Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^c | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.59 | 2.17 | 6.65 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Head | 40.1 ± 5% | 1.37 ± 5% | 0.59 | 2.28 | 5.42 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.63 | 2.14 | 5.10 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.74 | 1.94 | 4.74 ± 11.8% (k=2) | | | | | | | | | | | | | | | | | | | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.67 | 2.06 | 6.15 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Body | 53.4 ± 5% | 1.49 ± 5% | 0.57 | 2.54 | 4.98 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.60 | 2.49 | 4.58 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.66 | 2.27 | 4.16 ± 11.8% (k=2) | ^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. # **Deviation from Isotropy in HSL** Error (ϕ , ϑ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ADT (Auden) Accreditation No.: SCS 108 S C Certificate No: EX3-3506 Mar08 # **CALIBRATION CERTIFICATE** Object EX3DV3 - SN:3506 Calibration procedure(s) QA CAL-01.v6 and QA CAL-14.v3 Calibration procedure for dosimetric E-field probes Calibration date: March 21, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-------------------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | Power sensor E4412A | MY41495277 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | Power sensor E4412A | MY41498087 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 8-Aug-07 (METAS, No. 217-00719) | Aug-08 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-07 (METAS, No. 217-00671) | Mar-08 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 8-Aug-07 (METAS, No. 217-00720) | Aug-08 | | Reference Probe ES3DV2 | SN: 3013 | 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) | Jan-09 | | DAE4 | SN: 654 | 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) | Apr-08 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (SPEAG, in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (SPEAG, in house check Oct-07) | In house check: Oct-08 | | | Name | Function | Signature | | Calibrated by: | Katja Pokovic | Technical Manager | 26-111 | | | | X | | | Approved by: | Niels Kuster | Quality Manager | 100 | Issued: March 21, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization φ rotation around probe axis Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization β = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. # Probe EX3DV3 SN:3506 Manufactured: February 18, 2004 Last calibrated: March 20, 2007 Recalibrated: March 21, 2008 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3506_Mar08 Page 3 of 9 # DASY - Parameters of Probe: EX3DV3 SN:3506 | Sensitivity in Free Space ^A Dic | de Compression ^B | |--------------------------------------------|-----------------------------| |--------------------------------------------|-----------------------------| | NormX | 0.780 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 85 mV | |-------|----------------------|----------------------------|-------|--------------| | NormY | 0.830 ± 10.1% | μ V/(V/m) ² | DCP Y | 85 mV | | NormZ | 0.760 ± 10.1% | $\mu V/(V/m)^2$ | DCP Z | 85 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. ### **Boundary Effect** TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Center to | Phantom Surface Distance | 2.0 mm | 3.0 mm | |-----------------------|------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 15.4 | 11.5 | | SAR _{be} [%] | With Correction Algorithm | 8.0 | 0.6 | TSL 1750 MHz Typical SAR gradient: 10 % per mm | Sensor Center to Phantom Surface Distance | | | 3.0 mm | |-------------------------------------------|------------------------------|------|--------| | SAR _{be} [%] | Without Correction Algorithm | 10.2 | 6.5 | | SAR _{be} [%] | With Correction Algorithm | 0.9 | 0.8 | #### Sensor Offset Probe Tip to Sensor Center 1.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) March 21, 2008 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^c | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|--------------|-------|-------|---------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.28 | 2.16 | 10.72 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Head | 40.1 ± 5% | 1.37 ± 5% | 0.53 | 0.68 | 9.42 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.61 | 0.55 | 9.42 ± 11.0% (k=2) | | 2300 | ± 50 / ± 100 | Head | 39.4 ± 5% | 1.71 ± 5% | 0.55 | 0.57 | 8.35 ± 11.8% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.52 | 0.62 | 7.87 ± 11.8% (k=2) | | 2600 | ± 50 / ± 100 | Head | 39.0 ± 5% | 1.96 ± 5% | 0.43 | 0.75 | 7.48 ± 11.8% (k=2) | | 3500 | ± 50 / ± 100 | Head | 37.9 ± 5% | 2.91 ± 5% | 0.40 | 0.92 | 7.71 ± 13.1% (k=2) | | 4950 | ± 50 / ± 100 | Head | 36.3 ± 5% | 4.40 ± 5% | 0.25 | 1.75 | 5.42 ± 13.1% (k=2) | | 5200 | ± 50 / ± 100 | Head | 36.0 ± 5% | 4.66 ± 5% | 0.30 | 1.75 | 5.12 ± 13.1% (k=2) | | 5300 | ± 50 / ± 100 | Head | 35.9 ± 5% | 4.76 ± 5% | 0.34 | 1.75 | 4.64 ± 13.1% (k=2) | | 5500 | ± 50 / ± 100 | Head | 35.6 ± 5% | 4.96 ± 5% | 0.35 | 1.75 | 4.45 ± 13.1% (k=2) | | 5600 | ± 50 / ± 100 | Head | 35.5 ± 5% | 5.07 ± 5% | 0.50 | 1.75 | 4.18 ± 13.1% (k=2) | | 5800 | ± 50 / ± 100 | Head | 35.3 ± 5% | 5.27 ± 5% | 0.42 | 1.75 | 4.50 ± 13.1% (k=2) | | | | | | | | | | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.37 | 1.50 | 10.18 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Body | 53.4 ± 5% | 1.49 ± 5% | 0.71 | 0.63 | 9.32 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.32 | 0.94 | 9.34 ± 11.0% (k=2) | | 2300 | ± 50 / ± 100 | Body | 52.8 ± 5% | 1.85 ± 5% | 0.50 | 0.69 | 8.27 ± 11.8% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.33 | 1.11 | 7.77 ± 11.8% (k=2) | | 2600 | ± 50 / ± 100 | Body | 52.5 ± 5% | 2.16 ± 5% | 0.32 | 1.12 | 7.34 ± 11.8% (k=2) | | 3500 | ± 50 / ± 100 | Body | 51.3 ± 5% | 3.31 ± 5% | 0.48 | 1.10 | 6.92 ± 13.1% (k=2) | | 4950 | ± 50 / ± 100 | Body | 49.4 ± 5% | 5.01 ± 5% | 0.32 | 1.80 | 4.19 ± 13.1% (k=2) | | 5200 | ± 50 / ± 100 | Body | 49.0 ± 5% | 5.30 ± 5% | 0.30 | 1.80 | 4.17 ± 13.1% (k=2) | | 5300 | ± 50 / ± 100 | Body | 48.5 ± 5% | 5.42 ± 5% | 0.35 | 1.80 | 3.87 ± 13.1% (k=2) | | 5500 | ± 50 / ± 100 | Body | 48.6 ± 5% | 5.65 ± 5% | 0.45 | 1.80 | 3.72 ± 13.1% (k=2) | | 5600 | ± 50 / ± 100 | Body | 48.5 ± 5% | 5.77 ± 5% | 0.40 | 1.80 | 3.83 ± 13.1% (k=2) | | 5800 | ± 50 / ± 100 | Body | 48.2 ± 5% | 6.00 ± 5% | 0.48 | 1.80 | 3.75 ± 13.1% (k=2) | $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. # **Deviation from Isotropy in HSL** Error (ϕ , ϑ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### IMPORTANT NOTICE #### **USAGE OF THE DAE 3** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: **Battery Exchange**: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration Customer shall remove the batteries and pack the DAE in an antistatic bag. The packaging shall protect the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, Customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. #### **Important Note:** Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. Schmid & Partner Engineering #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ADT (Auden) Certificate No: DAE3-579 Mar08 Accreditation No.: SCS 108 # CALIBRATION CERTIFICATE Object DAE3 - SD 000 D03 AA - SN: 579 Calibration procedure(s) QA CAL-06.v12 Calibration procedure for the data acquisition electronics (DAE) Calibration date: March 13, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-----------------------------------|-------------|-------------------------------------------|-----------------------| | Fluke Process Calibrator Type 702 | SN: 6295803 | 04-Oct-07 (Elcal AG, No: 6467) | Oct-08 | | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Oct-07 (Elcal AG, No: 6465) | Oct-08 | | Canandam : Otan danda | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards | | | | Calibrated by: Name **Function** Dominique Steffen Technician Approved by: Fin Bomholt R&D Director Issued: March 13, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE3-579_Mar08 Page 1 of 5 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-579_Mar08 Page 2 of 5 # **DC Voltage Measurement** A/D - Converter Resolution nominal 1LSB = High Range: 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Υ | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.417 ± 0.1% (k=2) | 404.496 ± 0.1% (k=2) | 404.250 ± 0.1% (k=2) | | Low Range | 3.96392 ± 0.7% (k=2) | 3.98485 ± 0.7% (k=2) | 3.94736 ± 0.7% (k=2) | # **Connector Angle** | - 1 | | | |-----|-------------------------------------------|-------| | | Connector Angle to be used in DASY system | 0°±1° | Certificate No: DAE3-579_Mar08 Page 3 of 5 # **Appendix** 1. DC Voltage Linearity | High Range | | Input (μV) | Reading (μV) | Error (%) | |------------|---------|------------|--------------|-----------| | Channel X | + Input | 200000 | 199999.9 | 0.00 | | Channel X | + Input | 20000 | 20006.39 | 0.03 | | Channel X | - Input | 20000 | -19997.12 | -0.01 | | Channel Y | + Input | 200000 | 199999.6 | 0.00 | | Channel Y | + Input | 20000 | 20003.48 | 0.02 | | Channel Y | - Input | 20000 | -19999.40 | 0.00 | | Channel Z | + Input | 200000 | 200000.5 | 0.00 | | Channel Z | + Input | 20000 | 20005.11 | 0.03 | | Channel Z | - Input | 20000 | -20000.56 | 0.00 | | Low Range | | Input (μV) | Reading (μV) | Error (%) | |-----------|-------------|------------|--------------|-----------| | Channel X | + Input | 2000 | 1999.9 | 0.00 | | Channel X | + Input | 200 | 200.77 | 0.38 | | Channel X | - Input | 200 | -199.61 | -0.19 | | Channel Y | + Input | 2000 | 1999.9 | 0.00 | | Channel Y | + Input | 200 | 199.52 | -0.24 | | Channel Y | - Input | 200 | -200.01 | 0.00 | | Channel Z | + Input | 2000 | 2000 | 0.00 | | Channel Z | + Input | 200 | 200.04 | 0.02 | | Channel Z | - Input | 200 | -200.10 | 0.05 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 7.31 | 7.04 | | | - 200 | -5.43 | -5.14 | | Channel Y | 200 | -4.64 | 3.79 | | | - 200 | 9.97 | 2.98 | | Channel Z | 200 | 9.71 | 9.67 | | | - 200 | -10.05 | -10.25 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 0.91 | 1.12 | | Channel Y | 200 | 1.44 | - | 4.27 | | Channel Z | 200 | -2.15 | 0.74 | _ | Certificate No: DAE3-579_Mar08 Page 4 of 5 #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16337 | 17475 | | Channel Y | 16186 | 16655 | | Channel Z | 15807 | 16761 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | -0.02 | -1.05 | 2.46 | 0.44 | | Channel Y | -1.99 | -3.37 | -0.92 | 0.33 | | Channel Z | 2.37 | 0.38 | 3.81 | 0.43 | # 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 0.2001 | 199.5 | | Channel Y | . 0.2000 | 202.9 | | Channel Z | 0.1999 | 204.2 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | . 9 | Certificate No: DAE3-579_Mar08 Page 5 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ADT (Auden) Certificate No: D5GHzV2-1018_Apr08 Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1018 Calibration procedure(s) QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: April 21, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |----------------------------|-------------------|---|------------------------| | Power meter EPM-442A | GB37480704 | 04-Oct-07 (No. 217-00736) | Oct-08 | | Power sensor HP 8481A | US37292783 | 04-Oct-07 (No. 217-00736) | Oct-08 | | Reference 20 dB Attenuator | SN: S5072.1 (20g) | 07-Aug-07 (No 217-00718) | Aug-08 | | Reference Probe EX3DV4 | SN: 3503 | 8-Mar-08 (No. EX3-3503_Mar08) | Mar-09 | | DAE4 | SN 601 | 14-Mar-08 (No. DAE4-601_Mar08) | Mar-09 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-07) | In house check: Oct-08 | | Power meter E4419B | GB43310788 | 13-Aug-03 (in house check Oct-07) | In house check: Oct-08 | | Power sensor HP 8481A | MY41093315 | 10-Aug-03 (in house check Oct-07) | In house check: Oct-08 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | 1 Jah | | Approved by: | Katja Pokovic | Technical Manager | 200 110 | Issued: April 22, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004 - b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D5GHzV2-1018_Apr08 Page 2 of 15 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|--|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Area Scan resolution | dx, dy = 10 mm | | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 2.5 mm | | | Frequency | 5000 MHz ± 1 MHz
5200 MHz ± 1 MHz
5500 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ### Head TSL parameters at 5000 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.2 | 4.45 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.32 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | #### SAR result with Head TSL at 5000 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.77 mW / g | | SAR normalized | normalized to 1W | 77.7 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 77.2 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.21 mW / g | | SAR normalized | normalized to 1W | 22.1 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 21.9 mW / g ± 19.5 % (k=2) | Certificate No: D5GHzV2-1018_Apr08 Page 3 of 15 ¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities" #### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.51 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.99 mW / g | | SAR normalized | normalized to 1W | 79.9 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 79.3 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.25 mW / g | | SAR normalized | normalized to 1W | 22.5 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 22.3 mW / g ± 19.5 % (k=2) | ### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.74 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | ### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.06 mW / g | | SAR normalized | normalized to 1W | 80.6 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 79.7 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.25 mW / g | | SAR normalized | normalized to 1W | 22.5 mW/g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 22.2 mW / g ± 19.5 % (k=2) | Certificate No: D5GHzV2-1018_Apr08 ¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities" # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.02 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.85 mW / g | | SAR normalized | normalized to 1W | 78.5 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 77.5 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.19 mW/g | | SAR normalized | normalized to 1W | 21.9 mW/g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 21.6 mW / g ± 19.5 % (k=2) | Certificate No: D5GHzV2-1018_Apr08 Page 5 of 15 ¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities" #### **Body TSL parameters at 5000 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.3 | 5.07 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.6 ± 6 % | 5.05 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | TO 10 10 10 | **** | ## SAR result with Body TSL at 5000 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.91 mW / g | | SAR normalized | normalized to 1W | 79.1 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 78.2 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.24 mW / g | | SAR normalized | normalized to 1W | 22.4 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 22.2 mW / g ± 19.5 % (k=2) | ### Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.0 ± 6 % | 5.34 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.99 mW / g | | SAR normalized | normalized to 1W | 79.9 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 78.8 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.24 mW / g | | SAR normalized | normalized to 1W | 22.4 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 22.2 mW / g ± 19.5 % (k=2) | Certificate No: D5GHzV2-1018_Apr08 Page 6 of 15 ² Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities #### **Body TSL parameters at 5500 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 5.62 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | | **** | ### SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.97 mW / g | | SAR normalized | normalized to 1W | 79.7 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 78.5 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.23 mW / g | | SAR normalized | normalized to 1W | 22.3 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 22.0 mW / g ± 19.5 % (k=2) | #### Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 45.9 ± 6 % | 6.09 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | | | ### SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.37 mW / g | | SAR normalized | normalized to 1W | 73.7 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 72.6 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |--|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.05 mW / g | | SAR normalized | normalized to 1W | 20.5 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 20.3 mW / g ± 19.5 % (k=2) | Certificate No: D5GHzV2-1018_Apr08 ² Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities