

SAR TEST REPORT

 REPORT NO.:
 SA980223L04

 MODEL NO.:
 WLI-UC-G300N-V1

 RECEIVED:
 Feb. 23, 2009

 TESTED:
 May 06, 2009

 ISSUED:
 May 12, 2009

APPLICANT: Buffalo Inc.

ADDRESS: 4-15, Shibata Hondori, Minami-ku, Nagoya 457-8520, Japan

ISSUED BY:	Bureau Veritas Consumer Products Services			
	(H.K.) Ltd., Taoyuan Branch			

- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 42 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	CERTIFICATION
2.	GENERAL INFORMATION
2.1	GENERAL DESCRIPTION OF EUT
2.2	GENERAL DESCRIPTION OF APPLIED STANDARDS
2.3	GENERAL INOFRMATION OF THE SAR SYSTEM
2.4	GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION
3.	DESCRIPTION OF SUPPORT UNITS
4.	DESCRIPTION OF TEST MODES AND CONFIGURATIONS
4.1.	DESCRIPTION OF ANTENNA LOCATION
4.2.	DESCRIPTION OF ASSESSMENT POSITION
4.3.	DESCRIPTION OF TEST MODE
4.4.	SUMMARY OF TEST RESULTS
4.5.	CHECK FOR SCAN RESOLUTION
5.	TEST RESULTS
5.1	TEST PROCEDURES
5.2	MEASURED SAR RESULTS
5.3	SAR LIMITS
5.4	RECIPES FOR TISSUE SIMULATING LIQUIDS
5.5	TEST EQUIPMENT FOR TISSUE PROPERTY
6.	SYSTEM VALIDATION
6.1	TEST EQUIPMENT
6.2	TEST PROCEDURE
6.3	VALIDATION RESULTS
6.4	SYSTEM VALIDATION UNCERTAINTIES
7.	MEASUREMENT SAR PROCEDURE UNCERTAINTIES
7.1.	PROBE CALIBRATION UNCERTAINTY
7.2.	ISOTROPY UNCERTAINTY
7.3.	BOUNDARY EFFECT UNCERTAINTY
7.4.	PROBE LINEARITY UNCERTAINTY
	READOUT ELECTRONICS UNCERTAINTY
	RESPONSE TIME UNCERTAINTY
	INTEGRATION TIME UNCERTAINTY
7.8.	PROBE POSITIONER MECHANICAL TOLERANCE
	PROBE POSITIONING
	PHANTOM UNCERTAINTY
7.11.	DASY4 UNCERTAINTY BUDGET41
8.	INFORMATION ON THE TESTING LABORATORIES42
	ENDIX A: TEST CONFIGURATIONS AND TEST DATA
APP	ENDIX B: ADT SAR MEASUREMENT SYSTEM
APP	ENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION
APP	ENDIX D: SYSTEM CERTIFICATE & CALIBRATION

1. CERTIFICATION

PRODUCT:AirStation Wireless-N NFINITI Keychain USB2.0 AdapterMODEL:WLI-UC-G300N-V1BRAND:BuffaloAPPLICANT:Buffalo Inc.TESTED:May 06, 2009TEST SAMPLE:ENGINEERING SAMPLESTANDARDS:FCC Part 2 (Section 2.1093)FCC OET Bulletin 65, Supplement C (01-01)RSS-102

The above equipment (model: WLI-UC-G300N-V1) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	: Joanna Wang / Senior Specialist	, DATE : _	May 12, 2009
TECHNICAL ACCEPTANCE Responsible for RF	: James Jan James Fan / Engineer	, DATE : _	May 12, 2009
APPROVED BY	: <u>Agn</u> Charg Gary Chang/Assistant Manager	, DATE : _	May 12, 2009

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT	AirStation Wireless-N NFINITI Keychain USB2.0 Adapter		
MODEL NO.	WLI-UC-G300N-V1		
FCC ID	FDI-09102067-1		
IC ID	6102A-023		
POWER SUPPLY	5Vdc from host equipment		
MODULATION TYPE	CCK, DQPSK, DBPSK for DS	SS	
	64QAM, 16QAM, QPSK, BPSI	K for OFDM	
MODULATION TECHNOLOGY	DSSS, OFDM		
	802.11b:11.0/ 5.5/ 2.0/ 1.0Mbp	DS .	
TRANSFER RATE	802.11g: 54.0/ 48.0/ 36.0/ 24.0)/ 18.0/ 12.0/ 9.0/ 6.0Mbps	
	Draft 802.11n: up to 300.0Mbp	S	
FREQUENCY RANGE	2412 ~ 2462MHz		
NUMBER OF CHANNEL	11 for 802.11b, 802.11g, draft	802.11n (20MHz)	
	7 for draft 802.11n (40MHz)		
	Antenna 1	Antenna 2	
	802.11b:	802.11b:	
	86.298mW / Ch1: 2412MHz	89.536mW / Ch1: 2412MHz	
	100.231mW / Ch6: 2437MHz	100.693mW / Ch6: 2437MHz	
	78.524mW / Ch11: 2462MHz	80.168mW / Ch11: 2462MHz	
	802.11g:	802.11g:	
CHANNEL FREQUENCIES	194.536mW / Ch1: 2412MHz	200.909mW / Ch1: 2412MHz	
UNDER TEST AND ITS	200.447mW / Ch6: 2437MHz		
CONDUCTED OUTPUT		201.372mW / Ch11: 2462MHz	
POWER	DRAFT 802.11n (20MHz):		
	303.175mW / Ch1: 2412MHz		
	302.274mW / Ch6: 2437MHz		
	301.415mW / Ch11: 2462MHz		
	DRAFT 802.11n (40MHz):		
	DRAFT 802.11n (40MHz): 303.468mW / Ch1: 2422MHz		
	DRAFT 802.11n (40MHz):		

AVERAGE SAR (1g)	0.505W/kg
ANTENNA TYPE	Printed antenna with 1dBi gain
DATA CABLE	0.34m shielded USB cable without core
I/O PORTS	USB
ACCESSORY DEVICES	NA

NOTE:

1. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

MODULATION MODE	TX FUNCTION
802.11b	1TX
802.11g	1TX
Draft 802.11n (20MHz)	2TX
Draft 802.11n (40MHz)	2TX

2. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC Part 2 (2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

RSS-102

IEEE 1528-2003

All test items have been performed and recorded as per the above standards.

2.3 GENERAL INOFRMATION OF THE SAR SYSTEM

DASY4 (software 4.7 Build 80) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4 software defined. The DASY4 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

EX3DV3 ISOTROPIC E-FIELD PROBE

CONSTRUCTION	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
FREQUENCY	10 MHz to > 6 GHz Linearity: \pm 0.2 dB (30 MHz to 6 GHz)
DIRECTIVITY	\pm 0.3 dB in HSL (rotation around probe axis)
DIRECHVITI	\pm 0.5 dB in tissue material (rotation normal to probe axis)
DYNAMIC RANGE	10 μ W/g to > 100 mW/g
	Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)
DIMENSIONS	Overall length: 330 mm (Tip: 20 mm)
DIMENSIONS	Tip diameter: 2.5 mm (Body: 12 mm)
APPLICATION	Typical distance from probe tip to dipole centers: 1 mm High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

NOTE

- 1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.
- 2. For frequencies above 800MHz, calibration in a rectangular wave-guide is used, because wave-guide size is manageable.
- 3. For frequencies below 800MHz, temperature transfer calibration is used because the wave-guide size becomes relatively large.

TWIN SAM V4.0

CONSTRUCTION	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, EN 62209-1 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.
SHELL THICKNESS	2 ± 0.2mm
FILLING VOLUME	Approx. 25liters
DIMENSIONS	Height: 810mm; Length: 1000mm; Width: 500mm

SYSTEM VALIDATION KITS:

CONSTRUCTION	Symmetrical dipole with I/4 balun enables measurement of feedpoint impedance with NWA matched for use near flat phantoms filled with brain simulating solutions. Includes distance holder and tripod adaptor
CALIBRATION	Calibrated SAR value for specified position and input power at the flat phantom in brain simulating solutions
FREQUENCY	2450MHz
RETURN LOSS	> 20dB at specified validation position
POWER CAPABILITY	> 100W (f < 1GHz); > 40W (f > 1GHz)
OPTIONS	Dipoles for other frequencies or solutions and other calibration conditions upon request

DEVICE HOLDER FOR SAM TWIN PHANTOM

CONSTRUCTION

The device holder for the mobile phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

DATA ACQUISITION ELECTRONICS

CONSTRUCTION

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

2.4 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	dcpi
Device parameters:	- Frequency	F
	- Crest factor	Cf
Media parameters:	- Conductivity	σ
	- Density	ρ

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

Vi	=compensated signal of channel i	(i = x, y, z)
Ui	=input signal of channel I	(i = x, y, z)
Cf	=crest factor of exciting field	(DASY parameter)
dcpi	=diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-fieldprobes:
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

H-fieldprobes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi	=compensated signal of channel I	(i = x, y, z)
Norm _i	=sensor sensitivity of channel i μV/(V/m)2 for E-field Probes	(i = x, y, z)
ConvF	= sensitivity enhancement in solution	
a _{ij}	= sensor sensitivity factors for H-field probes	
F	= carrier frequency [GHz]	
Ei	= electric field strength of channel i in V/m	
Hi	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{S}{r \cdot 1'000}$$

SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm3

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

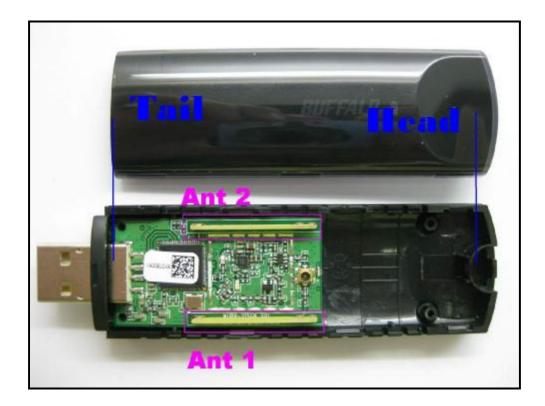
The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7 x 7 x 7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30 x 30 x 30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

3. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID	
1	NOTEBOOK	DELL	PP18L	29144041120	CXSMM01BRD02D330	


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: The length of USB cable is 11.6 inch. USB cable does not affect device radiating characteristics and output power

4. DESCRIPTION OF TEST MODES AND CONFIGURATIONS

4.1. DESCRIPTION OF ANTENNA LOCATION

4.2. DESCRIPTION OF ASSESSMENT POSITION

The following test configurations have been applied in this test report:

4.3. DESCRIPTION OF TEST MODE

Test tool is QA RT3X7X V1.3.0.0 provided by client. It can control EUT to transmit continuously at specific channel, output power level, data rates and 100 % duty signal.

The EUT supports 1 TX transmitting and 2 TX transmitting mode. When EUT operates under 1 TX mode, antenna 1 or 2 is used to transmission. Therefore, 2 configurations will be tested under 1 TX mode. One is antenna 1 and the other is antenna 2 transmitting. Antenna 1 and antenna 2 will be transmitted under 2 TX mode.

"Per KDB 248277, for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than ¼ dB higher than those measured at the lowest data rate."

Comparing output power of all modulations and data rates of each mode can find the lowest data rates has max output power. Therefore, EUT will set under lowest data rates to test.

"Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6w/kg, where the transmission band corresponding to all channels is \leq 100 MHz, testing for the other channels is not required."

According to test data from table of section 4.4, SAR value of highest output power channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg. Therefore, testing for other channels is not required.

ITEM	TEST MODE	MODULATION	ASSESSMENT POSTITION	TESTED CHANNEL	ANT. SELECT
1	802.11b	DBPSK		6	Ant. 1
2	802.11b	DBPSK		6	Ant. 2
3	802.11g	BPSK	А	6	Ant. 1
4	802.11g	BPSK	A	6	Ant. 2
5	Draft 802.11n (20MHz)	BPSK		1	Ant. 1 and Ant. 2
6	Draft 802.11n (40MHz)	BPSK		4	Ant. 1 and Ant. 2
7	802.11b	DBPSK		6	Ant. 1
8	802.11b	DBPSK		6	Ant. 2
9	802.11g	BPSK	В	6	Ant. 1
10	802.11g	BPSK	В	6	Ant. 2
11	Draft 802.11n (20MHz)	BPSK		1	Ant. 1 and Ant. 2
12	Draft 802.11n (40MHz)	BPSK		4	Ant. 1 and Ant. 2
13	802.11b	DBPSK		6	Ant. 1
14	802.11b	DBPSK		6	Ant. 2
15	802.11g	BPSK	С	6	Ant. 1
16	802.11g	BPSK	C	6	Ant. 2
17	Draft 802.11n (20MHz)	BPSK		1	Ant. 1 and Ant. 2
18	Draft 802.11n (40MHz)	BPSK		4	Ant. 1 and Ant. 2
19	802.11b	DBPSK		6	Ant. 1
20	802.11b	DBPSK		6	Ant. 2
21	802.11g	BPSK	D	6	Ant. 1
22	802.11g	BPSK	U	6	Ant. 2
23	Draft 802.11n (20MHz)	BPSK		1	Ant. 1 and Ant. 2
24	Draft 802.11n (40MHz)	BPSK		4	Ant. 1 and Ant. 2
25	802.11b	DBPSK		6	Ant. 1
26	802.11b	DBPSK		6	Ant. 2
27	802.11g	BPSK	E	6	Ant. 1
28	802.11g	BPSK		6	Ant. 2
29	Draft 802.11n (20MHz)	BPSK		1	Ant. 1 and Ant. 2
30	Draft 802.11n (40MHz)	BPSK		4	Ant. 1 and Ant. 2

4.4. SUMMARY OF TEST RESULTS

ІТ	EM	1	2	3 4		5	ITI	EM	6
TEST MODE		802.	.11b	802	.11g	DRAFT 802.11n (20MHz)	TEST	MODE	DRAFT 802.11n (40MHz)
CHAN.	FREQ. (MHz)	Ν	MEASURED	O VALUE O	F 1g SAR ((W/kg)	CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)
1	2412 (Low)	-	-	-	-	0.138	1	2422 (Low)	-
6	2437 (Mid.)	0.278 0.368 0.122 0.174				-	4	2437 (Mid.)	0.221
11	2462 (High)	-	-	-	-	-	7	2452 (High)	-

ІТ	EM	7	8	9	10	11	ITEM		12	
TEST MODE		802.	.11b	802	802.11g DRAFT 802.11n (20MHz)			MODE	DRAFT 802.11n (40MHz)	
CHAN.	FREQ. (MHz)	Ν	MEASURED	O VALUE O	F 1g SAR (W/kg)	CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)	
1	2412 (Low)	-	-	-	-	0.046	1	2422 (Low)	-	
6	2437 (Mid.)	0.096 0.029 0.045 0.027				-	4	2437 (Mid.)	0.048	
11	2462 (High)	-	-	-	-	-	7	2452 (High)	-	

ІТ	EM	13	14	15	16	17	ITEM		18
TEST	MODE	802.	.11b	802	.11g	DRAFT 802.11n (20MHz)	TEST	MODE	DRAFT 802.11n (40MHz)
CHAN.	FREQ. (MHz)	Ν	MEASURED	O VALUE O	F 1g SAR (CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)	
1	2412 (Low)	-	-	-	-	0.232	1	2422 (Low)	-
6	2437 (Mid.)	0.422 0.505 0.183 0.294				-	4	2437 (Mid.)	0.335
11	2462 (High)	-	-	-	_	-	7	2452 (High)	-

ІТ	EM	19	20	21	22	23	ITEM		24	
TEST MODE		802.	.11b	802	.11g	DRAFT 802.11n (20MHz)	TEST	MODE	DRAFT 802.11n (40MHz)	
CHAN.	FREQ. (MHz)	Ν	MEASURED	O VALUE O	F 1g SAR ((W/kg)	CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)	
1	2412 (Low)	-	-	-	-	0.049	1	2422 (Low)	-	
6	2437 (Mid.)	0.036 0.158 0.015 0.079				-	4	2437 (Mid.)	0.058	
11	2462 (High)	-	-	-	-	-	7	2452 (High)	-	

ІТ	EM	25	26	27	28	29	ІТ	EM	30
TEST MODE		802.	.11b	802	.11g	DRAFT 802.11n (20MHz)	TEST	MODE	DRAFT 802.11n (40MHz)
CHAN.	FREQ. (MHz)	Ν	MEASURED	O VALUE O	F 1g SAR (W/kg)	CHAN.	FREQ. (MHz)	MEASURED VALUE OF 1g SAR (W/kg)
1	2412 (Low)	-	-	-	-	0.001550	1	2422 (Low)	-
6	2437 (Mid.)	0.004080 0.004990 0.000812 0.0048				-	4	2437 (Mid.)	0.001690
11	2462 (High)	-	-	-	-	-	7	2452 (High)	-

NOTE: The worst value has been marked by boldface.

4.5. CHECK FOR SCAN RESOLUTION

COMPARE WITH DIFFERENT SCAN RESOLUTION

With EUT hold on the worst case configuration (middle channel in test mode 14) with no any change in position or setting, 2 scans with different resolutions are preformed to evaluate the impact on the SAR value.

Test data as below:

SCAN RESOLUTION (mm)	SAR VALUE (W/kg)
5	0.505
2.5	0.492

CONCLUSION: No meaningful change detected.

5. TEST RESULTS

5.1 TEST PROCEDURES

The EUT plugged into the notebook. Use the software to control the EUT channel and transmission power. Then record the conducted power before the testing. Place the EUT to the specific test location. After the testing, must writing down the conducted power of the EUT into the report. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE 1528 standards, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

The area scan was performed for the highest spatial SAR location. The zoom scan with 30mm x 30mm x 30mm volume was performed for SAR value averaged over 1g and 10g spatial volumes.

In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 3mm and maintained at a constant distance of ± 0.5 mm during a zoom scan to determine peak SAR locations. The distance is 3mm between the first measurement point and the bottom surface of the phantom. The secondary measurement point to the bottom surface of the phantom is with 8mm separation distance. The cube size is 7 x 7 x 7 points consists of 343 points and the grid space is 5mm.

The measurement time is 0.5s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 3mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than \pm 5%.

5.2 MEASURED SAR RESULTS

		AL.		emperature: iidity:62%RF	•	id Temperature	e:22.3°C			
TEST	ED BY		Sam	Onn	DATE		May 06, 2	May 06, 2009		
CHAN	FREQ. (MHz)	TEST		CONDUCTED	POWER (mW)	POWER	DEVICE TEST POSITION	MEASURED 1g SAR		
		TEOT	IODE	BEGIN TEST	AFTER TEST	DRIFT (%)	MODE	(W/kg)		
6	2437 (Mid.)	802.1	l1b	100.231	98.016	-2.21	1	0.278		
6	2437 (Mid.)	802.1	l1b	100.693	98.327	-2.35	2	0.368		
6	2437 (Mid.)	802.1	l1g	200.447	195.516	-2.46	3	0.122		
6	2437 (Mid.)	802.11g		202.302	197.143	-2.55	4	0.174		
1	2412 (Low)	DRAFT 802.11n (20MHz)		303.175	295.050	-2.68	5	0.138		
4	2437 (Mid.)	DRA 802. (40M	11n	304.655	296.216	-2.77	6	0.221		
6	2437 (Mid.)	802.1	l1b	100.231	97.364	-2.86	7	0.096		
6	2437 (Mid.)	802.1	l1b	100.693	97.763	-2.91	8	0.029		
6	2437 (Mid.)	802.1	l1g	200.447	194.313	-3.06	9	0.045		
6	2437 (Mid.)	802.1	l1g	202.302	195.889	-3.17	10	0.027		
1	2412 (Low)	DRAFT 802.11n (20MHz)		303.175	293.382	-3.23	11	0.046		
4	2437 (Mid.)	DRA 802. (40M	11n	304.655	294.358	-3.38	12	0.048		

NOTE:

1. Test configuration of each mode is described in section 4.3.

2. In this testing, the limit for General Population Spatial Peak averaged over 1g, 1.6 W/kg, is applied.

3. Please see the Appendix A for the data.

4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

	RONMENT A	NL.		emperature: iidity:62%RF		, Liqui	d Temperature	e∶22.3°C			
TEST	ED BY		Sam Onn			DATE		May 06, 2	May 06, 2009		
CHAN.	FREQ. (MHz)	TEST N	IODE	CONDUCTED	POWER	(mW)	POWER	DEVICE TEST POSITION	MEASURED 1g SAR		
						TEST	DRIFT (%)	MODE	(W/kg)		
6	2437 (Mid.)	802.1	l1b	100.231	98.8	378	-1.35	13	0.422		
6	2437 (Mid.)	802.1	l1b	100.693	99.2	263	-1.42	14	0.505		
6	2437 (Mid.)	802. 1	l1g	200.447	197.	380	-1.53	15	0.183		
6	2437 (Mid.)	802.11g		202.302	198.984		-1.64	16	0.294		
1	2412 (Low)	DRA 802.7 (20M	l1n	303.175	297.627		-1.83	17	0.232		
4	2437 (Mid.)	DRA 802.7 (40M	l1n	304.655	298.775		-1.93	18	0.335		
6	2437 (Mid.)	802. 1	l1b	100.231	98.7	96	-2.03	19	0.036		
6	2437 (Mid.)	802.1	l1b	100.693	98.5	528	-2.15	20	0.158		
6	2437 (Mid.)	802.1	l1g	200.447	195.	897	-2.27	21	0.015		
6	2437 (Mid.)	802.11g		202.302	197.	467	-2.39	22	0.079		
1	2412 (Low)	DRAFT 802.11n (20MHz)		303.175	295.717		-2.46	23	0.049		
4	2437 (Mid.)	DRA 802.7 (40M	l1n	304.655	296.	947	-2.53	24	0.058		

NOTE:

1. Test configuration of each mode is described in section 4.3.

2. In this testing, the limit for General Population Spatial Peak averaged over 1g, 1.6 W/kg, is applied.

3. Please see the Appendix A for the data.

4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

	RONMENT A	AL.		Air Temperature:23.6°C, Liquid Temperature:22.3°C Humidity:62%RH							
TESTED BY			Sam Onn			DATE			May 06, 20	009	
CUAN	CHAN. FREQ. (MHz) TEST			CONDUCTED	POWER	R (mW)	POWER			MEASURED	
CHAN.					AFTE	R TEST	DRIFT (%)	POSITION MODE		1g SAR (W/kg)	
6	2437 (Mid.)	802.11b		100.231	97.615		-2.61	25		0.004080	
6	2437 (Mid.)	802. ⁻	11b	100.693	97.914		-2.76		26	0.004990	
6	2437 (Mid.)	802. ⁻	11g	200.447	194.714		-2.86		27	0.000812	
6	2437 (Mid.)	802. ⁻	11g	202.302	196	.395	-2.92	28		0.004850	
1	2412 (Low)	DR / 802. (20M	11n	303.175	293.958		-3.04	29		0.001550	
4	2437 (Mid.)	DR A 802. (40M	11n	304.655	295	.150	-3.12		30	0.001690	

NOTE:

1. Test configuration of each mode is described in section 4.3.

2. In this testing, the limit for General Population Spatial Peak averaged over 1g, 1.6 W/kg, is applied.

3. Please see the Appendix A for the data.

4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

5.3 SAR LIMITS

	SAR (W/kg)				
HUMAN EXPOSURE	(GENERAL POPULATION / UNCONTROLLED EXPOSURE ENVIRONMENT)	(OCCUPATIONAL / CONTROLLED EXPOSURE ENVIRONMENT)			
Spatial Average (whole body)	0.08	0.4			
Spatial Peak (averaged over 1 g)	1.6	8.0			
Spatial Peak (hands / wrists / feet / ankles averaged over 10 g)	4.0	20.0			

NOTE:

1. This limits accord to 47 CFR 2.1093 - Safety Limit.

2. The EUT property been complied with the partial body exposure limit under the general population environment.

5.4 RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with 25 litters of tissue simulation liquid.

The following ingredients are used :

• WATER-	Deionized water (pure H20), resistivity $_16$ M - as basis for the liquid
• SUGAR-	Refined sugar in crystals, as available in food shops - to reduce relative permittivity
• SALT-	Pure NaCI - to increase conductivity
• CELLULOSE-	Hydroxyethyl-cellulose, medium viscosity (75-125mPa.s, 2% in water, 20_C),
	CAS # 54290 - to increase viscosity and to keep sugar in solution
PRESERVATIVE-	Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 - to prevent the spread of bacteria and molds
• DGMBE-	Diethylenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS # 112-34-5 - to reduce relative permittivity

THE RECIPES FOR 2450MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 2450MHz (HSL-2450)	MUSCLE SIMULATING LIQUIE 2450MHz (MSL-2450)			
Water	45%	69.83%			
DGMBE	55%	30.17%			
Salt	NA	NA			
Dielectric Parameters at 22℃	f= 2450MHz ε= 39.2 ± 5% σ= 1.80 ± 5% S/m	f= 2450MHz ε= 52.7 ± 5% σ= 1.95 ± 5% S/m			

Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D.The testing procedure is following as

- 1. Turn Network Analyzer on and allow at least 30min. warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature (±1°).
- 4. Set water temperature in Agilent-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness ϵ '=10.0, ϵ "=0.0). If measured parameters do not fit within tolerance, repeat calibration (±0.2 for ϵ ': ±0.1 for ϵ ").
- 7. Conductivity can be calculated from ϵ " by $\sigma = \omega \epsilon_0 \epsilon$ " = ϵ " f [GHz] / 18.
- 8. Measure liquid shortly after calibration. Repeat calibration every hour.
- 9. Stir the liquid to be measured. Take a sample (~ 50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900MHz) and press 'Option'-button.
- 14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900MHz).

FOR 2.4GHz BAND SIMULATING LIQUID

	YPE	MSL-2450				
SIMULAT TEMP.	ING LIQUID	22.3				
TEST DA	TE	May 06, 2009				
TESTED	ВҮ	Sam Onn				
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	ERROR PERCENTAGE (%)		
2412.0		52.80	54.90	3.98		
2422.0	Permitivity (ε)	52.70	54.80	3.98		
2437.0		52.70	54.80	3.98		
2450.0		52.70	54.70	3.80		
2452.0		52.70	54.70	3.80		
2462.0		52.70	54.60	3.61		
2412.0		1.91	1.94	1.57		
2422.0		1.92	1.96	2.08		
2437.0	Conductivity	1.94	1.97	1.55		
2450.0	(σ) S/m	1.95	1.98	1.54		
2452.0		1.95	1.98	1.54		
2462.0		1.97	2.01	2.03		
Dielectric Parameters Required at 22℃			f= 2450MHz ε= 52.7 ± 5% σ= 1.95 ± 5% S/m			

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION	
1	Network Analyzer	Agilent	E8358A	US41480538	Nov. 27, 2008	Nov. 26, 2009	
2	Dielectric Probe	Agilent	85070D	US01440176	NA	NA	

5.5 TEST EQUIPMENT FOR TISSUE PROPERTY

NOTE:

1. Before starting, all test equipment shall be warmed up for 30min.

2. The tolerance (k=1) specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually ±2.5% and ±5% for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than ±2.5% (k=1). It can be substantially smaller if more accurate methods are applied.

6. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250mW RF input power was used.

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION	
1	SAM Phantom	S & P	QD000 P40 CA	TP-1150	NA	NA	
2	Signal Generator	Anritsu	68247B	984703	May 27, 2008	May 26, 2009	
3	E-Field Probe	S & P	EX3DV3	3504	Jan. 21, 2009	Jan. 20, 2010	
4	DAE	S & P	DAE 3	510	Jan. 21, 2009	Jan. 20, 2010	
5	Robot Positioner	Staubli Unimation	NA	NA	NA	NA	
6	Validation Dipole	S & P	D2450V2	716	Mar. 17, 2009	Mar. 16, 2010	
7	Power Meter	Agilent	E4416A	GB41291763	Sep. 28, 2008	Sep. 29, 2009	
8	Power Sensor	Agilent	E9327A	US40441181	Sep. 28, 2008	Sep. 29, 2009	

6.1 TEST EQUIPMENT

NOTE: Before starting the measurement, all test equipment shall be warmed up for 30min.

6.2 TEST PROCEDURE

Before the system performance check, we need only to tell the system which components (probe, medium, and device) are used for the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole.

- The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ±0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ±0.02dB.
- 2. The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ±0.1mm). In that case it is better to abort the system performance check and stir the liquid.

- 3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
- 4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY4 system is less than ±0.1mm.

$$SAR_{tolerance}[\%] = 100 \times (\frac{(a+d)^2}{a^2} - 1)$$

As the closest distance is 10mm, the resulting tolerance SAR_{tolerance}[%] is <2%.

6.3 VALIDATION RESULTS

SYSTEM VALIDATION TEST OF SIMULATING LIQUID						
FREQUENCY (MHz)REQUIRED SAR (mW/g)MEASURED SAR (mW/g)DEVIATION (%)SEPARATION DISTANCETESTED DATE						
MSL2450	13.30 (1g)	12.80	-3.76	10mm	May 06, 2009	
TESTED BY	Sam Onn					

NOTE: Please see Appendix for the photo of system validation test.

6.4 SYSTEM VALIDATION UNCERTAINTIES

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE 1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

Error Description	Tolerance (±%)	Probability Distribution	Divisor	(C _i)		Standard Uncertainty (±%)		(v _i)	
				(1g)	(10g)	(1g)	(10g)		
Measurement System									
Probe Calibration	5.50	Normal	1	1	1	5.50	5.50	∞	
Axial Isotropy	4.70	Rectangular	√3	0.7	0.7	1.90	1.90	∞	
Hemispherical Isotropy	9.60	Rectangular	√3	0.7	0.7	3.88	3.88	∞	
Boundary effects	1.00	Rectangular	√3	1	1	0.58	0.58	∞	
Linearity	4.70	Rectangular	√3	1	1	2.71	2.71	~	
System Detection Limits	1.00	Rectangular	√3	1	1	0.58	0.58	∞	
Readout Electronics	0.30	Normal	1	1	1	0.30	0.30	∞	
Response Time	0.80	Rectangular	√3	1	1	0.46	0.46	∞	
Integration Time	2.60	Rectangular	√3	1	1	1.50	1.50	∞	
RF Ambient Noise	3.00	Rectangular	√3	1	1	1.73	1.73	∞	
RF Ambient Reflections	3.00	Rectangular	√3	1	1	1.73	1.73	∞	
Probe Positioner	0.40	Rectangular	√3	1	1	0.23	0.23	8	
Probe Positioning	2.90	Rectangular	√3	1	1	1.67	1.67	8	
Max. SAR Eval.	1.00	Rectangular	√3	1	1	0.58	0.58	8	
		Dipole Re	elated	-		-	-		
Dipole Axis to Liquid Distance	2.00	Rectangular	√3	1	1	1.15	1.15	145	
Input Power Drift	5.00	Rectangular	√3	1	1	2.89	2.89	∞	
		Phantom and Tiss	ue parame	ters					
Phantom Uncertainty	4.00	Rectangular	√3	1	1	2.31	2.31	∞	
Liquid Conductivity (target)	5.00	Rectangular	√3	0.64	0.43	1.85	1.24	∞	
Liquid Conductivity (measurement)	2.90	Normal	1	0.64	0.43	1.86	1.25	8	
Liquid Permittivity (target)	5.00	Rectangular	√3	0.6	0.49	1.73	1.41	~	
Liquid Permittivity (measurement)	4.46	Normal	1	0.6	0.49	2.68	2.19	8	
Combined Standard Uncertainty						10.04	9.67		
Coverage Factor for 95%					Kp=2				
Expanded Uncertainty (K=2)						20.07	19.35		

NOTE: About the system validation uncertainty assessment, please reference the section 7.

7. MEASUREMENT SAR PROCEDURE UNCERTAINTIES

The assessment of spatial peak SAR of the hand handheld devices is according to IEEE 1528 / EN 62209-1. All testing situation shall be met below these requirements.

- The system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG.
- The probe has been calibrated within the requested period and the stated uncertainty for the relevant frequency bands does not exceed 4.8% (k=1).
- The validation dipole has been calibrated within the requested period and the system performance check has been successful.
- The DAE unit has been calibrated within the within the requested period.
- The minimum distance between the probe sensor and inner phantom shell is selected to be between 4 and 5mm.
- The operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136 and PDC) and the measurement/integration time per point is >500 ms.
- The dielectric parameters of the liquid have been assessed using Agilent 85070D dielectric probe kit or a more accurate method.
- The dielectric parameters are within 5% of the target values.
- The DUT has been positioned as described in section 3.

7.1. PROBE CALIBRATION UNCERTAINTY

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO17025. The uncertainties are stated on the calibration certificate. For the most relevant frequency bands, these values do not exceed 4.8% (k=1). If evaluations of other bands are performed for which the uncertainty exceeds these values, the uncertainty tables given in the summary have to be revised accordingly.

7.2. ISOTROPY UNCERTAINTY

The axial isotropy tolerance accounts for probe rotation around its axis while the hemispherical isotropy error includes all probe orientations and field polarizations. These parameters are assessed by SPEAG during initial calibration. In 2001, SPEAG further tightened its quality controls and warrants that the maximal deviation from axial isotropy is ± 0.20 dB, while the maximum deviation of hemispherical isotropy is ± 0.40 dB, corresponding to $\pm 4.7\%$ and $\pm 9.6\%$, respectively. A weighting factor of cp equal to 0.5 can be applied, since the axis of the probe deviates less than 30 degrees from the normal surface orientation.

7.3. BOUNDARY EFFECT UNCERTAINTY

The effect can be estimated according to the following error approximation formula

$$SAR_{tolerance}[\%] = SAR_{be}[\%] \times \frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{e^{\frac{-d_{be}}{d/2}}}{d/2}$$

$$d_{be} + d_{step} < 10mm$$

The parameter d_{be} is the distance in mm between the surface and the closest measurement point used in the averaging process; d_{step} is the separation distance in mm between the first and second measurement points; δ is the minimum penetration depth in mm within the head tissue equivalent liquids (i.e., δ = 13.95mm at 3GHz); SAR_{be} is the deviation between the measured SAR value at the distance d_{be} from the boundary and the wave-guide analytical value SAR_{ref}.DASY4 applies a boundary effect compensation algorithm according to IEEE 1528, which is possible since the axis of the probe never deviates more than 30 degrees from the normal surface orientation. SAR_{be}[%] is assessed during the calibration process and SPEAG warrants that the uncertainty at distances larger than 4mm is always less than 1%.In summary, the worst case boundary effect SAR tolerance[%] for scanning distances larger than 4mm is < ± 0.8%.

7.4. PROBE LINEARITY UNCERTAINTY

Field probe linearity uncertainty includes errors from the assessment and compensation of the diode compression effects for CW and pulsed signals with known duty cycles. This error is assessed using the procedure described in IEEE 1528 / EN 62209-1. For SPEAG field probes, the measured difference between CW and pulsed signals, with pulse frequencies between 10Hz and 1kHz and duty cycles between 1 and 100, is < ± 0.20 dB (< ± 4.7 %).

7.5. READOUT ELECTRONICS UNCERTAINTY

All uncertainties related to the probe readout electronics (DAE unit), including the gain and linearity of the instrumentation amplifier, its loading effect on the probe, and accuracy of the signal conversion algorithm, have been assessed accordingly to IEEE 1528 / EN 62209-1. The combination (root-sum-square RSS method) of these components results in an overall maximum error of $\pm 1.0\%$.

7.6. RESPONSE TIME UNCERTAINTY

The time response of the field probes is assessed by exposing the probe to a well-controlled electric field producing SAR larger than 2.0W/kg at the tissue medium surface. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/of switch of the power source. Analytically, it can be expressed as:

$$SAR_{tolerance}[\%] = 100 \times (\frac{T_m}{T_m + te^{-T_m/t} - t} - 1)$$

where Tm is 500 ms, i.e., the time between measurement samples, and $_{T}$ the time constant. The response time $_{T}$ of SPEAG's probes is <5ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

7.7. INTEGRATION TIME UNCERTAINTY

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization and can be assessed as follows

$$SAR_{tolerance}[\%] = 100 \times \sum_{allsub-frames} \frac{t_{frame}}{t_{int egration}} \frac{slot_{idle}}{slot_{total}}$$

The tolerances for the different systems are given in Table 7.1, whereby the worst-case $SAR_{tolerance}$ is 2.6%.

System	SAR _{tolerance} %		
CW	0		
CDMA*	0		
WCDMA*	0		
FDMA	0		
IS-136	2.6		
PDC	2.6		
GSM/DCS/PCS	1.7		
DECT	1.9		
Worst-Case	2.6		

TABLE 7.1

7.8. PROBE POSITIONER MECHANICAL TOLERANCE

The mechanical tolerance of the field probe positioner can introduce probe positioning uncertainties. The resulting SAR uncertainty is assessed by comparing the SAR obtained according to the specifications of the probe positioner with respect to the actual position defined by the geometric enter of the probe sensors. The tolerance is determined as:

$$SAR_{tolerance}[\%] = 100 \times \frac{d_{ph}}{d/2}$$

The specified repeatability of the RX robot family used in DASY4 systems is $\pm 25\mu$ m. The absolute accuracy for short distance movements is better than ± 0.1 mm, i.e., the SAR_{tolerance}[%] is better than 1.5% (rectangular).

7.9. PROBE POSITIONING

The probe positioning procedures affect the tolerance of the separation distance between the probe tip and the phantom surface as:

$$SAR_{tolerance}[\%] = 100 \times \frac{d_{ph}}{d/2}$$

where d_{ph} is the maximum deviation of the distance between the probe tip and the phantom surface. The optical surface detection has a precision of better than 0.2mm, resulting in an SAR_{tolerance}[%] of <2.9% (rectangular distribution). Since the mechanical detection provides better accuracy, 2.9% is a worst-case figure for DASY4 system.

7.10. PHANTOM UNCERTAINTY

The SAR measurement uncertainty due to SPEAG phantom shell production tolerances has been evaluated using

$$SAR_{tolerance}[\%] \cong 100 \times \frac{2d}{a}, \qquad d \ll a$$

For a maximum deviation d of the inner and outer shell of the phantom from that specified in the CAD file of ± 0.2 mm, and a 10mm spacing a between source and tissue liquid, the calculated phantom uncertainty is $\pm 4.0\%$.

7.11. DASY4 UNCERTAINTY BUDGET

Error Description	Tolerance (±%)	Probability Distribution	Divisor	(C _i)		Standard Uncertainty (±%)		(v _i)
				(1g)	(10g)	(1g)	(10g)	
Measurement System								
Probe Calibration	5.50	Normal	1	1	1	5.50	5.50	∞
Axial Isotropy	4.70	Rectangular	$\sqrt{3}$	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.60	Rectangular	$\sqrt{3}$	0.7	0.7	3.88	3.88	8
Boundary effects	1.00	Rectangular	√3	1	1	0.58	0.58	8
Linearity	4.70	Rectangular	√3	1	1	2.71	2.71	8
System Detection Limits	1.00	Rectangular	√3	1	1	0.58	0.58	8
Readout Electronics	0.30	Normal	1	1	1	0.30	0.30	8
Response Time	0.80	Rectangular	√3	1	1	0.46	0.46	∞
Integration Time	2.60	Rectangular	√3	1	1	1.50	1.50	~
RF Ambient Noise	3.00	Rectangular	√3	1	1	1.73	1.73	~
RF Ambient Reflections	3.00	Rectangular	√3	1	1	1.73	1.73	~
Probe Positioner	0.40	Rectangular	√3	1	1	0.23	0.23	~
Probe Positioning	2.90	Rectangular	√3	1	1	1.67	1.67	~
Max. SAR Eval.	1.00	Rectangular	√3	1	1	0.58	0.58	~
Test Sample Related								
Device Positioning	0.69	Normal	1	1	1	0.69	0.69	10
Device Holder	3.60	Normal	1	1	1	3.60	3.60	5
Power Drift	5.00	Rectangular	√3	1	1	2.89	2.89	8
Phantom and Tissue parameters								
Phantom Uncertainty	4.00	Rectangular	√3	1	1	2.31	2.31	8
Liquid Conductivity (target)	5.00	Rectangular	√3	0.64	0.43	1.85	1.24	8
Liquid Conductivity (measurement)	2.90	Normal	1	0.64	0.43	1.86	1.25	8
Liquid Permittivity (target)	5.00	Rectangular	√3	0.6	0.49	1.73	1.41	8
Liquid Permittivity (measurement)	4.46	Normal	1	0.6	0.49	2.68	2.19	8
Combined Standard Uncertainty					10.62	10.28		
Coverage Factor for 95%					Kp=2			
Expanded Uncertainty (K=2)						21.24	20.56	

TABLE 7.2

The table 7.2: Worst-Case uncertainty budget for DASY4 assessed according to IEEE 1528. The budget is valid for the frequency range 300MHz ~ 3GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

8. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, NVLAP
GERMANY	TUV Rheinland
JAPAN	VCCI
NORWAY	NEMKO
CANADA	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
NETHERLANDS	Telefication
SINGAPORE	GOST-ASIA (MOU)
RUSSIA	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

---END----

APPENDIX A: TEST DATA

Liquid Level Photo

MSL 2450MHz D=152mm

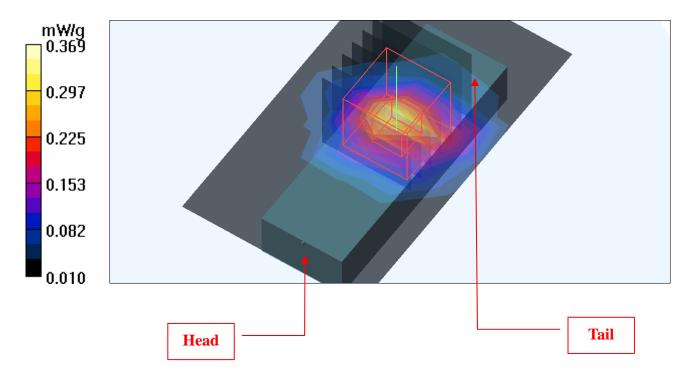
Date/Time: 2009/5/6 07:00:54

Test Laboratory: Bureau Veritas ADT

M01-11b-Ch6 / DAC 0

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The bottom side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.330 mW/g

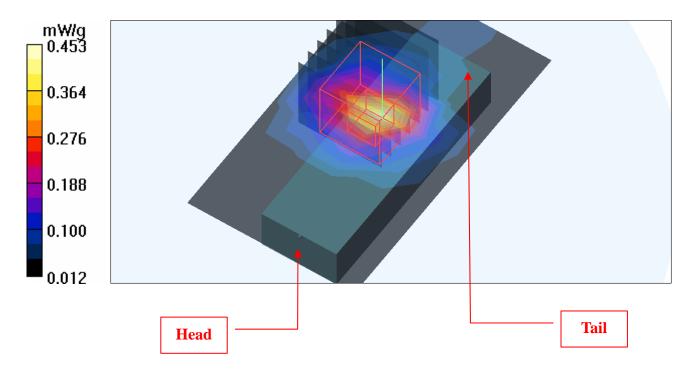
Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/mPeak SAR (extrapolated) = 0.594 W/kgSAR(1 g) = 0.278 mW/g; SAR(10 g) = 0.126 mW/gMaximum value of SAR (measured) = 0.369 mW/g

M02-11b-Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The bottom side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.439 mW/g

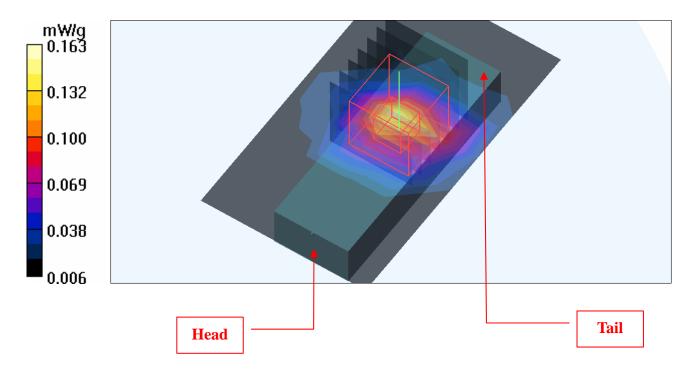
Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.9 V/m Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.368 mW/g; SAR(10 g) = 0.167 mW/g Maximum value of SAR (measured) = 0.453 mW/g

M03-11g-Ch6 / DAC0

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The bottom side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.136 mW/g

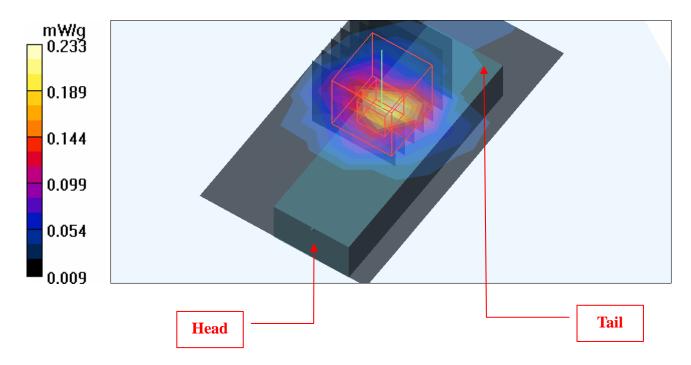
Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.34 V/mPeak SAR (extrapolated) = 0.268 W/kgSAR(1 g) = 0.122 mW/g; SAR(10 g) = 0.057 mW/gMaximum value of SAR (measured) = 0.163 mW/g

M04-11g Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The bottom side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.220 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

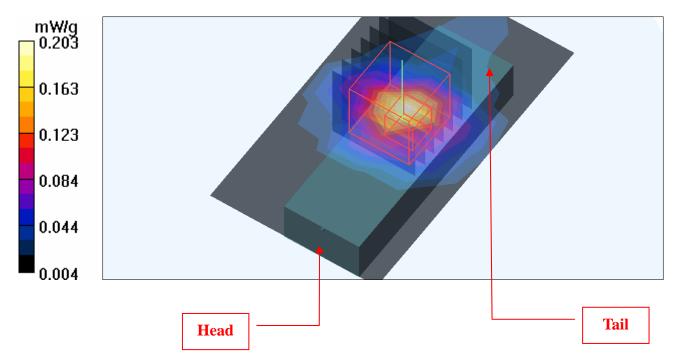
Reference Value = 10.5 V/mPeak SAR (extrapolated) = 0.398 W/kgSAR(1 g) = 0.174 mW/g; SAR(10 g) = 0.082 mW/gMaximum value of SAR (measured) = 0.233 mW/g

M05-11N 20M-Ch1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 2.4G 11n span20 ; Frequency: 2412 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Separation distance : 5 mm (The bottom side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Low Channel 1/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.203 mW/g

Low Channel 1/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

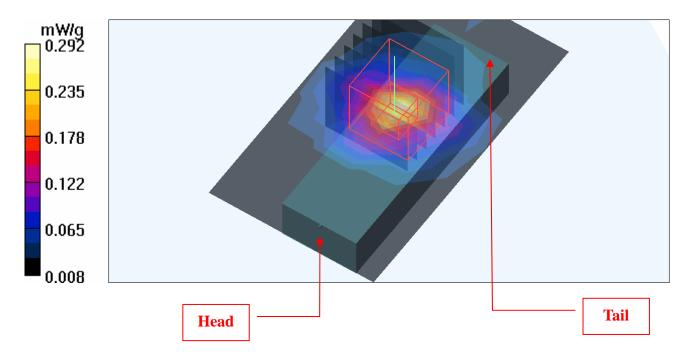
Reference Value = 8.89 V/mPeak SAR (extrapolated) = 0.354 W/kgSAR(1 g) = 0.138 mW/g; SAR(10 g) = 0.068 mW/gMaximum value of SAR (measured) = 0.201 mW/g

M06-11N 40M-Ch4

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11n 40MHz ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The bottom side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 4/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.276 mW/g

Mid Channel 4/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.8 V/mPeak SAR (extrapolated) = 0.672 W/kgSAR(1 g) = 0.221 mW/g; SAR(10 g) = 0.097 mW/gMaximum value of SAR (measured) = 0.292 mW/g

Date/Time: 2009/5/6 09:24:02

Test Laboratory: Bureau Veritas ADT

M07-11b-Ch6 / DAC 0 DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

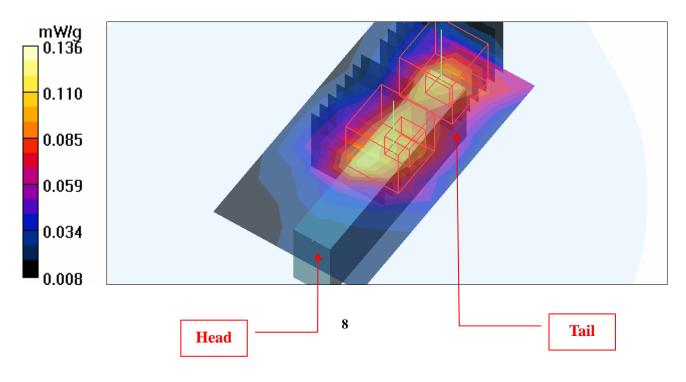
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.101 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.57 V/m


Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.096 mW/g; SAR(10 g) = 0.047 mW/g

Maximum value of SAR (measured) = 0.136 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.57 V/mPeak SAR (extrapolated) = 0.113 W/kgSAR(1 g) = 0.067 mW/g; SAR(10 g) = 0.038 mW/gMaximum value of SAR (measured) = 0.082 mW/g

Date/Time: 2009/5/6 09:52:38

Test Laboratory: Bureau Veritas ADT

M08-11b-Ch6 / DAC 1 DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

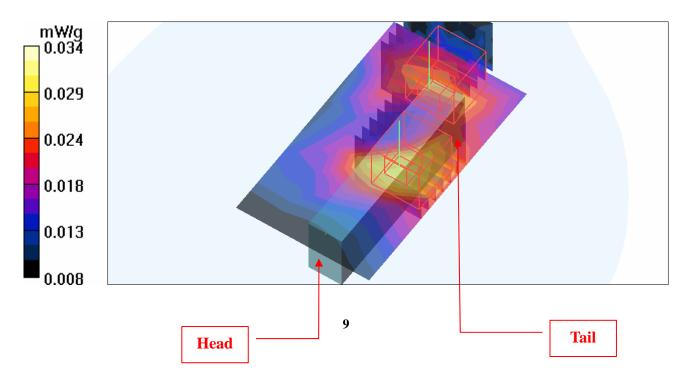
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.030 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.03 V/m


Peak SAR (extrapolated) = 0.083 W/kg

SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.034 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.03 V/mPeak SAR (extrapolated) = 0.059 W/kgSAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.016 mW/gMaximum value of SAR (measured) = 0.027 mW/g

Date/Time: 2009/5/6 10:30:32

Test Laboratory: Bureau Veritas ADT

M09-11g-Ch6 / DAC0 DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

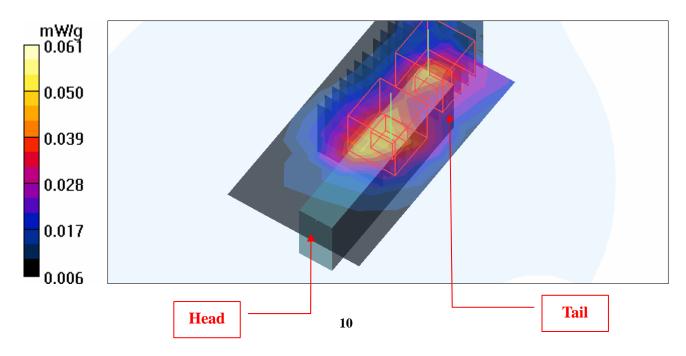
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.035 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.96 V/m


Peak SAR (extrapolated) = 0.114 W/kg

SAR(1 g) = $\frac{0.045}{0.045}$ mW/g; SAR(10 g) = 0.023 mW/g

Maximum value of SAR (measured) = 0.061 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.96 V/mPeak SAR (extrapolated) = 0.069 W/kgSAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.017 mW/gMaximum value of SAR (measured) = 0.036 mW/g

Date/Time: 2009/5/6 10:57:39

Test Laboratory: Bureau Veritas ADT

M10-11g-Ch6 / DAC 1 DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

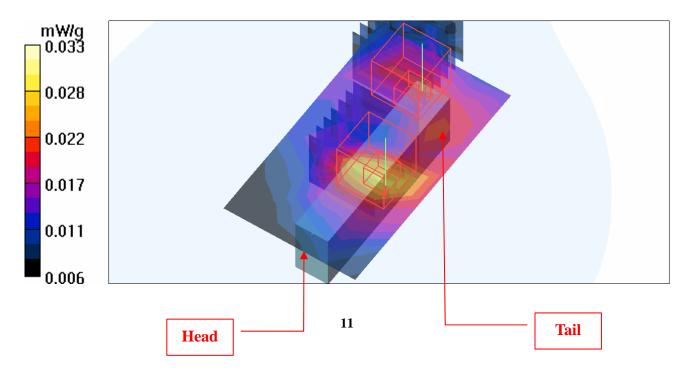
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.028 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.81 V/m


Peak SAR (extrapolated) = 0.081 W/kg

SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.017 mW/g

Maximum value of SAR (measured) = 0.033 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.81 V/mPeak SAR (extrapolated) = 0.055 W/kgSAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.014 mW/gMaximum value of SAR (measured) = 0.025 mW/g

M11-11N 20M-Ch1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 2.4G 11n span20 ; Frequency: 2412 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21

- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

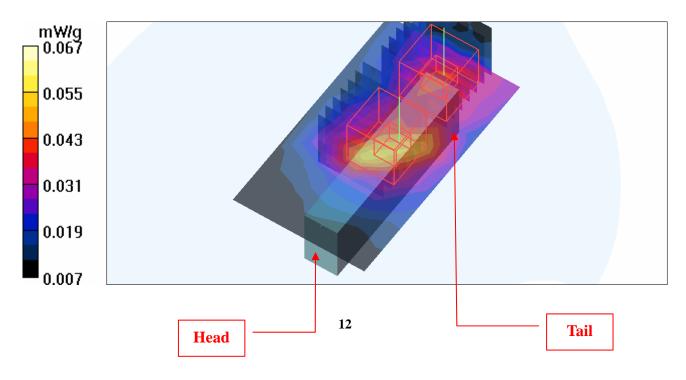
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Low Channel 1/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.045 mW/g

Low Channel 1/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.28 V/m


Peak SAR (extrapolated) = 0.114 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.023 mW/g

Maximum value of SAR (measured) = 0.067 mW/g

Low Channel 1/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.28 V/mPeak SAR (extrapolated) = 0.071 W/kgSAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.021 mW/gMaximum value of SAR (measured) = 0.044 mW/g

M12-11N 40M-Ch4

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11n 40MHz ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21

- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

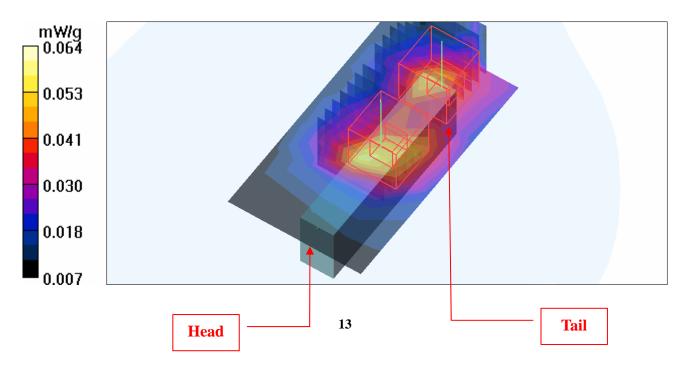
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 4/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.048 mW/g

Mid Channel 4/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.05 V/m


Peak SAR (extrapolated) = 0.102 W/kg

SAR(1 g) = 0.048 mW/g; SAR(10 g) = 0.025 mW/g

Maximum value of SAR (measured) = 0.064 mW/g

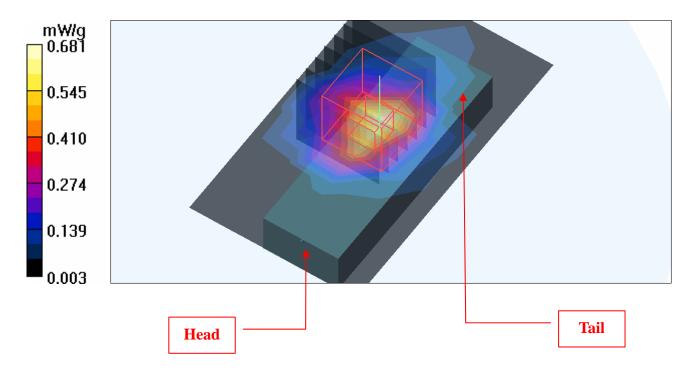
Mid Channel 4/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.05 V/mPeak SAR (extrapolated) = 0.089 W/kgSAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.025 mW/gMaximum value of SAR (measured) = 0.050 mW/g

M13-11b-Ch6 / DAC 0

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The front side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.681 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.1 V/mPeak SAR (extrapolated) = 0.867 W/kgSAR(1 g) = 0.422 mW/g; SAR(10 g) = 0.201 mW/gMaximum value of SAR (measured) = 0.539 mW/g

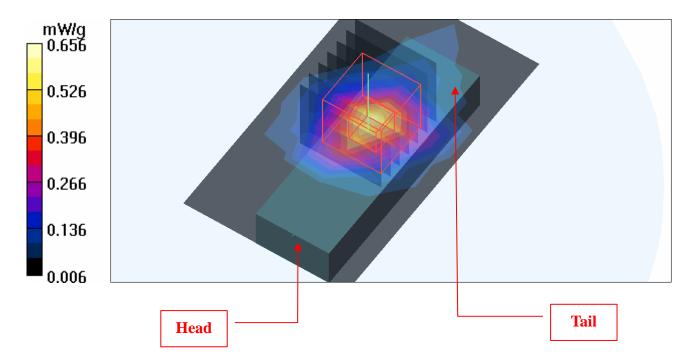
Date/Time: 2009/5/6 12:50:00

Test Laboratory: Bureau Veritas ADT

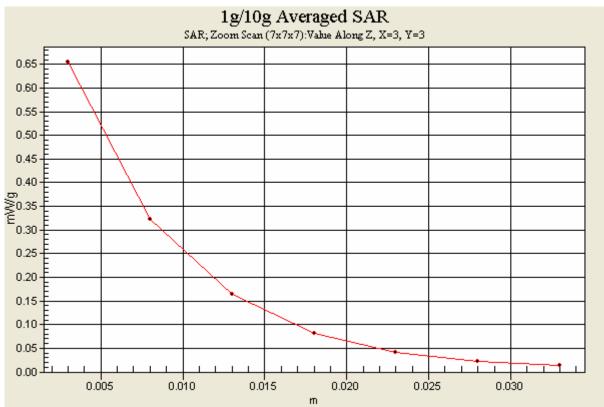
M14-11b-Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The front side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186


Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.594 mW/g

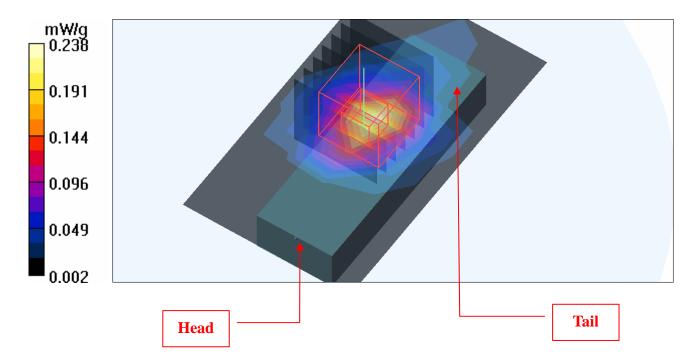
Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.3 V/mPeak SAR (extrapolated) = 1.03 W/kgSAR(1 g) = 0.505 mW/g; SAR(10 g) = 0.237 mW/gMaximum value of SAR (measured) = 0.656 mW/g

M15-11g-Ch6 / DAC0

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The front side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.232 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/mPeak SAR (extrapolated) = 0.446 W/kgSAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.083 mW/gMaximum value of SAR (measured) = 0.238 mW/g

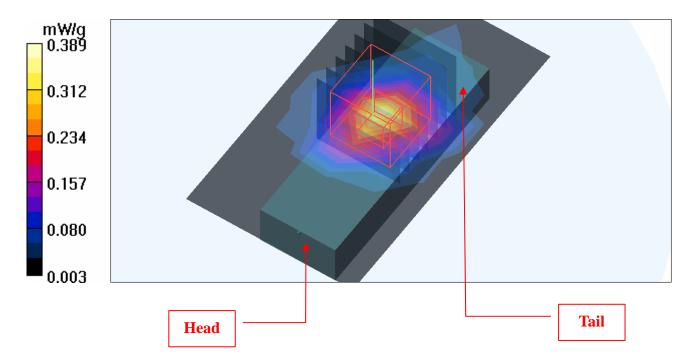
Date/Time: 2009/5/6 14:08:30

Test Laboratory: Bureau Veritas ADT

M16-11g-Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The front side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.357 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

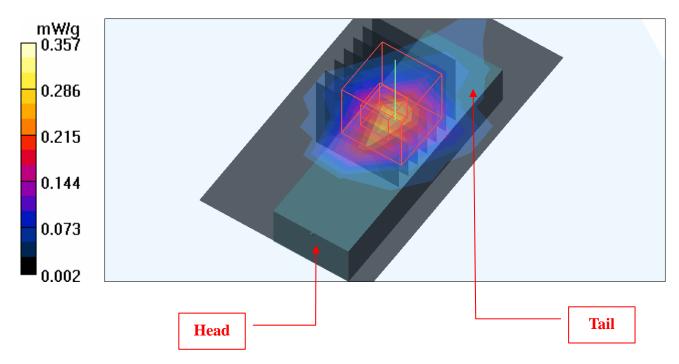
Reference Value = 13.4 V/mPeak SAR (extrapolated) = 0.605 W/kgSAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.134 mW/gMaximum value of SAR (measured) = 0.389 mW/g

M17-11N 20M-Ch1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 2.4G 11n span20 ; Frequency: 2412 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Separation distance : 5 mm (The front side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Low Channel 1/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.272 mW/g

Low Channel 1/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

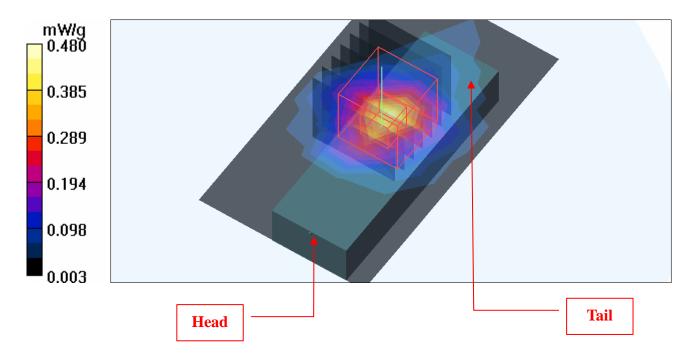
Reference Value = 13.5 V/mPeak SAR (extrapolated) = 0.502 W/kgSAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.109 mW/gMaximum value of SAR (measured) = 0.357 mW/g

M18-11N 40M-Ch4

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11n 40MHz ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The front side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 4/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.368 mW/g

Mid Channel 4/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.5 V/mPeak SAR (extrapolated) = 0.757 W/kgSAR(1 g) = 0.335 mW/g; SAR(10 g) = 0.149 mW/gMaximum value of SAR (measured) = 0.480 mW/g

Date/Time: 2009/5/6 15:08:35

Test Laboratory: Bureau Veritas ADT

M19-11b-Ch6 / DAC 0 DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

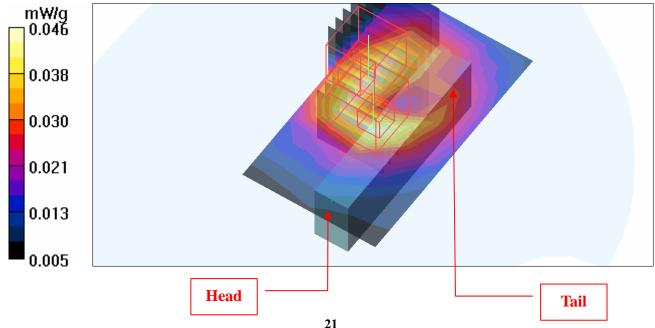
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.046 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.64 V/m


Peak SAR (extrapolated) = 0.083 W/kg

SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.018 mW/g

Maximum value of SAR (measured) = 0.045 mW/g

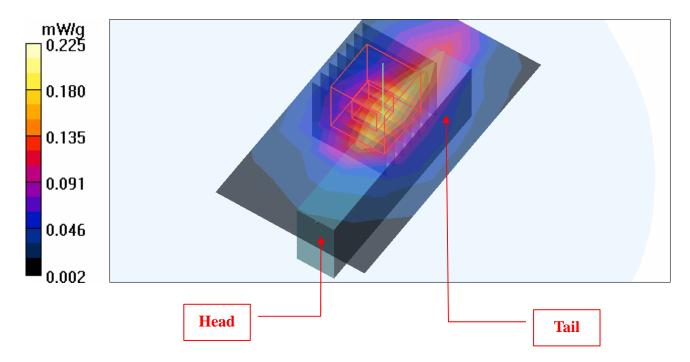
Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.64 V/mPeak SAR (extrapolated) = 0.068 W/kg $SAR(1 g) = \frac{0.036}{0.036} mW/g; SAR(10 g) = 0.019 mW/g$

M20-11b-Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.136 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.14 V/mPeak SAR (extrapolated) = 0.407 W/kgSAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.068 mW/gMaximum value of SAR (measured) = 0.225 mW/g

Date/Time: 2009/5/6 17:13:20

Test Laboratory: Bureau Veritas ADT

M21-11g-Ch6 / DAC0 DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202

- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

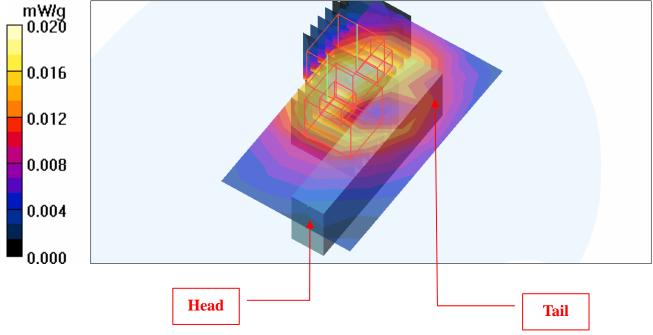
Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.020 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.17 V/m

Peak SAR (extrapolated) = 0.026 W/kg


SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.00865 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.17 V/m

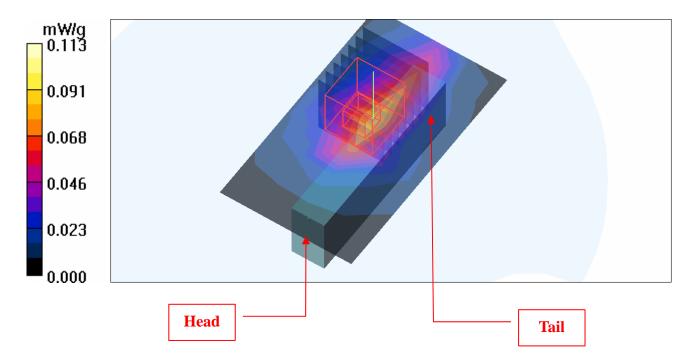
Peak SAR (extrapolated) = 0.032 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.0073 mW/g

M22-11g-Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.076 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

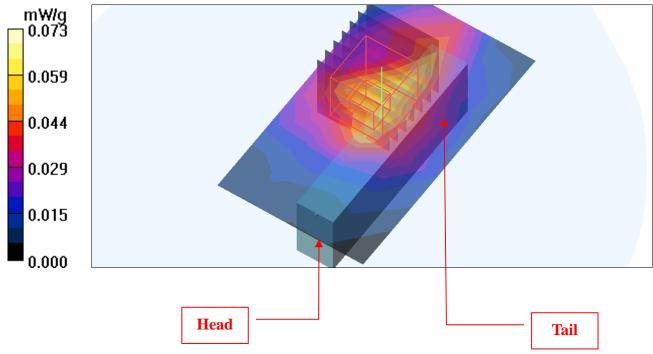
Reference Value = 5.29 V/mPeak SAR (extrapolated) = 0.209 W/kgSAR(1 g) = 0.079 mW/g; SAR(10 g) = 0.034 mW/gMaximum value of SAR (measured) = 0.113 mW/g

M23-11N 20M-Ch1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 2.4G 11n span20 ; Frequency: 2412 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Low Channel 1/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.039 mW/g

Low Channel 1/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

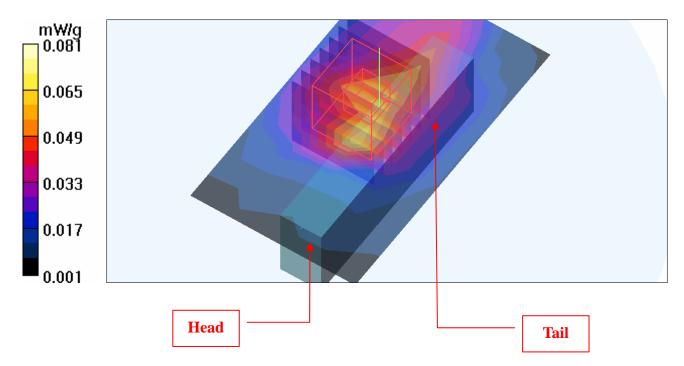
Reference Value = 4.47 V/mPeak SAR (extrapolated) = 0.130 W/kgSAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.022 mW/gMaximum value of SAR (measured) = 0.073 mW/g

M24-11N 40M-Ch4

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11n 40MHz ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The edge side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 4/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.051 mW/g

Mid Channel 4/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.01 V/mPeak SAR (extrapolated) = 0.166 W/kgSAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.026 mW/gMaximum value of SAR (measured) = 0.081 mW/g

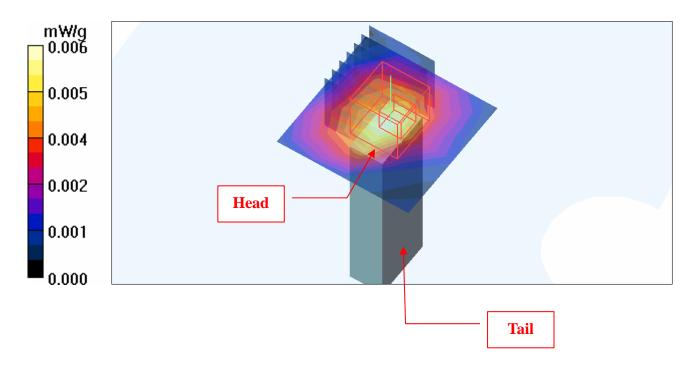
Date/Time: 2009/5/6 19:05:36

Test Laboratory: Bureau Veritas ADT

M25-11b-Ch6 / DAC0

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 0 mm (The tip side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.006 mW/g

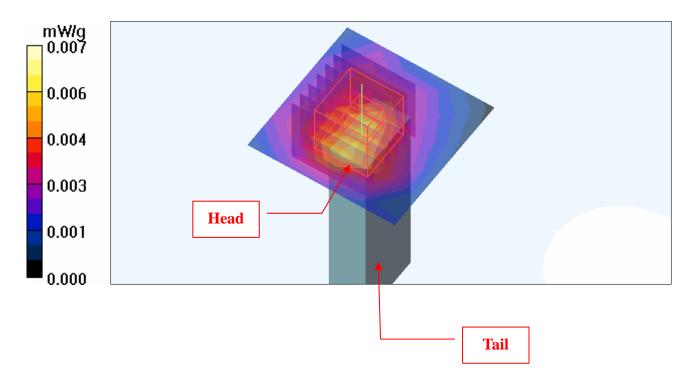
Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.75 V/mPeak SAR (extrapolated) = 0.011 W/kgSAR(1 g) = 0.00408 mW/g; SAR(10 g) = 0.00192 mW/gMaximum value of SAR (measured) = 0.005 mW/g

M26-11b-Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 0 mm (The tip side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.006 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.67 V/mPeak SAR (extrapolated) = 0.022 W/kgSAR(1 g) = 0.00499 mW/g; SAR(10 g) = 0.00269 mW/gMaximum value of SAR (measured) = 0.007 mW/g

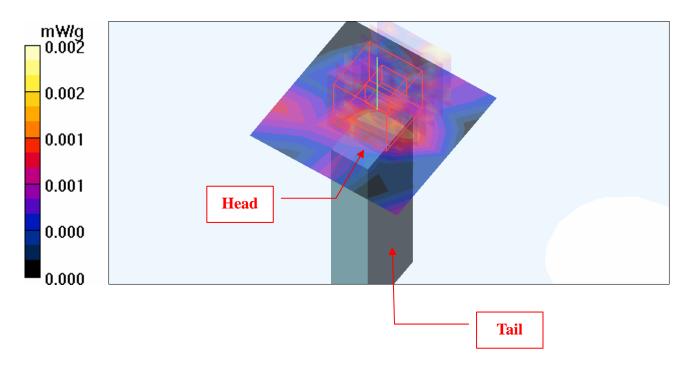
Date/Time: 2009/5/6 19:49:44

Test Laboratory: Bureau Veritas ADT

M27-11g-Ch6 / DAC0

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 0 mm (The tip side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.001 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.645 V/mPeak SAR (extrapolated) = 0.004 W/kgSAR(1 g) = 0.000812 mW/g; SAR(10 g) = 0.000318 mW/gMaximum value of SAR (measured) = 0.002 mW/g

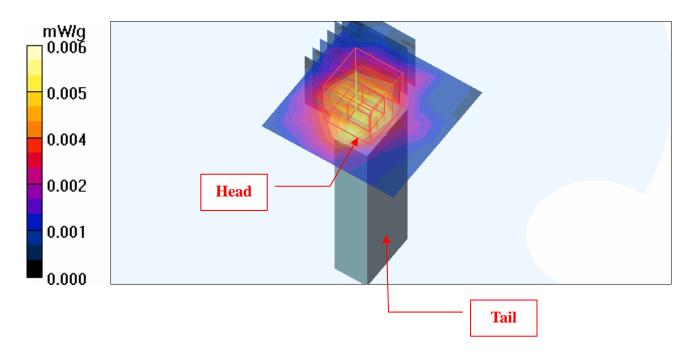
Date/Time: 2009/5/6 20:08:47

Test Laboratory: Bureau Veritas ADT

M28-11g-Ch6 / DAC1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11g ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 0 mm (The tip side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.005 mW/g

Mid Channel 6/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

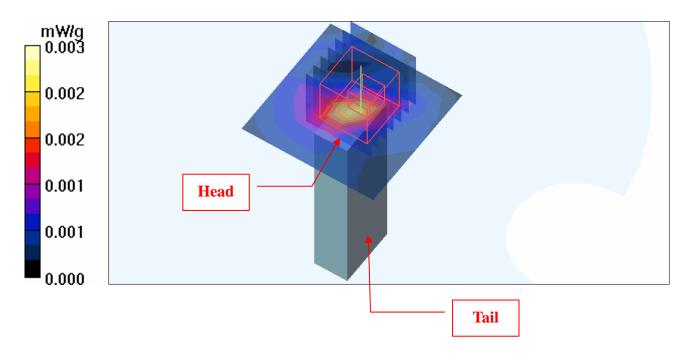
Reference Value = 1.77 V/mPeak SAR (extrapolated) = 0.014 W/kgSAR(1 g) = 0.00485 mW/g; SAR(10 g) = 0.00228 mW/gMaximum value of SAR (measured) = 0.006 mW/g

M29-11N 20M-Ch1

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 2.4G 11n span20 ; Frequency: 2412 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Separation distance : 0 mm (The tip side of the EUT to the Phantom)


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Low Channel 1/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.003 mW/g

Low Channel 1/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.09 V/m Peak SAR (extrapolated) = 0.005 W/kg SAR(1 g) = 0.00155 mW/g; SAR(10 g) = 0.000541 mW/g

M30-11N 40M-Ch4

DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

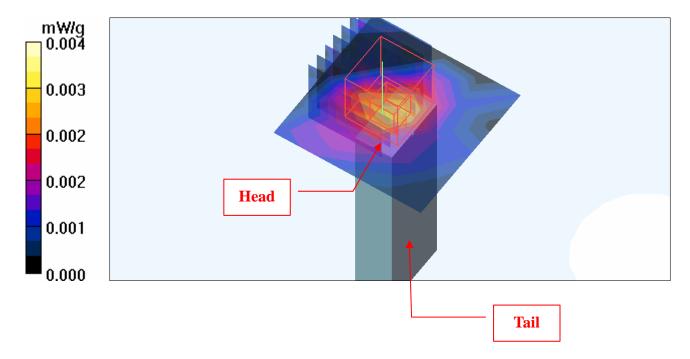
Communication System: 802.11n 40MHz ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: BPSK

Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 0 mm (The tip side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 4/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.003 mW/g


Mid Channel 4/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.30 V/m

Peak SAR (extrapolated) = 0.005 W/kg

SAR(1 g) = 0.00169 mW/g; SAR(10 g) = 0.000706 mW/g

Maximum value of SAR (measured) = 0.004 mW/g

Date/Time: 2009/5/6 23:06:49

Test Laboratory: Bureau Veritas ADT

M31-11b-Ch6 / DAC 1 / Step Size Set Minimum

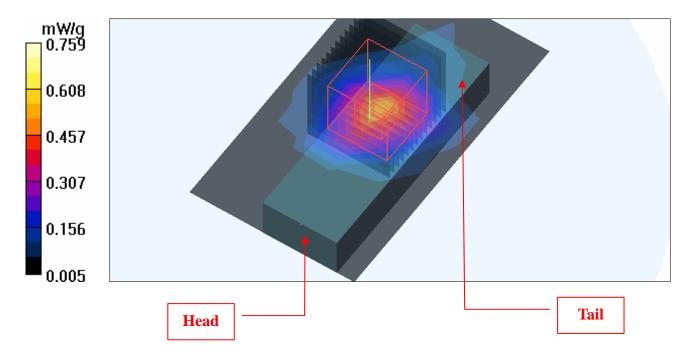
DUT: AirStation Wireless-N NFINITI USB2.0 Adapter ; Type: WLI-UC-G300N-V1

Communication System: 802.11b ; Frequency: 2437 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK Medium: MSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Separation distance : 5 mm (The front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV3 - SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21

- Sensor-Surface: 3mm (Mechanical Surface Detection)Sensor-Surface: 2mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn510 ; Calibrated: 2009/1/21

- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

Mid Channel 6/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.564 mW/g

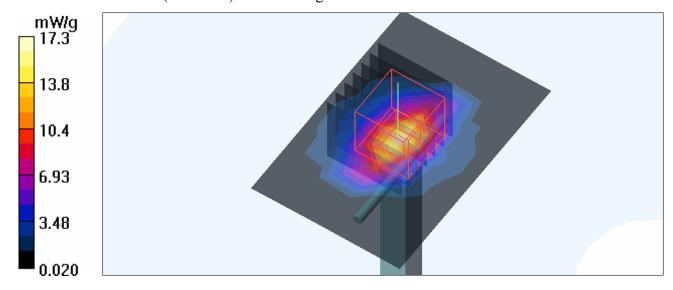
Mid Channel 6/Zoom Scan (7x7x7) (13x13x13)/Cube 0: Measurement grid: dx=2.5mm,

dy=2.5mm, dz=2.5mm Reference Value = 17.0 V/mPeak SAR (extrapolated) = 1.19 W/kgSAR(1 g) = 0.492 mW/g; SAR(10 g) = 0.232 mW/gMaximum value of SAR (measured) = 0.759 mW/g

System Validation Check-MSL 2450MHz

DUT: Dipole 2450 MHz ; Type: D2450V2 ; Serial: 716 ; Test Frequency: 2450 MHz

Communication System: CW ; Frequency: 2450 MHz; Duty Cycle: 1:1; Modulation type: CW Medium: MSL2450;Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³; Liquid level : 152 mm Phantom section: Flat Section ; Separation distance : 10 mm (The feetpoint of the dipole to the Phantom)Air temp. : 23.6 degrees ; Liquid temp. : 22.3 degrees


DASY4 Configuration:

- Probe: EX3DV3 SN3504 ; ConvF(7.53, 7.53, 7.53) ; Calibrated: 2009/1/21
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn510; Calibrated: 2009/1/21
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 17.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.8 V/m; Power Drift = -0.050 dBPeak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.98 mW/g Maximum value of SAR (measured) = 17.0 mW/g

