



# Part 22 TEST REPORT

| Product Name | DC-HSDPA Portable WiFi Router |
|--------------|-------------------------------|
| Model Name   | GP03                          |
| FCC ID       | FDI-04610108-0                |
| Client       | BUFFALO                       |

TA Technology (Shanghai) Co., Ltd.

Report No.: RZA1110-1740RF01 Page 2of 38

### **GENERAL SUMMARY**

| Product Name             | DC-HSDPA Portable WiFi Router                                                                                                                                                                    | Model Name                          | GP03 |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|
|                          |                                                                                                                                                                                                  | Illoudi Hallid                      | 0.00 |
| FCC ID                   | FDI-04610108-0                                                                                                                                                                                   |                                     |      |
| Report No.               | RZA1110-1740RF01                                                                                                                                                                                 |                                     |      |
| Client                   | BUFFALO                                                                                                                                                                                          |                                     |      |
| Manufacturer             | Shanghai Longcheer 3g Technology Co., Ltd                                                                                                                                                        |                                     |      |
| Reference<br>Standard(s) | FCC CFR47 Part 2 (2010-12) Frequency Allocations  FCC CFR 47 Part 22H (2010-12) Public Mobile S  ANSI/TIA-603-C(2004) Land mobile FM or PM Communication Measurements and Performance Standards. | Services(850MH                      | dz)  |
| Conclusion               | This portable wireless equipment has been measure relevant standards. Test results in Chapter 2 of this test in the relevant standards.  General Judgment: Pass  (Stamp)  Date of issue:         | treport are belo<br>信技术<br>出技术<br>出 |      |
| Comment                  | The test result only responds to the measured sample.                                                                                                                                            |                                     |      |

Approved by 不能 Revised by 不能 Performed by 不是 RF Engineer

Report No.: RZA1110-1740RF01 Page 3of 38

### **TABLE OF CONTENT**

| 1.  | Ger  | neral Information                       | 4  |
|-----|------|-----------------------------------------|----|
| 1.1 | 1.   | Notes of the test report                | 4  |
| 1.2 | 2.   | Testing laboratory                      | 4  |
| 1.3 | 3.   | Applicant Information                   | 5  |
| 1.4 | 4.   | Manufacturer Information                | 5  |
| 1.5 | 5.   | Information of EUT                      | 6  |
| 1.6 | 6.   | Test Date                               | 7  |
| 2.  | Test | t Information                           | 8  |
| 2.1 | 1.   | Summary of test results                 | 8  |
| 2.2 | 2.   | RF Power Output                         | 9  |
| 2.3 | 3.   | Effective Radiated Power                | 11 |
| 2.4 | 4.   | Occupied Bandwidth                      | 14 |
| 2.5 | 5.   | Band Edge Compliance                    | 19 |
| 2.6 | 6.   | Frequency Stability                     | 23 |
| 2.7 | 7.   | Spurious Emissions at Antenna Terminals | 26 |
| 2.8 | 8.   | Radiates Spurious Emission              | 26 |
| 3.  | Mai  | n Test Instruments                      | 26 |
| ANN | IEX. | A: EUT Appearance and Test Setup        | 26 |
| Α.  | 1    | EUT Appearance                          | 26 |
| Α.2 | 2    | Test Setup                              | 26 |
|     |      |                                         |    |

Report No.: RZA1110-1740RF01 Page 4of 38

#### 1. General Information

#### 1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of TA Technology (Shanghai) Co., Ltd. and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

#### 1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai 201201 Post code: P. R. China

Country:

Contact:

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Yang Weizhong

Report No.: RZA1110-1740RF01 Page 5of 38

#### 1.3. Applicant Information

Company: BUFFALO

Address: AKAMONDORI Bldg., 30-20, Ohsu 3-chome, Naka-ku, Nagoya 460-8315, Japan

City: Nagoya

Postal Code: 460-8315

Country: Japan

Contact: Kenjirou Nishimura

Telephone: +81-50-5830-8816

Fax: +81-50-5830-8869

#### 1.4. Manufacturer Information

Company: Shanghai Longcheer 3g Technology Co., Ltd

No.1, Building 5, 299 Bisheng Rd, Zhangjiang Hi-Tech Park, Pudong, Shanghai,

P.R. China

City: Shanghai

Postal Code: /

Country: P.R. China

Telephone: +86-29-81881999\*8100

Fax: +86-29-81882000

Report No.: RZA1110-1740RF01 Page 6of 38

### 1.5. Information of EUT

#### **General information**

| Name of EUT:                           | DC-HSDPA Portable WiFi Router      |                |               |  |  |
|----------------------------------------|------------------------------------|----------------|---------------|--|--|
| IMEI :                                 | 1                                  |                |               |  |  |
| Hardware Version:                      | ES3                                | ES3            |               |  |  |
| Software Version:                      | Master_Alpha2.5                    |                |               |  |  |
| Antenna Type:                          | Internal Antenna                   |                |               |  |  |
| Device Operating Configurations:       |                                    |                |               |  |  |
| Operating Mode(s):                     | GSM 850:(tested)                   |                |               |  |  |
| Test Modulation:                       | (GPRS)GMSK; (E                     | GPRS)8-PSK     |               |  |  |
| GPRS Multislot Class:                  | 12                                 |                |               |  |  |
| EGPRS Multislot Class:                 | 12                                 |                |               |  |  |
| Maximum E.R.P.                         | 27.92 dBm                          |                |               |  |  |
| Power Supply:                          | Battery or Charge                  | r (AC adaptor) |               |  |  |
| Rated Power Supply Voltage:            | 3.7V                               |                |               |  |  |
| Extreme Voltage:                       | Minimum: 3.5V                      | Maximum: 4.2V  |               |  |  |
| Extreme Temperature:                   | Lowest: 0°C H                      | lighest: +45°C |               |  |  |
| Test Channel:<br>(Low - Middle - High) | 128 - 190 - 251 (GSM 850) (tested) |                |               |  |  |
| Operating Frequency Range(s)           | Band                               | Tx (MHz)       | Rx (MHz)      |  |  |
| operating Frequency (varige(s)         | GSM850                             | 824.2 ~ 848.8  | 869.2 ~ 893.8 |  |  |

Report No.: RZA1110-1740RF01 Page 7of 38

#### **Auxiliary Equipment Details**

AE1: Battery

Model: 1UF103450P

Manufacture: TOCAD

S/N: /

**AE2: Adapter** 

Model: LEI\_FU05-9050100-A1

Manufacturer: LEIDER

S/N: /

Equipment Under Test (EUT) is DC-HSDPA Portable WiFi Router. The EUT is tested GSM 850 band in this report.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

#### 1.6. Test Date

The test is performed from October 26, 2011 to October 30, 2011.

Report No.: RZA1110-1740RF01 Page 8of 38

### 2. Test Information

#### 2.1. Summary of test results

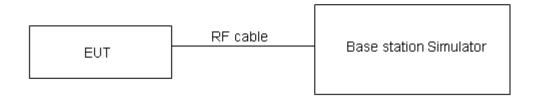
| Number | Test Case                               | Clause in FCC rules | Verdict |
|--------|-----------------------------------------|---------------------|---------|
| 1      | RF power output                         | 2.1046              | PASS    |
| 2      | Effective Radiated Power                | 22.913(a)(2)        | PASS    |
| 3      | Occupied Bandwidth                      | 2.1049              | PASS    |
| 4      | Band Edge Compliance                    | 22.917              | PASS    |
| 5      | Frequency Stability                     | 2.1055 / 22.355     | PASS    |
| 6      | Spurious Emissions at Antenna Terminals | 2.1051 / 22.917(a)  | PASS    |
| 7      | Radiates Spurious Emission              | 2.1053 / 22.917 (a) | PASS    |

PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

Report No.: RZA1110-1740RF01 Page 9of 38

#### 2.2. RF Power Output


#### **Ambient condition**

| Temperature | Relative humidity |
|-------------|-------------------|
| 21°C ~25°C  | 40%~60%           |

#### **Methods of Measurement**

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

#### **Test Setup**



The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.

#### Limits

No specific RF power output requirements in part 2.1046.

#### **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB.

Report No.: RZA1110-1740RF01 Page 10of 38

#### **Test Results**

| GSM 850 |          | Conducted Power(dBm) |             |             |  |
|---------|----------|----------------------|-------------|-------------|--|
|         |          | Channel 128          | Channel 190 | Channel 251 |  |
|         |          | 824.2 (MHz)          | 836.6 (MHz) | 848.8 (MHz) |  |
|         | 1TXslot  | 31.11                | 31.03       | 31.09       |  |
| GPRS    | 2TXslots | 29.48                | 29.42       | 29.55       |  |
| (GMSK)  | 3TXslots | 27.24                | 27.24       | 27.31       |  |
|         | 4TXslots | 26.01                | 26.4        | 26.36       |  |
|         | 1TXslot  | 27.17                | 26.85       | 26.53       |  |
| EGPRS   | 2TXslots | 27.03                | 26.71       | 26.42       |  |
| (8-PSK) | 3TXslots | 19.73                | 19.84       | 19.96       |  |
|         | 4TXslots | 16.98                | 17.05       | 17.14       |  |

#### Note:

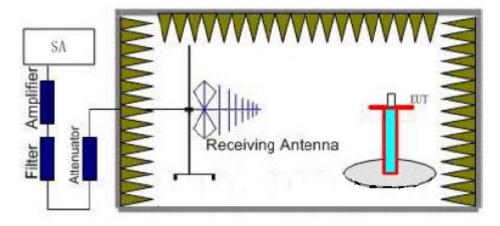
<sup>1)</sup> The maximum RF Output Power numbers are marks in bold.

<sup>2)</sup>The following testing in GPRS/EGPRS is set to 1TXslot based on the maximum RF Output Power.

Report No.: RZA1110-1740RF01 Page 11of 38

#### 2.3. Effective Radiated Power

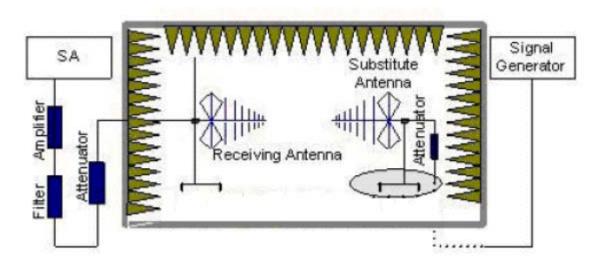
#### **Ambient condition**


| Temperature | Relative humidity |
|-------------|-------------------|
| 21°C ~25°C  | 40%~60%           |

#### **Methods of Measurement**

The measurement procedures in TIA- 603C are used.

#### Step 1:


The measurement is carried out in the semi-anechoic chamber. EUT was placed on a 0.8 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used while RBW and VBW are both set to 3MHz. During the measurement, the highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna moved up and down over a range from 1 to 4 meters in both horizontally and vertically polarized orientations. The test setup refers to figure below.



Step 2:

A dipole antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator with a adjustable S.G. applied through a 30dB amplifier and a Tx cable. Then the Analyzer reading which is equal to LVL is recorded while the antenna was moving up and down. The E.R.P. /E.I.R.P. of the EUT can be calculated through the level of the signal generator, Tx cable loss and the gain of the substitution antenna. The test setup refers to figure below.

Report No.: RZA1110-1740RF01 Page 12of 38



E.R.P = S.G+30. - Tx Cable loss + Substitution antenna gain – 2.15. EIRP= E.R.P+2.15

#### Limits

Rule Part 22.913(a) specifies that "Mobile/portable stations are limited to 7 watts ERP".

| Limit | ≤ 7 W (38.45 dBm) |
|-------|-------------------|
|       | , ,               |

#### **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 1.19 dB

Report No.: RZA1110-1740RF01 Page 13of 38

**Test Results: Pass** 

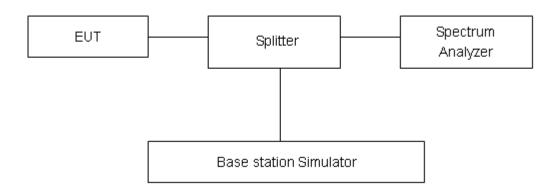
|                    | Channel | Polarization | LVL<br>(dBm) | SG+30<br>(dBm) | Gain<br>(dBi) | Cable<br>Loss<br>(dBm) | E.R.P.<br>(dBm) |
|--------------------|---------|--------------|--------------|----------------|---------------|------------------------|-----------------|
| CDDC 950           | 128     | Vertical     | -16.48       | 43.55          | 1.06          | 15.17                  | 27.29           |
| GPRS 850<br>(GMSK) | 190     | Vertical     | -17.76       | 43.89          | 1.24          | 15.2                   | 27.78           |
|                    | 251     | Vertical     | -17.83       | 43.93          | 1.38          | 15.24                  | 27.92           |
| ECDDS 950          | 128     | Vertical     | -16.89       | 41.75          | 1.06          | 15.17                  | 25.49           |
| EGPRS 850          | 190     | Vertical     | -17.62       | 41.81          | 1.24          | 15.2                   | 25.70           |
| (8-PSK)            | 251     | Vertical     | -17.33       | 41.68          | 1.38          | 15.24                  | 25.69           |

Note: 1. E.R.P =S.G+30. - Tx Cable loss + Substitution antenna gain – 2.15.

2. EIRP= E.R.P+2.15

Report No.: RZA1110-1740RF01 Page 14of 38

#### 2.4. Occupied Bandwidth


#### **Ambient condition**

| Temperature | Relative humidity |  |
|-------------|-------------------|--|
| 21°C ~25°C  | 40%~60%           |  |

#### **Method of Measurement**

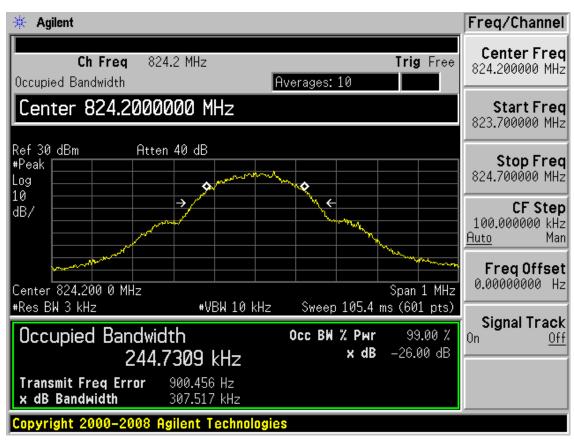
The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 3kHz,VBW is set to 10kHz for GSM 850. 99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

#### **Test Setup**



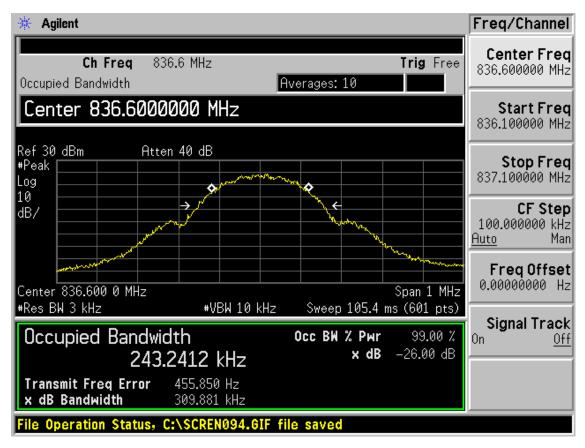
#### Limits

No specific occupied bandwidth requirements in part 2.1049.

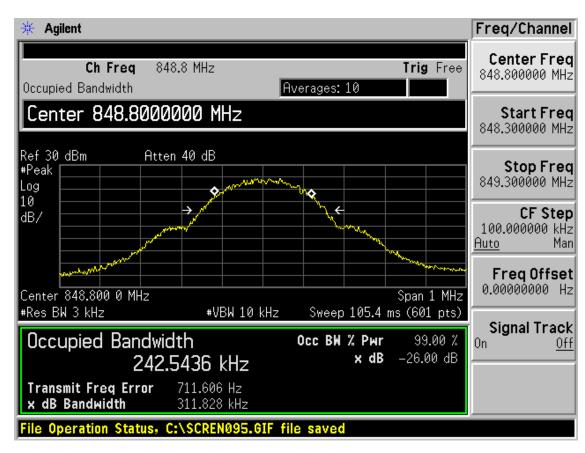

#### **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz.

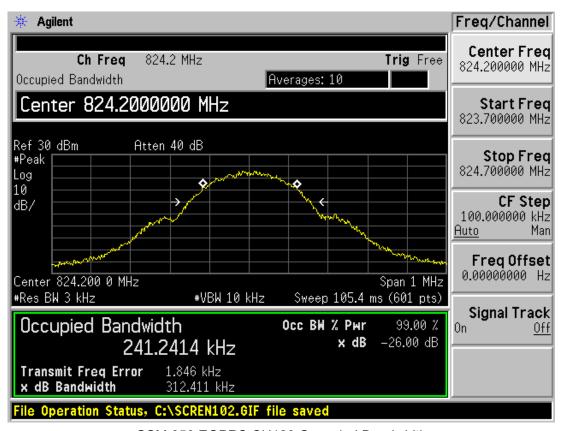
Report No.: RZA1110-1740RF01 Page 15of 38


#### **Test Result**

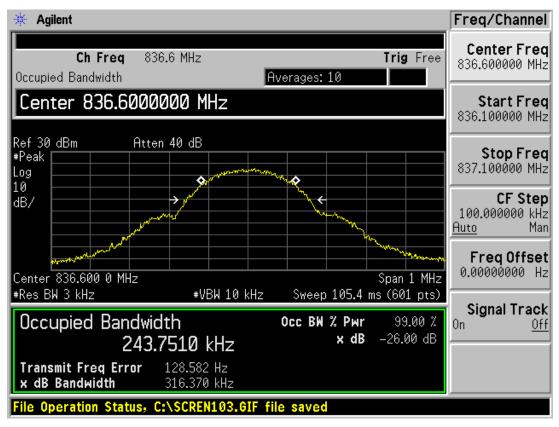
|               | Channel | Frequency (MHz) | 99% Power<br>Bandwidth (kHz) | -26dBc<br>Bandwidth(kHz) |
|---------------|---------|-----------------|------------------------------|--------------------------|
|               | 128     | 824.2           | 244.7309                     | 307.517                  |
| GSM 850+GPRS  | 190     | 836.6           | 243.2412                     | 309.881                  |
|               | 251     | 848.8           | 242.5436                     | 311.828                  |
|               | 128     | 824.2           | 241.2414                     | 312.411                  |
| GSM 850+EGPRS | 190     | 836.6           | 243.7510                     | 316.370                  |
|               | 251     | 848.8           | 242.9667                     | 314.902                  |




GSM 850 GPRS CH128 Occupied Bandwidth


Report No.: RZA1110-1740RF01 Page 16of 38




GSM 850 GPRS CH190 Occupied Bandwidth



Report No.: RZA1110-1740RF01 Page 17of 38




GSM 850 EGPRS CH128 Occupied Bandwidth



GSM 850 EGPRS CH190 Occupied Bandwidth

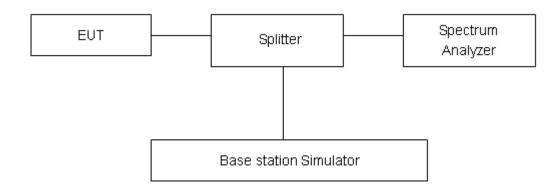
Report No.: RZA1110-1740RF01 Page 18of 38



GSM 850 EGPRS CH251 Occupied Bandwidth

Report No.: RZA1110-1740RF01 Page 19of 38

#### 2.5. Band Edge Compliance


#### **Ambient condition**

| Temperature | Relative humidity |
|-------------|-------------------|
| 21°C ~25°C  | 40%~60%           |

#### **Method of Measurement**

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The average detector is used. RBW is set to 3kHz,VBW is set to 10kHz for GSM 850. Spectrum analyzer plots are included on the following pages.

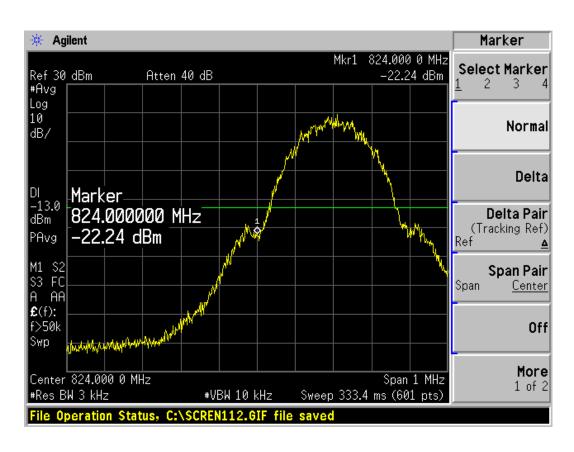
#### **Test Setup**



#### Limits

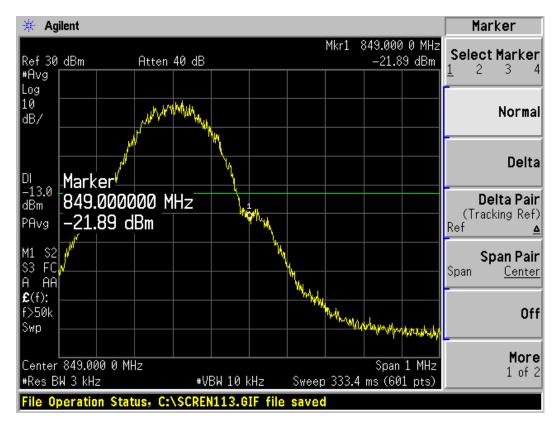
Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."

| Limit | -13 dBm |
|-------|---------|
|-------|---------|

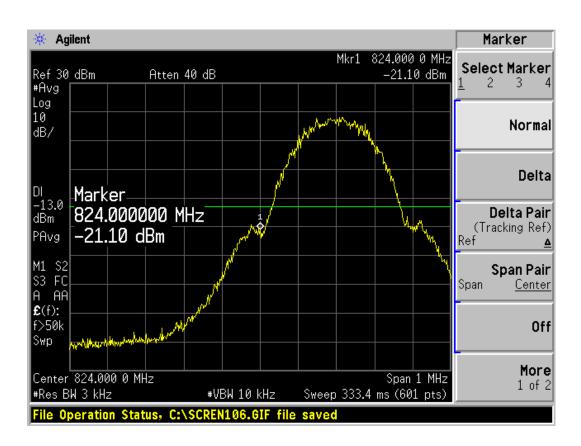

#### **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=0.684dB.

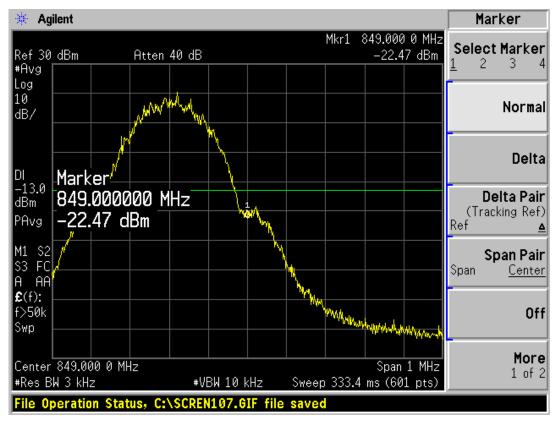
Report No.: RZA1110-1740RF01 Page 20of 38


#### **Test Result:**

|           | Carrier frequency<br>(MHz) | Reference value<br>(dBm) | Limit | Conclusion |
|-----------|----------------------------|--------------------------|-------|------------|
| GSM       | 824.0                      | -22.24                   | -13   | PASS       |
| 850+GPRS  | 849.0                      | -21.89                   | -13   | PASS       |
| GSM       | 824.0                      | -21.10                   | -13   | PASS       |
| 850+EGPRS | 849.0                      | -22.47                   | -13   | PASS       |




GSM 850 GPRS 128 Channel


Report No.: RZA1110-1740RF01 Page 21of 38



GSM 850 GPRS 251 Channel



Report No.: RZA1110-1740RF01 Page 22of 38



GSM 850 EGPRS 251 Channel

Report No.: RZA1110-1740RF01 Page 23of 38

#### 2.6. Frequency Stability

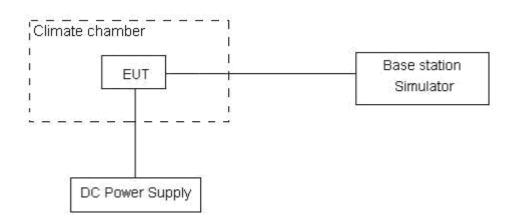
#### **Ambient condition**

| Temperature | Relative humidity |
|-------------|-------------------|
| 21°C ~25°C  | 40%~60%           |

#### **Method of Measurement**

1. Frequency Stability (Temperature Variation)

The temperature inside the climate chamber is varied from -30°C to +50°C in 10°C step size,


- (1) With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours.
- (2) Measure the carrier frequency with the test equipment in a "call mode". These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming.
- (3) Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements.
- 2. Frequency Stability (Voltage Variation)

The frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer.

This transceiver is specified to operate with an input voltage of between 3.5 V and 4.2 V, with a nominal voltage of 3.7V.

#### **Test setup**



Report No.: RZA1110-1740RF01 Page 24of 38

#### Limits

According to the Sec. 22.355, the frequency stability of the carrier shall be accurate to within 2.5 ppm of the received frequency from the base station.

| Limits | ≤ 2.5 ppm |
|--------|-----------|
|--------|-----------|

#### **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 3, U = 0.01ppm.

#### **Test Result**

#### **GPRS 850**

| Temperature | Test Results (ppm) / 3.7 V Power supply |
|-------------|-----------------------------------------|
| (°C)        | Channel 190                             |
| -30         | 0.0956                                  |
| -20         | 0.0845                                  |
| -10         | 0.0635                                  |
| 0           | 0.0426                                  |
| 10          | 0.0354                                  |
| 20          | 0.0511                                  |
| 30          | 0.0523                                  |
| 40          | 0.0586                                  |
| 50          | 0.0634                                  |

| Voltage | Test Results(ppm) / 20°C |
|---------|--------------------------|
| (V)     | Channel 190              |
| 3.5     | 0.0562                   |
| 3.7     | 0.0511                   |
| 4.2     | 0.0591                   |

Report No.: RZA1110-1740RF01 Page 25of 38

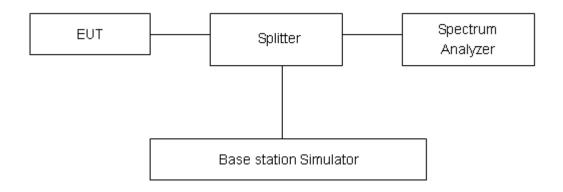
#### **EGPRS 850**

| Temperature | Test Results (ppm) / 3.7 V Power supply |
|-------------|-----------------------------------------|
| (°C)        | Channel 190                             |
| -30         | 0.0562                                  |
| -20         | 0.0524                                  |
| -10         | 0.0426                                  |
| 0           | 0.0241                                  |
| 10          | 0.0362                                  |
| 20          | 0.0329                                  |
| 30          | 0.0358                                  |
| 40          | 0.0412                                  |
| 50          | 0.0394                                  |

| Voltage | Test Results(ppm) / 20°C |
|---------|--------------------------|
| (V)     | Channel 190              |
| 3.5     | 0.0336                   |
| 3.7     | 0.0329                   |
| 4.2     | 0.0345                   |

Report No.: RZA1110-1740RF01 Page 26of 38

#### 2.7. Spurious Emissions at Antenna Terminals


#### **Ambient condition**

| Temperature | Relative humidity |
|-------------|-------------------|
| 21°C ~25°C  | 40%~60%           |

#### **Method of Measurement**

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. For GSM 850,RBW and VBW are set to 100 kHz, Sweep is set to ATUO.

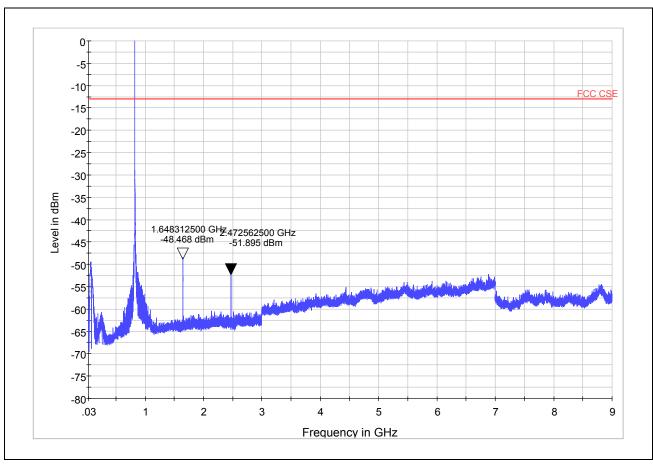
#### **Test setup**



#### Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB."

#### **Measurement Uncertainty**


The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 1.96.

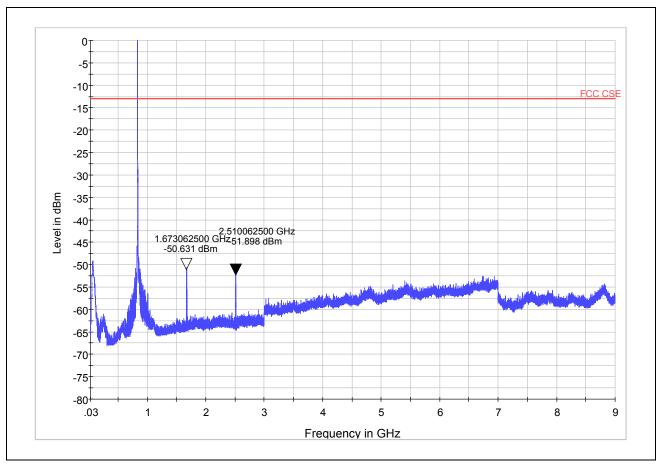
| Frequency     | Uncertainty |
|---------------|-------------|
| 100kHz-2GHz   | 0.684 dB    |
| 2GHz-12.75GHz | 1.407 dB    |

Report No.: RZA1110-1740RF01 Page 27of 38

#### **Test Result**

GSM 850 CH128




Note: The signal beyond the limit is carrier GSM 850 128 Channel 30MHz~9GHz

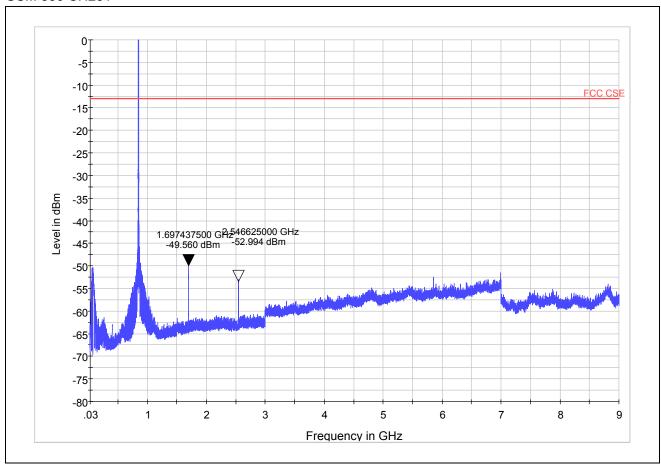
| Harmonic        | TX ch.128<br>Frequency (MHz) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|-----------------|------------------------------|----------------|----------------|----------------|
| 2               | 1648.3125                    | -48.468        | -13            | 35.468         |
| 3               | 2472.5625                    | -51.895        | -13            | 38.895         |
| 4               | 3296.8                       | Nf             | -13            | /              |
| 5               | 4121                         | Nf             | -13            | /              |
| 6               | 4945.2                       | Nf             | -13            | /              |
| 7               | 5769.4                       | Nf             | -13            | /              |
| 8               | 6593.6                       | Nf             | -13            | /              |
| 9               | 7417.8                       | Nf             | -13            | /              |
| 10              | 8242                         | Nf             | -13            | /              |
| Nf: noise floor |                              |                | •              |                |

Note: The other Spurious RF conducted emissions level is no more than noise floor.

Report No.: RZA1110-1740RF01 Page 28of 38

#### GSM 850 CH190




Note: The signal beyond the limit is carrier GSM 850 190 Channel 30MHz~9GHz

| Harmonic        | TX ch.190<br>Frequency (MHz) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|-----------------|------------------------------|----------------|----------------|----------------|
| 2               | 1673.0625                    | -50.631        | -13            | 37.631         |
| 3               | 2510.0625                    | -51.898        | -13            | 38.898         |
| 4               | 3346.4                       | Nf             | -13            | /              |
| 5               | 4183                         | Nf             | -13            | /              |
| 6               | 5019.6                       | Nf             | -13            | /              |
| 7               | 5856.2                       | Nf             | -13            | /              |
| 8               | 6692.8                       | Nf             | -13            | /              |
| 9               | 7529.4                       | Nf             | -13            | /              |
| 10              | 8366                         | Nf             | -13            | /              |
| Nf: noise floor | •                            |                |                |                |

Note: The other Spurious RF conducted emissions level is no more than noise floor.

Report No.: RZA1110-1740RF01 Page 29of 38

#### GSM 850 CH251



Note: The signal beyond the limit is carrier GSM 850 251 Channel 30MHz~9GHz

| Harmonic        | TX ch.251<br>Frequency (MHz) |         |     | Margin<br>(dB) |
|-----------------|------------------------------|---------|-----|----------------|
| 2               | 1697.4375                    | -49.560 | -13 | 36.560         |
| 3               | 2546.625                     | -52.994 | -13 | 39.994         |
| 4               | 3395.2                       | Nf      | -13 | 1              |
| 5               | 4244                         | Nf      | -13 | 1              |
| 6               | 5092.8                       | Nf      | -13 | 1              |
| 7               | 5941.6                       | Nf      | -13 | 1              |
| 8               | 6790.4                       | Nf      | -13 | 1              |
| 9               | 7639.2                       | Nf      | -13 | 1              |
| 10              | 8488                         | Nf      | -13 | 1              |
| Nf: noise floor |                              |         | •   |                |

Note: The other Spurious RF conducted emissions level is no more than noise floor.

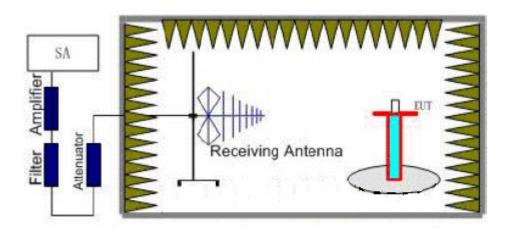
Report No.: RZA1110-1740RF01 Page 30of 38

#### 2.8. Radiates Spurious Emission

#### **Ambient condition**

| Temperature | Relative humidity |
|-------------|-------------------|
| 21°C ~25°C  | 40%~60%           |

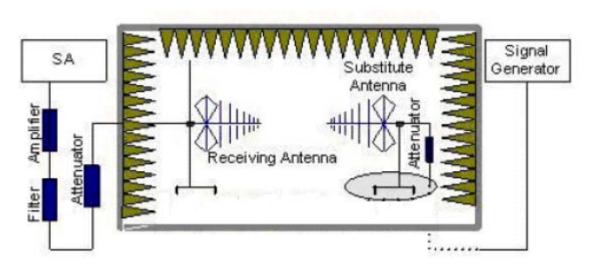
#### **Method of Measurement**


The measurements procedures in TIA -603C are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment.

The procedure of Radiates Spurious Emission is as follows:

#### Step 1:


The measurement is carried out in the semi-anechoic chamber.. EUT was placed on a 0.8 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used while RBW and VBW are both set to 3MHz. During the measurement, the highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna moved up and down over a range from 1 to 4 meters in both horizontally and vertically polarized orientations. The test setup refers to figure below.



Step 2:

A dipole antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator with a adjustable S.G. applied through a Tx cable. Adjust the level of the signal generator output until the value of the receiver reach the previously recorded analyzer power level (LVL). Then The E.R.P. /E.I.R.P. of the EUT can be calculated through the level of the signal generator, Tx cable loss and the gain of the substitution antenna. The test setup refers to figure below.

Report No.: RZA1110-1740RF01 Page 31of 38



E.R.P (peak power) =S.G. - Tx Cable loss + Substitution antenna gain – 2.15. EIRP= E.R.P+2.15

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the antenna is vertical.

#### Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."

| Limit |
|-------|
|-------|

#### **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Report No.: RZA1110-1740RF01 Page 32of 38

#### **Test Result**

GSM 850 CH128

| Harmonic        | TX ch.128<br>Frequency<br>(MHz) | SG<br>(dBm) | Cable<br>Loss<br>(dB) | Gain<br>(dBi) | ERP<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Azimuth (deg) |
|-----------------|---------------------------------|-------------|-----------------------|---------------|-----------------------|----------------|----------------|---------------|
| 2               | 1648.5                          | -55.24      | 2                     | 10.15         | -49.24                | -13            | 36.24          | 180           |
| 3               | 2472.6                          | -56.71      | 2.51                  | 11.35         | -50.02                | -13            | 37.02          | 180           |
| 4               | 3296.8                          | 1           | 1                     | /             | Nf                    | -13            | /              | /             |
| 5               | 4233.4                          | 1           | 1                     | /             | Nf                    | -13            | /              | /             |
| 6               | 4945.5                          | 1           | 1                     | /             | Nf                    | -13            | /              | /             |
| 7               | 5769.8                          | 1           | 1                     | /             | Nf                    | -13            | /              | /             |
| 8               | 6593.6                          | 1           | 1                     | /             | Nf                    | -13            | /              | /             |
| 9               | 7417.8                          | 1           | 1                     | /             | Nf                    | -13            | /              | /             |
| 10              | 8242                            | 1           | 1                     | /             | Nf                    | -13            | /              | /             |
| Nf: noise floor |                                 |             |                       |               |                       |                |                |               |

Note: The other Spurious RF Radiated emissions level is no more than noise floor.

Report No.: RZA1110-1740RF01 Page 33of 38

GSM 850 CH190

| Harmonic       | TX ch.190<br>Frequency<br>(MHz) | SG<br>(dBm) | Cable<br>Loss<br>(dB) | Gain<br>(dBi) | ERP<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Azimuth (deg) |
|----------------|---------------------------------|-------------|-----------------------|---------------|-----------------------|----------------|----------------|---------------|
| 2              | 1673.1                          | -56.83      | 2                     | 10.75         | -50.23                | -13            | 37.23          | 180           |
| 3              | 2509.8                          | -59.44      | 2.51                  | 11.05         | -53.05                | -13            | 40.05          | 180           |
| 4              | 3346.4                          | /           | 1                     | 1             | Nf                    | -13            | /              | /             |
| 5              | 4245.8                          | /           | 1                     | 1             | Nf                    | -13            | /              | /             |
| 6              | 5019                            | /           | 1                     | 1             | Nf                    | -13            | /              | /             |
| 7              | 5856.8                          | /           | 1                     | 1             | Nf                    | -13            | /              | /             |
| 8              | 6692.8                          | /           | 1                     | 1             | Nf                    | -13            | /              | /             |
| 9              | 7529.4                          | /           | 1                     | 1             | Nf                    | -13            | /              | /             |
| 10             | 8366                            | /           | 1                     | 1             | Nf                    | -13            | 1              | /             |
| Nf: noise floo | or                              |             | •                     |               | •                     |                |                | •             |

Note: The other Spurious RF Radiated emissions level is no more than noise floor.

Report No.: RZA1110-1740RF01 Page 34of 38

GSM 850 CH251

| Harmonic        | TX ch.251<br>Frequency<br>(MHz) | SG<br>(dBm) | Cable<br>Loss<br>(dB) | Gain<br>(dBi) | ERP<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Azimuth (deg) |
|-----------------|---------------------------------|-------------|-----------------------|---------------|-----------------------|----------------|----------------|---------------|
| 2               | 1697.6                          | -55.5       | 2                     | 10.15         | -49.5                 | -13            | 36.5           | 180           |
| 3               | 2546.4                          | /           | /                     | /             | Nf                    | -13            | /              | 1             |
| 4               | 3395.2                          | 1           | /                     | /             | Nf                    | -13            | /              | /             |
| 5               | 4244                            | 1           | /                     | /             | Nf                    | -13            | /              | /             |
| 6               | 5092.8                          | 1           | /                     | /             | Nf                    | -13            | /              | /             |
| 7               | 5941.6                          | 1           | /                     | /             | Nf                    | -13            | /              | /             |
| 8               | 6790.4                          | 1           | /                     | /             | Nf                    | -13            | 1              | 1             |
| 9               | 7639.2                          | 1           | /                     | 1             | Nf                    | -13            | 1              | 1             |
| 10              | 8488                            | 1           | /                     | /             | Nf                    | -13            | 1              | 1             |
| Nf: noise floor |                                 |             |                       |               |                       |                |                |               |

Note: The other Spurious RF Radiated emissions level is no more than noise floor.

Report No.: RZA1110-1740RF01 Page 35of 38

### 3. Main Test Instruments


| No. | Name                                       | Туре         | Manufacturer    | Serial<br>Number | Calibration<br>Date | Valid<br>Period |
|-----|--------------------------------------------|--------------|-----------------|------------------|---------------------|-----------------|
| 01  | Base Station<br>Simulator                  | CMU200       | R&S             | 118133           | 2011-05-26          | One year        |
| 02  | Power Splitter                             | SHX-GF2-2-13 | Hua Xiang       | 10120101         | NA                  | NA              |
| 03  | Spectrum Analyzer                          | E4445A       | Agilent         | MY46181146       | 2011-06-07          | One year        |
| 04  | Universal Radio<br>Communication<br>Tester | E5515C       | Agilent         | MY48367192       | 2011-06-03          | One year        |
| 05  | Signal Analyzer                            | FSV          | R&S             | 100815           | 2011-06-27          | One year        |
| 06  | Signal generator                           | SMR27        | R&S             | 1606.6000.02     | 2011-06-27          | One year        |
| 07  | EMI Test Receiver                          | ESCI         | R&S             | 100948           | 2011-06-30          | One year        |
| 08  | Trilog Antenna                             | VUBL 9163    | SCHWARZB<br>ECK | 9163-201         | 2010-06-29          | Two years       |
| 09  | Horn Antenna                               | HF907        | R&S             | 100126           | 2011-07-01          | Two years       |
| 10  | Climatic Chamber                           | PT-30B       | Re Ce           | 20101891         | 2010-09-10          | Three years     |
| 11  | Semi-Anechoic<br>Chamber                   | 9.6*6.7*6.6m | ETS-Lindgren    | NA               | NA                  | NA              |
| 12  | EMI test software                          | ES-K1        | R&S             | NA               | NA                  | NA              |

\*\*\*\*\*END OF REPORT BODY\*\*\*\*\*

Report No.: RZA1110-1740RF01 Page 36of 38

# **ANNEX A: EUT Appearance and Test Setup**

### A.1 EUT Appearance





a: EUT

Report No.: RZA1110-1740RF01 Page 37of 38



b:Battery



c:Charger

Picture 1 EUT and Auxiliary

Report No.: RZA1110-1740RF01 Page 38of 38

### A.2 Test Setup



Picture 2: Radiated Spurious Emissions Test setup