

# **EMC EVALUATION OF THE MICROWAVE RADIO COMMUNICATIONS HDX 1100C2 WITH TRANSMITTER REMOTE CONTROL**

**Date:** 2010 JUNE 2  
**Test Report Number:** TR5629.10

**IN ACCORDANCE WITH  
FCC PART 15 SUBPART B**

**Prepared By:** **NICK ORPHANOS**  
**CHOMERICS TEST SERVICES**  
**77 DRAGON COURT**  
**WOBURN, MASSACHUSETTS 01801**

**Test Technician or Engineer:** Mark S. K.

CTS Approved Signatory: Sam Cramer

This report shall not be reproduced except in full without the written approval of Chomerics Test Services.

**TABLE OF CONTENTS****Revision Record Sheet****List of Definitions/Abbreviations****1.0 General****1.1 Introduction**

- 1.1.1 Purpose
- 1.1.2 Requirements

**1.2 Test Summary**

- 1.2.1 Summary of Recommendations
- 1.2.2 Deviations, Additions, or Exclusions

**1.3 Administrative Data**

- 1.3.1 Test Facility
- 1.3.2 Sample Calculations
- 1.3.3 Equipment Calibration
- 1.3.4 Test Personnel

**1.4 Test Set-up**

- 1.4.1 Test Site Matrix
- 1.4.2 Test Site Descriptions
- 1.4.3 Equipment Under Test
- 1.4.4 Block Diagram

**1.5 Pass/Fail Criteria****2.0 Emissions Tests Performed****2.1 FCC Part 15 Subpart B Radiated Electromagnetic Emissions**

- 2.1.1 Equipment Used
- 2.1.2 Test Conditions
- 2.1.3 Test Method
- 2.1.4 Results
- 2.1.5 Test data
- 2.1.6 Photographic Documentation

**Appendix A: Test Log and Laboratory Environments****Appendix B: Equipment Calibration****Appendix C: Additional Photographic Documentation**

**REVISION RECORD SHEET**

| <b>Revision</b> | <b>Description</b>  | <b>Date</b> | <b>Approval</b> |
|-----------------|---------------------|-------------|-----------------|
| --              | Created Test Report | 2010-06-02  | --              |
|                 |                     |             |                 |
|                 |                     |             |                 |
|                 |                     |             |                 |
|                 |                     |             |                 |
|                 |                     |             |                 |

The latest revision of the report is valid, all prior revisions are superseded.

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**LIST OF DEFINITIONS/ABBREVIATIONS**

|        |                               |
|--------|-------------------------------|
| AC     | Alternating Current           |
| BB     | Broadband                     |
| BW     | Bandwidth                     |
| cm     | Centimeter                    |
| CPU    | Calibrate Prior to Use        |
| dB     | Decibel                       |
| DC     | Direct Current                |
| EMC    | Electromagnetic Compatibility |
| EMI    | Electromagnetic Interference  |
| ER     | Electric Radiation            |
| EUT    | Equipment Under Test          |
| GHz    | GigaHertz                     |
| Hz     | Hertz                         |
| I-face | Interface                     |
| kHz    | KiloHertz                     |
| m      | Meter                         |
| MHz    | MegaHertz                     |
| mm     | Millimeter                    |
| mS     | Millisecond                   |
| mV     | MilliVolt                     |
| MR     | Magnetic Radiation            |
| NB     | Narrowband                    |
| NCR    | No Calibration Required       |
| PLC    | Power Line Conduction         |
| PPS    | Pulses Per Second             |
| RF     | Radio Frequency               |
| uF     | MicroFarad                    |
| uH     | MicroHenry                    |
| uS     | Microsecond                   |
| uV     | MicroVolt                     |
| UWC    | Use With Calibrated Equipment |

## **1.0 GENERAL**

### **1.1 Introduction**

#### **1.1.1 Purpose**

The purpose of this report is to document the performance of the Microwave Radio Communications HDX 1100C2 with Transmitter Remote Control during an electromagnetic interference (EMI) test and record the test requirements and procedures used. At the request of Microwave Radio Communications, the tests were performed by Chomerics Test Services (CTS) of Woburn, Massachusetts. The assessment will determine the compliance or non-compliance with the requirements set up by the Electromagnetic Interference (EMI) Standard FCC Part 15 Subpart B.

The Radiated and Conducted Emission Standard FCC Part 15 Subpart B is designated for Information Technology Equipment (ITE).

Sal Blatti and Steve LeBlanc from Microwave Radio Communications were present during testing. Testing was performed on May 17, 2010 under purchase order number 70201234.

#### **1.1.2 Requirements**

The requirements for the sequence of tests performed on the HDX 1100C2 with Transmitter Remote Control are as follows:

### **FCC Part 15 Subpart B Radiated Electromagnetic Emissions**

FCC Part 15 Subpart B, Class B radiated emission requirements for Information Technology Equipment (ITE).



## 1.2 TEST SUMMARY

The terms "Passed" or "Failed" in this section are intended to guide the reader as to whether or not the EUT met the minimum requirements that can be interpreted from the FCC Part 15 Subpart B Standard as defined in Section 1.5. The "Results" paragraph in each test section to follow and the test data sheets will outline specifically how the EUT performed during each test.

FCC Part 15 Subpart B Radiated Emissions

PASSED

### 1.2.1 Summary of Recommendations

The Microwave Radio Communications HDX 1100C2 with Transmitter Remote Control will require no modifications in order to ensure compliance with the Electromagnetic Interference Standard FCC Part 15 Subpart B.

Please note that if any modifications and or fixes were implemented to the EUT to achieve compliance, other approaches to solving the problem may exist. In addition, any EMI/EMC shielding products listed in this report may be substituted with an equivalent.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning any product in the product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

### 1.2.2 Deviations, Additions, or Exclusions

The HDX 1100C2 with Transmitter Remote Control is powered by DC voltage; based on this fact, the device is not applicable to the requirements of FCC Part 15 Subpart B conducted emissions.

In addition, the HDX 1100C2 with Transmitter Remote Control was tested for radiated emissions from 9kHz to 40GHz. FCC Part 15, Subpart C section 209 limits were applied for measurements made in the frequency bands outside the Part 15, Subpart B limits.

## 1.3 Administrative Data

### 1.3.1 Test Facility

Chomerics Test Services in Woburn, Massachusetts is an American Association for Laboratory Accreditation (A2LA) accredited facility as defined on Certification Number 1980-01. The Scope of Accreditation is limited to the following tests:

#### ***Emissions***

|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiated (up to 18 GHz)<br>+ Conducted | Code of Federal Regulation (CFR) 47, FCC Part 15 (Subpart B, ITE devices) using ANSI C63.4 (2001, 2003); CISPR 11; EN 55011; KN 11 (RRA Announce 2008-11, Dec. 16, 2008); CISPR 14-1; EN 55014-1; KN 14-1 (RRA Announce 2008-11, Dec. 16, 2008); CISPR 15; EN 55014-1; KN 14-1 (RRA Announce 2008-11, Dec. 16, 2008); CISPR 15; EN 55015; CNS 14115; CISPR 22; EN 55022; AS/NZS CISPR 14; AS/NZS CISPR 11; AS/NZS CISPR 22; CNS 13438; CNS 13803; CNS 13783-1; VCCI V-3; CAN/CSA CISPR 22; KN 22 (RRA Announce 2008-11, Dec. 16, 2008) |
| Current Harmonics                      | EN 61000-3-2:2006; IEC 61000-3-2:2005; AS/NZS 61000.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Voltage Fluctuations + Flicker         | EN 61000-3-3:2005+A3:2006; IEC 6100-3-3:2004+A1:2001+A2:2005; AS/NZS 61000.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Generic Standards                      | EN61000-6-3:2007; IEC61000-6-3:2006; EN61000-6-4:2007; IEC61000-6-4:2006                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### ***Immunity***

|                                                                |                                                                                                                                                                                                                                      |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrostatic Discharge (ESD)                                  | EN61000-4-2:1995+A1:1998+A2:2001; IEC61000-4-2:1995+A1:1998+A2:2000; IEC 61000-4-2:2001; KN 61000-4-2 (RRA Announce 2008-12, Dec. 16, 2008); AS/NZS 61000.4.2                                                                        |
| Radiated Immunity                                              | EN61000-4-3:1996+A1:2002; EN61000-4-3:2006; IEC61000-4-3:1995+A1:2002; IEC 61000-4-3:2007; KN 61000-4-3 (RRA Announce 2008-12, Dec. 16, 2008); AS/NZS 61000.4.3                                                                      |
| Electrical Fast Transient/Burst                                | EN 61000-4-4:1995+A1:2000+A2:2001; EN 61000-4-4: 2004; EN 61000-4-4:2005+A1:2008; IEC 61000-4-4:1995+A1:2000 + A2:2001; IEC 61000-4-4:2004; IEC 61000-4-4:2007; KN 61000-4-4 (RRA Announce 2008-12, Dec. 16, 2008); AS/NZS 61000.4.4 |
| Surge Immunity                                                 | EN 61000-4-5:1995+A1:2001; EN 61000-4-5:2006; IEC 61000-4-5:1995+A1:2000; IEC 61000-4-5:2005; KN 61000-4-5 (RRA Announce 2008-12, Dec. 16, 2008); AS/NZS 61000.4.5                                                                   |
| Conducted Immunity                                             | EN 61000-4-6:1996+A1:2001; IEC 61000-4-6:2007; IEC 61000-4-6:1996+A1:2000; IEC 61000-4-6: 2003+A1:2004; IEC 61000-4-6:2006; KN 61000-4-6 (RRA Announce 2008-12, Dec. 16, 2008); AS/NZS 61000.4.6                                     |
| Power Frequency Magnetic Field Immunity                        | EN 61000-4-8:1993+A1:2001; IEC 61000-4-8:1993+A1:2000; IEC 61000-4-8:2001+A1:2000; KN 61000-4-8 (RRA Announce 2008-12, Dec. 16, 2008); AS/NZS 61000.4.8                                                                              |
| Voltage Dips, Short Interruptions, and Line Voltage Variations | EN 61000-4-11:1994+A1:2000; IEC 61000-4-11:1994+A1:2000; EN 61000-4-11:2004; IEC 61000-4-11:2004; KN 61000-4-11 (RRA Announce 2008-12, Dec. 16, 2008); AS/NZS 61000.4.11                                                             |

**Generic Standards  
Product Standards**

EN61000-6-1:2007;IEC61000-6-1:2005;EN61000-6-2:2007;IEC61000-6-2:2005  
IEC/EN 60601-1-2, KN 60601-1-2 (RRA Announce 2008-12, Dec. 16, 2008); EN  
300 386, EN 61326-1; CISPR 24; EN 55024; KN 24 (RRA Announce 2008-12,  
Dec. 16, 2008); EN 50083-2; EN 55103-1; EN 55103-2; EN 61547; EN 55014-2;  
CISPR 14-2; KN 14-2 (RRA Announce 2008-12, Dec. 16, 2008)

Any tests in this report that are not listed above are not covered by the A2LA Accreditation.

All **test(s)** included within this report are covered under Chomerics' A2LA Scope of Accreditation.

Chomerics' Open Area Test Site B is listed by the Federal Communications Corporation (FCC) for Radiated and Conducted Emissions testing under FCC Registration number 90499.

Chomerics' Open Area Test Site B is accredited for Radiated and Conducted Emissions through Industry Canada under file number IC2959B.

Chomerics' Open Area Test Site B is accredited to the Voluntary Control Council for Interference (VCCI) for Radiated and Conducted Emissions testing under file R-2454 (3 and 10 meters) and C-2689 respectively.

Chomerics test facility operates under the current revision of Chomerics Quality Assurance (QA) Manual Document Number QA002.

The QA Manual has been constructed to reflect a quality program in accordance with the requirements of the National Institute of Standards and Technology (NIST), ISO 9002, ISO Guide 25, NIST Handbook 150, EN 45001, MIL-I-45208A, MIL-STD-461D, 462D and Chomerics Quality Assurance Program (QAP).

The QA Manual outlines and describes the procedures for establishing and maintaining the quality of analysis, research, inspection, and testing within Chomerics Test Service (CTS).

This test report does not represent an endorsement by the U.S. Government.

The results and/or conclusions within this test report refer and/or apply only to the unit(s) tested as defined by this report.

Measurements performed for this test are traceable to the National Institute of Standards and Technology (NIST) based on the fact that all test equipment used for the measurements were previously calibrated using standards traceable to NIST.

**MEASUREMENT UNCERTAINTY**

Chomerics Test Services measurement uncertainty is based on a probability of approximately 95% (2 $\Sigma$ ); based on this fact, the manufacturer for the equipment under test can make an informative assessment with respect to conformance to an applicable standard based on the level of uncertainty of the measurement. Chomerics Test Services Measurement Uncertainty documentation is available upon request.

CISPR tests performed in Test Chamber A and Open Area Test Site B are in compliance to the measurement uncertainty limit described in CISPR 16-4-2 Section 4.1 Table 1 Values for  $U_{CISPR}$ . Based on this fact, the computed values for measurement uncertainty need not be tabulated into Chomerics test and measurement data.

| TEST                                                | LOCATION              | Measurement Uncertainty (dBuV) |
|-----------------------------------------------------|-----------------------|--------------------------------|
| Conducted Emissions 9kHz - 150kHz                   | Test Chamber A        | 3.61                           |
| Conducted Emissions 150kHz - 30MHz                  | Test Chamber A        | 3.23                           |
| Radiated Emissions 30MHz – 1GHz at 3 Meter/10 Meter | Open Area Test Site B | 4.57                           |
| Conducted Emissions 9kHz - 150kHz                   | Open Area Test Site B | 3.61                           |
| Conducted Emissions 150kHz - 30MHz                  | Open Area Test Site B | 3.05                           |

### 1.3.2 Sample Calculation

#### Radiated Emissions

The tabular data listed in the report is the highest signal detected during the scan. At a minimum six of the highest signals will be selected and maximized. The tabular data sheet shall contain the measured value “QP-Value”, field level, limit, margin to the limit, antenna height, antenna polarity and turn table azimuth.

The field level is the final value that will be compared to the limit in order to determine if the EUT is in compliance. The field level will be calculated by the following for each of the signals maximized:

$$\text{Field Level (dBuV/m)} = [107 - \text{Measured level (dBm)}] + \text{Antenna Factor/Cable Loss (dB)}$$

$$\text{Field Level dBuV} = \text{Measured Value dBuV} + \text{Antenna Factor dB} + \text{Cable Loss dB}$$

$$37\text{dBuV} = 30\text{dBuV} + 5\text{dB} + 2\text{dB}$$

The margin to the limit shall be calculated by subtracting the field level to the limit. The margin to the limit shall be calculated by the following for each of the signal maximized.

$$\begin{aligned} \text{Margin to Limit dB} &= \text{Field Level dBuV} - \text{Limit dBuV} \\ -3\text{dB} &= 37\text{dBuV} - 40\text{dBuV} \end{aligned}$$

#### Conducted Emissions

The tabular data listed in the report is the highest signal detected during the scan. At a minimum six of the highest signals will be selected and maximized. The tabular data sheet shall contain the measured value, final level, limit, margin to the limit, LISN factor

The final value will be compared to the limit in order to determine if the EUT is in compliance. The final value will be calculated by the following for each of the maximized signals.

$$\text{Field Level (dBuV/m)} = [107 - \text{Measured level (dBm)}] + \text{Antenna Factor/Cable Loss (dB)}$$

$$\text{Final Value dBuV} = \text{measured value dBuV} + \text{LISN Factor dB} + \text{cable loss (dB)}$$

$$52\text{dBuV} = 49\text{dBuV} + 1\text{dB} + 2\text{dB}$$

The margin to the limit shall be calculated by subtracting the final value to the limit. The margin to the limit shall be calculated by the following for each signal maximized.

$$\begin{aligned} \text{Margin to Limit dB} &= \text{Final Value dBuV} - \text{Limit dBuV} \\ +12\text{dB} &= 52\text{dBuV} - 40\text{dBuV} \end{aligned}$$

### **1.3.3 Equipment Calibration**

The calibration of Chomerics test facility equipment is controlled under the current edition of Chomerics Laboratory Test Equipment Calibration Manual Document Number QA001.

The test equipment used throughout this test sequence conforms to laboratory calibration standards, MIL-STD-45662, traceable to the National Institute of Standards and Technology (NIST). The date of the last calibration is listed in Appendix B for the applicable equipment.

All test equipment is calibrated in one year intervals.

### **1.3.4 Test Personnel**

The test personnel performing or supervising the tests are accredited by the National Association of Radio and Telecommunications Engineers, Inc. (NARTE) as Certified Electromagnetic Compatibility Engineers (N.C.E.) and Technicians (N.C.T.).

## **1.4 Test Set-up**

### **1.4.1 Test Site Matrix**

The specific test locations used for the emissions testing of the Microwave Radio Communications HDX 1100C2 with Transmitter Remote Control are as follows: (Refer to Section 1.4.2 for test site descriptions).

#### **Emissions Test**

FCC Part 15 Subpart B Radiated Emissions

#### **Test Site**

Open Area Test Site B

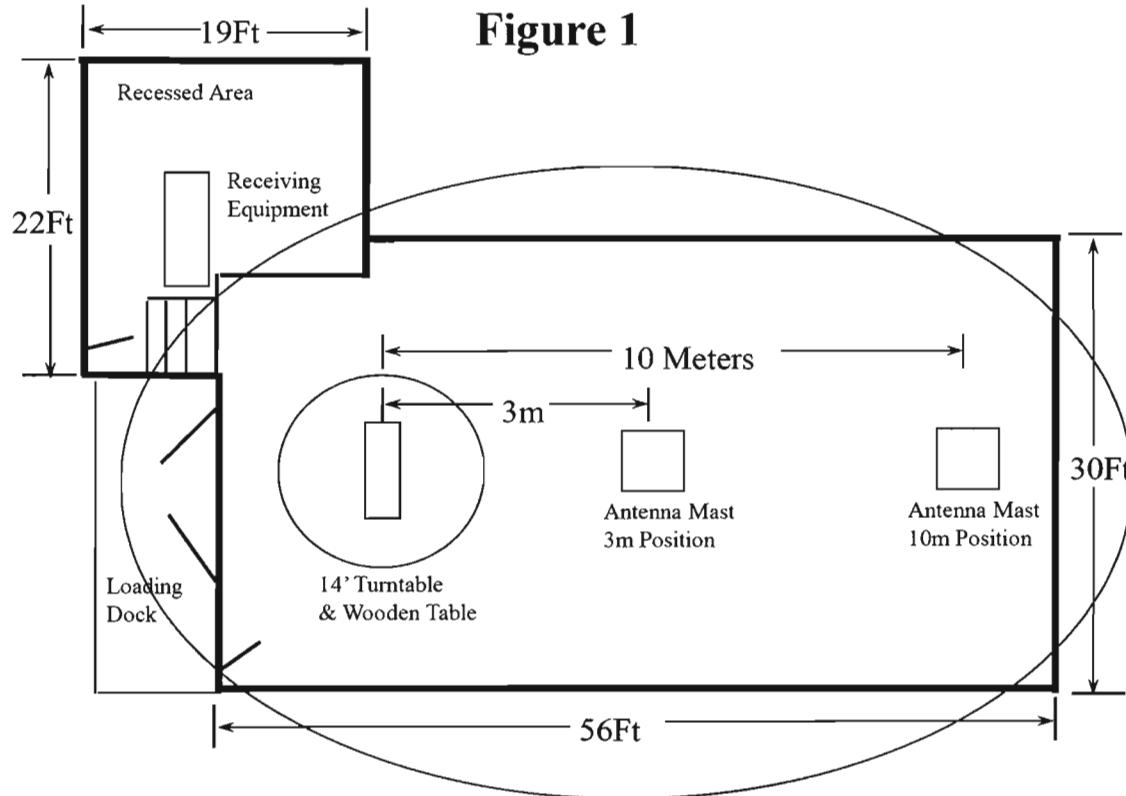
### **1.4.2 Test Site Descriptions**

The following is a list of test sites and descriptions of each. Refer to Section 1.4.1 for specific test sites used for testing.

**Open Area Test Site B:** Chomerics' Open Area Test Site "B" if used for this test program is located in the lower parking lot behind the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 1). Parking is permitted on one side of Test Site "B" at a discrete distance from the imaginary ellipse.

The Open Area Test Site "B" enclosure is a wooden structure measuring 56 x 30 x 25 feet in size with galvanized steel sheet metal used as the ground plane. The structure is sized to allow both 3 and 10 meter measurements and is heated and/or air conditioned.

The structure used to support equipment under test is a 14 foot diameter motorized turntable. The sheet metal surface is flush with the ground plane. To ground the turntable, copper fingers (1" x 1.5") are mounted around the outer edge of the turntable using machine screws. The spring fingers are equally spaced and provide a uniform interface between the turntable metal surface and ground plane. For tabletop equipment, a wooden table measuring 1.5 x 1 meter in size is positioned at the center of the turntable, at the proper height above the ground plane.


The addition at the end of the Open Area Test Site "B" is the location for the test personnel and equipment to ensure they are outside the imaginary ellipse.

The available AC power within Open Area Test Site "B" is 120V 60Hz Single Phase 60Amps; 208V 60Hz Three Phase 60Amps; 208V 60Hz Single Phase 60Amps; 230V 50Hz Single Phase 50Amps.

This Site is listed with the Federal Communications Commission (FCC) and approved by BSMI, VCCI, AUSTEL and CSA.

### OPEN AREA TEST SITE B

**Figure 1**



**Test Chamber A:** Chomerics' Test Chamber "A", if used for this test program, is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 2). The shielded enclosures (test chambers) were manufactured and installed by Universal Shielding Corporation of Deer Park, New York. Attenuation tests have demonstrated that the shielded enclosures meet the attenuation requirements of MIL-STD-285 and NSA 65-6. The main test chamber is 22 x 10 x 10 feet in size with an adjacent enclosure that is 8 x 8 x 8 feet in size. The adjacent room used for support equipment and the main test chamber are connected together and referenced to the same single point ground.

When needed for tabletop equipment, a wooden table measuring 3 x 9 feet in size is positioned within the test chamber. When used for MIL-STD-461D tests the tabletop surface is covered with a copper sheet and grounded to the test chamber wall so that the resistance is less than 2.5 milliOhms.

The power line filters supplying the power to the enclosure provide 100dB of attenuation from 10kHz to 10GHz. The adjacent room, used for support equipment, and the main test chamber have independent AC power obtained from independent AC power line filters.

The available AC power in Test Chamber "A" is 120V 60Hz Single Phase 100Amps; 120V 400Hz Three Phase 50Amps; 208V 60Hz Three Phase 100Amps; 208V 60Hz Single Phase 100Amps; 230V 50Hz Single Phase 50Amps.

**Test Chamber B:** Chomerics' Test Chamber "B", if used for this test program, is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 2). The shielded enclosures (test chambers) were manufactured and installed by Universal Shielding Corporation of Deer Park, New York. Attenuation tests have demonstrated that the shielded enclosures meet the attenuation requirements of MIL-STD-285 and NSA 65-6.

The main test chamber is 22 x 10 x 10 feet in size with an adjacent enclosure that is 8 x 8 x 8 feet in size. The adjacent room used for support equipment and the main test chamber are connected together and referenced to the same single point ground.

Test Chamber "B" is lined with Rantec ferrite absorber tiles FT-100. All surfaces of the room are lined with FT-100 material. The floor is lined with removable tiles.

This absorber material allows the test chamber to meet the 0-6dB field uniformity requirements of IEC 1000-4-3 and ENV 50140.

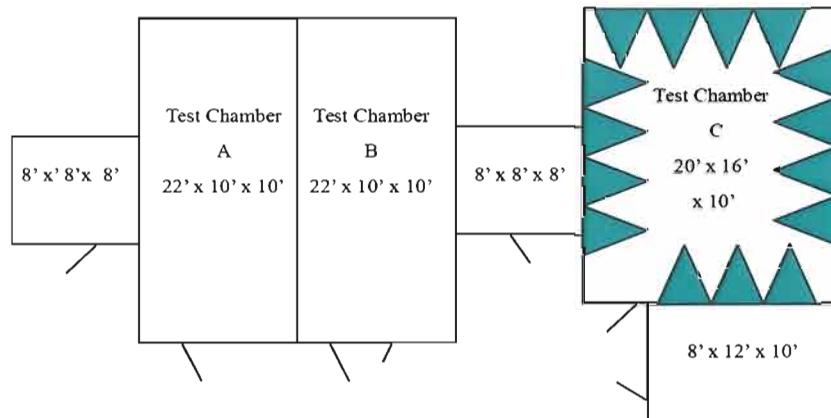
There are two access panels between the main test chamber and the support room. The access panels are covered with absorber tiles. The absorber tiles can be removed from the access panels.

The power line filters supplying the power to the enclosures provide 100dB of attenuation from 10kHz to 10GHz. The adjacent rooms used for support equipment and the main test chamber have independent AC power obtained from independent AC power line filters.

The available AC power in Test Chamber "B" is 120V 60Hz Single Phase 30Amps; 208V 60Hz Three Phase 30Amps and 230V 50Hz Single Phase 30Amps: A wooden table 3 x 6 feet in size is used for tabletop equipment.

**Test Chamber C:** Chomerics' Test Chamber "C", if used for this test program, is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 2). The shielded enclosures (test chambers) were manufactured and installed by Universal Shielding Corporation of Deer Park, New York.

Attenuation tests have demonstrated that the shielded enclosures meet the attenuation requirements of MIL-STD-285 and NSA 65-6. The main test chamber is 16 x 20 x 10 feet in size with two adjacent enclosures on either side which are 8 x 8 x 8 and 8 x 12 x 10 feet in size, respectively.


Test Chamber "C" is lined with Emerson-Cuming RF absorber material. This absorber material meets the following absorption specifications: 80MHz 6dB, 300MHz 30dB, 500MHz 35dB, 1GHz 40dB, and 3 to 24 GHz 50dB. Each of the two adjacent rooms used for support equipment and the main test chamber are connected together and referenced to the same single point ground.

When needed for tabletop equipment, a wooden table measuring 3 x 9 feet in size is positioned within the test chamber. When used for MIL-STD-461D tests, the tabletop surface is covered with a copper sheet and grounded to the test chamber wall so that the resistance is less than 2.5 milliohms. When used for radiated electromagnetic field tests, to some standards, the copper tabletop surface is removed.

The available AC power in Test Chamber "C" is 120V 60Hz AC Single Phase 60Amps; 230V 50Hz AC Single Phase 50Amps; 115V 400Hz AC Three Phase 30Amps (through access panel); 208V 60Hz AC Three Phase AC 30Amps (through access panel).

The power line filters supplying the power to the enclosures provide 100dB of attenuation from 10kHz to 10GHz. Each of the two adjacent rooms used for support equipment and the main test chamber has independent AC power obtained from independent AC power line filters.

## Immunity Lab Layout Figure 2



Key:



= Emerson-Cuming RF absorber material

**EC Lab A:** Chomerics EC Lab "A" is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts.

EC Lab "A" is a typical room measuring 20 x 16 feet with an aluminum sheet metal (8 x 12 feet in size) in the center of the floor for a ground plane. When needed for tabletop equipment, a wooden table (0.8 meters in height) is placed on the metal ground plane that extends at least 0.1m beyond all sides of the table. A removable 3 x 6 foot sheet of aluminum is placed on top of the wooden table when a horizontal coupling plane is required.

The appropriate connections, as needed for each test, are used to interconnect the table horizontal coupling plane, ground plane floor, test equipment, and earth ground.

The available AC power in the EC Lab "A" is 120V 60Hz AC Single Phase 60Amps; 230V 50Hz AC Single Phase 50Amps; and 208V 60Hz AC Three Phase AC 30Amps.

The EC Lab "A" is equipped with air and water services for use with equipment that requires it.

The humidity in EC Lab "A" can be automatically controlled in the range of 20% to 60%.

**EC Lab B:** Chomerics' EC Lab "B" is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts.

EC Lab "B" is a typical room measuring 12x14 feet with a copper sheet (6x8 feet in size) in the center of the floor for a ground plane. When needed for tabletop equipment, a wooden table (0.8 meters in height) is placed on the metal ground plane that extends at least 0.1m beyond all sides of the table. A removable 3 x 6 foot sheet of aluminum is placed on top of the wooden table when a horizontal coupling plane is required.

The appropriate connections, as needed for each test, are used to interconnect the table horizontal coupling plane, ground plane floor, test equipment, and earth ground.

The available AC power in the EC Lab "B" is 120V 60Hz AC Single Phase 60Amps, 230V 50Hz AC Single Phase 50Amps; and 208V 60Hz AC Three Phase AC 30Amps.

The humidity in EC Lab "B" can be automatically controlled in the range of 20% to 60%.

**Safety Lab:** The Safety Test Laboratory is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts.

The power in the test lab consists of a 208 Volt, three phase, 200 Amp distribution panel which feeds a power bus which has various types of American and European single and three phase receptacles. The largest of which is a 100 Amp three- phase service with its own disconnect switch. This distribution panel also provides power to a programmable power source capable of providing three- phase power up to 312 V Line to Neutral at up to 10 kVA total power. The output of this programmable power source also feeds a distribution panel that feeds a power bus with various types of American and European single and three phase receptacles.

The lab contains a 32 cubic foot temperature and humidity chamber that is required by most safety standards for temperature and humidity preconditioning of equipment.

### 1.4.3 Equipment Under Test

The Microwave Radio Communications HDX 1100C2 (S/N 8999999) with Vislink Transmitter Remote Control (S/N AA09300391) is an aircraft transmitter.

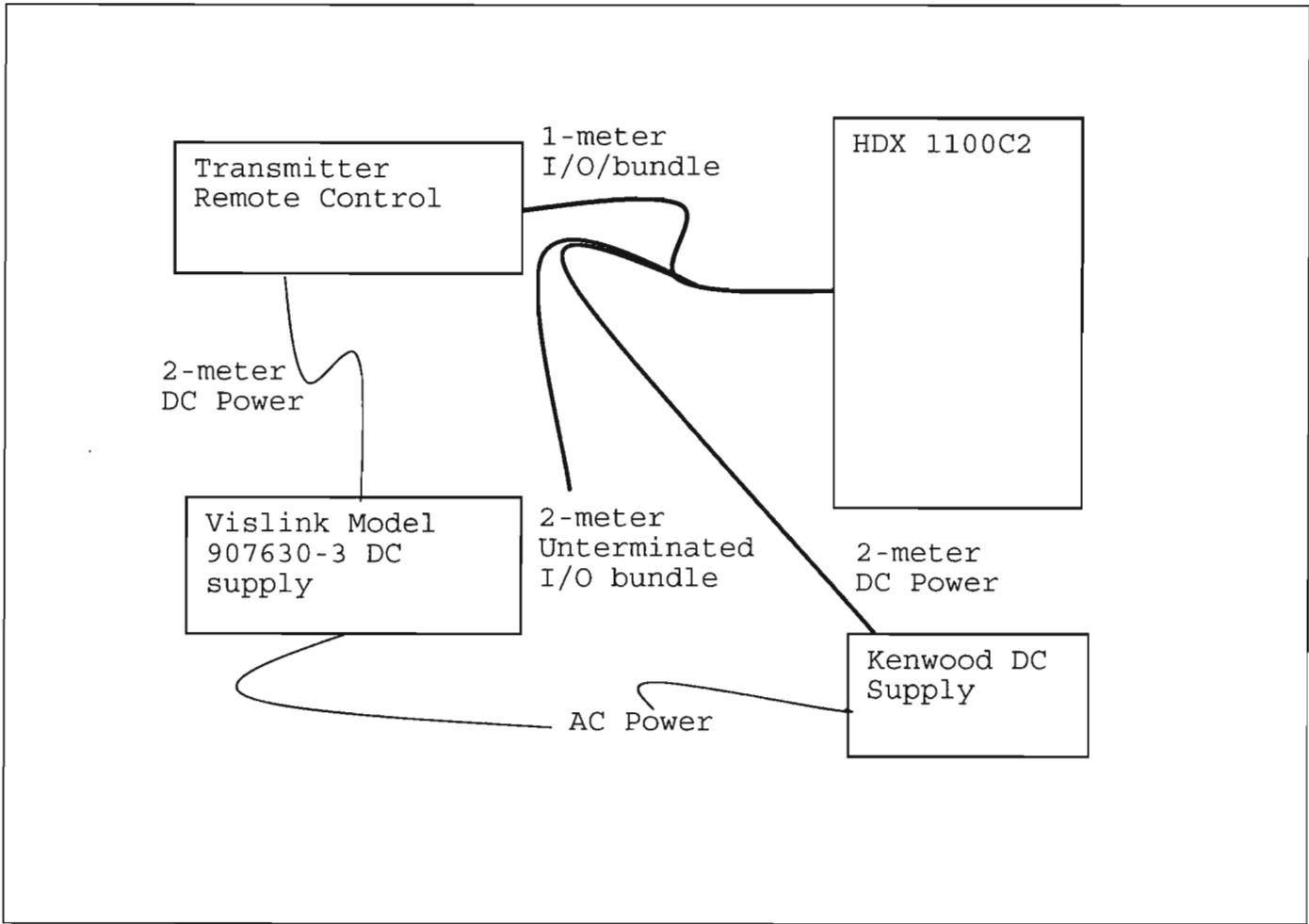
The support equipment needed to run the HDX 1100C2 with Transmitter Remote Control in the High Power +30dBm mode of operation consisted of the following:

- a. Kenwood PR36-1.2A Regulated DC Power Supply
- b. Vislink Model 907630-3 DC supply(S/N 0511ST0000300G)

The HDX 1100C2 with Transmitter Remote Control operates on +28VDC power supplied by Vislink Model 907630-3 DC supply. The Vislink Model 907630-3 DC supply operates on 120VAC/60Hz power supplied by Chomerics Test Services. The Vislink Transmitter Remote Control operates on +28VDC power supplied by the Kenwood PR36-1.2A Regulated DC Power Supply. The Kenwood PR36-1.2A Regulated DC Power Supply operates on 120VAC/60Hz power supplied by Chomerics Test Services.

There are four I/O connections. They are as follows:

| Quantity | Name/Type          | Length (m) | Shielded? | Ferrite? | Termination             |
|----------|--------------------|------------|-----------|----------|-------------------------|
| 2        | DC Power           | 2.0        | No        | No       | EUT Power → Supply      |
| 1        | I/O/Control Bundle | 1.0        | No        | No       | Remote → HDX            |
| 1        | I/O/Control Bundle | 2.0        | No        | No       | Not terminated from HDX |


The High Power +30dBm mode of operation was used for emissions tests. The antenna port was terminated with a Narda 20 Watt  $50\Omega$  load. The HDX 1100C2 with Transmitter Remote Control was monitored during the test by Nick Orphanos of Chomerics Test Services.

The equipment under test was setup as illustrated on CTS-Form-014.

#### 1.4.4 Block Diagram

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
EQUIPMENT: HDX 1100C2 WITH TRANSMITTER  
REMOTE CONTROL

DATE: 2010-05-17  
TESTED BY: NICK ORPHANOS



**System Configuration Block Diagram – Provide a line drawing identifying the EUT, simulators, support equipment, I/O cables, and any other pertinent components to be used during testing. Use a dashed line to separate the equipment in the testing field versus equipment outside the testing field.**

#### FORM CTS-014

#### 1.5 Pass/Fail Criteria

For the FCC Part 15 Subpart B tests performed in Open Area Test Site B, the emission levels shall not exceed the Class B limits in the frequency range of 30MHz and 25MHz for the radiated test.

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**2.0 EMISSIONS TESTS PERFORMED****2.1 FCC Part 15 Subpart B Radiated Electromagnetic Emissions****2.1.1 Equipment Used**

| <b>Test Equipment</b> |                                         | <b>Asset #</b> | <b>Serial #</b> |
|-----------------------|-----------------------------------------|----------------|-----------------|
| X                     | Rohde and Schwarz ESCI7                 | 902            | 100747          |
| X                     | Agilent E4440A Spectrum Analyzer        | 704            | US41421236      |
| X                     | Chomerics 1 GHz to 18 GHz L.N.A. System | 800            | 1065365         |
| X                     | EMCO 3115 Double Ridged Guide           | 374            | 2174            |
| X                     | EMCO 6512 Loop Antenna                  | 787            | 00051667        |
| X                     | ETS 3142c Biconolog Antenna             | 769            | 00046673        |
| X                     | Hewlett Packard 8447D Pre Amp           | 12             | 2944A06414      |

(See Appendix B for Equipment Calibration)

**2.1.2 Test Conditions**

Radiated emissions testing 30MHz through 1GHz was performed with the EUT set up on a wooden table above the turntable at a distance of 10 meters from the Biconolog antenna within Open Area Test Site B.

Radiated emissions testing 9kHz through 30MHz was performed with the EUT set up on a wooden table above the turntable at a distance of 3 meters from the Loop Antenna within Open Area Test Site B.

Radiated emissions testing 1GHz through 25GHz was performed with the EUT set up on a wooden table above the turntable at a distance of 3 meters from the Horn antennas within Open Area Test Site B.

The Microwave Radio Communications HDX 1100C2 with Transmitter Remote Control was configured to operate in the High Power +30dBm mode of operation to maximize the emissions. The HDX 1100C2 with Transmitter Remote Control was set up and powered by +28VDC for radiated emission tests. The worst case signals detected were recorded.

### **2.1.3 Test Method**

The test method of FCC Part 15 Subpart B was followed for Class B equipment. For the radiated emission measurements, a manual scan was performed from 150kHz to 40GHz. During this scan, the antenna, turntable and the EUT's cable positions were manipulated to maximize the emission levels in a given frequency band displayed on the spectrum analyzer.

### **2.1.4 Results**

The Microwave Radio Communications HDX 1100C2 with Transmitter Remote Control with the meets the requirements for radiated emissions as required by FCC Part 15 Subpart B, Class B equipment.

The worst case signal detected is 1.5 dB below the limit at 768.0MHz frequency.

## 2.1.5 Test Data

### RADIATED E FIELD EMISSION MEASUREMENTS

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS

DATE: 2010-05-17

EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
CONTROL

TEST NUMBER: 1

TESTED BY: NICK ORPHANOS

COUPLING DEVICE: ANTENNAS

OPERATING MODE: HIGH POWER +30dBm

TEST SPEC: FCC PART 15 SUBPART B

BANDWIDTH: [ X ] 100 KHZ (PEAK)/120 KHZ (QP)

PROCEDURE: ANSI C63.4

BANDWIDTH: [ X ] 10KHZ (PEAK)/9KHZ (QP)

OTHER (SPECIFY)

| FREQUENCY<br>MHz | PEAK<br>MEASURED<br>LEVEL<br>dBuV | QUASI-PEAK<br>MEASURED<br>LEVEL<br>dBuV | ANTENNA<br>HEIGHT<br>(METERS) | TURNTABLE<br>AZIMUTH<br>(DEGREES) | ANTENNA<br>H/V | ANTENNA<br>FAC/CABLE<br>Loss dB | FIELD LEVEL<br>dBuV/m ♦ | LIMIT<br>dBuV/m<br>(QP) |
|------------------|-----------------------------------|-----------------------------------------|-------------------------------|-----------------------------------|----------------|---------------------------------|-------------------------|-------------------------|
| 0.223            | 2.5                               | --                                      | 1.0                           | 180                               | --             | 60.3                            | <b>62.8</b>             | <b>112.7*</b>           |
| 159.997          | 12.0                              | --                                      | 1.23                          | 270                               | V              | 12.0                            | <b>24.0</b>             | <b>33.0</b>             |
| 166.8            | --                                | 12.5                                    | 1.23                          | 45                                | V              | 11.8                            | <b>24.3</b>             | <b>33.0</b>             |
| 233.516          | 18.0                              | --                                      | 1.24                          | 0                                 | V              | 14.8                            | <b>32.8</b>             | <b>35.5</b>             |
| 255.997          | 8.5                               | --                                      | 3.18                          | 45                                | H              | 15.7                            | <b>24.2</b>             | <b>35.5</b>             |
| 300.2            | --                                | 15.0                                    | 1.24                          | 0                                 | V              | 16.0                            | <b>31.0</b>             | <b>35.5</b>             |
| 324.0            | --                                | 15.5                                    | 1.25                          | 0                                 | V              | 17.9                            | <b>33.4</b>             | <b>35.5</b>             |
| 366.9            | --                                | 12.5                                    | 1.24                          | 45                                | V              | 20.4                            | <b>32.7</b>             | <b>35.5</b>             |
| 768.0            | --                                | 5.0                                     | 1.40                          | 90                                | H              | 28.8                            | <b>34.0</b>             | <b>35.5</b>             |
|                  |                                   |                                         |                               |                                   |                |                                 |                         |                         |
|                  |                                   |                                         |                               |                                   |                |                                 |                         |                         |
|                  |                                   |                                         |                               |                                   |                |                                 |                         |                         |

♦All signals greater than 3dB from the limit are calculate to the nearest whole number.

NOTES: Applicable FCC Part 15 Subpart B limits for the device under test were from 30MHz through 25GHz.

\*FCC Part 15 Subpart C Section 15.209 limits were applied outside the Subpart B range.

### FORM CTS-DS-001R

Microwave Radio Communications HDX 1100C2

Document #: TR5629.10

Date: 2010-06-02

## Test Data

## RADIATED E FIELD EMISSION MEASUREMENTS

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
CONTROL  
TESTED BY: NICK ORPHANOS  
OPERATING MODE: HIGH POWER +30DBM  
BANDWIDTH: [ X ] 1MHZ (AVG)  
OTHER (SPECIFY)

DATE: 2010-05-17  
TEST NUMBER: 1

COUPLING DEVICE: ANTENNAS  
TEST SPEC: FCC PART 15 SUBPART B  
PROCEDURE: ANSI C63.4

◆ All signals greater than 3dB from the limit are calculate to the nearest whole number.

## NOTES:

## FORM CTS-DS-001R

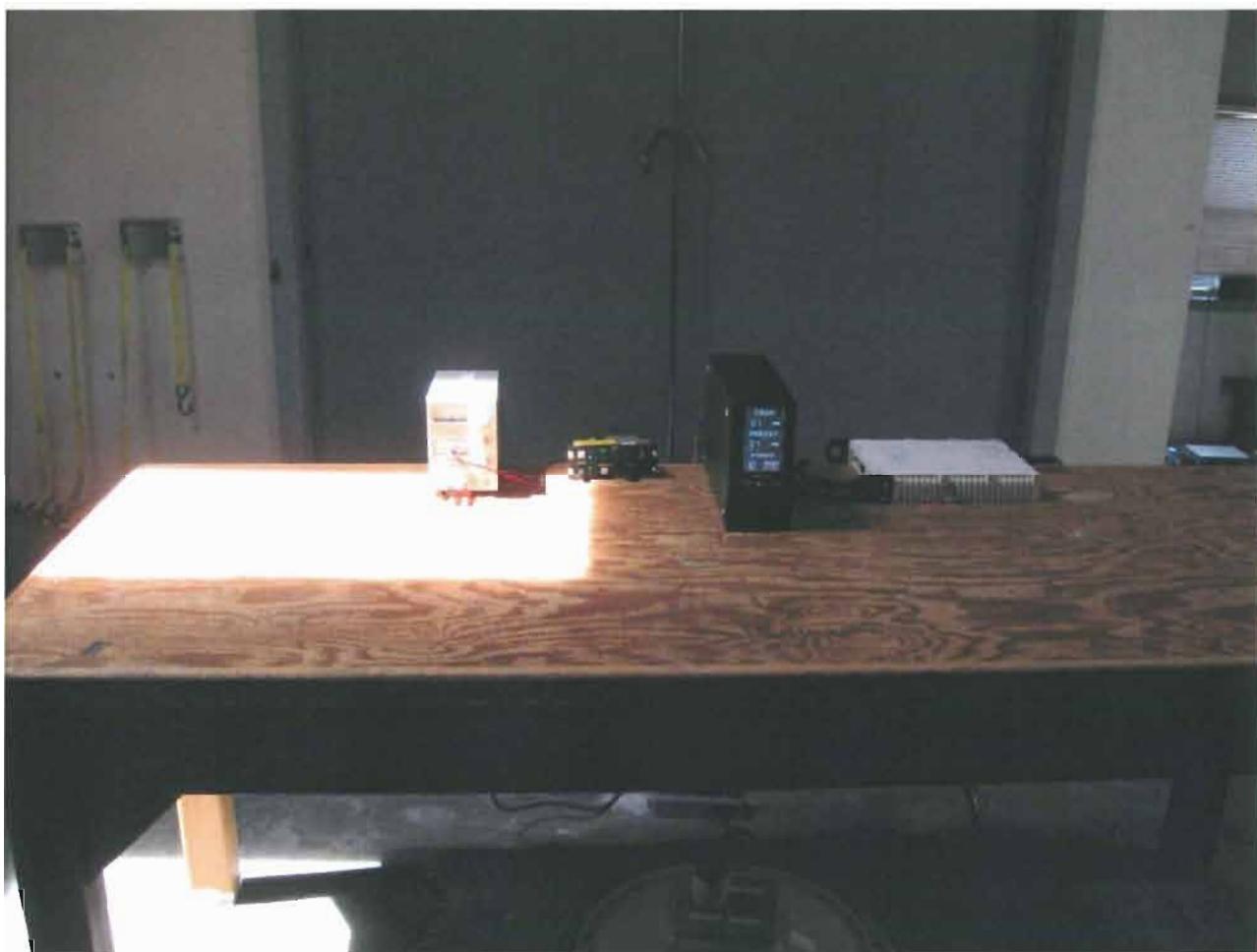
Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**2.1.6 Photographic Documentation**

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS

DATE: 2010-05-17

EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
CONTROL


TEST NUMBER: 1

TESTED BY: NICK ORPHANOS

COUPLING DEVICE: BICONOLOG ANTENNA

OPERATING MODE: HIGH POWER +30DBM

TEST SPEC: FCC PART 15 SUBPART B

**Photograph Description: Radiated set-up****FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**Photographic Documentation**

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS

DATE: 2010-05-17

EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
CONTROL

TEST NUMBER: 1

TESTED BY: NICK ORPHANOS

COUPLING DEVICE: BICONOLOG ANTENNA

OPERATING MODE: HIGH POWER +30dBm

TEST SPEC: FCC PART 15 SUBPART B

**Photograph Description: Radiated set-up****FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**Photographic Documentation**

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
TESTED BY: NICK ORPHANOS  
OPERATING MODE: HIGH POWER +30DBM

DATE: 2010-05-17  
TEST NUMBER: 1  
COUPLING DEVICE: BICONOLOG ANTENNA  
TEST SPEC: FCC PART 15 SUBPART B



**Photograph Description:** Radiated set-up

**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**Photographic Documentation**

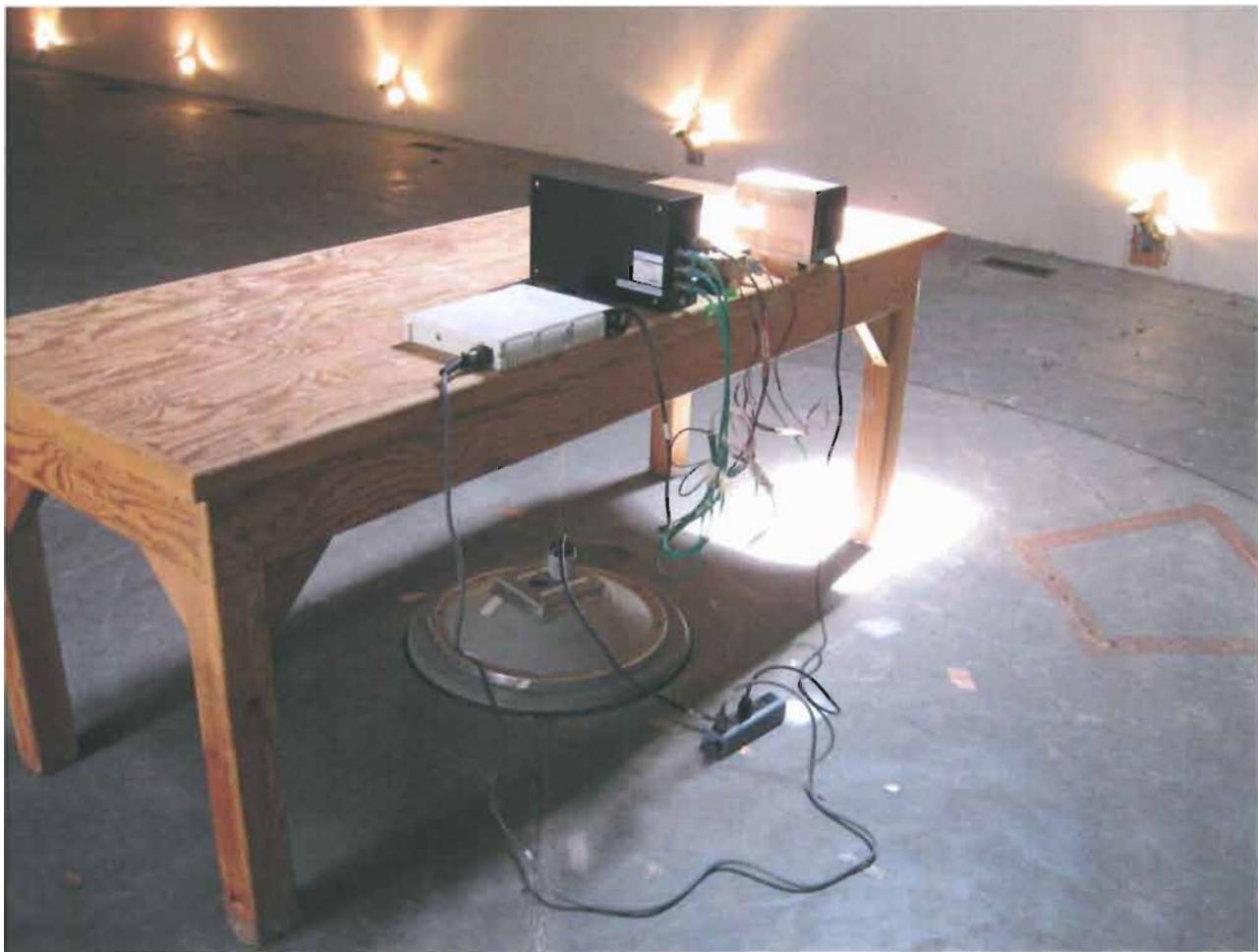
CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
TESTED BY: NICK ORPHANOS  
OPERATING MODE: HIGH POWER +30DBM

DATE: 2010-05-17  
TEST NUMBER: 1  
COUPLING DEVICE: BICONOLOG ANTENNA  
TEST SPEC: FCC PART 15 SUBPART B



**Photograph Description:** Radiated set-up

**FORM CTS-PHOTO**


Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**Photographic Documentation**

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
CONTROL  
TESTED BY: NICK ORPHANOS  
OPERATING MODE: HIGH POWER +30DBM

DATE: 2010-05-17  
TEST NUMBER: 1

COUPLING DEVICE: BICONOLOG ANTENNA  
TEST SPEC: FCC PART 15 SUBPART B



Photograph Description: Radiated set-up

**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

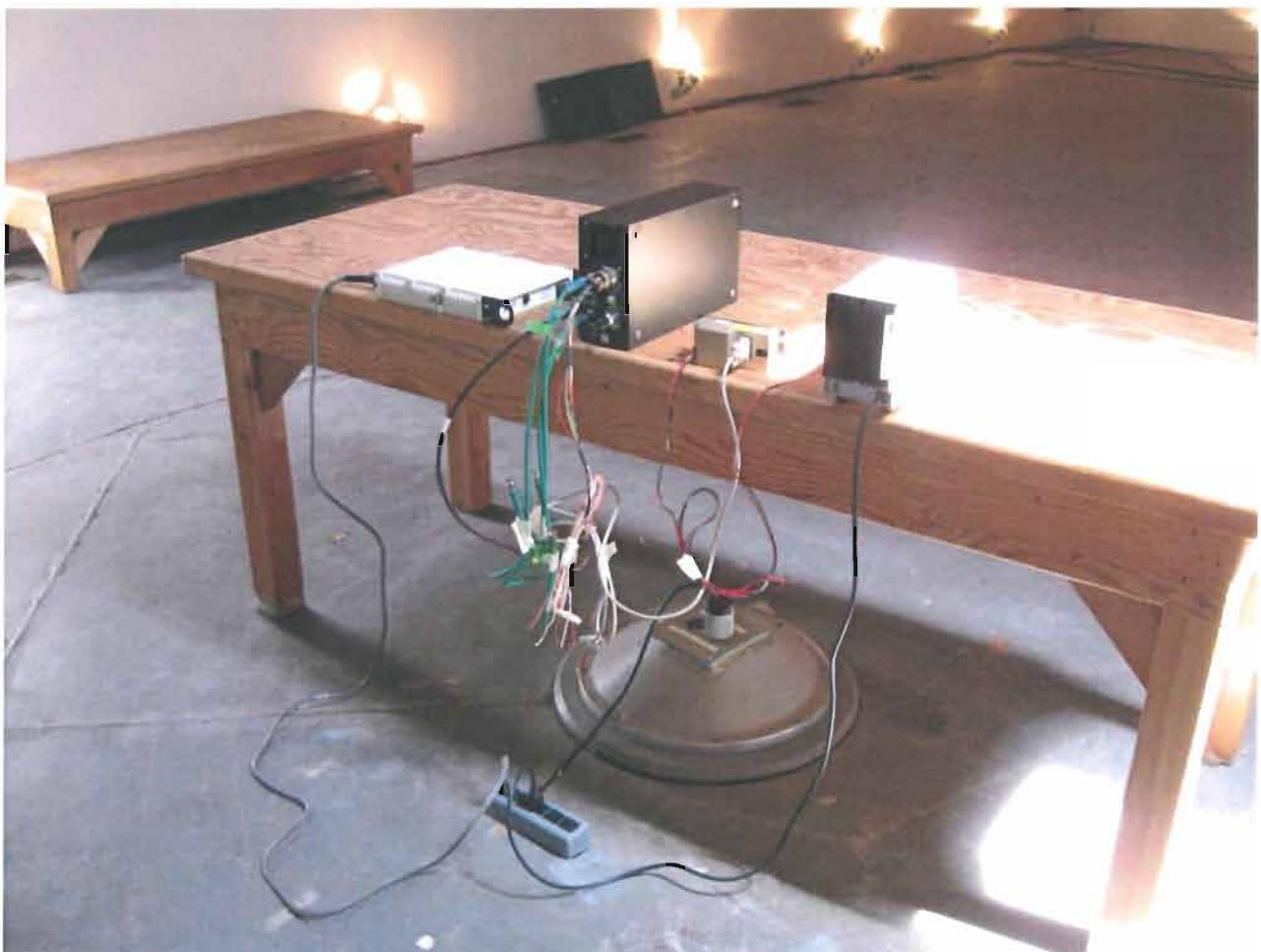
**Photographic Documentation**

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS

DATE: 2010-05-17

EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE

TEST NUMBER: 1


CONTROL

TESTED BY: NICK ORPHANOS

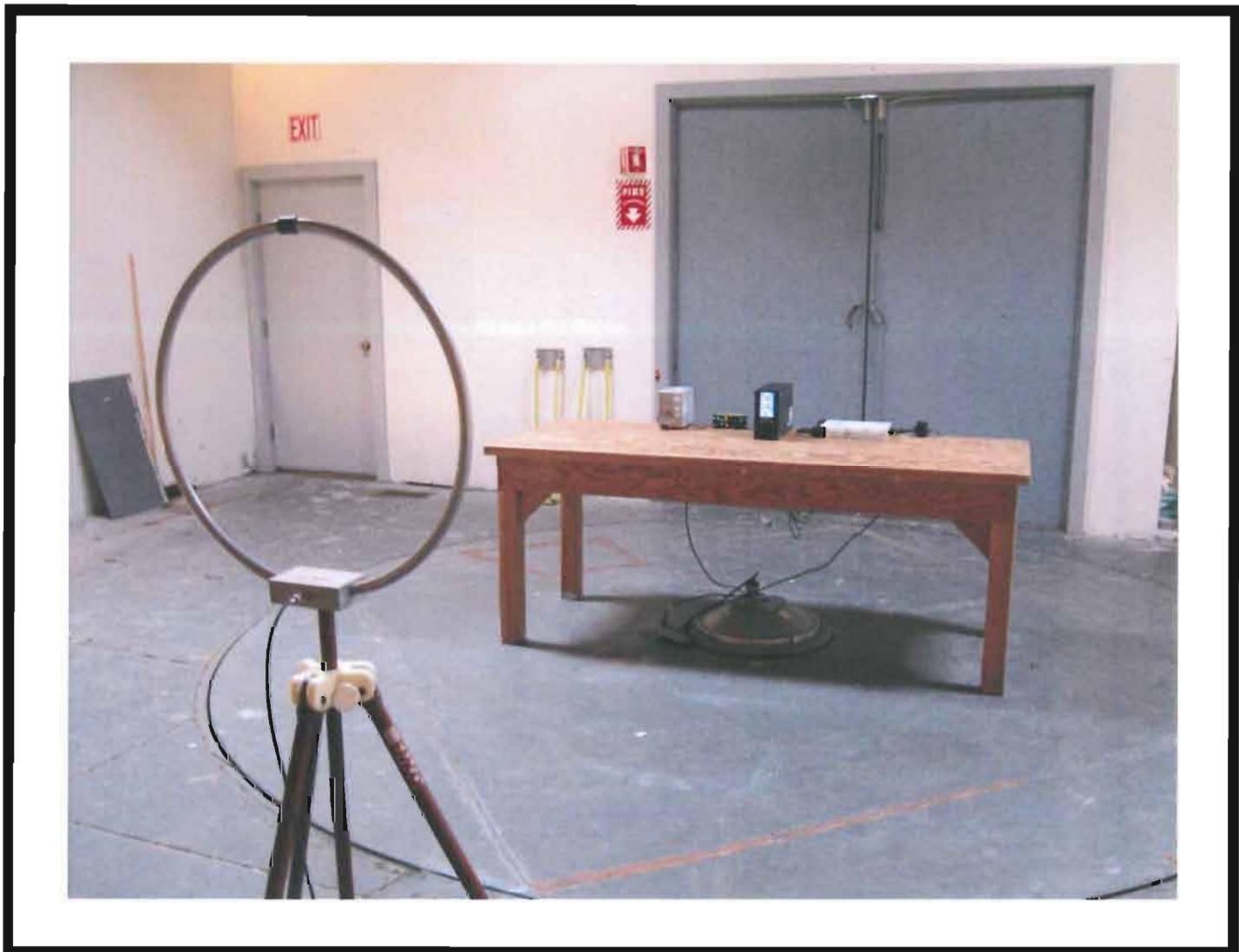
COUPLING DEVICE: BICONOLOG ANTENNA

OPERATING MODE: HIGH POWER +30dBm

TEST SPEC: FCC PART 15 SUBPART B



Photograph Description: Radiated set-up


**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

## Photographic Documentation

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
CONTROL  
TESTED BY: NICK ORPHANOS  
OPERATING MODE: HIGH POWER +30DBM

DATE: 2010-05-17  
TEST NUMBER: 1  
COUPLING DEVICE: LOOP ANTENNA  
TEST SPEC: FCC PART 15 SUBPART B



Photograph Description: Radiated set-up

**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02



### Photographic Documentation

CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
CONTROL  
TESTED BY: NICK ORPHANOS  
OPERATING MODE: HIGH POWER +30DBM

DATE: 2010-05-17  
TEST NUMBER: 1

COUPLING DEVICE: RIDGE GUIDE ANTENNA  
TEST SPEC: FCC PART 15 SUBPART B

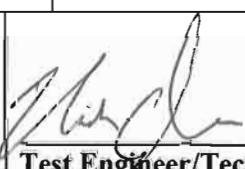
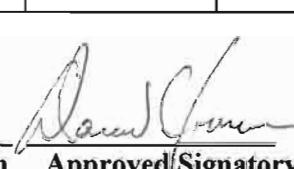


Photograph Description: Radiated set-up

**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**APPENDIX A**



**TEST LOG  
AND  
LABORATORY ENVIRONMENTS**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**TEST LOG**

**CUSTOMER: MICROWAVE RADIO COMMUNICATIONS  
 EQUIPMENT: HDX 1100C2 WITH TRANSMITTER REMOTE  
 CONTROL**

**PROGRAM: EMISSIONS  
 TESTED BY: NICK ORPHANOS**

| Pre-Test Checklist        | Date                | Comments                                                                                                                                                                                                                                                                                                                                         |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|---------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|----------------|
|                           | 2010-05-17          | Test Plan/Procedure: ANSI c63.4<br>Test Specification: FCC Part 15 Subpart B<br>Chomerics Procedure: CHO TPEC T2<br>EUT Power Requirement Verified:<br>+28 DC Voltage<br>EUT Functional Operational Check: <input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail<br>Environmental:<br>Bonding/Grounding: N/A Safety Issues: N/A |           |                                                                                                                                                                                                                        |                                         |                                    |                |
| In-Process Test Checklist | Date                | Test #                                                                                                                                                                                                                                                                                                                                           | Test Type | Test Equipment Calibrated                                                                                                                                                                                              | Test Performed Properly – Data Accepted | EUT Set-up Check/Operational Check | EUT Pass/ Fail |
|                           | 2010-05-17          | 1                                                                                                                                                                                                                                                                                                                                                | RE        | Yes                                                                                                                                                                                                                    | Yes                                     | Yes                                | Pass           |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
|                           |                     |                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                        |                                         |                                    |                |
| Post Test Checklist       | Date:<br>2010-05-17 | EUT Functional Operation Check:<br>[ <input checked="" type="checkbox"/> ] Pass [ <input type="checkbox"/> ] Fail                                                                                                                                                                                                                                |           | <br><br>Test Engineer/Tech Approved/Signatory |                                         |                                    |                |

**FORM CTS-010**

Microwave Radio Communications HDX 1100C2  
 Document #: TR5629.10  
 Date: 2010-06-02

**LABORATORY ENVIRONMENTS**

| Date       | Test Site             | Ambient Temperature (°C) | Relative Humidity (%) | Atmospheric Pressure (mBar) |
|------------|-----------------------|--------------------------|-----------------------|-----------------------------|
| 2010-05-17 | Open Area Test Site B | 22                       | 32                    | 1026                        |

## **APPENDIX B**

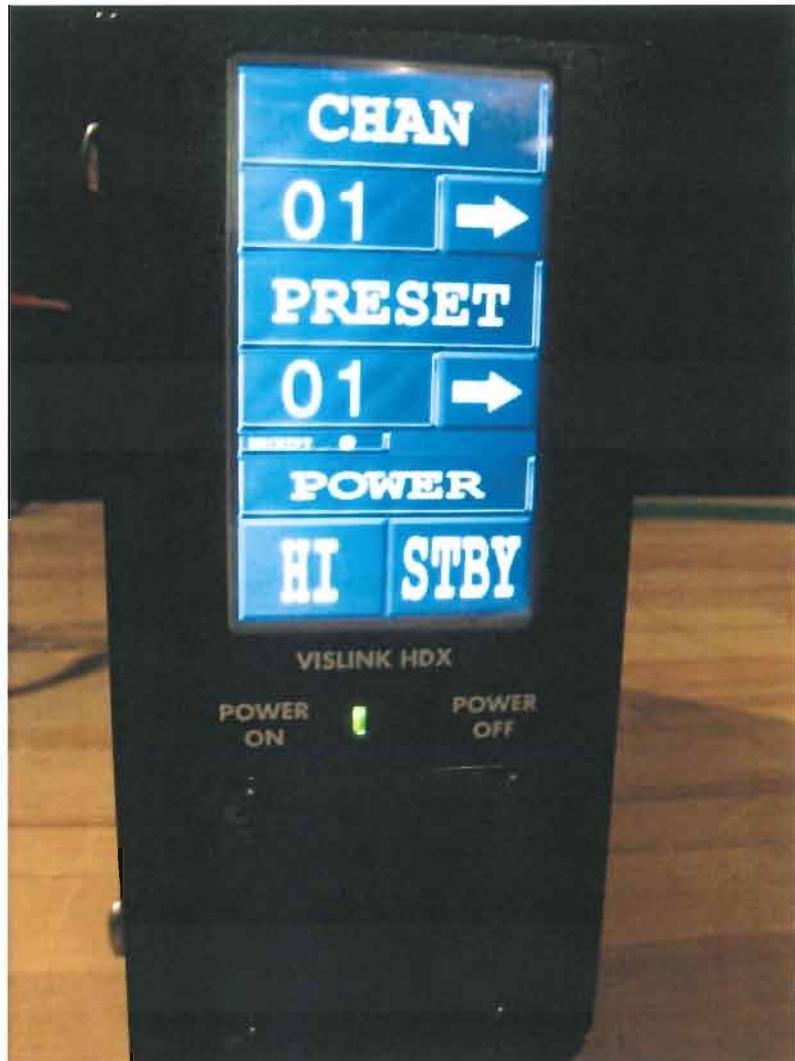
### **EQUIPMENT CALIBRATION**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

| Test Equipment                             | Asset # | Serial #   | Last Cal Date |
|--------------------------------------------|---------|------------|---------------|
| Agilent E4401B Spectrum Analyzer           | 725     | MY41440273 | 2009/08       |
| Agilent E4401B Spectrum Analyzer           | 726     | MY41440274 | 2009/09       |
| Agilent E4440A Spectrum Analyzer           | 704     | US41421236 | 2010/02       |
| AR Amplifier 250T1G3                       | 784     | 313235     | NCR           |
| AR Amplifier 100W1000B                     | 768     | 311120     | NCR           |
| AR FM2000 Isolated Field Monitor           | 39      | 13009      | 2009/05       |
| AR FP2000 Isolated Field Probe             | 40      | 12914      | 2009/05       |
| AR Leveling Preamplifier 888               | 491     | 15606      | NCR           |
| AR FP2080 Probe (80 MHz to 40 GHz)         | 767     | 309531     | 2009/05       |
| Boonton 4232A RF Power Meter               | 777     | 148602     | 2009/09       |
| Boonton 51011 EMC RF Power Sensor          | 778     | 33863      | 2009/09       |
| Boonton 51011 EMC RF Power Sensor          | 779     | 33862      | 2009/09       |
| Chomerics 1 GHz to 18 GHz L.N.A. System.   | 800     | 1065365    | NCR           |
| Chomerics 100 Ohm Resistor                 | N/A     | N/A        | NCR           |
| Dell Flat panel monitor                    | NA      | NA         | NCR           |
| Dell Desktop Computer                      | N/A     | N/A        | NCR           |
| Eaton Bulk Current Injection Probe 95242-1 | 215     | 290        | UWC           |
| Eaton Bulk Current Probe 91550-1           | 218     | 2759       | 2010/04       |
| Eaton Bulk Current Probe 954111-1          | 217     | 1393       | 2010/04       |
| Eaton B.C. I. Probe Calibrator 95241-1     | 219     | 0179680-04 | UWC           |
| Elgar SW 5250M                             | 870     | 0841A00418 | UWC           |
| Elgar SW 5250S                             | 871     | 0841A00419 | UWC           |
| Elgar SW PDU                               | 868     | 0839A0329  | UWC           |
| EMCO Log Periodic Antenna 3146             | 80      | 3381       | 2010/01       |
| EMCO 3109 Biconical Antenna                | 116     | 2415       | 2010/04       |
| EMCO 3120 Tuned Dipole Antenna B1          | 474     | 21         | 2010/01       |
| EMCO 3121 Tuned Dipole Antenna B2          | 475     | 177        | 2010/01       |
| EMCO 3121 Tuned Dipole Antenna B3          | 476     | 698        | 2010/01       |
| EMCO 3115 Microwave Horn Antenna           | 376     | 2796       | 2010/01       |
| EMCO 7405 RF Probe Kit                     | 3       | 9006-1648  | NCR           |
| EMCO 3810/2NM LISN                         | 601     | 9612-1740  | 2010/01       |

|                                                       |     |            |         |
|-------------------------------------------------------|-----|------------|---------|
| EMCO 3825/2R LISN                                     | 890 | 1031       | 2009/07 |
| EMCO Voltage Probe 3701                               | 499 | 9604-1130  | 2009/05 |
| EMCO 3143 Biconolog                                   | 505 | 1266       | NCR     |
| EMCO 3115 Double Ridged Guide                         | 374 | 2174       | 2010/02 |
| EMCO Loop Antenna 6512                                | 787 | 00051667   | 2009/11 |
| ETS 3142c Biconolog Antenna (Site B)                  | 769 | 00046673   | 2009/12 |
| ETS Lindgren T.I.L.E. 4! Software Version 4.0.A.9     | N/A | N/A        | NCR     |
| FCC 150-50 Ohm Adapters                               | 361 | 4          | UWC     |
| FCC 801-M2-25                                         | 364 | 1          | UWC     |
| FCC 801-M3-25A Power Line Coupling/Decoupling Network | 622 | 99125      | NCR     |
| FCC 801-150-50 CDN                                    | 583 | 9975       | UWC     |
| FCC 50-150 Ohm Adapter                                | 486 | 276        | UWC     |
| FCC 50-150 Ohm Adapter                                | 487 | 277        | UWC     |
| FCC 801-T4 Coupling Network                           | 485 | 45         | UWC     |
| FCC 801-T2 Coupling Network                           | 484 | 50         | UWC     |
| FCC 801-AF2 Coupling Network                          | 483 | 35         | UWC     |
| FCC 801-150-50-BCI Adapter                            | 702 | 343        | UWC     |
| FCC 801-150-50-BCI Adapter                            | 775 | 449        | UWC     |
| FCC 801-150-50-BCI Adapter                            | 776 | 450        | UWC     |
| Haefely Psurge 4010 Generator                         | 671 | 583334-86  | 2009/10 |
| Haefely Psurge 4010 Generator                         | 736 | 151542     | 2009/05 |
| Haefely PHV 41.1 PEFT.1 Generator                     | 489 | 082-106-18 | 2009/12 |
| Haefely PHV 41.2 PEFT.1 Generator                     | 355 | 082-106-01 | 2009/06 |
| Haefely FP16/3-1 Coupling Filter                      | 356 | 082-208-02 | UWC     |
| Haefely IP4 Coupling Clamp                            | 481 | N/A        | NCR     |
| Haefely Metallic Surge Pistol                         | 643 | N/A        | UWC     |
| Haefely Fp20/3-3 Coupling Filter                      | 358 | 082-170-06 | UWC     |
| Hewlett Packard 8447D Pre Amp                         | 887 | 2443A04253 | 2009/06 |
| Hewlett Packard 8447D Pre Amp                         | 12  | 2944A06414 | 2010/01 |
| Hewlett Packard 8447F Pre Amp                         | 633 | 2805A3022  | 2010/01 |
| HP8566B Spectrum Analyzer                             | 47  | 2637A04064 | 2009/07 |
| HP85685A Preselector                                  | 48  | 2648A00483 | 2009/07 |

|                                                                    |     |              |         |
|--------------------------------------------------------------------|-----|--------------|---------|
| HP Display Unit                                                    | 46  | 2648A14289   | 2009/07 |
| HP85650A Quasi Peak Adaptor                                        | 751 | 3033A1482    | 2009/07 |
| HP Power Meter 437B                                                | 203 | 2949A02617   | 2010/04 |
| HP 651B Signal Generator                                           | 57  | 1230A10422   | 2009/10 |
| HP 3325A Signal Generator                                          | 617 | 2512A23039   | 2009/11 |
| HP 3326A Signal Generator                                          | 37  | 2519A00753   | 2009/10 |
| HP 83620B Signal Generator                                         | 624 | 3844A00963   | 2009/11 |
| HP 83620B Signal Generator                                         | 625 | 3844A00955   | 2009/12 |
| HP 83640A Signal Generator                                         | 38  | 3009A00188   | 2009/05 |
| Hughes 1277H09F000 Amplifier                                       | N/A | 082          | NCR     |
| Keytek MZ-15 ESD Simulator                                         | 336 | 8801209      | 2009/12 |
| Keytek VCP-1 Vertical Coupling Plane                               | 368 | 9209332      | NCR     |
| Keytek CTC-3 Coax Monitor                                          | 440 | N/A          | NCR     |
| LogiMetrics A300/L (1-2 GHz)                                       | 135 | 3091         | NCR     |
| LogiMetrics A300/S (2-4 GHz)                                       | 92  | 3092         | NCR     |
| Narda 768-20 Attenuator                                            | 796 | NA           | 2010/01 |
| Narda 3020A Directional Coupler                                    | 214 | 34514        | 2009/07 |
| Narda 3022 Directional Coupler                                     | 212 | 73360        | 2010/04 |
| Narda 3022 Directional Coupler                                     | 814 | 81864        | 2009/10 |
| Polarad MDS21 Absorbing Clamp                                      | 435 | 301404/003   | 2009/12 |
| Polarad ESH2-25 Artificial Mains Network                           | 23  | 890484/016   | 2010/01 |
| Quantum Change/EMC Systems, LLC T.I.L.E. Software Version 3.4.K.13 | N/A | N/A          | NCR     |
| RF Power Labs Pre Amp                                              | 562 | N/A          | NCR     |
| Rohde and Schwarz ESV Test Receiver                                | 15  | 875931049    | 2009/09 |
| Rohde and Schwarz ESH-2 Test Receiver                              | 16  | 8799631020   | 2009/09 |
| Rohde and Schwarz ESH-2 Test Receiver                              | 488 | 879575/006   | 2010/04 |
| Rohde and Schwarz ESIB40                                           | 803 | 100293       | 2009/06 |
| Rohde and Schwarz Signal Generator SMH                             | 881 | 883 802/013  | 2009/12 |
| Schaffner NSG 438 PN 400-348 ESD Simulator                         | 755 | 385          | 2010/03 |
| Schaffner INA 4380 150pF/330Ohm Network                            | 756 | 403-550-0447 | 2010/03 |
| Schaffner INA 4381 150pF/2K Network                                | 758 | 403-564-0413 | 2010/03 |
| Schaffner INA 4382 330pF/2K Network                                | 761 | 403-565-0402 | 2010/03 |

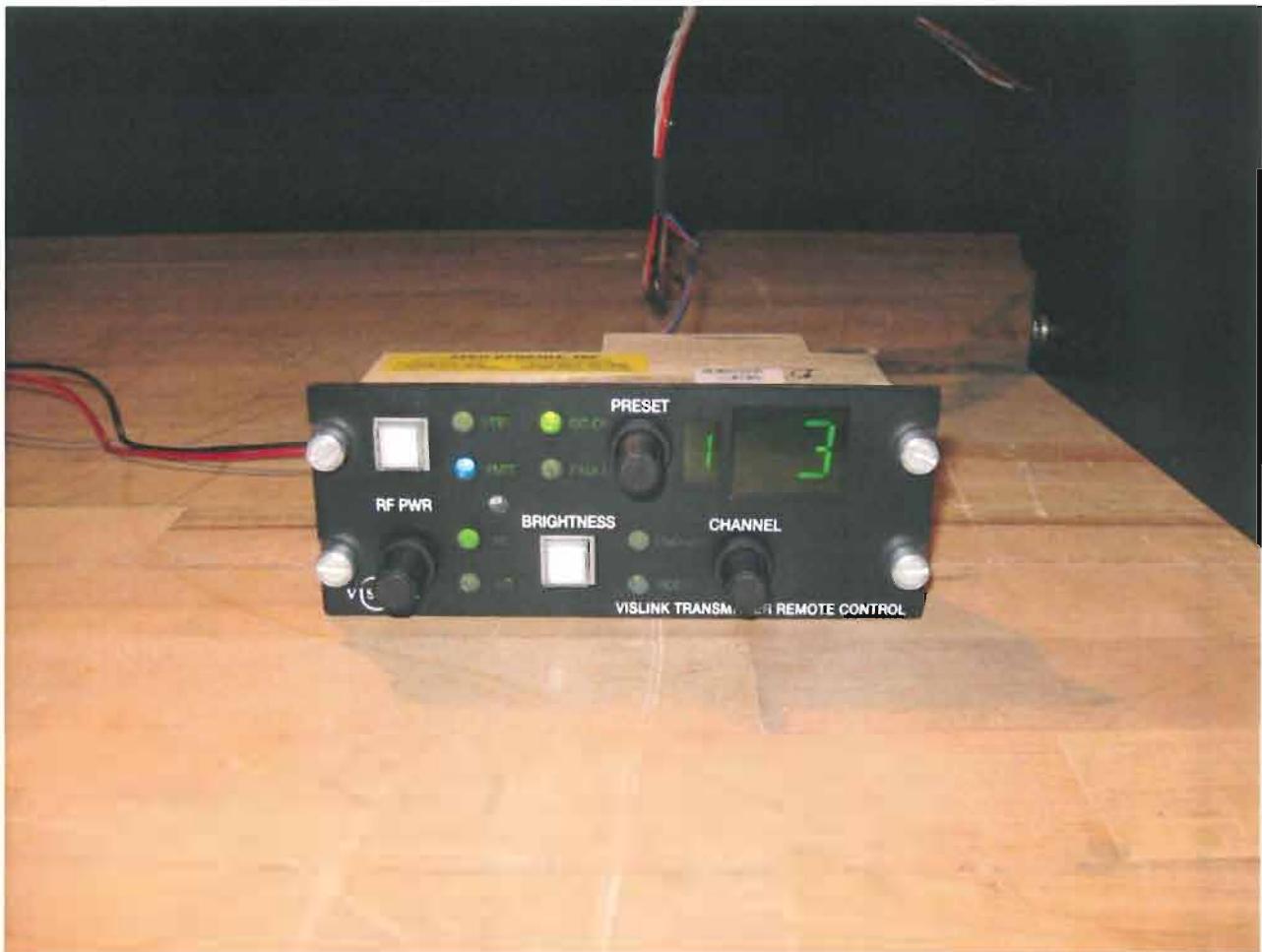

|                                             |     |              |         |
|---------------------------------------------|-----|--------------|---------|
| Schaffner INA 4480 Magnetic Loop            | 763 | 403-615-0413 | 2010/03 |
| Schaffner INA 4551 150pF/500Ohm Network     | 757 | 403-591-0503 | 2010/03 |
| Schaffner INA 4553 330pF/330Ohm Network     | 759 | 403-588-0447 | 2010/03 |
| Schaffner INA 4554 150pF/150Ohm Network     | 760 | 403-588-0427 | 2010/03 |
| Sharp Closed Circuit Video Monitor          | N/A | N/A          | NCR     |
| Solar High Pass Filter 7930-5.0             | 781 | NA           | NCR     |
| Solar Current Probe 6741-1                  | 468 | 901610       | 2010/04 |
| Solar 50 Ohm/50uH L.I.S.N.                  | 381 | 852334       | 2010/01 |
| Solar 50 Ohm/50uH L.I.S.N.                  | 382 | 860622       | 2010/02 |
| Solar 50 Ohm/50uH L.I.S.N.                  | 19  | 894304       | 2010/02 |
| Solar 50 Ohm/50uH L.I.S.N.                  | 20  | 894305       | 2010/02 |
| Solar 50 Ohm/50uH L.I.S.N.                  | 21  | 894307       | 2010/01 |
| Solar 50 Ohm/50uH L.I.S.N.                  | 22  | 8923108      | 2010/01 |
| Solar 9144-1N Current Injection Probe       | 857 | 078003       | UWC     |
| Staco 3PN 1520B Variac                      | 635 | N/A          | NCR     |
| Tegram Bulk Current Injection Probe 95252-1 | 490 | 12180        | UWC     |
| Tegram B. C. I. Probe Calibrator 95251-1    | 507 | 12326        | UWC     |
| Tektronix 494 AP Spectrum Analyzer          | 543 | B010201      | 2009/09 |
| Tektronix 7104 Oscilloscope                 | 60  | B064064      | 2009/12 |
| Tektronix 7A29 Vertical Amplifier           | 153 | B040385      | 2009/12 |
| Tektronix 7B92A Time Base                   | 150 | B094245      | 2009/12 |
| Tektronix TB92A Time Base                   | 196 | B096042      | 2010/03 |
| Tektronix TDS 380 Oscilloscope              | 516 | B012231      | 2009/10 |
| Voltech PM3000A Power Analyzer              | 508 | 0882         | 2009/10 |
| Voltech PM6000A Power Analyzer              | 861 | 100006700235 | 2010/03 |
| Voltech IEC 555 STD Impedance Network       | 50  | 685          | 2009/10 |
| Werlatone Dual Directional Coupler          | 731 | 14303        | 2009/11 |
| Werlatone C6277-10 Directional Coupler      | 780 | 20250        | 2009/09 |

## **APPENDIX C**

### **ADDITIONAL PHOTOGRAPHIC DOCUMENTATION**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

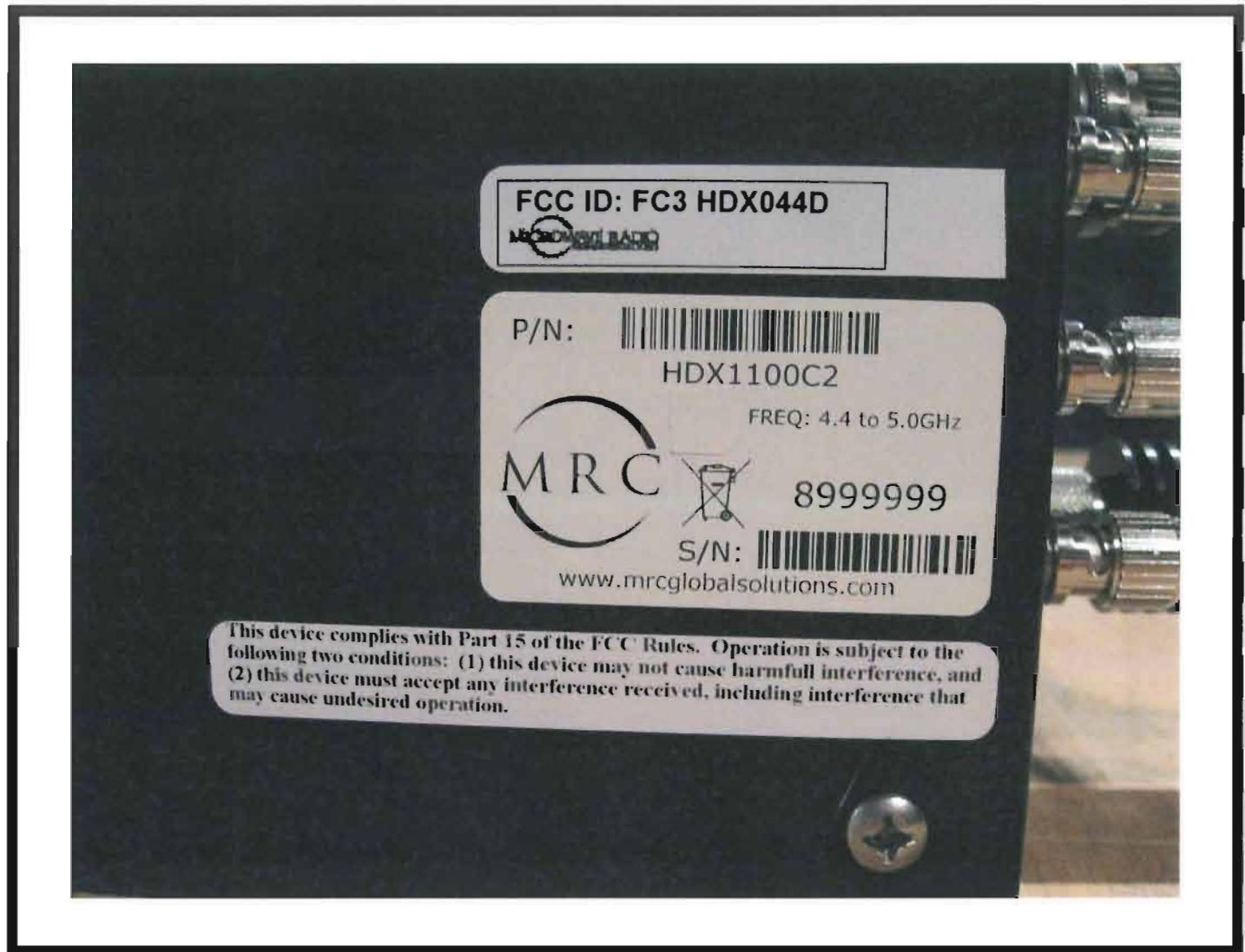
**Photographic Documentation**




Photograph Description: HDX 1100C2 in operating mode

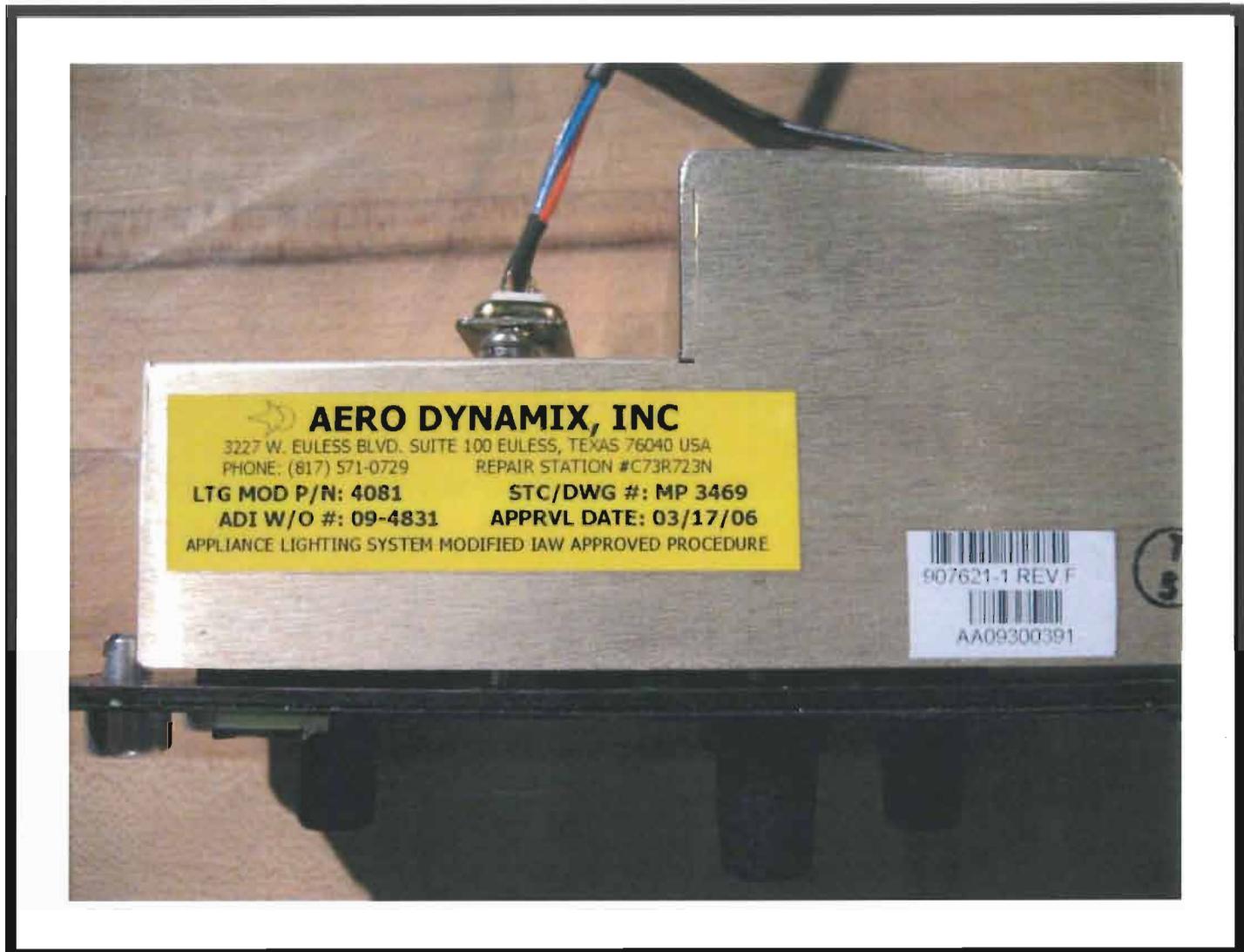
**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02


**Photographic Documentation**



Photograph Description: Transmitter Remote Control in operating mode


**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**Photographic Documentation**Photograph Description: HDX 1100C2 Product Label**FORM CTS-PHOTO**

Microwave Radio Communications HDX 1100C2  
Document #: TR5629.10  
Date: 2010-06-02

**Photographic Documentation**



Photograph Description: Transmitter Remote Control Product Label  
**FORM CTS-PHOTO**