

FCC Test Report

Equipment	2	AirStation
Trade Name	•	BUFFALO INC.
Model No.	:	WHR-600D
FCC ID	:	FDI00000011
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	5725 MHz – 5850 MHz
FCC Classification	:	DTS
Applicant Manufacturer	:	BUFFALO INC. Akamon-dori Bldg, 30-20, Ohsu 3-chome, Naka-ku, Nagoya 460-8315, Japan

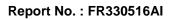
The product sample received on Mar. 01, 2013 and completely tested on Mar. 19, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

refric

Wayne Hsu / Assistant Manager


Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	Test Channel Frequencies Configuration	10
2.3	The Worst Case Power Setting Parameter	10
2.4	The Worst Case Measurement Configuration	11
2.5	Test Setup Diagram	12
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	6dB Bandwidth	16
3.3	RF Output Power	19
3.4	Power Spectral Density	23
3.5	Transmitter Radiated Bandedge Emissions	
3.6	Transmitter Radiated Unwanted Emissions	31
4	TEST EQUIPMENT AND CALIBRATION DATA	52
APPE	ENDIX A. TEST PHOTOS	A1
APPE	ENDIX B. PHOTOGRAPHS OF EUT	B1

Summary of Test Result

		Conforr	nance Test Specifications		
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]:0.9735420MHz 29.73 (Margin 16.27dB) - AV 33.27 (Margin 22.73dB) - QP	FCC 15.207	Complied
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth [MHz] 20M:17.45 / 40M:36.17	≥500kHz	Complied
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]:26.38	Power [dBm]:30	Complied
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz]:-9.61	PSD [dBm/3kHz]:8	Complied
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 5722.50MHz:24.57dB	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]:63.95MHz 38.79 (Margin 1.21dB) - QP	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied

Revision History

Report No.	Version	Description	Issued Date
FR330516AI	Rev. 01	Initial issue of report	Mar 27, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information						
Frequency Range (MHz)IEEE Std. 802.11Ch. Freq. (MHz)Channel NumberTransmit Chains (NTX)RF Output Power (dBm)Co-location						Co-location	
5725-5850	а	5745-5825	149-165 [5]	2	26.38	Yes	
5725-5850	n (HT20)	5745-5825	149-165 [5]	2	26.02	Yes	
5725-5850	n (HT40)	5755-5795	151-159 [2]	2	25.70	Yes	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category						
	Equ	Equipment placed on the market without antennas					
\square	Inte	gral antenna (antenna permanently attached)					
	\boxtimes	Temporary RF connector provided					
		No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
	Exte	ernal antenna (dedicated antennas)					
		Single power level with corresponding antenna(s).					
		Multiple power level and corresponding antenna(s).					
		RF connector provided					
		Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)					
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)					

1.1.3 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pres	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)			
⊠ 100% - IEEE 802.11a	0			
🖾 100% - IEEE 802.11n (HT20)	0			
🖾 100% - IEEE 802.11n (HT40)	0			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 Accessories and Support Equipment

Accessories						
No.	No. Equipment Brand Name Model Name Serial No.					
1	Adapter	APD	WA-12M12FU	-		

	Support Equipment AC Line Conducted Emission						
No.	No. Equipment Brand Name Model Name Serial No.						
1	Notebook	DELL	E5430	DoC			
2	Notebook	DELL	E5430	DoC			
3	Load	-	-	-			

	Support Equipment Radiated Below 1GHz Test						
No.	No. Equipment Brand Name Model Name Serial No.						
1	Notebook	DELL	E5420	DoC			
2	Notebook	DELL	E5420	DoC			
3	Load	-	-	-			

Support Equipment Radiated Above 1GHz Test									
No.	No. Equipment Brand Name Model Name Serial No.								
1	1 Notebook DELL E5420 DoC								

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911
- FCC KDB 412172

1.4 Testing Location Information

	Testing Location									
\square	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.									
		TEL	:	886-3-327-345	6 FAX : 886	6-3-318-0055				
	JHUBEI	ADD	:	No.8, Lane 724	, Bo-ai St., Jhubei Cit	y, HsinChu County 30	2, Taiwan, R.O.C.			
	TEL : 886-3-656-9065 FAX : 886-3-656-9085									
Te	est Conditio	on	Т	est Site No.	Test Engineer	Test Environment	Test Date			
R	RF Conducte	d		TH01-HY	lan Du	23°C / 62%	07-Mar-13 ~ 18- Mar-13			
A	C Conductio	n		CO04-HY	Bill Hsiao	24.3°C / 65%	18-Mar-13			
Rad	Radiated Emission03CH05-HYDaniel Hsu25°C / 65%06-Mar-13 ~ 07- Mar-13									
	Test site registered number [643075] with FCC. Test site registered number [4086B-1] with IC.									

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

	Measurement Uncertainty	1		
Test Item		Uncertainty	Limit	
AC power-line conducted emissions		±2.26 dB	N/A	
Emission bandwidth, 6dB bandwidth	Emission bandwidth, 6dB bandwidth			
RF output power, conducted		±0.63 dB	N/A	
Power density, conducted	±0.81 dB	N/A		
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A	
	1 – 18 GHz	±0.67 dB	N/A	
	18 – 40 GHz	±0.83 dB	N/A	
	40 – 200 GHz	N/A	N/A	
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A	
	1 – 18 GHz	±3.59 dB	N/A	
	18 – 40 GHz	±3.82 dB	N/A	
	40 – 200 GHz	N/A	N/A	
Temperature		±0.8 °C	N/A	
Humidity		±3 %	N/A	
DC and low frequency voltages		±3 %	N/A	
Time		±1.42 %	N/A	
Duty Cycle		±1.42 %	N/A	

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing									
Modulation Mode Transmit Chains (N _{Tx}) Data Rate / MCS Worst Data Rate / MCS RF Output Pow (dBm)									
11a,6-54Mbps 2 6-54 Mbps 6 Mbps 26.38									
HT20,M0-15	2	MCS 0-15	MCS 0	26.02					
HT40,M0-15 2 MCS 0-15 MCS 0 25.70									
	Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 400ns.								

Note 2: Modulation modes consist below configuration:

11a: IEEE 802.11a, HT20/HT40: IEEE 802.11n

Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

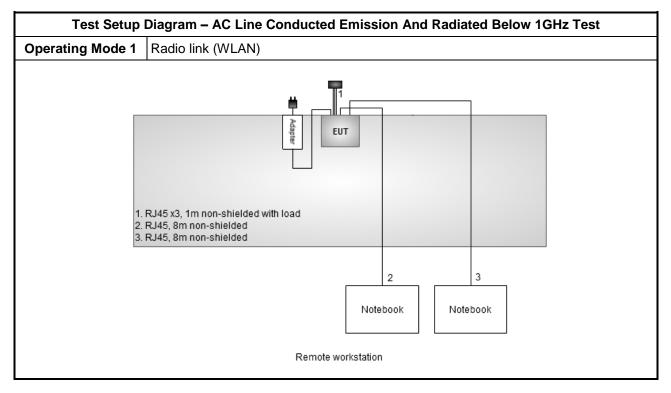
2.2 Test Channel Frequencies Configuration

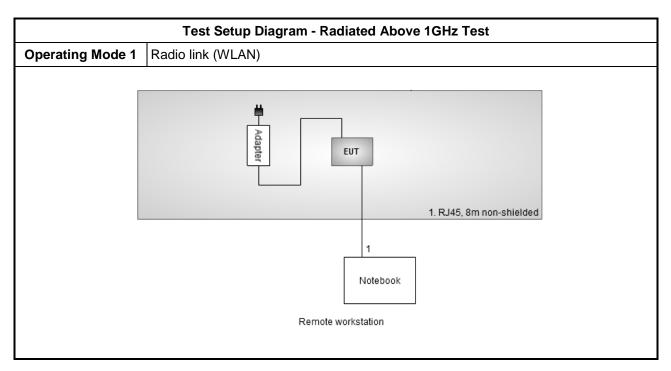
Test Channel Frequencies Configuration					
IEEE Std. 802.11	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)				
a, n (HT20)	5745-(F1), 5785-(F2), 5825-(F3)				
n (HT40)	5755-(F1'), 5795-(F2')				

2.3 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (5725-5850MHz band)									
Test Software Version	Ralin	Ralink QA 1.0.9.0							
		Test Frequency (MHz)							
Modulation Mode	Ντχ	NCB: 20MHz				NCB: 40MHz			
		5745	5785	5825	5755	5795	-		
11a,6-54Mbps	2	20,22	21,23	22,24	-	-	-		
HT20,M0-7	2	21,23	22,23	21,23	-	-	-		
HT40,M0-7	2	-	-	-	23,25	25,27	-		

2.4 The Worst Case Measurement Configuration


Tł	The Worst Case Mode for Following Conformance Tests						
Tests Item AC power-line conducted emissions							
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz						
Operating Mode	Operating Mode Description						
1	Radio link (WLAN)						


The Worst Case Mode for Following Conformance Tests							
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth						
Test Condition	Conducted measurement at transmit chains						
Modulation Mode	Modulation Mode 11a, HT20, HT40						

Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts					
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions							
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.							
	\boxtimes EUT will be placed in	fixed position.						
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes. The worst planes is X.							
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is X.							
Operating Mode < 1GHz	🛛 1. Radio link (WLAN	l)						
Modulation Mode	11a, HT20, HT40							
	X Plane	Y Plane	Z Plane					
Orthogonal Planes of EUT								

2.5 Test Setup Diagram

Transmitter Test Result 3

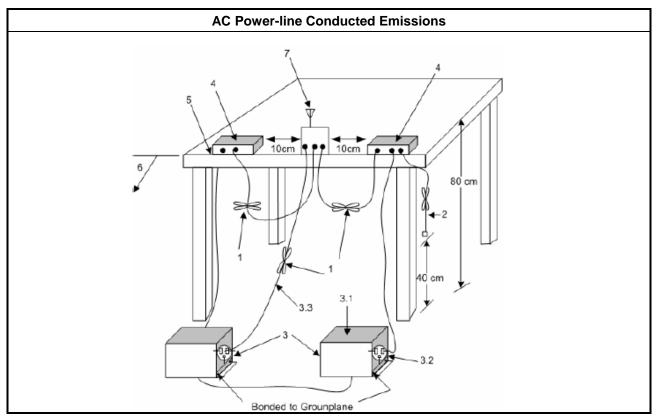
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

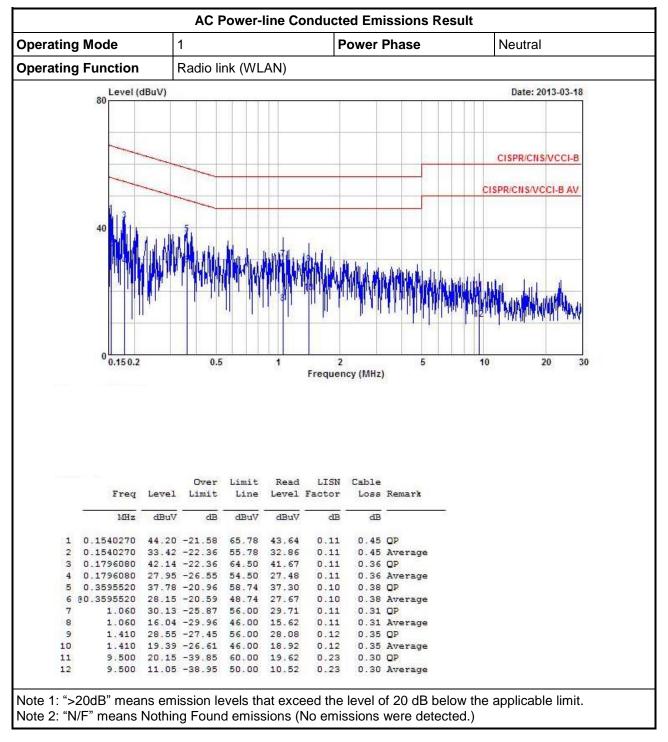
AC Power-line Conducted Emissions Limit								
Frequency Emission (MHz) Quasi-Peak Average								
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30 60 50								
Note 1: * Decreases with the logarithm c	of the frequency							

ecreases with the logarithm of the frequency

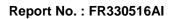
3.1.2 Measuring Instruments

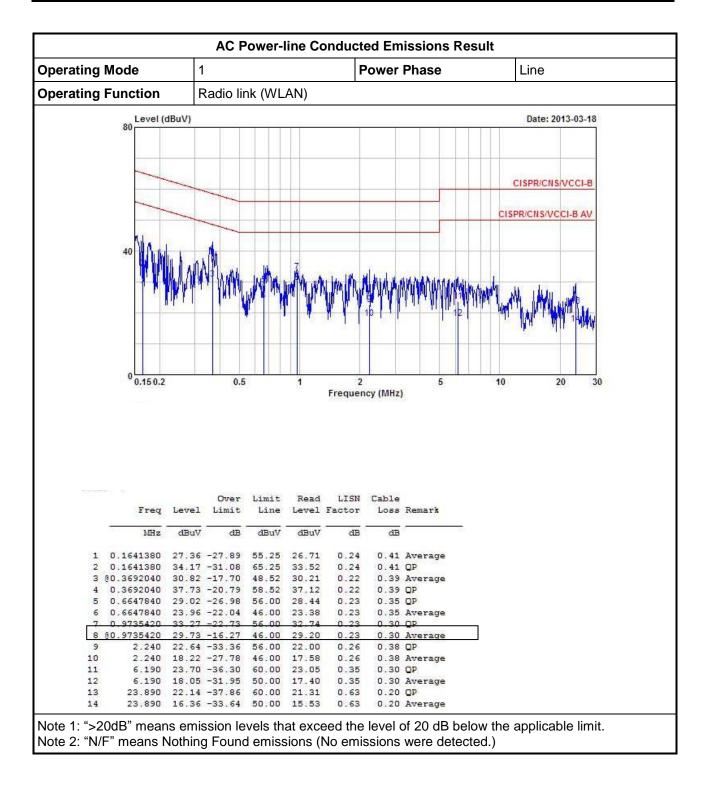

Refer a test equipment and calibration data table in this test report.

3.1.3 **Test Procedures**


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.


3.1.4 Test Setup



3.1.5 Test Result of AC Power-line Conducted Emissions

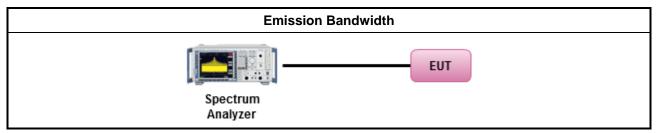
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

 \boxtimes 6 dB bandwidth ≥ 500 kHz.

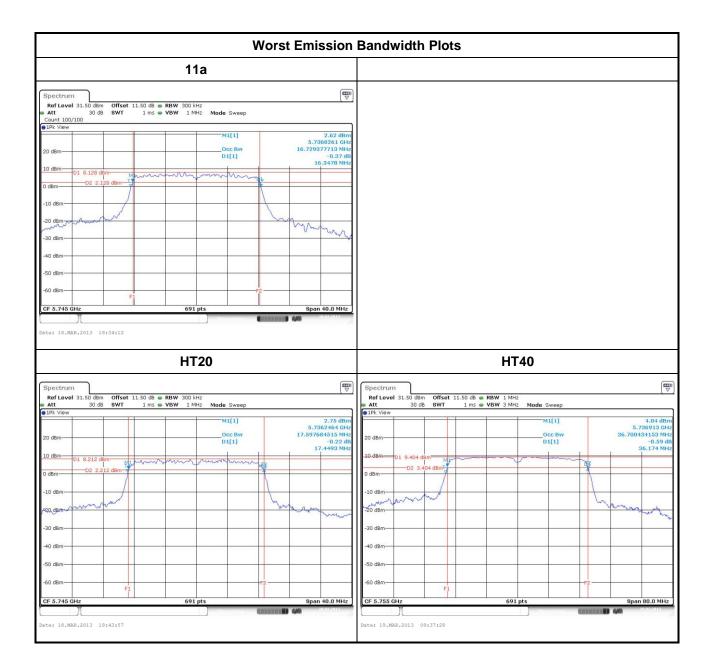

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method									
\boxtimes	For the emission bandwidth shall be measured using one of the options below:									
	Refer as FCC KDB 558074, clause 7.1 Option 1 for 6 dB bandwidth measurement.									
		Refer as FCC KDB 558074, clause 7.2 Option 2 for 6 dB bandwidth measurement.								
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.								
\boxtimes	For	conducted measurement.								
		The EUT supports single transmit chain and measurements performed on this transmit chain.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
	\square	The EUT supports multiple transmit chains using options given below:								
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.								
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.								

3.2.4 Test Setup



3.2.5 Test Result of Emission Bandwidth

	Emission Bandwidth Result											
Condi	tion			Emission Bandwidth (MHz)								
Medulation		F ree et		99% Ba	ndwidth			6dB Ba	ndwidth			
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4		
11a	2	5745	16.73	16.85	-	-	16.35	16.29	-	-		
11a	2	5785	16.79	16.96	-	-	16.29	16.35	-	-		
11a	2	5825	16.85	16.96	-	-	16.35	16.35	-	-		
HT20	2	5745	17.60	17.60	-	-	17.45	17.39	-	-		
HT20	2	5785	17.60	17.77	-	-	17.45	17.45	-	-		
HT20	2	5825	17.60	17.60	-	-	17.45	17.45	-	-		
HT40	2	5755	36.70	36.93	-	-	36.17	36.06	-	-		
HT40	2	5795	36.82	38.09	-	-	36.06	36.06	-	-		
Lim		N/A ≥500 kHz										
Resi		Complied										
Note 1: $N_{TX} = Nur$	mber o	of Transm	it Chains									

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

	RF Output Power Limit										
Мах	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit										
\square	S725-5850 MHz Band:										
	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)										
	\boxtimes	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm									
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30$ dBm									
e.i.r	.p. P	ower Limit:									
\square	572	5-5850 MHz Band									
	\boxtimes	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$									
		Point-to-point systems (P2P): N/A									
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.									

RF Output Power Limit - IC

Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit and e.i.r.p.

5725-5850 MHz Band:

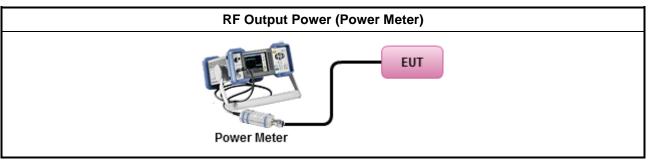
Point-to-multipoint systems (P2M): $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$; $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$

Point-to-point systems (P2P): If $P_{eirp} > 36 \text{ dBm}$, $G_{TX} \leq P_{Out}$

 \mathbf{P}_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, \mathbf{G}_{TX} = the maximum transmitting antenna directional gain in dBi.

 $\mathbf{P}_{eirp} = e.i.r.p.$ Power in dBm.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.1.1 Option 1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 8.1.2 Option 2 (integrated band power method).
	\boxtimes	Refer as FCC KDB 558074, clause 8.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)
\square	Max	imum Conducted (Average) Output Power
		Refer as FCC KDB 558074, clause 8.2.1 Option 1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 8.2.2 Option 2 (slow sweep speed).
	\boxtimes	Refer as FCC KDB 558074, clause 8.2.3 Option 3 (average power meter).
\square	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

	Dire	ectional Gain (D	G) Result		
Transmit Chains No.		1	2	-	-
Maximum G _{ANT} (dBi)		4.86	2.57	-	-
Modulation Mode	DG (dBi)	Ν _{τχ}	N _{ss}	STBC	Array Gain (dB)
11a,6-54Mbps	4.86	2	1	-	-
HT-20,M0-M7	4.86	2	1	-	-
HT-20,M8-M15	4.86	2	2	-	-
HT-40,M0-M7	4.86	2	1	-	-
HT-40,M8-M15	4.86	2	2	-	-
Note 1: For all transmitter outputs Any transmit signals are con All transmit signals are con Note 2: For all transmitter outputs Any transmit signals are con All transmit signals are con Note 3: For Spatial Multiplexing, D where Nss = the number con	orrelated mpletely with une orrelated mpletely irectiona	I, Directional Gai uncorrelated, Di qual antenna ga I, Directional Gai uncorrelated, Dir I Gain (DG) = G	n = G_{ANT} + 10 log rectional Gain = ins, directional g n =10 log[(10 ^{G1/2} rectional Gain = _{ANT} + 10 log(N _{TX} /	g(N _{TX}) G _{ANT} ain is to be comp ⁰ + + 10 ^{GN/20}) ² 10 log[(10 ^{G1/10} +.	outed as follows: /N _{T×}]
Note 4: For CDD transmissions, d Directional Gain (DG) = G Array Gain = 0 dB (i.e., no Array Gain = 0 dB (i.e., no	rectional _{ANT} + Arra array ga	l gain is calculate ay Gain, where A ain) for N _{TX} ≤ 4;	ed as power mea Array Gain is as f	ollows:	

3.3.5 Directional Gain for Power Measurement

	Maximum Peak Conducted Output Power Result												
Condi	ition			RF Output Power (dBm)									
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit		
11a	2	5745	23.12	23.24	-	-	26.19	30	4.86	31.05	36		
11a	2	5785	23.66	23.05	-	-	26.38	30	4.86	31.24	36		
11a	2	5825	22.34	22.18	-	-	25.27	30	4.86	30.13	36		
HT20	2	5745	22.78	22.93	-	-	25.87	30	4.86	30.73	36		
HT20	2	5785	23.22	22.79	-	-	26.02	30	4.86	30.88	36		
HT20	2	5825	22.02	21.78	-	-	24.91	30	4.86	29.77	36		
HT40	2	5755	22.64	22.54	-	-	25.60	30	4.86	30.46	36		
HT40	2	5795	22.95	22.41	-	-	25.70	30	4.86	30.56	36		
Res	ult					C	Complie	d					

3.3.6 Test Result of Maximum Peak Conducted Output Power

3.3.7 Test Result of Maximum Conducted Output Power

	Maximum Conducted Output Power													
Condi	tion				l	RF Outp	out Pow	er (dBm))					
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit			
11a	2	5745	15.58	15.62	-	-	18.61	30	4.86	23.47	36			
11a	2	5785	15.47	15.67	-	-	18.58	30	4.86	23.44	36			
11a	2	5825	14.47	14.98	-	-	17.74	30	4.86	22.6	36			
HT20	2	5745	15.49	15.64	-	-	18.58	30	4.86	23.44	36			
HT20	2	5785	15.42	15.47	-	-	18.46	30	4.86	23.32	36			
HT20	2	5825	14.31	14.47	-	-	17.40	30	4.86	22.26	36			
HT40	2	5755	15.68	16.21	-	-	18.96	30	4.86	23.82	36			
HT40	2	5795	16.19	16.31	-	-	19.26	30	4.86	24.12	36			
Resi	ult					C	Complie	d						

Power Spectral Density 3.4

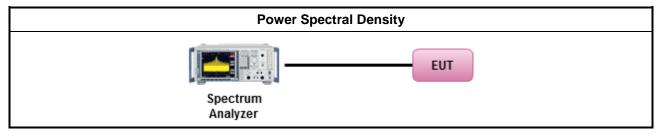
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

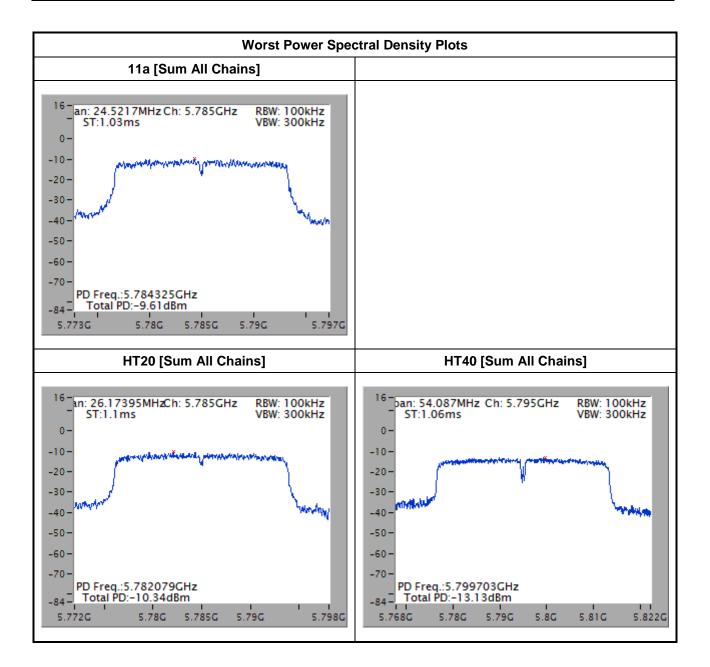
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 **Test Procedures**

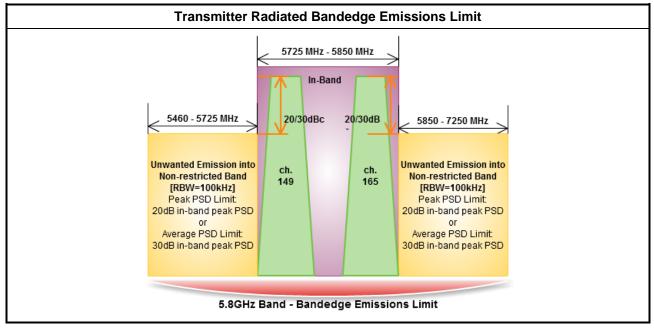
Г

		Test Method
\boxtimes	pow proc whe dem	rer spectral density procedures that the same method as used to determine the conducted output er shall be used to determine the power spectral density. In addition, the use of a peak PSD redure will always result in a "worst-case" measured level for comparison to the limit. Therefore, never the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to ionstrate compliance to the PSD limit, regardless of how the fundamental output power was isured. For the power spectral density shall be measured using below options:
	\square	Refer as FCC KDB 558074, clause 9.1 Option 1 - (RBW≥3kHz; sweep=auto, detector=peak).
		Refer as FCC KDB 558074, clause 9.2 Option 2 - (RBW≥3kHz; sweep=auto, average=100).
		Refer as FCC KDB 558074, clause 9.3 Option 3 - (RBW≥3kHz; slow sweep speed).
		Refer as FCC KDB 558074, clause 9.4 Alternative 1 (average PSD; Add 10log (1/duty cycle).
	\square	RBW>3kHz, add the bandwidth correction factor (BWCF) adjusting in PSD per 3kHz.
\boxtimes	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\square	The EUT supports multiple transmit chains using options given below:
		☑ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.


3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

			Power S	pectral Den	sity Result					
Cond	lition			Powe	Power Spectral Density (dBm/3kHz)					
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain	-	-	-	-	Power Limit		
11a	2	5745	-10.79	-	-	-	-	8		
11a	2	5785	-9.61	-	-	-	-	8		
11a	2	5825	-9.80	-	-	-	-	8		
HT20	2	5745	-10.62	-	-	-	-	8		
HT20	2	5785	-10.34	-	-	-	-	8		
HT20	2	5825	-10.72	-	-	-	-	8		
HT40	2	5755	-13.41	-	-	-	-	8		
HT40	2	5795	-13.13	-	-	-	-	8		
Res	sult	1			Com	plied				
lote 1: PSD [dBr	n/3kHz]	= sum ea	ch transmit	chains by bi	n-to-bin PSD) [dBm/100kl	Hz] + BWF0	C [-15.2 dB]		



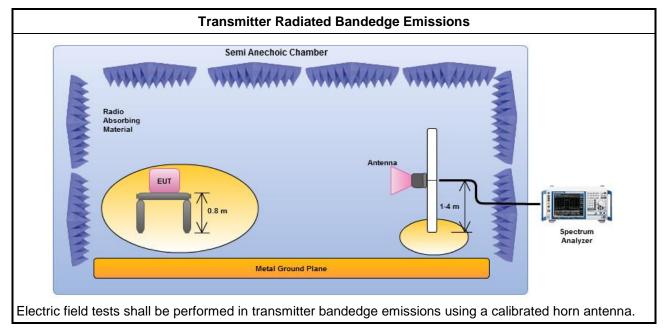
3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures


		Test Method										
\boxtimes												
\boxtimes		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nonel and highest frequency channel within the allowed operating band.										
\square	For	the transmitter unwanted emissions shall be measured using following options below:										
	\boxtimes	Refer as FCC KDB 558074, clause 10.1 for unwanted emissions into non-restricted bands.										
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 for unwanted emissions into restricted bands.										
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 1 (spectral trace averaging)										
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 2 (slow sweep speed).										
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.										
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.										
		Refer as FCC KDB 558074, clause 10.2.3.2 and 8.1.1 measurement procedure peak limit.										
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:										
		Refer as FCC KDB 558074, clause 10.2.5.2 for narrower resolution bandwidth using the band power and summing the spectral levels (i.e., 100 kHz or 1 MHz).										
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.										
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.										

	Test Method
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 3m, because the instrumentation noise floor is typically close to the radiated emission limit.
\square	For radiated measurement, refer as FCC KDB 558074, clause 10.2.1.
\square	For conducted measurement, refer as FCC KDB 558074, clause 10.2.2.

3.5.4 Test Setup

Г

3.5.5	Test Result of Transmitter Radiated Bandedge Emissions	
-------	--	--

	Tra	ansmitter Ra	adiated Bar	ndedge Emis	sions Result	t		
Modulation		11a		Ντχ	2			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
5460-5725	5745	102.83	5724.9	71.11	31.72	20	PK	V
5850-7250	5825	100.71	5851.135	51.25	49.46	20	PK	V
	Low Band	edge			Up Ba	ndedge		
93.6 81.9 70.2 58.5 46.8 9.0 10.7 58.5 35.1 23.4 11.7	enerstation makes		FCC CLASS B (AVG)	93.6 81.9 70.2 58.5 46.8 35.1 23.4 11.7		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	FCC CLA:	
osees seed. stron.	5710. 5720 Frequency	(MHz)	s750. 5755	0 ₅₆₁₅ 5820		5440. 5850. Frequency (MHz)	5860.	5870

	Tra	ansmitter Ra	adiated Bar	ndedge Emis	sions Result	t				
Modulation		HT20		Ν _{τχ}	2					
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1		
5460-5725	5745	102.91	5724.9	71.28	31.63	20	PK	V		
5850-7250	5825	100.28	5850.255	49.7	50.58	20	PK	V		
	Low Band	edge			Up Ba	ndedge				
117 ^{Level (dBuV/m)} 105.3 93.6 93.6 93.6 93.6 93.6 10.2 58.5 46.8 10.0 556855690. 5700.	5/10. 5/20 Frequency	L. 5730. 5740. (MHz)	Dete: 2013-03-07	117 105.3 93.6	5830.	5840. 5850. Frequency (MHz)				

Modula	tion		HT40		Ντχ	2			
Non-rest Band (N		Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
5460-5	725	5755	97.22	5722.5	72.65	24.57	20	PK	V
5850-72	250	5795	98.84	5851	53.99	44.85	20	PK	V
		Low Band	ledge			Up Ba	andedge		
105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4		ann an ann an ann ann ann ann ann ann a	dar R	FCC CLASS B	93.6 81.9 46.8 35.1 23.4		With Start Reading and the start of the star	FCC C	
11.7 0 5680	i690. 5700.	5710. 5720. 57 Frequen		5770. 5780	11.7 0 ₅₇₇₀ 5780	0. 5790. 5800. 5810	. 5820. 5830. 5840. Frequency (MHz)	5850. 5860	. 5870

3.6 Transmitter Radiated Unwanted Emissions

Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	30	29	30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	200	46	3							
Above 960	500	54	3							

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

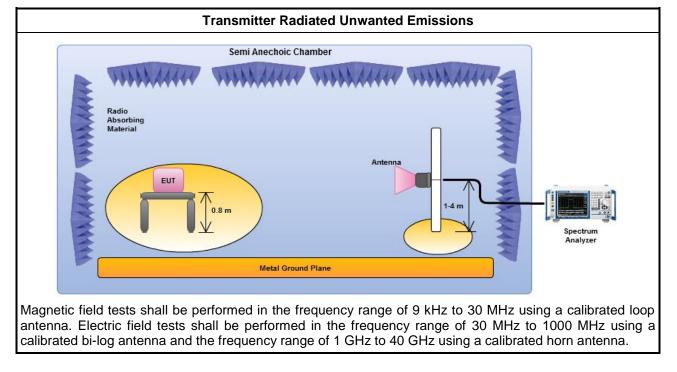
Un-restricted Band Emissions Limit								
RF output power procedure	Limit (dB)							
Peak output power procedure	20							
Average output power procedure	30							
Note 1: If the peak output power procedure is used to	o measure the fundamental emission power to							

demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

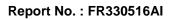
Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

		Test Method
	perf equi extra dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density isurements).
	\boxtimes	Measurements in the frequency range 5 GHz - 10GHz are typically made at a closer distance 3m, because the instrumentation noise floor is typically close to the radiated emission limit.
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
	\boxtimes	Measurements in the frequency range above 18 GHz - 40GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 10.1 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 1 (spectral trace averaging)
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 2 (slow sweep speed).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 10.2.3.2 and 8.1.1 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 10.2.3.1 measurement procedure Quasi-Peak limit.
\square	For	radiated measurement, refer as FCC KDB 558074, clause 10.2.1.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.
	For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 10.2.2.
		For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
		For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB

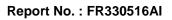
3.6.4 Test Setup


3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

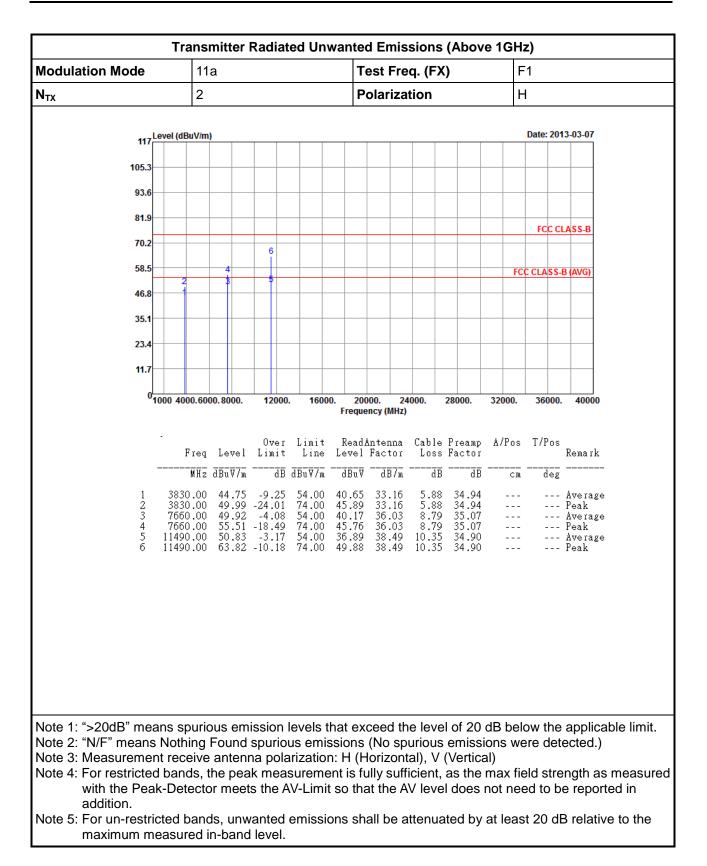
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

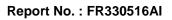
Operating Function Radio link (WLAN) Date: 2013.0: 90 Level (dBuV/m) Date: 2013.0: 81.0 72.0
81.0 72.0 63.0 64.0 65.0 65.0 60.0 70.0
81.0 72.0 63.0 64.0 65.0 65.0 60.0 72.0 63.0 60.0 72.0 63.0 64.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 75.0 76.0
72.0
63.0 54.0 54.0 55.0
54.0 FCC CLAS 45.0 3 5 6 36.0 4 6 6 27.0 4 6 6 18.0 4 6 6 9.0 9.0 600. 700. 800. 900. 18.0 700. 100. 200. 300. 400. 500. 600. 700. 800. 900. Frequency (MHz) Frequency (MHz) 100. 200. 300. 400. 500. 600. 700. 800. 900. MHz dBuV/m dB dBuV/m dBuV dBm dB cm deg 1 63.95 38.79 -1.21 40.00 63.55 5.92 0.87 31.55 0P 2 106.63 41.55 -1.95 43.50 61.06 10.86 1.14 31.51 0P 3 151.25 37.46 -6.04 43.50 65.02 11.12 1.27 31.25 P
34.0 45.0 45.0 6 36.0 4 5 6 36.0 4 5 6 36.0 4 6 6 36.0 4 6 6 36.0 4 6 6 36.0 4 6 6 36.0 4 6 6 9.0 30 100. 200. 300. 400. 500. 600. 700. 800. 900. Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dB dB cm deg 1 63.95 38.79 -1.21 40.00 63.55 5.92 0.87 31.55 OP 2 106.63 41.55 -1.95 43.50 61.06 10.86 1.14 31.51 OP 3 151.25 37.46 -6.04 43.50 56.32 11.12 1.27 31.25 P 4
36.0 4 5 6 27.0 4 6 6 18.0 9.0 9.0 100. 200. 300. 400. 500. 600. 700. 800. 900. 9.0 0 100. 200. 300. 400. 500. 600. 700. 800. 900. Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dB dBuV/m dB/m dB dB cm deg 1 63.95 38.79 -1.21 40.00 63.55 5.92 0.87 31.55 0P 2 106.63 41.55 -1.95 43.50 61.06 10.86 1.14 31.51 0P 3 151.25 37.46 -6.04 43.50 56.32 11.12 1.27 31.25 Pe 4 250.19 32.44 -13.56 66.00 49.11 12.62 1.61 30.90 Pe
36.0 4
27.0 18.0 9.0 9.0 0.0 100. 200. 300. 400. 500. 600. 700. 800. 900. Frequency (MHz)
18.0 9.0
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
0 30 100. 200. 300. 400. 500. 600. 700. 800. 900. Frequency (MHz)
Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Re: MHz dBuV/m dB dBuV/m -dBuV dB/m -dB deg 1 63.95 38.79 -1.21 40.00 63.55 5.92 0.87 31.55 OP 2 106.63 41.55 -1.95 43.50 61.06 10.86 1.14 31.51 OP 3 151.25 37.46 -6.04 43.50 56.32 11.12 1.27 31.25 Pe 4 250.19 32.44 -13.56 46.00 49.11 12.62 1.61 30.90 Pe
Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Res MHz dBuV/m dB dBuV/m -dBuV dB/m dB
Freq Level Limit Line Level Factor Loss Factor Res
MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB dB cm deg 1 63.95 38.79 -1.21 40.00 63.55 5.92 0.87 31.55 QP 2 106.63 41.55 -1.95 43.50 61.06 10.86 1.14 31.51 QP 3 151.25 37.46 -6.04 43.50 56.32 11.12 1.27 31.25 Pe 4 250.19 32.44 -13.56 46.00 49.11 12.62 1.61 30.90 Pe
1 63.95 38.79 -1.21 40.00 63.55 5.92 0.87 31.55 OP 2 106.63 41.55 -1.95 43.50 61.06 10.86 1.14 31.51 OP 3 151.25 37.46 -6.04 43.50 56.32 11.12 1.27 31.25 Pe 4 250.19 32.44 -13.56 46.00 49.11 12.62 1.61 30.90 Pe
3 151.25 37.46 -6.04 43.50 56.32 11.12 1.27 31.25 Pe 4 250.19 32.44 -13.56 46.00 49.11 12.62 1.61 30.90 Pe
4 250.19 32.44 -13.56 46.00 49.11 12.62 1.61 30.90 Pe
5 500.45 58.21 -7.79 40.00 48.27 18.10 2.42 50.58 Per 6 806.97 40.22 -5.78 46.00 44.98 22.17 2.86 29.79 Per

3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

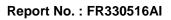


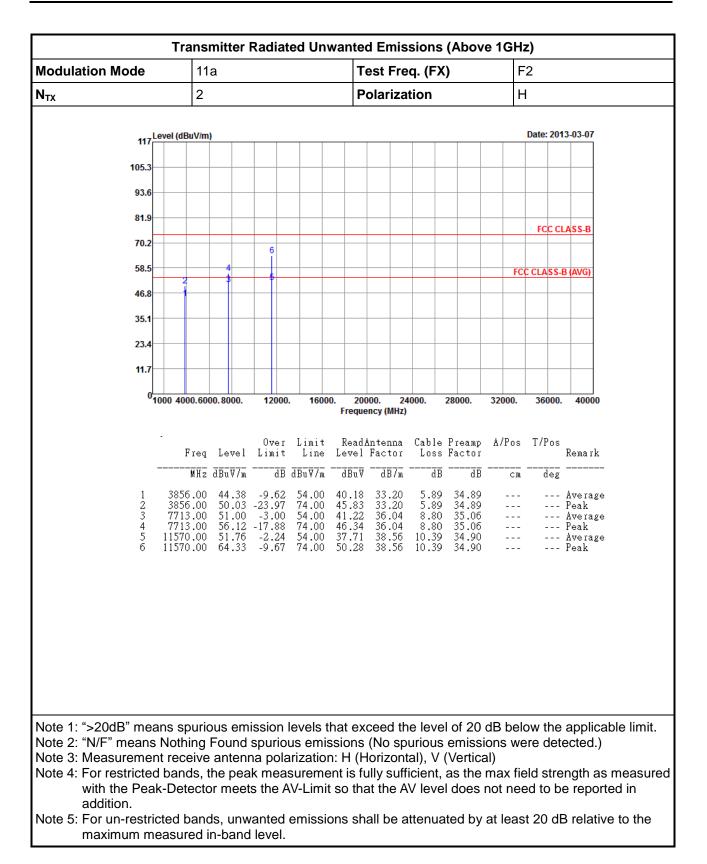
Operating Mode	1		Polarization		н					
Operating Function	Radio li	Radio link (WLAN)								
l evel	(dBuV/m)				Date: 2013-03-07					
90										
81.0										
72.0										
63.0										
54.0					FCC CLASS-B					
45.0				6						
36.0		4	5	Ĩ						
27.0										
18.0										
9.0										
0 <mark></mark>	100. 200.	300. 400.	500. 600. Frequency (MHz)	700. 800.	900. 1000					
	Freq Leve		ReadAntenna Cable evel Factor Loss	Preamp A/Po Factor	s T/Pos Remark					
	MHz dBuV7	mdB dBu∀7m	dBuV dB7m dB	dB c:	m deg					
	106.63 37.6 151.25 36.8	6 -6.64 43.50 5	7.11 10.86 1.14 5.72 11.12 1.27							
4 2	192.96 37.2 250.19 36.2	4 -9.76 46.00 5	8.12 8.76 1.44 2.91 12.62 1.61	30.90	Peak					
5 5	500.45 36.6 806.00 40.9		6.72 18.10 2.42 5.75 22.16 2.85	30.58 29.80						

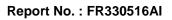



Modulation Mode		11a			Te	Test Freq. (FX)				F1		
I _{TX}	2				P	olariza	tion		٧	/		
117	vel (dBuV/n	n)								Date: 201	3-03-07	
105.3—												
93.6												
81.9												
70.2										FCC CL	А22-В	
58.5		4	6						FC	C CLASS-E	3 (AVG)	
46.8	1	3	5									
35.1												
23.4												
11.7												
-10	00 4000.60	00.8000.	12000	. 1600		00. 24 ncy (MHz)	1000.	28000.	32000.	36000.	40000	
			Over	Limit	Read <i>A</i>	Intenna	Cable	Preamp	A/Pos	T/Pos		
-		Level			Level	Factor	Loss	Factor			Remark 	
1	MH2 3830.00	dBuV7m 46.92	ав -7.08	<u>dBuV7m</u> 54.00	dBuV 42.82	dB7m 33.16	ав 5.88	dB 34.94	сm 	deg	Average	
2 3	3830.00	51.82	-22.18	74.00 54.00	47.72 38.08	33.16 36.03	5.88	34.94 35.07			Peak Average	
4 5	7660.00	1 54.47 1 49.06	-19.53	74.00 54.00	44.72 35.12	36.03 38.49	8.79 10.35	35.07 34.90			Peak Average	
б	11490.00	60.88	-13.12	74.00	46.94	38.49	10.35	34.90			Peak	
lote 1: ">20dB" mea lote 2: "N/F" means												
ote 3: Measuremen	t receive	e antenr	na pola	rizatio	n: H (H	orizont	al), V	(Vertica	al)			
ote 4: For restricted with the Peak												
addition.												
lote 5: For un-restric	الممه	مام ،					44.0.0		at 	+ 00 - IF) nol-1!	

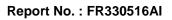
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a



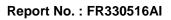




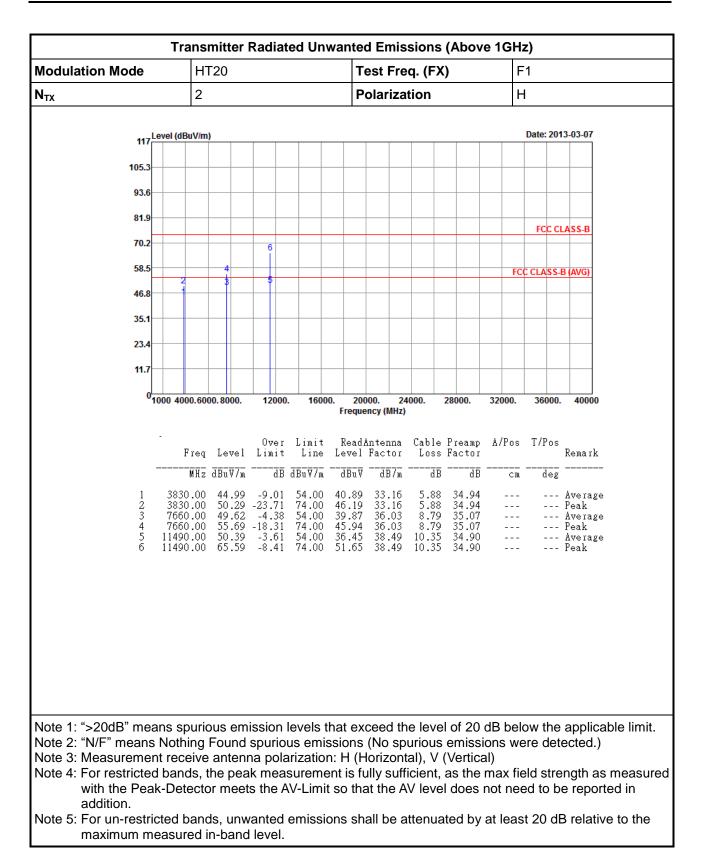
Modulation Mod	e	11	a			Т	est F	req. (FX)		F	2	
N _{TX}		2				P	olariz	zatior	١		V	/	
												D () 00	
	117 <mark>Le</mark>	evel (dBuV/m))									Date: 201	13-03-07
10	5.3									_			
9	3.6									_			
8	1.9-									_			
7	0.2											FCC C	LASS-B
5	8.5		4	6								C CLASS-	
	6.8	2	3	5							ru	C CLASS-	D (AVG)
	5.1												
	3.4												
1	1.7												
	0 <mark>1</mark> 0	00 4000.600	00.8000.	12000	1600)00. ency (MH	24000.	2	8000.	32000.	36000.	40000
		_				Troque	,	,					
		Freq	Level		Limit Line						A/Pos	T/Pos	Remark
	-	MHz	<u>dBu⊽7m</u>	dB	<u>dBuV7m</u>	dBu∀	<u>d</u> B7	 m	dB	dB	cm	deg	
	1 2	3856.00 3856.00	48.19 53.21	-5.81	54.00 74.00	43.99 49.01	33.2 33.2			34.89 34.89			Average Peak
	3 4	7713.00	49.63	-4.37	54.00	39.85	36.0	4 8.	.80	35.06 35.06			Average Peak
		11570.00 11570.00	48.91	-5.09	54.00	34.86	38.5	б 10. б 10.		34.90 34.90			Average Peak
Note 1: ">20dB" n	nea	ns spurio	ous em	ission	evels t	hat ex	ceed	the le	evel	of 20	dB bel	ow the	applic
Note 2: "N/F" mea	ins	Nothing	Found	spurio	us emis	ssions	(No s	spurio	us e	emissi	ons we		
Note 3: Measurer Note 4: For restric												eld stre	ength a
with the P													
addition. Note 5: For un-re:	stric	ted band	ls, unw	anted	emissi	ons sh	all be	atter	nuat	ed bv	at leas	t 20 dl	B relativ
		asured i											

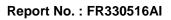


odulation Mode	11a		Test	Freq. (FX	()	F3	
тх	2		Polar	ization		V	
117 Leve	l (dBuV/m)					Date: 20	013-03-07
105.3							
93.6							
81.9							
70.2						FCC	CLASS-B
58.5		6					
	2 4	5				FCC CLASS	S-B (AVG)
46.8							
35.1							
23.4							
11.7							
0	4000.6000.8000.	12000. 1600		24000.	28000. 32	000. 3600	0. 40000
			Frequency (I	(HZ)			
-	Freq Level	Over Limit Limit Line	ReadAnter Level Fact	na Cable or Loss	Preamp A. Factor	/Pos T/Po	s Remark
		$\frac{dB}{dB} = \frac{dB}{dB} = \frac{1}{\sqrt{2}}$					
	3883.00 49.78	-4.22 54.00	45.46 33	24 5.91	34.83		- Average
3 1	7766.00 48.00	-19.54 74.00 -6.00 54.00 -19.45 74.00	38.19 36	05 8.81			- Peak - Average
5 1	1650.00 52.27	-19.45 74.00 -1.73 54.00 -9.53 74.00	38.12 38	62 10.43	35.05 34.90 34.90		– Peak – Average – Peak
0 1	1000.00 04.47	-9.55 74.00	30.32 30	02 10.45	54.90		- reak
te 1: ">20dB" means te 2: "N/F" means N							
ote 3: Measurement r	eceive anter	na polarizatio	n: H (Hòriz	ontal), V	(Vertical)		,
ote 4: For restricted b with the Peak-I							
addition.			เ อบ แาสเ ไท		1 0065 1101		ne rehoi

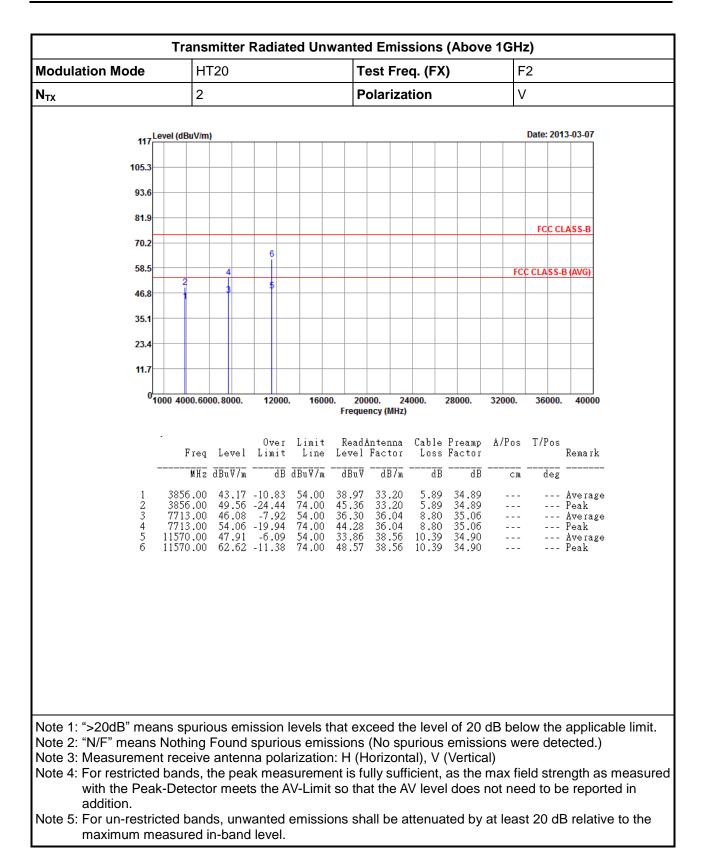


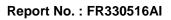
Modulation Mode	11	а			Т	est F	req. (FX)		F	3	
N _{TX}	2				P	olariz	zatior	า		F	1	
117	,Level (dBuV/m)									Date: 20	13-03-07
105.3	\$ <mark></mark>											
93.6	;							_				
81.9)											
70.2	2		6								FCC C	LASS-B
58.5		4	Ĭ									
46.8	2	3	5							FC	C CLASS-	B (AVG)
35.1												
23.4												
11.7												
(1000 4000.60	00.8000.	12000	. 1600		000. ency (Mł	24000. Hz)	28	B000.	32000.	36000	40000
	_				-		-					
	Freq	Level		Limit Line	Read <i>i</i> Level	Antenn Facto	na Cal or Li	ble P oss F	⁾ reamp 'actor	A/Pos	T/Pos	Remark
	MHz	$\overline{d}\overline{B}\overline{u}\overline{V}\overline{7}\overline{m}$	dB	dBuV7m	dBu∀	dB/	/m	dB -	d B	 cm	deg	
1	3883.00 3883.00	45.89 51.82	-8.11	54.00 74.00	41.57 47.50	33.2 33.2			34.83 34.83			Average Peak
2 3 4	7766.00 7766.00	51.72 56.64	-2.28	54.00 74.00	41.91 46.83	36.0 36.0)58))58	.81 .81	35.05 35.05			Average Peak
5 6	11650.00 11650.00	51.25	-2.75	54.00	37.10	38.6	52 10		34.90 34.90			Average Peak
Note 1: ">20dB" me	ans spuri	ous em	ission	levels t	hat ex	ceed	the le	evel	of 20	dB bel	ow the	applic
Note 2: "N/F" mean											ere det	ected.)
Note 3: Measureme Note 4: For restricte											eld stre	enath as
with the Pea												
addition.												
Note 5: For un-resti	icted hand	ds. unw	anted	emissi	ons sh	all he	e atter	nuate	ed by	at leas	st 20 dl	B relativ

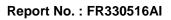


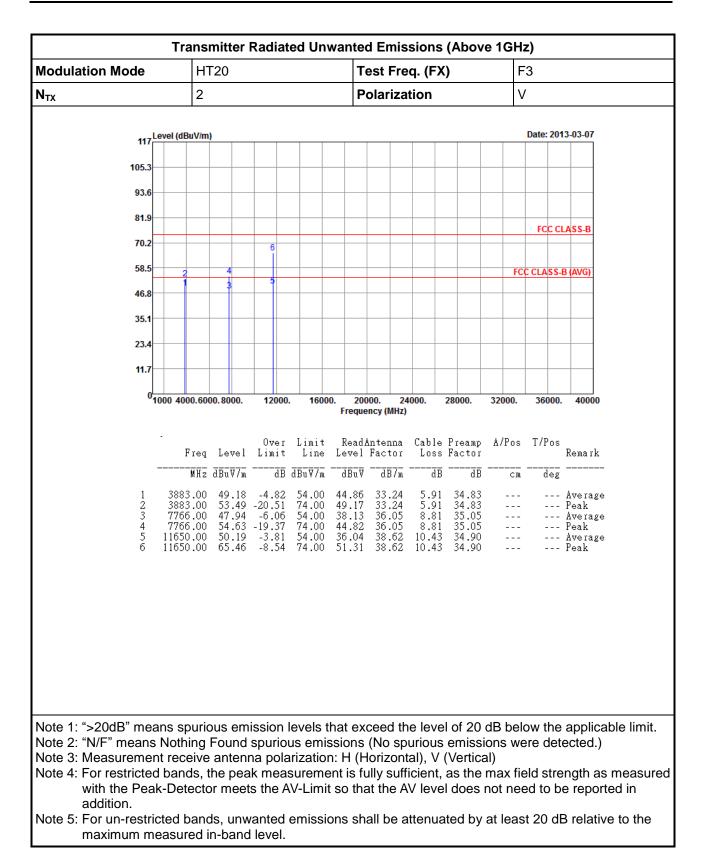

Date: 2013-03-07 105.3 93.6 81.9 70.2 6 58.5 2 46.8 1000 4000.6000.8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos	Modulation Mode	HT20		Test Free	q. (FX)	F	1	
105.3 93.6 94.8 95.5 94.6 95.5 94.0 94.7 95.7 95.07 95.07 94.7 94.7 95.07 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 95.7 94.7 95.07 95.7 94.7 95.07 95.7 94.7 95.07 95.7 95.07 95.7 95.07 95.7 95.07 95.7 9	N _{TX}	2		Polarizat	ion	V	,	
105.3 93.6 94.8 95.5 94.6 95.5 94.0 94.7 95.7 95.07 95.07 94.7 94.7 95.07 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 94.7 94.7 95.07 95.7 94.7 95.07 95.7 94.7 95.07 95.7 94.7 95.07 95.7 95.07 95.7 95.07 95.7 95.07 95.7 9		L		•		ľ		
93.6 81.9 70.2 58.5 2.4 6 58.5 2.4 6 58.5 2.4 6 58.5 2.4 6 58.5 2.4 6 58.5 2.4 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	117	l (dBuV/m)					Date: 2013	3-03-07
81.9 70.2 6 58.5 2 4 46.8 35.1 3.4 1.7 0 1.000 4000.6000.8000. 120	105.3							
Over Limit ReadAntenna Cable Pream A/Pos T/Pos 1 3 5	93.6							
70.2 6 6 6 70.2 58.5 2 4 6 70.2 FCC CLASS-B (AVG) 46.8 1 3 5 70.2 FCC CLASS-B (AVG) 46.9 1 3 5 70.2 70.2 70.2 70.2 23.4 10 10 1000.2000.2000.2000.2000.2000.2000.2000	81.9							
58.5 2 4 5 FCC CLASS-B (AVG) 46.8 35.1 35.1 6 6 6 35.1 36.1 36.1 36.1 6 6 6 11.7 1000 4000.6000.8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Freq Level Limit Line New Pice Pice Pice Pice Pice Pice Pice Pice	70.2						FCC CL	ASS-B
46.8 35.1 23.4 11.7 Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Frequency (MHz) Cover Limit Line Level Factor Cable Preamp A/Pos T/Pos Remark MHz dBuV/m dBuV/m dBuV 1 3830.00 47.23 -6.77 54.00 43.13 33.16 5.88 34.94	58.5	2 4	6			FC	CLASS-R	(AVG)
23.4 11.7 	46.8	1 3	5					
23.4 11.7 0 1000 4000.6000.8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Frequency (MHz)	35.1							
11.7 0 1000 4000.6000.8000. 12000.								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark								
Freq Level Line Level Factor Remark	°1000	4000.6000.8000.	12000. 16000.		000. 28000.	32000.	36000.	40000
Freq Level Line Level Factor Remark	-		Over Limit	ReadAntenna	Cable Preamp	A/Pos	T/Pos	
1 3830.00 47.23 -6.77 54.00 43.13 33.16 5.88 34.94 Averag 2 3830.00 53.27 -20.73 74.00 49.17 33.16 5.88 34.94 Peak 3 7660.00 47.61 -6.39 54.00 37.86 36.03 8.79 35.07 Averag 4 7660.00 55.11 -18.89 74.00 45.36 36.03 8.79 35.07 Peak 5 11490.00 47.60 -6.40 54.00 33.66 38.49 10.35 34.90 Averag		-	Limit Line	Level Factor	Loss Factor			Remark
2 3830.00 53.27 -20.73 74.00 49.17 33.16 5.88 34.94 Peak 3 7660.00 47.61 -6.39 54.00 37.86 36.03 8.79 35.07 Averag 4 7660.00 55.11 -18.89 74.00 45.36 36.03 8.79 35.07 Peak 5 11490.00 47.60 -6.40 54.00 33.66 38.49 10.35 34.90 Averag							-	
4 7660.00 55.11 -18.89 74.00 45.36 36.03 8.79 35.07 Peak 5 11490.00 47.60 -6.40 54.00 33.66 38.49 10.35 34.90 Averag		3830.00 53.27	-20.73 74.00	49.17 33.16	5.88 34.94			Peak –
6 11490.00 62.19 -11.81 74.00 48.25 38.49 10.35 34.90 Peak	4 5 5 1	7660.00 55.11 1490.00 47.60	-18.89 74.00 -6.40 54.00	45.36 36.03 33.66 38.49	8.79 35.07 10.35 34.90			Peak
	б 11	1490.00 62.19	-11.81 74.00	48.25 38.49	10.35 34.90			
ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applic ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.							d etro	nath ac
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected. ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)								
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.								

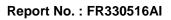
3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20



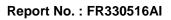




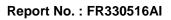




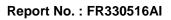
Modulation Mod	е	Н	20			Т	est Fre	eq. (F)	()	F	2	
N _{TX}		2				Ρ	olariza	ation		F	1	
		•								•		
	117	vel (dBuV/m))								Date: 201	13-03-06
10	5.3											
ç	3.6											
	1.9-											
											FCC C	LASS-B
7	0.2			6								
5	8.5	2	4							FC	C CLASS-	B (AVG)
4	6.8			P								
3	5.1											
2	3.4											
	1.7											
	⁰ 10	00 4000.600	0.8000.	12000	1600		000. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4000.)	28000.	32000.	36000.	40000
		Freq	Level		Limit Line	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	A/Pos	T/Pos	Remark
	-	MHz	dBuV7m	dB	<u>dBu</u> ⊽7m		dB7m	dB	dB	cm	deg	
	1	3856.00	44.73	-9.27	54.00	40.53	33.20	5.89				Average
	2	3856.00 7713.00	49.32	-24.10	54.00	39.54	36.04	8.80	34.89 35.06			Peak Average
		7713.00	48.72	-18.08	54.00	34.67	36.04	10.39	35.06 34.90			Peak Average
	б	11570.00	62.46	-11.54	74.00	48.41	38.56	10.39	34.90			Peak
				iaalam		hatav			1 -4 00			annlia
Note 1: ">20dB" r Note 2: "N/F" mea												
Note 3: Measurer												ecieu.)
Note 4: For restric											eld stre	ength a
with the F	eak	-Detecto	or meet	s the A	V-Limi	t so tha	at the A	AV leve	l does i	not nee	ed to b	e repor
addition. Note 5: For un-re	otrio	ad base		antad	omiaci	000 04		ottoour	atod by	at loan	4 <u>00</u> 41	D rolati



Modulation Mode	H	Г20			T	est F	req	. (FX	()	F	-3	
N _{TX}	2				P	olariz	zati	on		ŀ	4	
											Deter 20	12 02 07
117	evel (dBuV/m)									Date: 20	13-03-07
105.3-				_								
93.6-				_								
81.9-												
70.2			6								FCC C	LASS-B
58.5		4								FC	C CLASS	B (AVG)
46.8	2	3	5									
35.1−												
23.4-												
11.7-												
0-1	000 4000.60	00.8000.	12000	. 1600)00. ency (Mi	2400 Hz))0.	28000.	32000.	36000	. 40000
			~	.	D 1.				р	. /n	T /D	
	Freq	Level		Limit Line	Read <i>l</i> Level	Facto	na (pr	Loss	Preamp Factor	A/Pos	1/Pos	Remark
	MHz	<u>dBuV7m</u>	dB	dBuV7m	dBu∀	dB/	7 <u>m</u>	dB	<u> </u>	cm	deg	
1 2	3883.00 3883.00	49.90	-9.54 -24.10	74.00	40.14 45.58	33.2 33.2	24	5.91	34.83 34.83			Average Peak
3 4	7766.00	57.15	-16.85	54.00 74.00	47.34	36.0)5	8.81	35.05			Average Peak
5 6	11650.00 11650.00	50.90 65.51	-3.10 -8.49	54.00 74.00	36.75 51.36	38.6 38.6			34.90 34.90			Average Peak
Note 1: ">20dB" mea												
Note 2: "N/F" means Note 3: Measuremer											ere det	ected.)
Note 4: For restricted											eld stre	ength as
with the Peal addition.	k-Detecto	or meet	s the A	V-Limi	t so tha	at the	AV	leve	l does	not ne	ed to b	e repor
Note 5: For un-restrie	cted band	ds, unw	anted	emissi	ons sh	all be	e atte	enua	ated by	at leas	st 20 d	B relativ
maximum me									-			


Modulation Mode	H	Г40			Те	est Fre	eq. (F)	K)	F	1'	
N _{TX}	2				P	olariza	ation		V	/	
									<u>.</u>		
117	evel (dBuV/m)								Date: 20	13-03-07
105.3							_				
93.6											
81.9											
70.2										FLLL	LASS-B
58.5	4	-6	8						FC	C CLASS-	B (AVG)
46.8	1 3	5	7								
35.1											
23.4											
11.7											
°10	000 4000.60	00.8000.	12000.	. 1600		00. 2 ncy (MHz	4000.)	28000.	32000.	36000	. 40000
	-		0 ver	Limit	ReadA	Intenna	Cable	e Preamp	A/Pos	T/Pos	
	-	Level	Limit	Line	Level	Factor	Loss	s Factor			Remark
,		dBuV7m		dBuV7m	dBuV		dE 5 oc		сm 	deg	
1 2 3	3836.00 3836.00 5431.00	52.16	-5.30 -21.84 -8.08	54.00 74.00 54.00	44.58 48.04 39.13	33.17 33.17 34.73	5.88 5.88 6.89	34.93			Average Peak Average
4 5	5431.00 7673.00	58.89 46.96	-15.11	74.00 54.00	52.10 37.21	34.73 36.03	6.89 8.79) 34.83) 35.07			Peak Average
6 7	7673.00	47.36	-6.64	74.00	33.39	36.03 38.51	10.36	35.07 34.90			Peak Average
8	11510.00	60.40	-13.60	74.00	46.43	38.51	10.36	5 34.90			Peak
ote 1: ">20dB" mea			eeion	lovols t	hat av	cood ti		al of 20	dB bel	ow the	annlig
te 2: "N/F" means	Nothing	Found	spurio	us emi	ssions	(No sp	ourious	s emiss	ions we		
lote 3: Measuremen lote 4: For restricted										eld stre	ength as
with the Peak											
addition. lote 5: For un-restric	ted band	ls unw	anted	emissi	ons sha	all be a	attenu	ated by	at leas	t 20 dl	R relativ

3.6.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40



Modulation Mod	е	H	Г40			T	est Fre	eq. (FX	()	F	1'	
N _{TX}		2				P	olariza	ation		F	1	
											Date: 20	12 02 07
	117	vel (dBuV/m)								Date: 20	13-03-07
10) 5.3 —											
9	93.6											
1	31.9											
											FCC C	LASS-B
	70.2	4	_	8								
	58.5	2	5							FC	C CLASS-	B (AVG)
	46.8			+								
:	3 5.1											
:	23.4											
	11.7											
	°10	00 4000.60	00.8000.	12000	1600		00. 2 ncy (MHz	4000.)	28000.	32000.	36000.	40000
	-							<i>a</i>	-			
		Freq	Level		Limit Line				Preamp Factor	A/Pos	T/Pos	Remark
	-	MHz	$\overline{d}\overline{B}\overline{u}\overline{V}\overline{/}\overline{m}$	₫₿	<u>dBu</u> ⊽7m	dBu∀	dB7m	dB	${d} \overline{B}$	cm	deg	
	1	3836.00 3836.00		-7.82 -22.69	54.00 74.00	42.06 47.19	33.17 33.17	5.88	34.93 34.93			Average Peak
	2 3 4	5431.00 5431.00	47.10	-6.90	54.00 74.00	40.31 53.96	34.73	6.89 6.89	34.83			Average Peak
	5 6	7673.00	49.76	-4.24		40.01 47.69	36.03		35.07			Average Peak
	7	11510.00	48.96	-5.04	54.00	34.99 47.84	38.51	10.36 10.36	34.90			Average Peak
	0	11510.00	01.01	-12.19	74.00	47.04	50.51	10.50	54.90			reak
Note 1: ">20dB" r	near	ns spurio	ous em	ission	evels t	hat ex	ceed t	ne leve	l of 20	dB bel	ow the	applica
Note 2: "N/F" mea											ere det	ected.)
Note 3: Measurer Note 4: For restrie											eld stre	enoth as
with the F												
addition.												
Note 5: For un-re	STRIC	ted band	as. unw	anted	emissi	ons sh	all be a	attenua	ated by	at leas	a 20 di	B relativ

Modulation Mode		НТ	40			Т	est Fr	eq. (F)	X)	F	2'	
N _{TX}		2				P	olariz	ation		١	/	
						-						
11	7 Level (dBuV/m)									Date: 20	13-03-07
105.	3											
93.	6							_				
81.												
											FCC C	LASS-B
70.	2	4		8								
58.	5	2								FC	C CLASS	B (AVG)
46.	B			-1 -								
35.	1											
23.	4											
11.	,											
	⁰ 1000 4	1000.600	0.8000.	12000	1600		00. : ncy (MH)	24000. !)	28000.	32000.	36000	. 40000
					.				_		-	
		Freq	Level		Limit Line				e Preamp s Factor	A/Pos	T/Pos	Remark
		MHz	dBuV7m	dB	dBuV7m	dBu∛	<u>dB7</u> n	dI	<u>3</u> dB	cm	deg	
1		63.33		-7.61 -23.68	54.00 74.00	42.15 46.08	33.21 33.21					Average Peak
2 3 4	54	18.00	46.82	-7.18	54.00 74.00	40.05	34.72	6.88	34.83			Average Peak
5	- 77	26.66	51.26	-2.74		41.45	36.05	8.81	1 35.05 1 35.05			Average Peak
7	115	20.00 90.00 90.00		-6.00	54.00 74.00	33.93	38.57	10.40	34.90			Average Peak
°	115	90.00	01.41	-12.39	74.00	47.04	50.57	10.40) 54.90			Iean
Note 1: ">20dB" me		•										
Note 2: "N/F" mear Note 3: Measureme											ere det	ected.)
Note 4: For restricte	ed ba	nds, t	he pea	k mea	sureme	ent is fu	ully su	fficient	, as the	max fie		
with the Pe addition.	ak-D	etecto	or meet	s the A	V-Limit	t so tha	at the	AV leve	el does	not ne	ed to b	e repor
Note 5: For un-rest	ricted	lbanc	ls, unw	anted	emissio	ons sh	all be	attenu	ated by	at leas	st 20 d	B relativ
maximum r									,			

Modulation Mod	е	H	Г40			Т	est Fr	eq. (F	X)	F	2'	
N _{TX}		2				P	olariz	ation		F	ł	
	117	evel (dBuV/m)								Date: 20	13-03-07
10	5.3											
9	3.6											
8	1.9-											
7	0.2										FCC C	LASS-B
		4	6	8								
	8.5	2 3	-5							FC	C CLASS-	B (AVG)
4	6.8											
3	5.1											
2	3.4											
1	1.7											
	0 <mark>10</mark>	00 4000.60	00.8000.	12000	1600			24000.	28000.	32000.	36000	. 40000
						Freque	ency (MH	Z)				
		- From	Level		Limit				e Preamp s Factor	A/Pos	T/Pos	Remark
	-	-	<u>d</u> BuV/m		<u>dBu</u> V/m	dBuV				cm	deg	
	1	3863.33		-8.99	54.00	40.77	33.2				-	Average
	2 3	3863.33 5418.00	47.25	-24.21	74.00 54.00	45.55 40.48	33.2 34.7	2 6.8	34.83			Peak Average
	4 5	5418.00 7726.66	51.93	-13.53	74.00	53.70 42.12	34.71 36.0	5 8.8	1 35.05			Peak Average
	6 7	7726.66	50.20	-15.89	74.00	48.30	36.0. 38.5	7 10.4				Peak Average
	8	11590.00	02.30	-11.44	74.00	48.49	38.5	7 10.4) 34.90			Peak
Note 1: ">20dB" n Note 2: "N/F" mea												
Note 3: Measuren												ecieu.)
Note 4: For restric with the P												
addition.	ear	-Detecto	or meet	s the A	V-LIMI	i so ina	at the	AV IEV	el does	not nee		e repor
Note 5: For un-res					emissi	ons sh	all be	attenu	ated by	at leas	st 20 dl	B relativ
maximum	me	easured i	n-band	level.								

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 kHz ~ 2.75 GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRO NIK	NSLK 8127	8127-477	9kHz – 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNE R	RG213/U	CB049	9 kHz ~ 30 MHz	Apr. 25, 2012	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 30	100023/030	9KHz ~ 30GHz	Apr. 27, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S P-SD	MAA1112-007	-20 ~ 100 ℃	Nov. 21, 2012	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Feb. 02, 2013	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Feb. 02, 2013	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHN ER	SUCOFLEX_10 4	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHN ER	SUCOFLEX_10 4	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP	100055	9Kz – 40GHz	Jun. 06, 2012	Radiation (03CH05-HY)
Receiver	R&S	ESIB26	100337	20Hz – 26.5GHz	Jun.21, 2012	Radiation (03CH05-HY)
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH05-HY	30 MHz - 1 GHz 3m	N/A	Radiation (03CH05-HY)
Amplifier	COM-POWER	PA-103	161050	1 MHz ~ 1 GHz	Mar. 20, 2012	Radiation (03CH05-HY)
Amplifier	Agilent	8449B	3008A02665	1GHz – 26.5 GHz	Aug. 28, 2012	Radiation (03CH05-HY)
Horn Antenna	ETS-LINDGRE N	3117	66584	1GHz~18GHz	Aug. 09, 2012	Radiation (03CH05-HY)
Horn Antenna	SCHWARZBEC K	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 08, 2013	Radiation (03CH05-HY
RF Cable-R03m	Jye Bao	RG142	03CH05-HY	30 MHz - 1 GHz	Oct. 14, 2012	Radiation (03CH05-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX104	03CH05-HY	1GHz~40GHz	Oct. 14, 2012	Radiation (03CH05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2725	30 MHz - 1 GHz	Oct. 06, 2012	Radiation (03CH05-HY)
Turn Table	HD	HD100	420/611	0 - 360 degree	N/A	Radiation (03CH05-HY)
Antenna Mast	HD	HD100	240/666	1 m - 4 m	N/A	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH05-HY)
Amplifier	MITEQ	AMF-6F-26040 0	9121372	26.5GHz ~ 40GHz	Apr. 19, 2011	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is two year.