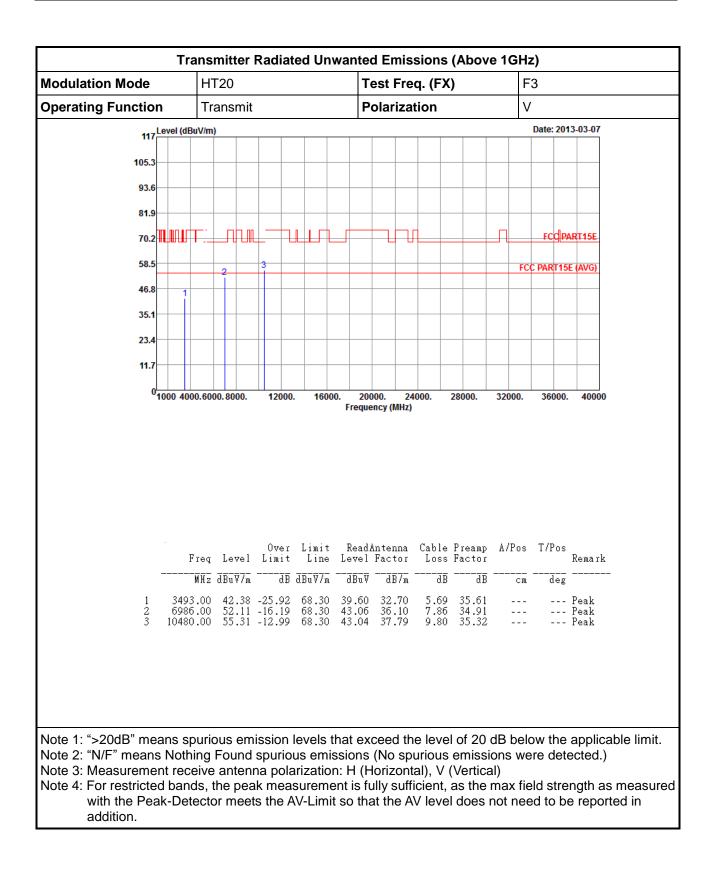


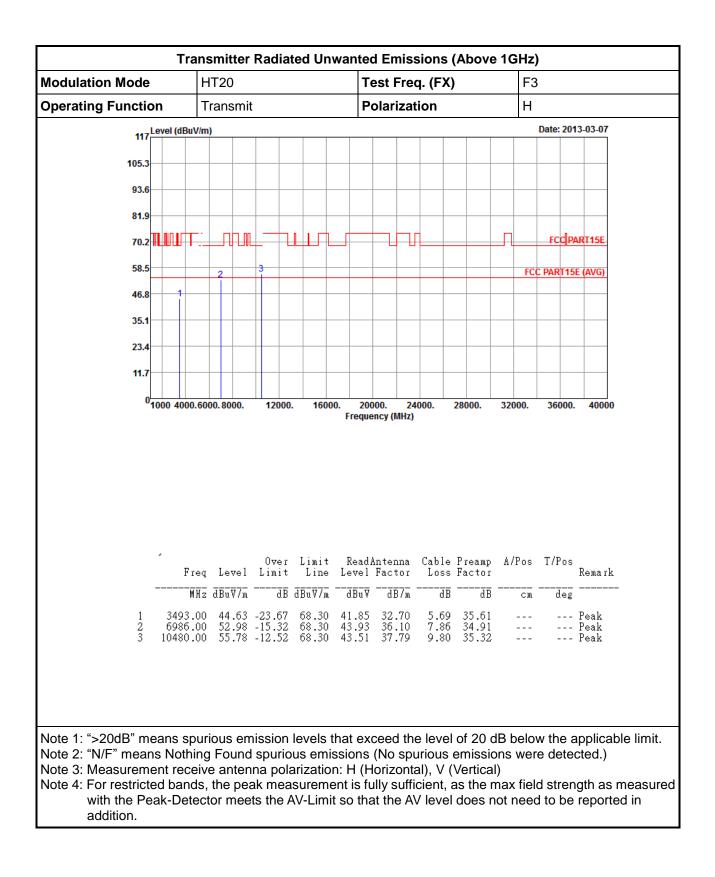


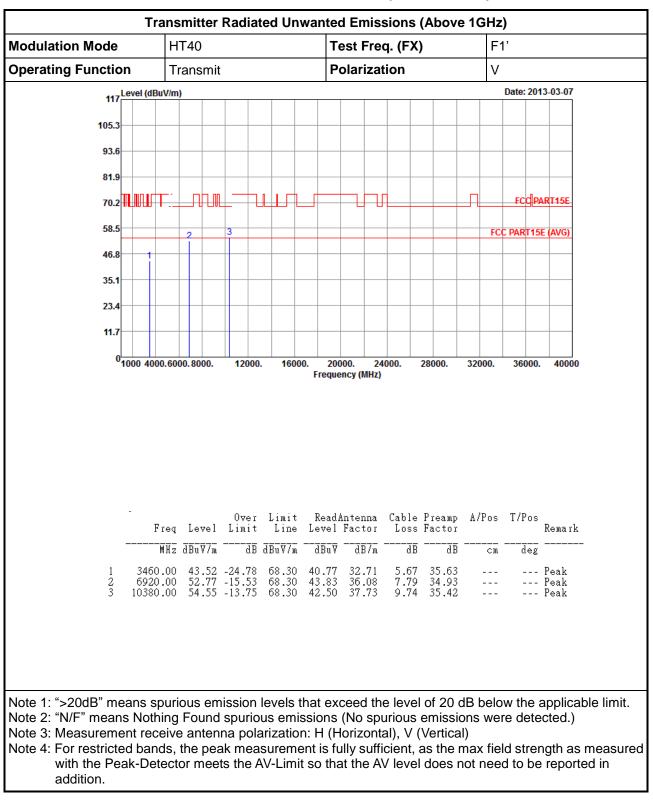


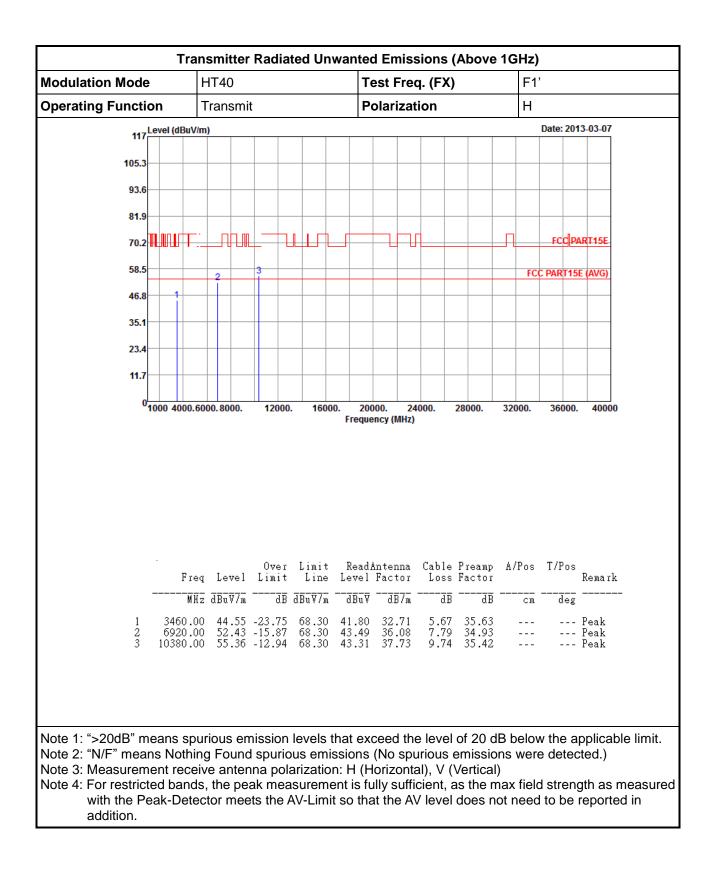
3.7.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

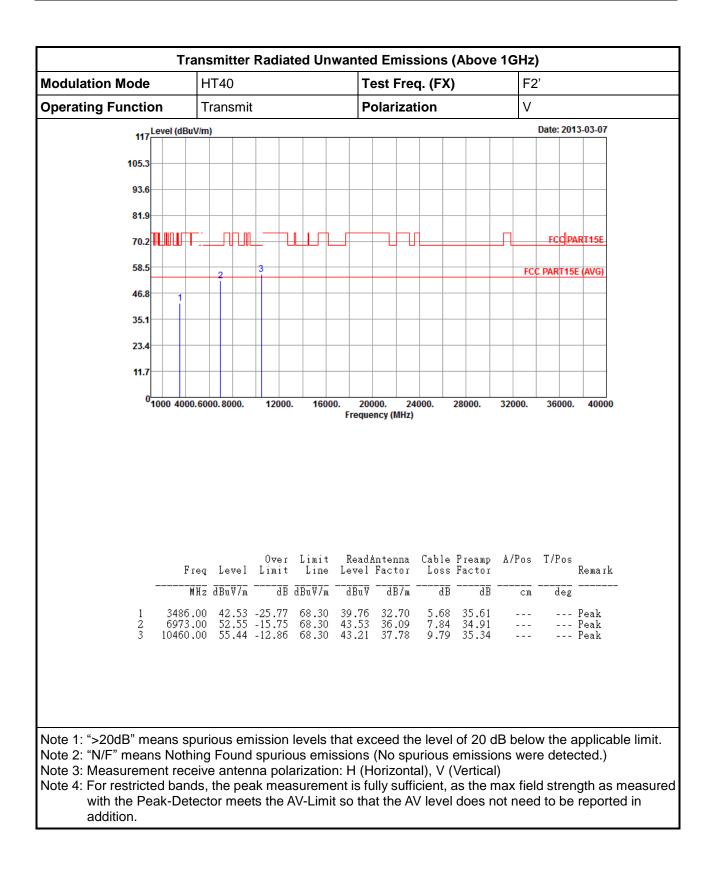




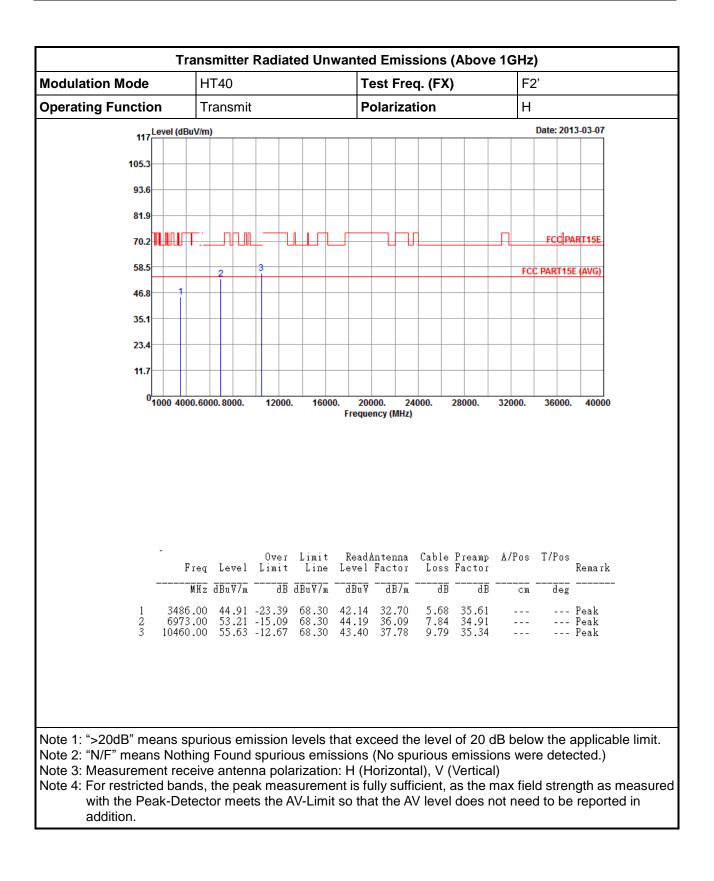








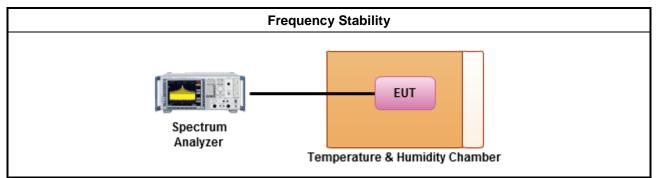
3.7.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40



3.8 Frequency Stability

3.8.1 Frequency Stability Limit

Frequency Stability Limit						
UNII Devices						
In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.						
LE-LAN Devices						
⊠ N/A						
IEEE Std. 802.11n-2009						
The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band and ± 25 ppm maximum for the 2.4 GHz band.						


3.8.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.8.3 Test Procedures

	Test Method							
\square	Refer as ANSI C63.10, clause 6.8 for frequency stability tests							
	\square	Frequency stability with respect to ambient temperature						
	\square	Frequency stability when varying supply voltage						
\boxtimes	For	conducted measurement.						
	\boxtimes	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)						
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to a the maximum emitted power level.						

3.8.4 Test Setup

Мо	de	Frequency Stability (ppm)						
Condition	Freq. (MHz)	0 min	2 min	5 min	10 min	Limit		
T _{20°C} Vmax	5180	4.10	4.63	4.52	4.19	20.0		
T _{20°C} Vmin	5180	6.12	6.00	6.72	5.86	20.0		
T _{45°C} Vnom	5180	10.90	11.18	11.10	11.13	20.0		
T _{40°C} Vnom	5180	10.26	10.26	10.12	10.40	20.0		
T _{30°C} Vnom	5180	6.11	6.35	5.84	6.47	20.0		
T _{20°C} Vnom	5180	4.47	5.02	5.04	4.96	20.0		
T _{10°C} Vnom	5180	3.02	3.28	3.47	3.35	20.0		
$T_{0^{\circ}C}$ Vnom	5180	1.26	0.79	1.17	1.40	20.0		
T₋₅∘ _C Vnom	5180	0.43	0.73	0.78	0.77	20.0		
Res	sult	Complied						

3.8.5 Test Result of Frequency Stability

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 kHz ~ 2.75 GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRO NIK	NSLK 8127	8127-477	9kHz – 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNE R	RG213/U	CB049	9 kHz ~ 30 MHz	Apr. 25, 2012	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 30	100023/030	9KHz ~ 30GHz	Apr. 27, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S P-SD	MAA1112-007	-20 ~ 100 ℃	Nov. 21, 2012	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Feb. 02, 2013	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Feb. 02, 2013	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHN ER	SUCOFLEX_10 4	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHN ER	SUCOFLEX_10 4	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP	100055	9Kz – 40GHz	Jun. 06, 2012	Radiation (03CH05-HY)
Receiver	R&S	ESIB26	100337	20Hz – 26.5GHz	Jun.21, 2012	Radiation (03CH05-HY)
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH05-HY	30 MHz - 1 GHz 3m	N/A	Radiation (03CH05-HY)
Amplifier	COM-POWER	PA-103	161050	1 MHz ~ 1 GHz	Mar. 20, 2012	Radiation (03CH05-HY)
Amplifier	Agilent	8449B	3008A02665	1GHz – 26.5 GHz	Aug. 28, 2012	Radiation (03CH05-HY)
Horn Antenna	ETS-LINDGRE N	3117	66584	1GHz~18GHz	Aug. 09, 2012	Radiation (03CH05-HY)
Horn Antenna	SCHWARZBEC K	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 08, 2013	Radiation (03CH05-HY
RF Cable-R03m	Jye Bao	RG142	03CH05-HY	30 MHz - 1 GHz	Oct. 14, 2012	Radiation (03CH05-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX104	03CH05-HY	1GHz~40GHz	Oct. 14, 2012	Radiation (03CH05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2725	30 MHz - 1 GHz	Oct. 06, 2012	Radiation (03CH05-HY)
Turn Table	HD	HD100	420/611	0 - 360 degree	N/A	Radiation (03CH05-HY)
Antenna Mast	HD	HD100	240/666	1 m - 4 m	N/A	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH05-HY)
Amplifier	MITEQ	AMF-6F-26040 0	9121372	26.5GHz ~ 40GHz	Apr. 19, 2011	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is two year.