

EMI TEST REPORT

Test Report No.: 25LE0018-YK-1

Applicant	:	BUFFALO, Inc.
Type of Equipment	:	Air Station (High Power Wireless Router)
Model No.	:	WHR-HP-G54
FCC ID	:	FDI-09101577-0
Test Standard	:	FCC Part15 Subpart C, Section 15.207, Section 15.247: 2005
Test Result	:	Complied

1. This test report shall not be reproduced except in full, without the written approval of UL Apex Co., Ltd.

2. The results in this report apply only to the sample tested.

- 3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the EMC profile.
- 4. The test results in this test report are traceable to the national or international standards.

Date of test:

July 12, 27, 28 and 29, 2005

Tested by:

Takahiro Suzuki

&

Toyokazu Imamura

Approved by:

Osamu Watatani

Site Manager of Yamakita EMC Lab.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

 FCC ID
 : FDI-09101577-0

 Test report No.
 : 25LE0018-YK-1

 Page
 : 2 of 64

 Issued date
 : August 4, 2005

Table of Contents	Page		
1 Applicant Information	3		
2 Product Description	4		
3 Test Specification, Procedures and Results	5		
4 System Test Configuration	7		
5 Conducted Emissions	9		
6 6dB Bandwidth	10		
7 Maximum Peak Output Power	10		
8 Out of Band Emissions (Antenna Port Conducted)	10		
9 Out of Band Emissions (Radiated)	11		
10 Peak Power Density (Antenna Port Conducted)	12		
<u>Contents of Appendixes</u>	13		
APPENDIX 1: Photographs of test setup	14		
APPENDIX 2: Test Data			
APPENDIX 3: Test instruments	64		

 FCC ID
 : FDI-09101577-0

 Test report No.
 : 25LE0018-YK-1

 Page
 : 3 of 64

 Issued date
 : August 4, 2005

1 Applicant Information

Company Name	:	BUFFALO Inc.
Brand Name	:	BUFFALO
Address	:	15 Shibata Hondori 4-chome Minami-ku, Nagoya-shi, Aichi-ken 457-8520 JAPAN
Telephone Number	:	+81-52-619-1860
Facsimile Number	:	+81-52-619-1204
Contact Person	:	Koichi Kimura

UL Apex Co., Ltd. YAMAKITA EMC LAB. 907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

2 Product Description

Type of Equipment	:	Air Station (High Power Wireless Router)
Model No.	:	WHR-HP-G54
Serial No.	:	D-01
Rating	:	DC5V
Country of Manufacture	:	Taiwan
Receipt Date of Sample	:	July 4, 2005
Condition of EUT	:	Engineering prototype (Not for Sale: This sample is equivalent to mass-produced items.)

Model: WHR-HP-G54 (referred to as the EUT in this report) is Air Station (a High Power Wireless Router).

The clock frequency used in EUT: 264MHz (CPU)

Equipment type :		Transceiver
Frequency of operation :		2412 - 2462 MHz
Bandwidth :		22 MHz
Channel spacing :		5 MHz
Channel number :		11 channels
Type of modulation :		DSSS
Antenna type :		Main: Monopole antenna
		Sub (for Receiving only): Monopole antenna
Antenna connector type :		Reverse SMA
Antenna gain :		Main: 2.0 dBi
		Sub: 1.34 dBi
Mode of operation :		Simplex
Emission Designation :		G1D
Operation temperature range	:	$0 \sim 40$ deg. C.

*FCC Part15.31 (e)

Host devise (WHR-HP-G54) provides the Wireless LAN Module with stable power supply, and the power is not changed when voltage of the High Power Wireless Router is varied. Therefore, the equipment complies power supply regulation.

*FCC Part15.203

The High Power Wireless Router complies FCC Part15.203 Antenna requirement since the antenna of WHR-HP-G54 doesn't use a standard antenna jack or electrical connector.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

3 Test Specification, Procedures and Results

3.1 Test specification

Test specification	: FCC Part15 Subpart C: 2005
Title	: FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits: 2005
	Section 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz,

and 5725-5850MHz: 2005

3.2 **Procedures & Results**

Item	Test Procedure	Specification	Remarks	Deviation	Worst Margin	Results
Conducted Emission	ANSI C63.4:2003 7. AC powerline conducted emission measurements	Section 15.207	-	N/A	3.9dB (0.3820MHz, L1, AV, Transmitting 2412MHz IEEE802.11g)	Complied
6dB Bandwidth	ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.247 (a)(2)	Conducted	N/A	*See data	Complied
Maximum Peak Output Power	ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.247 (b)(3)	Conducted	N/A	See data.	Complied
Spurious Emission & Restricted Band Edges	ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.247 (d)	Conducted/ Radiated	N/A	Radiated: 0.4dB (400.00MHz, QP, Vertical, Transmitting 2437MHz IEEE802.11g)	Complied
Power Density	ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.247 (e)	Conducted	N/A	*See data.	Complied

Note: UL Apex's EMI Work Procedures No.QPM05.

These tests were also referred to "Guidance on Measurement for Digital Transmission Systems Section15.247".

* No addition, exclusion nor deviation has been made from the standard.

3.3 Uncertainty

Conducted emission

The measurement uncertainty (with 95% confidence level) for this test is ± 1.3 dB. The data listed in this test report has enough margin, more than site margin.

Radiated emission

The measurement uncertainty (with 95% confidence level) for this test using Biconical antenna is ± 4.8 dB. The measurement uncertainty (with 95% confidence level) for this test using Logperiodic antenna is ± 5.2 dB. The measurement uncertainty (with 95% confidence level) for this test using Horn antenna is ± 6.6 dB.

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

3.4 Test Location

UL Apex Co., Ltd. Yamakita EMC Lab. 907, Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken 258-0124 JAPAN Telephone number : +81 465 77 1011 Facsimile number : +81 465 77 2112 NVLAP Lab. code : 200441-0

No. 1 test site has been fully described in a report submitted to FCC office, and accepted on September 20, 2002 (Registration No.: 95486). IC Registration No. : IC3489A

No. 2 test site has been fully described in a report submitted to FCC office, and accepted on April 4, 2005 (Registration No.: 466226). IC Registration No. : IC3489A-2

No. 1 anechoic chamber has been fully described in a report submitted to FCC office, and accepted on November 8, 2002 (Registration No.: 95967).

IC Registration No. : IC3489A-B

Test room	Width x Depth x Height (m)	Test room	Width x Depth x Height (m)
No.1 shielded room	8.0 x 5.0 x 2.5	No.1 EMS lab.	10.0 x 7.5 x 5.7
No.2 shielded room	5.0 x 4.0 x 2.5	(Semi-anechoic chamber)	
No.3 shielded room	4.0 x 5.0 x 2.7		

4 System Test Configuration

4.1 Justification

The system was configured in typical fashion (as a customer would normally use it) for testing.

Operation:

1) Transmitting (IEEE802.11b) -2412MHz (Low) -2437MHz (Middle) -2462MHz (High) 2) Transmitting (IEEE802.11g) -2412MHz (Low) -2437MHz (Middle) -2462MHz (High)

* Test data was taken under worse case conditions.

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Description of EUT and support equipment

No.	Item	Model number	Serial number	Manufacturer	FCC ID
					(Remark)
Α	Air Station	WZR-HP-G54	D-01	BUFFALO	FDI-09101577-0
	(High Speed Wireless Router)				(EUT)
В	Antenna	-	-	BUFFALO	(EUT)
С	AC Adaptor	UI318-0526	505-0351625	BUFFALO	-
D	Personal Computer	2662-34J	97-0542K	IBM	-
F	High Power Wireless Adapter	WLI-CB-G54HP	000D0B3E8CC0	BUFFALO	-
Е	AC Adaptor	02K6661	11S02K6661Z1Z2JY16D5AG	IBM	-

List of cables used

No.	Name	Length (m)	Shield	Back-shell material	Remark
1	DC Cable	0.5	Unshielded	Polyvinyl chloride	-
2	AC Power Cable	1.85	Unshielded	Polyvinyl chloride	-
3	LAN cable	0.6	Unshielded	Polyvinyl chloride	-
4	LAN cable	0.6	Unshielded	Polyvinyl chloride	-
5	LAN cable	0.6	Unshielded	Polyvinyl chloride	-
6	LAN cable	0.6	Unshielded	Polyvinyl chloride	-
7	LAN cable	0.6	Unshielded	Polyvinyl chloride	-
8	DC Cable	1.75	Unshielded	Polyvinyl chloride	-
9	AC Power Cable	0.9	Unshielded	Polyvinyl chloride	-

 FCC ID
 : FDI-09101577-0

 Test report No.
 : 25LE0018-YK-1

 Page
 : 9 of 64

 Issued date
 : August 4, 2005

5 Conducted Emissions

5.1 Operating environment

The test was carried out in No.1 shielded room.

5.2 Test configuration

EUT was placed on a platform of nominal size, 1m by 1.8m, raised 80cm above the conducting ground plane. The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from a Line Impedance Stabilization Network (LISN) and excess AC cable was bundled in center. I/O cables were folded back and forth forming a bundle 30cm to 40cm long and were hanged at a 40cm height to the ground plane.

5.3 Test conditions

Frequency range	: 0.15 - 30MHz
EUT operation mode	: Transmitting

5.4 Test procedure

The EUT was connected to a LISN (AMN). An overview sweep with peak detection has been performed.

The Conducted emission measurements were made with the following detector function of the test receiver.

Detector: QP/AV IF Bandwidth: 9kHz

5.5 Results

Summary of Test data	of the test results :	Pass APPENDIX 2 Pag	ge 17 to 26
Date :	July 12, 2005	Test engineer :	Takahiro Suzuki

6 6dB Bandwidth

Test Procedure

The bandwidth was measured with a spectrum analyzer connected to the antenna port.

Summary of the test results: Pass	Test data:	APPENDIX 2 Page 27 to 28
Date: July 29, 2005	Test engineer	: Toyokazu Imamura

7 Maximum Peak Output Power

Test Procedure

The Maximum Peak Output Power was measured with a spectrum analyzer connected to the antenna port.

Summary of the test results: Pass	Test data:	APPENDIX 2 Page 29 to 30
Date: July 29, 2005	Test engineer	: Toyokazu Imamura

8 Out of Band Emissions (Antenna Port Conducted)

Test Procedure

The Out of Band Emissions was measured with a spectrum analyzer connected to the antenna port.

Summary of the test results: Pass Date: July 29, 2005

Test data:	APPENDIX 2 Page 31 to 42
Test engineer	: Toyokazu Imamura

9 Out of Band Emissions (Radiated)

9.1 Operating environment

The test was carried out in No.1 open site.

9.2 Test configuration

EUT was placed on a platform of nominal size, 0.5m by 0.5m, raised 80cm above the conducting ground plane. A drawing of the set up is shown in the photos of Appendix 1.

9.3 Test conditions

Frequency range	: 30MHz - 26GHz
Test distance	: 3m
EUT operation mode	: Transmitting

9.4 Test procedure

The Radiated Electric Field Strength intensity has been measured with a ground plane and at a distance of 3m. The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

Measurements were performed with QP, PK, and AV detector.

The radiated emission measurements were made with the following detector function of the test receiver.

Frequency	Below 1GHz	Above 1GHz
Instrument used	Test Receiver	Spectrum Analyzer
Detector	QP: BW 120kHz	PK: RBW: 1MHz/VBW: 1MHz
IF Bandwidth		AV: RBW: 1MHz/VBW: 10Hz

The equipment and its antenna were previously checked at each position of two axes X and Y. The position in which the maximum noise occurred was chosen to put into measurement. See the table below and photographs in page 16. With the position, the noise levels of all the frequencies were measured.

Combinations of the worst case

	Router	Antenna
Below 1GHz		
Horizontal	Х	Y
Vertical	Х	Х
Above 1GHz		
Horizontal	Х	Y
Vertical	Х	Х

9.5 Results

Summary of the test results	:	Pass
Test data	:	APPENDIX 2 Page 43 to 48 (30 - 1000MHz)
	•	APPENDIX 2 Page 49 to 60 (1 - 26GHz)

Date : July 27 and 28, 2005 Te	t engineer : Toyokazu Imamura
--------------------------------	-------------------------------

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

FCC ID : FDI-09101577-0 Test report No. : 25LE0018-YK-1 Page : 12 of 64 Issued date : August 4, 2005

10 Peak Power Density (Antenna Port Conducted)

Test Procedure

The Out of Band Emissions was measured with a spectrum analyzer connected to the antenna port.

Summary of the test results: Pass Date: July 29, 2005

APPENDIX 2 Page 61 to 63 Test data: Toyokazu Imamura Test engineer :

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Telephone: +81 465 77 1011 Facsimile: +81 465 77 2112

 FCC ID
 : FDI-09101577-0

 Test report No.
 : 25LE0018-YK-1

 Page
 : 13 of 64

 Issued date
 : August 4, 2005

APPENDIX 1: Photographs of test setup

Page 14	:	Conducted emission
Page 15	:	Radiated emission
Page 16	:	Pre check of worse-case position

APPENDIX 2: Test Data

Page 17 - 26	:	Conducted Emission
Page 27 - 28	:	6dB Bandwidth
Page 29 - 30	:	Maximum Peak Output Power
Page 31 - 42	:	Out of Band Emissions (Antenna Port Conducted)
Page 43 - 60 43-48 49-60	:	Out of Band Emissions (Radiated) 30-1000MHz 1-26GHz
Page 61 - 63	:	Peak Power Density

APPENDIX 3: Test instruments

:

Page 64

Test instruments

FCC ID	:	FDI-09101577-0
Test report No.	:	25LE0018-YK-1
Page	:	14 of 64
Issued date	:	August 4, 2005

Conducted emission

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Telephone: +81 465 77 1011 Facsimile: +81 465 77 2112

FCC ID	: FDI-09101577-0
Test report No.	: 25LE0018-YK-1
Page	: 15 of 64
Issued date	: August 4, 2005

Radiated emission

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Telephone: Facsimile: +81 465 77 1011 +81 465 77 2112

FCC ID	: FDI-09101577-0
Test report No.	: 25LE0018-YK-1
Page	: 16 of 64
Issued date	: August 4, 2005

Pre check of worse-case position

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Telephone: +81 465 77 1011 Facsimile: +81 465 77 2112

DATA OF CONDUCTION TEST

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No. : 25LE0018 -YK-1

~

Appl Kind Mode Seri Powe Mode Rema Date Phase Tempo Humi Regu	icant of Equip l No. al No. r rks erature dity lation	oment	E H Y E H Y E A T N 7 S 2 6 F	BUFFALC High Sp HR-HP- D-01 (C120V/ Transmi lormal, 7/12/20 Single 24 °C Sig % 56C Par) Inc. Ged Wi G54 (60Hz tting: IEEE80 05 Phase t15C	2412MH 22.11b § 15.20	Route z 7. (CIS	r Eng PR Pub	ineer .22)	: T	akahir	o Suzu	ıki	
No.	FREQ.	READI	NG (N)	READI	NG(L1)	LISN FACTOR	CABLE	ATTEN.	. RES			ITS	MAR	GIN
	[MHz]	ďB /	u V]	[dB µ	u V]	[dB]	[dB]	[dB]	[dB]	[dB	μV]	[dB µ	uV]	[dB]
1. 2. 3. 4. 5. 6.	0. 1637 0. 3290 0. 4988 0. 8251 0. 9941 1. 6544	53.745.940.440.642.342.4	42. 0 41. 7 34. 2 34. 4 34. 6 31. 0	53.746.040.041.142.742.6	$\begin{array}{c} 42.8\\ 43.0\\ 34.3\\ 35.0\\ 34.9\\ 31.4 \end{array}$	0. 1 0. 1 0. 0 0. 1 0. 1 0. 1	0. 1 0. 1 0. 2 0. 2 0. 2 0. 3	0.0 0.0 0.0 0.0 0.0 0.0 0.0	53. 9 46. 2 40. 6 41. 4 43. 0 43. 0	43. 0 43. 2 34. 5 35. 3 35. 2 31. 8	65.3 59.5 56.0 56.0 56.0 56.0 56.0	55.3 49.5 46.0 46.0 46.0 46.0	11. 4 13. 3 15. 4 14. 6 13. 0 13. 0	12.3 6.3 11.5 10.7 10.8 14.2

CALCULATION: READING + LISN FACTOR + CABLE LOSS + ATTEN.

■LISN :KLS-01 (NSLK8126) ■COAXIAL CABLE:KCC-14/15/16/18 ■PULSE LIMTTER:KPL-01 (PL01) ■EMI RECEIVER:KTR-02 (ESCS30)

DATA OF CONDUCTION TEST

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No. : 25LE0018 -YK-1

Applicant	BUFFALO Inc.		
Kind of Equipment	High Speed Wireless Router		
Model No.	WHR-HP-G54		
Serial No.	D-01		
Power	AC120V/60Hz		
Mode	Transmitting:2412MHz		
Remarks	Normal, IEEE802.11b		
Date	7/12/2005		
Phase	Single Phase		
Temperature	24 °C	Engineer	: Takahiro Suzuki
Humidity :	68 %	0	
Regulation	FCC Part15C § 15.207. (CISPR	Pub. 22)	

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No.: 25LE0018-YK-1

Applicant Kind of Equipment Model No. Serial No.	••••••	BUFFALO Inc. High Speed Wire WHR-HP-G54 D-01	eless Router				
Power	:	AC120V/60Hz					
Mode	:	Transmitting:24	412MHz	1			
Remarks	:	Normal, IEEE802.	11b				
Date	:	7/12/2005					
Phase	:	Single Phase					
Temperature	:	24 °C		Engineer	:	Takahiro Su	uzuki
Humidity	:	68 %					
Regulation 1	:	FCC Part15C §1	15. 207. (CISPR	Pub. 22)			
Regulation 2	:	FCC Part15C § 1	15. 207. (CISPR	Pub 22)			
		···· · ···· · ··· · · · · · · · · · ·					

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No.: 25LE0018-YK-1

Applicant	: BUFFALO Inc.		•
Kind of Equipment	: High Speed Wireless Router		
Model No.	: WHR-HP-G54		
Serial No.	: D-01		
Power	: AC120V/60Hz		
Mode	: Transmitting:2437MHz		
Remarks	: Normal, IEEE802, 11b		
Date	: 7/12/2005		
Phase	: Single Phase		
Temperature	: 24 °C	Engineer	: Takahiro Suzuki
Humidity	: 68 %		
Regulation 1	: FCC Part15C § 15, 207, (CISPR	Pub. 22)	
Regulation 2	: FCC Part15C § 15. 207. (CISPR	Pub. 22)	

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No. : 25LE0018 -YK-1

Applicant Kind of Equipment Model No. Serial No. Power Mode Remarks Date		BUFFALO Inc. High Speed Wireless Rout WHR-HP-G54 D-01 AC120V/60Hz Transmitting:2462MHz Normal, IEEE802.11b 7/12/2005	.er			
rnase Temperature Humidity	:	24 °C 68 %	Engineer	:	Takahiro S	uzuki
Regulation 1 Regulation 2	:	FCC Part15C § 15. 207. (CI FCC Part15C § 15. 207. (CI	SPR Pub. 22) SPR Pub. 22)			

DATA OF CONDUCTION TEST

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No. : 25LE0018-YK-1

Appl Kind Seria Power Mode Reman Date Phase Tempe Humic Regu	icant of Equip I No. al No. Ks rks erature lity lation	ement		BUFFALO High Sp WHR-HP- D-01 AC120V/ Fransmi Normal, 7/12/20 Single 24 °C S8 % FCC Par	Inc. eed W G54 60Hz tting IEEE8(05 Phase t15C	ireless 2412MH 02.11g § 15.20	Route z 7. (CIS	r Eng PR Pub	ineer . 22)	: Т	akahir	o Suzu	ki	
No.	FREQ.	READI	NG (N)	READI	NG(L1)		CABLE	ATTEN	. RES	ULT		ITS	MAR	GIN
	[MHz]	QP [dB /	ΑV μ V]	QP [dB µ	ι V]	[dB]	LUSS [dB]	[dB]	QP [dB]	AV [dB	QΡ μ V]	AV [dBµ	ųν]	AV [dB]
$\frac{1}{2}$	0.1668	51.1 43.3	37.8 37.5	50.8 45.6	43.1 44 2	0.1	0.1	0.0	51.3 45.7	43.3	65.1 58.2	55.1 48.2	13.8 12.5	11.8
3.	0.5843	37.0	27.5	41.0	38.3	0.0	0.2	0.0	41.2	38.5	56.0	46.0	14.8	7.5
4. 5.	0.9690 1.1662	39.2 37.9	30.0 26.0	40.7 43.6	35.4 36.9	$0.1 \\ 0.1$	0.2 0.2	0.0 0.0	41.0 43.9	35.7 37.2	56.0 56.0	46.0 46.0	15.0 12.1	10.3 8.8
6.	1.9425	38.0	27.9	42.1	32, 3	0.1	0.3	0.0	42.5	32.7	56.0	46.0	13.5	13.3

CALCULATION: READING + LISN FACTOR + CABLE LOSS + ATTEN.

.

■LISN :KLS-01 (NSLK8126) ■COAXIAL CABLE:KCC-14/15/16/18 ■PULSE LIMTTER:KPL-01 (PL01) ■EMI RECEIVER:KTR-02 (ESCS30)

.

DATA OF CONDUCTION TEST

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No. : 25LE0018 <u>-YK-</u>1

Applicant	:	BUFFALO Inc.			
Kind of Equipment	:	High Speed Wireless Rout	er		
Model No.	: 1	WHR-HP-G54			
Serial No.	:	D-01			
Power	: 1	AC120V/60Hz			
Mode	: '	Transmitting:2412MHz			
Remarks	:	Normal, IEEE802.11g			
Date	: '	7/12/2005			
Phase	: ;	Single Phase			
Temperature		24 °C	Engineer	:	Takahiro Suzuki
Humidity	: (68 %	-		
Regulation	:	FCC Part15C §15.207.(Cl	SPR Pub. 22)		

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No.: 25LE0018-YK-1

Applicant	:	BUFFALO Inc.			•		
Kind of Equipment	:	High Speed Wireless	Router				
Model No.	:	WHR-HP-G54					
Serial No.	:	D-01					
Power	:	AC120V/60Hz					
Mode	:	Transmitting:2412MHz	2				
Remarks	:	Normal, IEEE802.11g					
Date	:	7/12/2005					
Phase	:	Single Phase					
Temperature	:	24 °C		Engineer	: ĭ	akahiro Suzuki	
Humidity	:	68 %		-			
Regulation 1	:	FCC Part15C § 15.207	. (CISPR	Pub. 22)			
Regulation 2	:	FCC Part15C § 15.207	. (CISPR	Pub. 22)			

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No.: 25LE0018-YK-1

					Report	NO	ZOLEUUI
Applicant	:	BUFFALO Inc.			•		
Kind of Equipment	:	High Speed Wireless	Router				
Model No.	:	WHR-HP-G54					
Serial No.	:	D-01					
Power	:	AC120V/60Hz					
Mode	:	Transmitting:2437MHz					
Remarks	:	Normal, IEEE802, 11g					
Date	:	7/12/2005					
Phase	:	Single Phase					
Temperature	:	24 °C		Engineer	: Takał	niro S	Suzuki
Humidity	:	68 %					
Regulation 1	:	FCC Part15C § 15.207	(CISPR	Pub. 22)			
Regulation 2	:	FCC Part15C § 15. 207.	(CISPR	Pub. 22)			
				-			

UL Apex Co.,Ltd. YAMAKITA No.1 SHIELD TEST ROOM Report No.: 25LE0018-YK-1

Applicant	:	BUFFALO Inc.			
Kind of Equipment	:	High Speed Wireless Router			
Model No.	:	WHR-HP-G54			
Serial No.	:	D-01			
Power	:	AC120V/60Hz			
Mode	:	Transmitting:2462MHz			
Remarks	:	Normal, IEEE802. 11g			
Date	:	7/12/2005			
Phase	:	Single Phase			
Temperature	:	24 °C	Engineer	: Takahiro (Suzuki
Humidity	:	68 %			
Regulation 1	:	FCC Part15C § 15. 207. (CISPR	Pub. 22)		
Regulation 2	:	FCC Part15C § 15. 207. (CISPR	Pub. 22)		

6dB Bandwidth: FCC 15.247(a)(2)

COMPANY	: BUFFALO Inc
EQUIPMENT	: High Speed wireless Router
MODEL NUMB	SER: WHR-HP-G54
SERIAL NUMB	ER: D-01
FCC ID	: FDI-0910577-0
POWER	: AC120V/60Hz
[IEEE802.11b(11]	/Ibps)]
1. ch 1: 2412MH	lz/6dB Bandwidth:13.91MHz

UL Apex Co.,Ltd. Yamakita No.1 Shielded RoomREPORT NO: 25LE0018-YK-1REGULATION: FCC Part15SubpartC 247(a)(2)DATE: 2005/7/29TEMP./HUMI: 24°C/63%TEST MODE: TransmittingENGINEER: Toyokazu Imamura

2. ch 6: 2437MHz/6dB Bandwidth:15.09MHz

3. ch 11: 2462MHz/6dB Bandwidth:15.14MHz

6dB Bandwidth: FCC 15.247(a)(2)

COMPANY: BUFFALO IncEQUIPMENT: High Speed wireless RouterMODEL NUMBER: WHR-HP-G54SERIAL NUMBER: D-01FCC ID: FDI-0910577-0POWER: AC120V/60Hz[IEEE802.11g(54Mbps)]1. ch 1: 2412MHz/6dB Bandwidth:16.49MHz

UL Apex Co.,Ltd. Yamakita No.1 Shielded RoomREPORT NO: 25LE0018-YK-1REGULATION: FCC Part15SubpartC 247(a)(2)DATE: 2005/7/29TEMP./HUMI: 24°C/63%TEST MODE: TransmittingENGINEER: Toyokazu Imamura

2. ch 6: 2437MHz/6dB Bandwidth:16.46MHz

3. ch 11: 2462MHz/6dB Bandwidth:16.00MHz

Maximum Peak Conducted Output Power

UL Apex Co.,Ltd YAMAKITA NO.1 Shielded Room

: BUFFALO Inc
: High Speed Wireless Router
: WHR-HP-G54
: D- 01
: FDI-09101577-0
: AC120V/60Hz
: Transmitting

 REPORT NO
 : 25LE0018-YK-1

 REGULATION
 : Fcc Part15SubpartC 247(b)(3)

 DATE
 : 2005/7/29

 TEMP./HUMI
 : 24°C/63%

ENGINEER : Toyokazu Imamura

IEEE802.11b(11Mbps)

.

CH	FREQ	PM Reading	Cable Loss	Results	Limit	MARGIN
	-	*1			(1W)	
	[GHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]
Low	2412.00	24.21	0.50	24.71	30.0	5.29
Mid	2437.00	24.04	0.50	24.54	30.0	5.46
High	2462.00	23.88	0.50	24.38	30.0	5.62

IEEE802.11g(54Mbps)

CH	FREQ	S/A Reading	Cable Loss	Results	Limit	MARGIN
		*2,*3			(1W)	
	[GHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]
Low	2412.00	25.10	0.50	25.60	30.0	4.40
Mid	2437.00	25.30	0.50	25.80	30.0	4.20
High	2462.00	24.70	0.50	25.20	30.0	4.80

*1PM:Power Meter

*2 S/A:Spectrum Analyzer

*3 Test was performed using the function of the spectrum analyzer measuring of channel power.

Maximum Peak Conducted Output Power: FCC 15.247(b)(3)

COMPANY: BUFFALO IncEQUIPMENT: High Speed wireless RouterMODEL NUMBER: WHR-HP-G54SERIAL NUMBER: D-01FCC ID: FDI-0910577-0POWER: AC120V/60Hz[Spectrum Analyzer data of IEEE802.11g(54Mbps)]1. ch: 2412MHz

UL Apex Co.,Ltd. Yamakita No.1 Shielded RoomREPORT NO: 25LE0018-YK-1REGULATION: Fcc Part15SubpartC 247(b)(3)DATE: 2005/7/29TEMP./HUMI: 24°C/63%TEST MODE: TransmittingENGINEER: Toyokazu Imamura

2. ch : 2437MHz

3. ch: 2462MHz

START 1. 000000GHz REW 1005Hz STOP 3 COORDOCH2 51/P 4006-3

VEN 300kHz

3 I'

5.

2.

3.

Т

وبدائه

START 3. 0000000Hz RSW 100kHz -1.4

5100 10,00000042

5.

ver 300kHz

2.

3.

14

VER 300kJtz

STOP 10, DODOCOOCH

5.

2.

3.

ł.

START 3. 000000CH

.

المحكم المعا

YER 300kHz

5.

.

3.

VEN 3005Hz

STOP 1, 000000GHz SWP 200ms

START 30, 00MHz REW LOOKHz

Ì

4.4.

STOP 10, COCOOCHZ

DL 91.60 dBuy

> START 3. 00000000Hz REW 1004Hz

5.

YER 300kHz

START 1.0000000Hz REW 100KHz STOP 3. 000000GHz SWP 400ms

VBN 300kHz

4 I

5.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

Appl Kind Mode Seri Powe Mode Rema Date Test Temp Humi Regu	icant of Equip I No. al No. r rks Distance erature dity lation		BUFF High WHR- D-01 AC12 Tran 1EEE 7/27 3 m 31 °C 49 9 FCC	ALO Inc Speed HP-G54 OV/60Hz smittin 802.11b /2005 C 6 Part150	ess Rou 2MHz ina:Nor 209	ter mal En	gineer	: Т	oyokazu	lmamu	ra		
No.	FREQ. A [MHz]	ANT FYPE	READ HOR [dB]	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB µ Y	ULT VER V/m] [d	LIMITS BµV/m]	MAF HOR [c	GIN VER B]
1. 2. 3. 4. 5. 6. 7. 8.	250.00 299.99 374.99 400.00 500.00 749.98 799.98 899.98	BB BB BB BB BB BB BB BB	34. 8 29. 6 35. 7 37. 0 39. 9 30. 7 30. 3 30. 8	33. 6 33. 8 32. 4 42. 3 42. 7 31. 1 27. 5 33. 7	$17.1 \\ 19.9 \\ 16.7 \\ 17.5 \\ 18.5 \\ 21.3 \\ 21.6 \\ 23.2$	27. 8 27. 7 28. 3 28. 6 29. 1 29. 1 28. 9 28. 7	$\begin{array}{c} 4.3\\ 4.8\\ 5.4\\ 5.7\\ 6.4\\ 8.1\\ 8.4\\ 9.1 \end{array}$	$\begin{array}{c} 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \end{array}$	$\begin{array}{c} 34.\ 4\\ 32.\ 6\\ 35.\ 5\\ 37.\ 6\\ 41.\ 7\\ 37.\ 0\\ 37.\ 4\\ 40.\ 4\end{array}$	$\begin{array}{r} 33.2\\ 36.8\\ 32.2\\ 42.9\\ 44.5\\ 37.4\\ 34.6\\ 43.3\end{array}$	$\begin{array}{c} 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ \end{array}$	11. 613. 410. 58. 44. 39. 08. 65. 6	12. 8 9. 2 13. 8 3. 1 1. 5 8. 6 11. 4 2. 7

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA:KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■ CABLE:KCC-10/11/12/13/18 ■ PREAMP:KAF-01 (8447D) ■ EMI RECEIVER:KTR-02 (ESCS30)

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

Kind of EquipmentHigh Speed Wireless RoModel No.WHR-HP-G54Serial No.D-01PowerAC120V/60HzModeTransmitting:2437MHzRemarksIEEE802.11b/Antenna:NoDate7/27/2005Test Distance3 mTemperature31 °CHumidity49 %RegulationFCC Part15C § 15.209No.FREQ. ANTREQ. ANTREADINGTYPEHORVER FACTORCAINLOSS									ngineer	:	Toyokazu	Imamu	ra
No.	FREQ.	ANT TYPE	REAL HOR [dB,	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	ULT VER V/m] [c	LIMITS iBµV/m]	MAI HOR [4	RGIN VER HB]
1.	250.00	BB	30.7	31.8	17.1	27.8	4.3	6.0	30.3	31.4	46.0	15.7	14.6
2.	299, 98	BB	27.7	29.8	19.9	27.7	4.8	6.0	30.7	32.8	46.0	15.3	13.2
3.	374.99	BB	36.0	32.7	16.7	28.3	5.4	6.0	35.8	32.5	46.0	10.2	13.5
4.	400.00	BB	36.2	44.5	17.5	28.6	5.7	6.0	36.8	45.1	46.0	9.2	0.9
5.	500,00	BB	37.9	42.7	18.5	29.1	6.4	6.0	39.7	44.5	46.0	6.3	1.5
ю. 7	700 09	DD DD	29.3	29.7	21.3 91.6	29.1	8.1	6.U	35. b 96. 9	30.0	40.0	10.4	10.0
8.	799,98 899,98	BB	29. 1 31. 0	20.9 34.5	21. 6 23. 2	28.9 28.7	8.4 9.1	6.0 6.0	40. 6	34. 0 44. 1	46.0 46.0	9.8 5.4	12.0

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■ CABLE: KGC-10/11/12/13/18 ■ PREAMP: KAF-01 (8447D) ■ EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No. : 25LE0018-YK - 1

Kind of Equipment High Speed Wireless Router Model No. WHR-HP-G54 Serial No. D-01 Power AC120V/60Hz Mode Transmitting:2462MHz Remarks IEEE802.11b/Antenna:Normal Date 7/28/2005 Test Distance 3 m Temperature 31 °C Humidity 37 % Regulation FCC Part15C § 15.209 No. FREQ. ANT READING No. FREQ. ANT READING No. FREQ. ANT READING No. FREQ. ANT READING											Foyokazu	Imamu	ra
No.	FREQ. [MHz]	ANT TYPE	READ HOR [dB µ	ING VER ιV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	LT VER [/m] [c	LIMITS 1BµV/m]	MAF HOR [c	GIN VER [B]
1. 2. 3. 4. 5. 6. 7. 8.	250. 00 299. 98 374. 99 400. 00 500. 00 749. 98 799. 98 899. 98	BB BB BB BB BB BB BB BB BB	33.6 37.3 32.3 34.8 41.2 32.9 29.2 30.9	36. 6 38. 4 30. 2 44. 5 43. 6 30. 4 27. 8 35. 0	17. 1 19. 9 16. 7 17. 5 18. 5 21. 3 21. 6 23. 2	27. 8 27. 7 28. 3 28. 6 29. 1 29. 1 28. 9 28. 7	4.3 4.8 5.4 5.7 6.4 8.1 8.4 9.1	$\begin{array}{c} 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\$	$\begin{array}{c} 33.\ 2\\ 40.\ 3\\ 32.\ 1\\ 35.\ 4\\ 43.\ 0\\ 39.\ 2\\ 36.\ 3\\ 40.\ 5\end{array}$	$\begin{array}{c} 36.\ 2\\ 41.\ 4\\ 30.\ 0\\ 45.\ 1\\ 45.\ 4\\ 36.\ 7\\ 34.\ 9\\ 44.\ 6\end{array}$	$\begin{array}{c} 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\end{array}$	$12.8 \\ 5.7 \\ 13.9 \\ 10.6 \\ 3.0 \\ 6.8 \\ 9.7 \\ 5.5 $	$\begin{array}{c} 9.8 \\ 4.6 \\ 16.0 \\ 0.9 \\ 0.6 \\ 9.3 \\ 11.1 \\ 1.4 \end{array}$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA:KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■ CABLE:KCC-10/11/12/13/18 ■ PREAMP:KAF-01 (8447D) ■ EMI RECEIVER:KTR-02 (ESCS30)

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK ~ 1

Kind of EquipmentHigh Speed Wireless RomModel No.WHR-HP-G54Serial No.D-01PowerAC120V/60HzModeTransmitting:2412MHzRemarksIEEE802.11g/Antenna:NonDate7/27/2005Test Distance3 mTemperature31 °CHumidity49 %RegulationFCC Part15C § 15.209No.FREQ. ANTREADINGANTAMPCABLE									gineer	: '	Γoyokazu	lmamu	ra
No.	FREQ. [MHz]	ANT TYPE	READ HOR [dB µ	ING VER ιV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	ULT VER V/m][c	LIMITS lBμV/m]	MAH HOR [‹	RGIN VER 18]
1. 2. 3. 4. 5. 6. 7. 8.	250.00 299.99 374.99 400.00 500.00 749.98 799.98 899.98	BB BB BB BB BB BB BB BB	34. 2 29. 1 35. 3 36. 9 38. 3 31. 4 28. 9 31. 2	33.9 33.6 32.4 41.8 41.3 30.4 27.1 34.8	17.1 19.9 16.7 17.5 18.5 21.3 21.6 23.2	27. 8 27. 7 28. 3 28. 6 29. 1 29. 1 28. 9 28. 7	4.3 4.8 5.4 5.7 6.4 8.1 8.4 9.1	$\begin{array}{c} 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\end{array}$	33. 8 32. 1 35. 1 37. 5 40. 1 37. 7 36. 0 40. 8	$\begin{array}{c} 33.5\\ 36.6\\ 32.2\\ 42.4\\ 43.1\\ 36.7\\ 34.2\\ 44.4 \end{array}$	$\begin{array}{c} 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\end{array}$	12. 2 13. 9 10. 9 8. 5 5. 9 8. 3 10. 0 5. 2	12.5 9.4 13.8 3.6 2.9 9.3 11.8 1.6

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■ CABLE: KCC-10/11/12/13/18 ■ PREAMP: KAF-01 (8447D) ■ EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

Kind of Equipment: High Speed Wireless RouterModel No.: WHR-HP-G54Serial No.: D-01Power: AC120V/60HzMode: Transmitting:2437MHzRemarks: IEEE802.11g/Antenna:NormalDate: 7/27/2005Test Distance: 3 mTemperature: 31 °CHumidity: 49 %Regulation: FCC Part15C § 15.209No.FREQ. ANTREADINGANTAMPCABLEATTEN.RESUNo.FREQ. ANTREADINGANTAMPCABLEATTEN.RESUNo.FREQ. ANTREADINGCALINCALINLOSSNo.FREQ. ANTREADINGCALINCALINLOSS										: T	oyokazu	Imamu	ra
No.	FREQ.	ANT TYPE	READ HOR [dB]	DING VER uV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	ULT I VER V/m][d]	LIMITS BµV/m]	MAF HOR [c	GIN VER B]
1. 2. 3. 4. 5. 6. 7. 8.	250.00 299.99 374.99 400.00 500.00 749.98 799.98 899.98	BB BB BB BB BB BB BB BB	29. 7 28. 3 35. 7 34. 7 35. 1 30. 4 29. 9 30. 9	31. 7 30. 0 32. 7 45. 0 43. 5 31. 6 28. 8 35. 1	17. 1 19. 9 16. 7 17. 5 18. 5 21. 3 21. 6 23. 2	27. 8 27. 7 28. 3 28. 6 29. 1 29. 1 28. 9 28. 7	4.3 4.8 5.4 5.7 6.4 8.1 8.4 9.1	$\begin{array}{c} 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \\ 6. \ 0 \end{array}$	29. 3 31. 3 35. 5 35. 3 36. 9 36. 7 37. 0 40. 5	31. 3 33. 0 32. 5 45. 6 45. 3 37. 9 35. 9 44. 7	46. 0 46. 0 46. 0 46. 0 46. 0 46. 0 46. 0 46. 0	$16.7 \\ 14.7 \\ 10.5 \\ 10.7 \\ 9.1 \\ 9.3 \\ 9.0 \\ 5.5 \\ 10.7$	14. 7 13. 0 13. 5 0. 4 0. 7 8. 1 10. 1 1. 3

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ANTENNA:KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■CABLE:KCC-10/11/12/13/18■PREAMP:KAF-01 (8447D) ■EMI RECEIVER:KTR-02 (ESCS30)

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK = 1

Kind of EquipmentHigh Speed Wireless RouterModel No.WHR-HP-G54Serial No.D-01PowerAC120V/60HzModeTransmitting:2462MHzRemarks1EEE802.11g/Antenna:NormalDate7/28/2005Test Distance3 mTemperature31 °CHumidity37 %RegulationFCC Part15C § 15.209No.FREQ. ANTREQ. ANTREADINGANTAMPCABLEATATCABLE </th <th>gineer</th> <th>:]</th> <th>ſoyokazu</th> <th>Imamu</th> <th>ra</th>									gineer	:]	ſoyokazu	Imamu	ra
No.	FREQ.	ANT TYPE	READ HOR [dB]	VER VER uV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN, [dB]	RESU HOR [dB µ \	JLT VER //m] [d	LIMITS BµV/m]	MAR HOR [c	GIN VER B]
1. 2. 3. 4. 5. 6. 7. 8.	250.00 299.99 374.99 400.00 500.00 749.98 799.98 899.98	BB BB BB BB BB BB BB BB	33. 4 37. 9 32. 4 35. 2 42. 7 32. 9 29. 3 31. 0	36. 8 38. 8 30. 9 44. 1 43. 2 30. 2 27. 3 35. 1	17. 1 19. 9 16. 7 17. 5 18. 5 21. 3 21. 6 23. 2	27.8 27.7 28.3 28.6 29.1 29.1 28.9 28.7	4.3 4.8 5.4 5.7 6.4 8.1 8.4 9.1	$\begin{array}{c} 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\\ 6.\ 0\end{array}$	33. 0 40. 9 32. 2 35. 8 44. 5 39. 2 36. 4 40. 6	$\begin{array}{c} 36.\ 4\\ 41.\ 8\\ 30.\ 7\\ 44.\ 7\\ 45.\ 0\\ 36.\ 5\\ 34.\ 4\\ 44.\ 7\end{array}$	$\begin{array}{c} 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\end{array}$	$13.0 \\ 5.1 \\ 13.8 \\ 10.2 \\ 1.5 \\ 6.8 \\ 9.6 \\ 5.4$	9.6 4.2 15.3 1.3 1.0 9.5 11.6 1.3

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■ CABLE: KGC-10/11/12/13/18 ■ PREAMP: KAF-01 (8447D) ■ EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK = 1

App Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum Reg	licant d of Equi el No. er e arks e t Distanc perature idity ulation	pment	t	BUFF High WHR- D-01 AC12 Tran IEEE 7/27 3 m 31 °C 49 9 FCC	ALO Inc Speed HP-G54 OV/60Hz smittin 802.11b, /2005 C 6 Part15C	Wirele g:2412 /Anten § 15.	ess Rou 2MHz Ina:Nori 209 (PK	ter mal E Detec	ngineer tion)	:	Toyokazu	Imamu	ra
No.	FREQ.	ANT	READ	ING	ANT	AMP	CABLE	ATTEN.	RESU	JLT	LIMITS	MAF	GIN
	[MHz]	TYPE	HOR [dB]	VER uV]	FACTOR [dB/m]	GAIN [dB]	LOSS [dB]	[dB]	HOR [dB μ V	VER //m] [/	dBμV/m]	HOR [c	VER IB]
1.	2390.00	BB	57.0	54.1	27.7	37.0	4.0	10.0	61.7	58.8	74.0	12.3	15.2
2.	3216.17	BB	57.5	58.1	29.0	37.1	4.6	10.1	64.1	64.7	74.0	9.9	9.3
3. ⊿	4824.00	DD	00.9 46 0	21.0	32.1 26 6	30.5	5.5 6.6	0.5	00.0 52 5	- 28.0 52.0	74.0	13.5	10.4
4. 5	9648 00	BB	40.9	47.2	38.9	37 1	74	0.2	52.0	51 7	74.0	20.0	20.2
6.	12060.00	BB	42.2	41.1	39.8	36.1	8.2	0.0	54.1	53.0	74.0	19.9	21.0
7.	14472.00	BB	40.2	40.5	42.4	35.0	8, 9	0.3	56.8	57.1	74.0	17.2	16.9
8.	16884.00	BB	40.8	41.8	40.7	35.6	9.6	0.6	56.1	57.1	74.0	17.9	16.9
9.	19296.00	BB	42.8	41.2	38.6	34.9	10.3	0.0	56.8	55.2	74.0	17.2	18.8
10.	21708.00	BB	41.6	42.2	39.0	35.6	10.7	0.0	55.7	56.3	74.0	18.3	17.7
11.	24120.00	BB	42. 5	43.0	39.3	34.9	11.1	0.0	58.0	58.5	74.0	16.0	15.5

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK ~ 1

App Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum Reg	licant d of Equi el No. er arks e t Distanc perature idity ulation	pment	È	: BUFF : High : WHR- : D-01 : AC12 : Tran : IEEE : 7/27 : 3 m : 31 ° : 49 9 : FCC	ALO Inc Speed HP-G54 0V/60Hz smittin 802.11b /2005 C 6 Part15C	Wireld g:2412 /Anter § 15.	ess Rou 2MHz nna:Nor 209 (AV	ter mal Er Detect	ngineer tion)	: T	oyokazu	Imamu	ra
No.	FREQ. [MHz]	ANT TYPE	REA HOR [dB	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	JLT VER V/m] [d	LIMITS BµV/m]	MAH HOR [c	RGIN VER HB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	$\begin{array}{c} 2390.\ 00\\ 3216.\ 17\\ 4824.\ 00\\ 7236.\ 00\\ 9648.\ 00\\ 12060.\ 00\\ 14472.\ 00\\ 16884.\ 00\\ 19296.\ 00\\ 21708.\ 00\\ 24120.\ 00\\ \end{array}$	BB BB BB BB BB BB BB BB BB BB BB BB	$\begin{array}{r} 44.\ 6\\ 46.\ 0\\ 46.\ 0\\ 40.\ 2\\ 35.\ 2\\ 31.\ 5\\ 31.\ 8\\ 31.\ 6\\ 32.\ 6\\ 33.\ 2\\ 33.\ 1\end{array}$	$\begin{array}{c} 44.\ 1\\ 46.\ 7\\ 39.\ 6\\ 35.\ 7\\ 33.\ 1\\ 31.\ 9\\ 31.\ 1\\ 32.\ 1\\ 32.\ 6\\ 33.\ 1\\ 33.\ 6\end{array}$	$\begin{array}{c} 27.\ 7\\ 29.\ 0\\ 32.\ 1\\ 36.\ 6\\ 38.\ 9\\ 39.\ 8\\ 42.\ 4\\ 40.\ 7\\ 38.\ 6\\ 39.\ 0\\ 39.\ 3\end{array}$	$\begin{array}{c} 37.\ 0\\ 37.\ 1\\ 36.\ 5\\ 36.\ 8\\ 37.\ 1\\ 36.\ 1\\ 35.\ 0\\ 35.\ 6\\ 34.\ 9\\ 35.\ 6\\ 34.\ 9\end{array}$	4.0 4.6 5.5 6.6 7.4 8.2 8.9 9.6 10.3 10.7 11.1	$ \begin{array}{c} 10. \ 0 \\ 10. \ 1 \\ 0. \ 5 \\ 0. \ 2 \\ 0. \ 4 \\ 0. \ 0 \\ 0. \ 3 \\ 0. \ 6 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ \end{array} $	$\begin{array}{c} 49.\ 3\\ 52.\ 6\\ 47.\ 6\\ 46.\ 8\\ 44.\ 8\\ 43.\ 4\\ 48.\ 4\\ 46.\ 9\\ 46.\ 6\\ 47.\ 3\\ 48.\ 6\end{array}$	$\begin{array}{r} 48.8\\ 53.3\\ 41.2\\ 42.3\\ 42.7\\ 43.8\\ 47.7\\ 47.4\\ 46.6\\ 47.2\\ 49.1 \end{array}$	54. 0 54.	$\begin{array}{c} 4.\ 7\\ 1.\ 4\\ 6.\ 4\\ 7.\ 2\\ 9.\ 2\\ 10.\ 6\\ 5.\ 6\\ 7.\ 1\\ 7.\ 4\\ 6.\ 7\\ 5.\ 4\end{array}$	$5.2 \\ 0.7 \\ 12.8 \\ 11.7 \\ 11.3 \\ 10.2 \\ 6.3 \\ 6.6 \\ 7.4 \\ 6.8 \\ 4.9 \\ 100 \\ $

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA:KHA-02(1-18GHz)/KHA-04(18-26GHz) ■ CABLE:KCC-D3/D7 ■ PREAMP:KAF-02(8449B) ■ SPECTRUM ANALYZER:KSA-04(R3271A)

.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No. : 25LE0018-YK ~ 1

App Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum	licant d of Equ el No. ial No. er arks e t Distand perature idity ulation	i pment	L	BUFF High WHR- D-01 AC12 Tran IEEE 7/27 3 m 31 ° 49 9 FCC	ALO Inc Speed HP-G54 OV/60Hz smittin 802.11b /2005 C 6 Part15C	Wirele g:2437 /Anter § 15.	ess Rou 7MHz nna:Nori 209 (PK	ter mal En; Detect	gineer ion)	:	Toyokazu	lmamu	ra
No.	FREQ.	ANT TYPE	READ HOR [dB /	DING VER uV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	JLT VER //m] [LIMITS dBµV/m]	MAI HOR	RGIN VER HB]
1. 2. 3. 4. 5. 6. 7. 8. 9.	4874.00 7311.00 9748.00 12185.00 14622.00 17059.00 19496.00 21933.00 24370.00	BB BB BB BB BB BB BB BB BB	54. 452. 545. 645. 142. 442. 541. 742. 842. 8	$57.8 \\ 47.8 \\ 46.1 \\ 44.7 \\ 42.0 \\ 42.1 \\ 43.7 \\ 43.1 \\ 43.9 \\$	32. 2 36. 7 39. 0 39. 6 42. 1 41. 1 38. 4 39. 1 39. 4	36. 5 36. 8 37. 1 36. 0 35. 3 35. 6 35. 2 35. 2 35. 0	5.5 6.7 7.4 8.2 8.9 9.7 10.5 10.8 11.1	$\begin{array}{c} 0.5\\ 0.2\\ 0.3\\ 0.0\\ 0.4\\ 0.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$	56. 1 59. 3 55. 2 56. 9 58. 5 58. 3 55. 4 57. 5 58. 3	59.5 54.6 55.7 56.5 58.1 57.9 57.4 57.8 59.4	74.074.074.074.074.074.074.074.0	$17.9 \\ 14.7 \\ 18.8 \\ 17.1 \\ 15.5 \\ 15.7 \\ 18.6 \\ 16.5 \\ 15.7 \\ $	14.5 19.4 18.3 17.5 15.9 16.1 16.6 16.2 14.6

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KHA-02 (1-18GHz) / KHA-04 (18-26GHz) ■ CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■ SPECTRUM ANALYZER: KSA-04 (R3271A)

.

.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

App Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum	licant d of Equi el No. ial No. er arks e t Distand perature idity ulation	ipment	E	BUFF High WHR- AC12 Tran IEEE 7/27 3 m 31 ° 49 9 FCC	ALO Inc. Speed M HP-G54 OV/60Hz smittin 802.11b /2005 C C Part15C	Wirele g:2437 /Anter § 15.	ess Rou /MHz Ina:Nori 209 (AV	ter mal Eng Detect	gineer ion)	: Т	oyokazu	Imamu	ra
No.	FREQ. [MHz]	ANT TYPE	REAL HOR [dB]	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ]	ULT VER V/m] [d	LIMITS ΒμV/m]	MAF HOR	GIN VER B]
1.	4874.00	BB	40.1	43.1	32.2	36, 5	5.5	0.5	41.8	44.8	54.0	12.2	9.2
2.	7311.00	BB	41.1	36.3	36.7	36.8	6.7	0.2	47.9	43.1	54.0	6.1	10.9
3.	9748.00	BB	37.5	37.1	39.0	37.1	7.4	0.3	47.1	46.7	54.0	6.9	7.3
4.	12185.00	BB	34.4	32.7	39, 6	36.0	8.2	0.0	46.2	44.5	54.0	7.8	9.5
5.	14622.00	BB	32.0	32.1	42.1	35.3	8.9	0.4	48.1	48.2	54.0	5.9	5.8
6.	17059.00	BB	32.1	32.3	41.1	35.6	9.7	0.6	47.9	48.1	54.0	6.1	5.9
7.	19496.00	BB	31.9	31.7	38.4	35.2	10.5	0.0	45. b	45.4	54.0	8.4	8.0
8. 9.	21933.00 24370.00	BB BB	33.4 33.6	33.6 33.9	39. 1 39. 4	35. 2 35. 0	10.8	0.0	48. 1 49. 1	48.3 49.4	54. 0 54. 0	5.9 4.9	5. 7 4. 6

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

App Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum Reg	licant d of Equi el No. ial No. er e arks e t Distand perature idity ulation	i pment		BUFF High WHR- D-01 AC12 Tran IEEE 7/27 3 m 31 °C 49 9 FCC	ALO Inc. Speed M HP-G54 OV/60Hz smittin 802.11b, /2005 C 6 Part15C	∦irele g:2462 /Anter § 15.	ess Rou 2MHz ana:Nor 209 (PK	ter mal E Detec	ngineer tion)	: '	Toyokazu	Imamu	ra
No.	FREQ. [MHz]	ANT TYPE	READ HOR [dB]	VER VER UV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	ルT VER //m] [6	LIMITS dBµV/m]	MAI HOR [4	RGIN VER HB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	$\begin{array}{c} 2483.\ 50\\ 4924.\ 00\\ 7386.\ 00\\ 9848.\ 00\\ 12310.\ 00\\ 14772.\ 00\\ 17234.\ 00\\ 19696.\ 00\\ 22158.\ 00\\ 24620.\ 00\\ \end{array}$	BB BB BB BB BB BB BB BB BB BB BB	$\begin{array}{c} 61.\ 3\\ 59.\ 3\\ 52.\ 0\\ 49.\ 5\\ 42.\ 0\\ 42.\ 3\\ 42.\ 9\\ 41.\ 3\\ 42.\ 8\\ 45.\ 3\end{array}$	58. 2 59. 8 47. 3 47. 9 43. 8 42. 1 42. 6 41. 7 42. 9 46. 3	28. 0 32. 3 36. 8 39. 2 39. 3 41. 6 41. 6 38. 4 39. 2 39. 4	$\begin{array}{c} 37.1\\ 36.4\\ 36.8\\ 37.1\\ 35.8\\ 35.5\\ 35.6\\ 35.1\\ 35.0\\ 34.9\end{array}$	4.0 5.6 6.7 7.4 8.1 9.0 9.6 10.5 11.0 11.3	10. 0 0. 5 0. 2 0. 2 0. 0 0. 6 0. 3 0. 0 0. 0 0. 0	$\begin{array}{c} 66.\ 2\\ 61.\ 3\\ 58.\ 9\\ 59.\ 2\\ 53.\ 6\\ 58.\ 0\\ 58.\ 8\\ 55.\ 1\\ 58.\ 0\\ 61.\ 1\end{array}$	$\begin{array}{c} 63.\ 1\\ 61.\ 8\\ 54.\ 2\\ 57.\ 6\\ 55.\ 4\\ 57.\ 8\\ 58.\ 5\\ 55.\ 5\\ 58.\ 1\\ 62.\ 1\end{array}$	74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0	7.8 12.7 15.1 14.8 20.4 16.0 15.2 18.9 16.0 12.9	10. 9 12. 2 19. 8 16. 4 18. 6 16. 2 15. 5 18. 5 15. 9 11. 9

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

AppricantDoi factorialKind of EquipmentHigh Speed Wireless RouterModel No.WHR-HP-G54Serial No.D-01PowerAC120V/60HzModeTransmitting:2462MHzRemarksIEEE802.11b/Antenna:NormalDate7/27/2005Test Distance3 mTemperature31 °CHumidity49 %RegulationFCC Part15C § 15.209 (AV Detection)										:]	Γoyokazu	lmamu	ra
No.	FREQ. [MHz]	ANT TYPE	REAI HOR [dB]	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN, [dB]	RESU HOR [dB µ \	JLT VER V/m] [d	LIMITS iBµV/m]	MAF HOR	RGIN VER HB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	$\begin{array}{c} 2483.\ 50\\ 4924.\ 00\\ 7386.\ 00\\ 9848.\ 00\\ 12310.\ 00\\ 14772.\ 00\\ 17234.\ 00\\ 19696.\ 00\\ 22158.\ 00\\ 24620.\ 00\\ \end{array}$	BB BB BB BB BB BB BB BB BB BB	47. 3 43. 2 39. 7 40. 9 32. 0 32. 0 32. 3 31. 8 33. 4 35. 8	$\begin{array}{r} 45.\ 6\\ 43.\ 8\\ 36.\ 5\\ 37.\ 2\\ 31.\ 4\\ 32.\ 0\\ 32.\ 4\\ 31.\ 8\\ 33.\ 5\\ 35.\ 9\end{array}$	28. 0 32. 3 36. 8 39. 2 39. 3 41. 6 41. 6 38. 4 39. 2 39. 4	$\begin{array}{c} 37.\ 1\\ 36.\ 4\\ 36.\ 8\\ 37.\ 1\\ 35.\ 8\\ 35.\ 5\\ 35.\ 6\\ 35.\ 1\\ 35.\ 0\\ 34.\ 9\end{array}$	4.0 5.6 6.7 7.4 8.1 9.0 9.6 10.5 11.0 11.3	$10.0 \\ 0.5 \\ 0.2 \\ 0.0 \\ 0.6 \\ 0.3 \\ 0.0$	52. 245. 246. 650. 643. 647. 748. 245. 648. 651. 6	50.545.843.446.943.047.748.345.648.751.7	54. 054. 054. 054. 054. 054. 054. 054. 054. 054. 054. 0	1.88.87.43.410.46.35.88.45.42.4	3.5 8.2 10.6 7.1 11.0 6.3 5.7 8.4 5.3 2.3

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK = 1

App Kin Ser Pow Mod Rem Dat Tes Tem Hum	licant d of Equi el No. ial No. er er arks e t Distand perature idity ulation	ipmen	t	: BUFF : High : WHR- : D-01 : AC12 : Trar : IEEE : 7/27 : 3 m : 31 % : FCC	ALO Inc Speed HP-G54 Smittin 802.11g 22005 C A Part15C	Wirela g:2412 /Anter § 15.	ess Rou 2MHz nna:Nor 209 (PK	ter mal En Detect	gineer ion)	: `	Toyokazu	lmamu	ra
No.	FREQ. [MHz]	ANT TYPE	REAI HOR [dB	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ \	JLT VER //m] [4	LIMITS dBµV/m]	MAI HOR [‹	RGIN VER dB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	$\begin{array}{c} 2390.\ 00\\ 4824.\ 00\\ 7236.\ 00\\ 9648.\ 00\\ 12060.\ 00\\ 14472.\ 00\\ 16884.\ 00\\ 19296.\ 00\\ 21708.\ 00\\ 24120.\ 00\\ \end{array}$	BB BB BB BB BB BB BB BB BB BB	$\begin{array}{c} 63. \ 1\\ 51. \ 8\\ 51. \ 1\\ 48. \ 9\\ 43. \ 8\\ 41. \ 5\\ 42. \ 0\\ 42. \ 6\\ 42. \ 8\\ 43. \ 4\end{array}$	62. 0 53. 6 47. 3 46. 8 42. 2 41. 5 42. 2 42. 3 42. 0 43. 5	27. 7 32. 1 36. 6 38. 9 39. 8 42. 4 40. 7 38. 6 39. 0 39. 3	$\begin{array}{c} 37.\ 0\\ 36.\ 5\\ 36.\ 8\\ 37.\ 1\\ 36.\ 1\\ 35.\ 0\\ 35.\ 6\\ 34.\ 9\\ 35.\ 6\\ 34.\ 9\\ 35.\ 6\\ 34.\ 9\end{array}$	4.0 5.5 6.6 7.4 8.2 8.9 9.6 10.3 10.7 11.1	$10.0 \\ 0.5 \\ 0.2 \\ 0.4 \\ 0.0 \\ 0.3 \\ 0.6 \\ 0.0$	67. 8 53. 4 57. 7 58. 5 55. 7 58. 1 57. 3 56. 6 56. 9 58. 9	$\begin{array}{c} 66.\ 7\\ 55.\ 2\\ 53.\ 9\\ 56.\ 4\\ 54.\ 1\\ 58.\ 1\\ 57.\ 5\\ 56.\ 3\\ 56.\ 1\\ 59.\ 0\end{array}$	$\begin{array}{c} 74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\\74.\ 0\end{array}$	6. 2 20. 6 16. 3 15. 5 18. 3 15. 9 16. 7 17. 4 17. 1 15. 1	7.3 18.8 20.1 17.6 19.9 15.9 16.5 17.7 17.9 15.0

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

Kind of Equipment: High Speed Wireless RouterModel No.: WHR-HP-G54Serial No.: D-01Power: AC120V/60HzMode: Transmitting:2412MHzRemarks: IEEE802.11g/Antenna:NormalDate: 7/27/2005Test Distance: 3 mTemperature: 31 °CHumidity: 49 %Regulation: FCC Part15C § 15.209 (AV Detection)No.FREQ. ANTREQUINTSNORNo.FREQ. ANTREADINGANTAMPCABLEATTEN.RESULTLIMITS									Imamui	ra			
No.	FREQ. [MHz]	ANT TYPE	READ HOR [dB µ	VER VER VV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	LT VER /m] [c	LIMITS BµV/m]	MAR HOR [d	GIN VER B]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	$\begin{array}{c} 2390.\ 00\\ 4824.\ 00\\ 7236.\ 00\\ 9648.\ 00\\ 12060.\ 00\\ 14472.\ 00\\ 16884.\ 00\\ 19296.\ 00\\ 21708.\ 00\\ 24120.\ 00\\ \end{array}$	BB BB BB BB BB BB BB BB BB BB BB	44. 9 34. 2 35. 1 35. 2 32. 0 32. 1 31. 9 32. 4 32. 7 33. 8	$\begin{array}{r} 45.\ 1\\ 36.\ 0\\ 32.\ 6\\ 35.\ 3\\ 31.\ 2\\ 31.\ 7\\ 31.\ 8\\ 32.\ 7\\ 32.\ 6\\ 33.\ 3\end{array}$	27. 7 32. 1 36. 6 38. 9 39. 8 42. 4 40. 7 38. 6 39. 0 39. 3	$\begin{array}{c} 37.\ 0\\ 36.\ 5\\ 36.\ 8\\ 37.\ 1\\ 36.\ 1\\ 35.\ 0\\ 35.\ 6\\ 34.\ 9\\ 35.\ 6\\ 34.\ 9\\ 35.\ 6\\ 34.\ 9\end{array}$	4.0 5.5 6.6 7.4 8.2 8.9 9.6 10.3 10.7 11.1	$10. 0 \\ 0. 5 \\ 0. 2 \\ 0. 4 \\ 0. 0 \\ 0. 3 \\ 0. 6 \\ 0. 0 \\$	49. 6 35. 8 41. 7 44. 8 43. 9 48. 7 47. 2 46. 4 46. 8 49. 3	$\begin{array}{r} 49.8\\ 37.6\\ 39.2\\ 44.9\\ 43.1\\ 48.3\\ 47.1\\ 46.7\\ 46.7\\ 48.8 \end{array}$	54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	4. 4 18. 2 12. 3 9. 2 10. 1 5. 3 6. 8 7. 6 7. 2 4. 7	4. 2 16. 4 14. 8 9. 1 10. 9 5. 7 6. 9 7. 3 7. 3 5. 2

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

AppricantDorraco mc.Kind of EquipmentHigh Speed Wireless RouterModel No.WHR-HP-G54Serial No.D-01PowerAC120V/60HzModeTransmitting:2437MHzRemarksIEEE802.11g/Antenna:NormalDate7/27/2005Test Distance3 mTemperature31 °CHumidity49 %RegulationFCC Part15C § 15.209 (PK Detection)									Imamu	ra			
Hum Reg	idity ulation			49 9 FCC	% Part15C	§ 15.	209 (PK	Detect	ion)				
No.	FREQ. [MHz]	ANT TYPE	REAL HOR [dB]	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dBµ]	ULT VER V/m] [o	LIMITS dBµV/m]	MAI HOR [¢	RGIN VER JB]
1. 2. 3. 4. 5. 6. 7. 8. 9.	4874.00 7311.00 9748.00 12185.00 14622.00 17059.00 19496.00 21933.00 24370.00	BB BB BB BB BB BB BB BB BB	52. 2 51. 2 51. 3 42. 4 41. 9 42. 2 42. 3 42. 8 43. 7	54. 2 46. 7 38. 8 42. 5 41. 7 41. 1 42. 0 42. 8 43. 9	32. 2 36. 7 39. 0 39. 6 42. 1 41. 1 38. 4 39. 1 39. 4	$\begin{array}{c} 36.5\\ 36.8\\ 37.1\\ 36.0\\ 35.3\\ 35.6\\ 35.2\\ 35.2\\ 35.2\\ 35.0\end{array}$	5.5 6.7 7.4 8.2 8.9 9.7 10.5 10.8 11.1	0.5 0.2 0.3 0.0 0.4 0.6 0.0 0.0 0.0	53. 9 58. 0 60. 9 54. 2 58. 0 58. 0 58. 0 56. 0 57. 5 59. 2	55. 9 53. 5 48. 4 54. 3 57. 8 56. 9 55. 7 57. 5 59. 4	74.074.074.074.074.074.074.074.0	20. 1 16. 0 13. 1 19. 8 16. 0 16. 0 18. 0 16. 5 14. 8	$18.1 \\ 20.5 \\ 25.6 \\ 19.7 \\ 16.2 \\ 17.1 \\ 18.3 \\ 16.5 \\ 14.6 \\$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No. : 25LE0018-YK - 1

App Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum	licant d of Equi el No. ial No. er e arks e t Distand perature idity ulation	ipmen	t	E BUFF High WHR- D-01 AC12 Tran 1EEE 7/27 3 m 31 ° 49 9 FCC	ALO Inc Speed HP-G54 0V/60Hz smittin 802.11g /2005 C 6 Part15C	Wirele g:2437 /Anter § 15.	ess Rou 7MHz ma:Nor 209 (AV	ter mal En; Detect	gineer ion)	: `	Toyokazu	Imamu	ra
No.	FREQ.	ANT TYPE	REAI HOR [dB	DING VER µV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ]	ULT VER V/m] [@	LIMITS dBμV/m]	MAI HOR [c	RGIN VER 1B]
1.	4874.00	BB	34.4	35.2	32.2	36.5	5.5	0.5	36.1	36.9	54.0	17.9	17.1
2.	7311.00	BB	35.0	33.6	36.7	36.8	6.7	0.2	41.8	40.4	54.0	12.2	13.6
3.	9748.00	BB	33.1	29.8	39.0	37.1	7.4	0.3	42.7	39.4	54.0	11.3	14.6
4.	12185.00	BB DD	32.4	31.1	39.0	30.0	8.Z	0.0	44. Z	42.9	54.0	9.8	11.1
о. 6	17059 00	BB	31.0	31.9	42.1	35.5	0.9 Q7	0.4	47.0	40.0	54.0 54.0	0.4 6 0	0.U 6.2
7	19496 00	BB	31 7	31 8	38 4	35 2	10 5	0.0	45 4	45.5	54 0	8.6	85
8	21933.00	BB	33.2	33.3	39.1	35.2	10.8	0. 0	47.9	48.0	54.0	6.1	6.0
9.	24370.00	BB	33.9	33.9	39.4	35. 0	11.1	0.0	49.4	49.4	54.0	4.6	4.6

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

AppricantBuild Speed Wireless RoutKind of EquipmentHigh Speed Wireless RoutModel No.WHR-HP-G54Serial No.D-01PowerAC120V/60HzModeTransmitting:2462MHzRemarksIEEE802.11g/Antenna:NormDate7/27/2005Test Distance3 mTemperature31 °CHumidity49 %RegulationFCC Part15C § 15.209 (PK F								ter mal En Detect	gineer ion)	: 1	ōyokazu	Imamu	ra
No.	FREQ.	ANT	READ	ING	ANT	AMP	CABLE	ATTEN.	RESU		LIMITS	MAR	GIN
	[MHz]		[dB µ	$\iota V]$	[dB/m]	[dB]	[dB]	[dB]	$[dB \mu V]$	/m] [d	BμV/m]	[d	B]
1.	2483.50	BB	66.8	63.1	28.0	37.1	4.0	10.0	71.7	68.0	74.0	2.3	6.0
2.	4924.00	BB	56.1	58.5	32.3	36.4	5.6	0.5	58.1	60.5	74.0	15.9	13.5
3.	7386.00	BB	45.8	45.1	36, 8	36.8	6.7	0.2	52.7	52.0	74.0	21.3	22.0
4.	9848.00	BB	44.7	42.5	39.2	37.1	7.4	0.2	54.4	52. Z	74.0	19.6	21.8
ъ. С	12310.00	BB	42.9	43.3	39.3 41.6	35.8	8.1	0.0	54.5	54.9	74.0	19.0	19.1
ю. 7	14772.00	BB DD	42.7	4Z. 4	41.0	30.0	9.0	0.0	00.4 50.0	00.1 E0 0	74.0	15.0	15.9
(, 0	10606 00	ם סס	42.9	42.0	41.0 20 /	30.0	9.0	0.0	00.0 55 7	00.Z	74.0	10.2	10.0
о. О	22158 00	BB	41.9	42.0	20.4	35 0	11.0	0.0	50.7 58 1	56 8	74.0	15.0	17.9
10.	24620.00	BB	45.1	45.6	39.4	34.9	11. 0	0.0	60.9	61.4	74.0	13.1	12.6

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

UL Apex Co.,Ltd. Yamakita No.1 Open Test Site Report No.: 25LE0018-YK - 1

Kind of EquipmentHigh Speed Wireless RouterModel No.WHR-HP-G54Serial No.D-01PowerAC120V/60HzModeTransmitting:2462MHzRemarksIEEE802.11g/Antenna:NormalDate7/27/2005Test Distance3 mTemperature31 °CHumidity49 %RegulationFCC Part15C § 15.209 (AV Detection)No.FREQ. ANTREADINGANTAMPCABLEATTEN.RESULTLi									Toyokazu	Imamu	ra		
No.	FREQ. [MHz]	ANT TYPE	READ HOR [dB µ	ING VER ιV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	LT VER /m] [4	LIMITS dBµV/m]	MAR HOR [d	GIN VER B]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	$\begin{array}{c} 2483.\ 50\\ 4924.\ 00\\ 7386.\ 00\\ 9848.\ 00\\ 12310.\ 00\\ 14772.\ 00\\ 17234.\ 00\\ 19696.\ 00\\ 22158.\ 00\\ 24620.\ 00\\ \end{array}$	BB BB BB BB BB BB BB BB BB BB BB	48. 3 36. 8 31. 9 32. 5 32. 0 31. 8 32. 5 31. 7 33. 5 35. 8	$\begin{array}{r} 46.1\\ 38.4\\ 32.8\\ 32.7\\ 31.7\\ 32.1\\ 32.5\\ 31.8\\ 33.5\\ 35.9 \end{array}$	28. 0 32. 3 36. 8 39. 2 39. 3 41. 6 41. 6 38. 4 39. 2 39. 4	$\begin{array}{c} 37.\ 1\\ 36.\ 4\\ 36.\ 8\\ 37.\ 1\\ 35.\ 8\\ 35.\ 5\\ 35.\ 6\\ 35.\ 1\\ 35.\ 0\\ 34.\ 9\end{array}$	4.0 5.6 6.7 7.4 8.1 9.0 9.6 10.5 11.0 11.3	10. 0 0. 5 0. 2 0. 2 0. 0 0. 6 0. 3 0. 0 0. 0 0. 0	53. 238. 838. 842. 243. 647. 548. 445. 548. 751. 6	51. 0 40. 4 39. 7 42. 4 43. 3 47. 8 48. 4 45. 6 48. 7 51. 7	54. 0 $54. 0$ $54. 0$ $54. 0$ $54. 0$ $54. 0$ $54. 0$ $54. 0$ $54. 0$ $54. 0$ $54. 0$ $54. 0$	0.8 15.2 15.2 11.8 10.4 6.5 5.6 8.5 5.3 2.4	$\begin{array}{c} 3. \ 0 \\ 13. \ 6 \\ 14. \ 3 \\ 11. \ 6 \\ 10. \ 7 \\ 6. \ 2 \\ 5. \ 6 \\ 8. \ 4 \\ 5. \ 3 \\ 2. \ 3 \end{array}$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

Power Density (Conducted)

UL Apex Co.,Ltd YAMAKITA NO.1 Shielded Room

COMPANY	: BUFFALO Inc
EQUIPMENT	: High Speed Wireless Router
MODEL NUMBER	: WHR-HP-G54
SERIAL NUMBER	: D-0 1
FCC ID	: FDI-09101577-0
POWER	: AC120V/60Hz
TEST MODE	: Transmitting

 REPORT NO
 : 25LE0018-YK-1

 REGULATION : Fcc Part15SubpartC 247(e)

 DATE
 : 2005/7/29

 TEMP./HUMI
 : 24°C/63%

ENGINEER : Toyokazı

: Toyokazu Imamura

IEEE802.11b(11Mbps)

CH	FREQ	S/A Reading	Cable Loss	Results	Limit	MARGIN
		*				
	[GHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]
Low	2.4133	-5.75	0.5	-5.25	8.0	13.3
Mid	2.4343	-5.50	0.5	-5	8.0	13.0
High	2.4640	-6.00	0.5	-5.5	8.0	13.5

IEEE802.11g(54Mbps)

СН	FREQ	S/A Reading	Cable Loss	Results	Limit	MARGIN
		*				
	[GHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]
Low	2.4164	-6.75	0.5	-6.25	8.0	14.3
Mid	2.4414	-6.00	0.5	-5.5	8.0	13.5
High	2.4637	-5.75	0.5	-5.25	8.0	13.3

*S/A Reading[dBm] = S/A Reading[dBuV] - 107[dB] S/A:Spectrum Analyzer Power Density: FCC 15.247(e) UL Anex Co., Ltd. Ya

	·	UL Apex Co., Ltd. Y	Yamakita No.1 Shielded Room
COMPANY	: BUFFALO Inc	REPORT NO	: 25LE0018-YK-1
EQUIPMENT	: High Speed wireless Router	REGULATION	: FCC Part15SubpartC 247(e)
MODEL NUMBER	: WHR-HP-G54	DATE	: 2005/7/29
SERIAL NUMBER	: D-01	TEMP./HUMI	: 24°C/63%
FCC ID	: FDI-0910577-0	TEST MODE	: Transmitting
POWER	: AC120V/60Hz	ENGINEER	: Toyokazu Imamura
[IEEE802.11b(11Mbp	s)]		-

1. ch 1: 2412MHz

2. ch 6: 2437MHz

3. ch 11: 2462MHz

Power Density: FCC 15.247(e)

COMPANY: BUFFALO IncEQUIPMENT: High Speed wireless RouterMODEL NUMBER: WHR-HP-G54SERIAL NUMBER: D-01FCC ID: FDI-0910577-0POWER: AC120V/60Hz[IEEE802.11g(54Mbps)]1. ch 1: 2412MHz

UL Apex Co.,Ltd. Yamakita No.1 Shielded RoomREPORT NO: 25LE0018-YK-1REGULATION: FCC Part15SubpartC 247(e)DATE: 2005/7/29TEMP./HUMI: 24°C/63%TEST MODE: TransmittingENGINEER: Toyokazu Imamura

2. ch 6: 2437MHz

3. ch 11: 2462MHz

Test Report No :25LE0018-YK-1

APPENDIX 3 Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No*	Test Item	Calibration Date *
KCC-D7	Coaxial Cable	Advantest	A01002	AT 1,2,3,4	2005/04/12 * 12
KSA-04	Spectrum Analyzer	Advantest	R3271A	RE/AT 1,2,3,4	2004/09/15 * 12
KPSS-01	Power sensor	Agilent	E9327A	AT 2	2005/03/04 * 12
KPM-05	Power meter	Agilent	E4417A	AT 2	2005/03/02 * 12
KCC-14/15/16 /18/KPL-01	Coaxial Cable/Pulse Limitter	Fujikura/Suhner/PMM	5D-2W/8D-2W/S042 72B/S04272B/PL01	CE	2005/06/14 * 12
KLS-01	LISN(AMN)	Schwarzbeck	NSLK8126	CE (EUT)	2005/05/10 * 12
KLS02	LISN(AMN)	Schwarzbeck	NSLK8127	CE	2004/11/01 * 12
KTM-01	Terminator	ТМЕ	CT~01BP	CE	2005/04/07 * 12
KTR-02	Test Receiver	Rohde & Schwarz	ESCS30	CE	2004/11/25 * 12
KAF-01	Pre Amplifier	Hewlett Packard	8447D	RE	2005/05/24 * 12
KAF-02	Pre Amplifier	Hewlett Packard	8449B	RE	2005/04/28 * 12
KAT10-S1	Attenuator	Agilent	8449D 010	RE	2005/04/12 * 12
KAT10-S2	Attenuator	Agilent	8490D 010	RE	2004/10/14 * 12
KAT6-02	Attenuator	INMET	18N-6dB	RE	2005/04/07 * 12
KBA-01	Biconical Antenna	Schwarzbeck	BBA9106	RE	2004/08/07 * 12
KCC-10/11/12 /13/18	Coaxial Cable	Fujikura/Suhner	8D-2W/12D-SFA/S0 4272B/S04272B/S04 272B	RE	2005/06/14 * 12
KCC-D3/D7	Coaxial Cable	Rosenberger/Advantest	2201/JUN-08-01-06 1	RE	2005/04/12 * 12
KFL-01	Highpass Filter	Hewlett Packard	84300 80038	RE	2005/04/12 * 12
KHA-02	Hom Antenna	Schwarzbeck	BBHA9120D	RE	2004/09/25 * 12
KHA-04	Hom Antenna	EMCO	3160-09	RE	2005/05/14 * 12
KLA-01	Logperiodic Antenna	Schwarzbeck	USLP9143	RE	2005/01/29 * 12
KOTS-01	Open Test Site	JSE	30m	RE	2004/08/14 * 12
KSA-01	Spectrum Analyzer	Advantest	R3365	CE/RE	2005/07/06 * 12

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Test Item:

CE: Conducted Emission

RE: Out of Band Emission (Radiated)

AT: Antenna Terminal Conducted test

1: 6dB Bandwidth

2: Maximum Peak Output Power

- 3: Out of Band Emission (Conducted)
- 4: Peak Power Density