USA Type Approval Test Report

For

MainStreet Broadband Wireless

Basestation (BTS) 28GHz

(LMDS)

With Telaxis Communications Corp. (Millitech) Radios

Test Dated: Sept. 15,1999 Test Performed: FCC Part 101 and 2

This document contains Confidential Information of Newbridge Networks Corporation.

NOTICE

The electronic reviewed softcopy is held in R&D Document Control (R&D Technical Library). When printed this document is uncontrolled.

This document contains confidential information which is proprietary to Newbridge Networks Corporation. No part of its contents may be used, copied, disclosed or conveyed to any party in any manner whatsoever without prior written permission from Newbridge Networks Corporation.

Newbridge and MainStreet are trademarks of Newbridge Networks Corporation

© Copyright 1999 Newbridge Networks Corporation, All Rights Reserved

ABSTRACT

This document provides the test procedure and test report used to fulfill the requirements of the Approvals Group personnel and the Wireless product designers to evaluate the MainStreet Broadband Wireless System during radio type approval testing.

The test data contained in this report is evidence of compliance to specified radio standards for the units described herein.

GLOSSARY

ARIC	ATM Radio Interface Card
ATM	Asynchronous Transfer Mode
BER	<i>Bit Error Rate.</i> The ratio of incorrect bits to total number of bits transmitted.
BTS	Base Transceiver System
CISPR	International Special Committee on Radio Interference
CPE	Customer Premises Equipment
CW	Continuous Wave
EMC	Electro Magnetic Compatibility
EUT	Equipment Under Test
FCC	Federal Communications Commission
ITE	Information Technology Equipment
MIB	<i>Management Information Base.</i> A collection of objects that can be accessed via a network management protocol.
NIU	Network Interface Unit
ORU	Outdoor Receiver Unit
OTRU	Outdoor Transmitter Receiver Unit
OTU	Outdoor Transmitter Unit
RF	Radio Frequency
TBD	To Be Determined

TABLE OF CONTENTS

ABSTRACT	3
GLOSSARY	4
TABLE OF CONTENTS	. 5
1 INTRODUCTION	.7
1.1 Purpose	.7
1.2 Scope	7
2 EQUIPMENT UNDER TEST (EUT)	. 8
2.1 Equipment Description	. 8
Indoor BTS Equipment	8
External RF Equipment	9
2.2 EUT Configuration	. 10
2.3 EUT Cables	.11
2.4 System Test Configuration	. 12
2.4.1 Justification	. 12
2.4.2 Functional Interconnect	. 14
3 REGULATORY COMPLIANCE SUMMARY	. 15
4 TEST RESULTS	. 17
4.1 RF Output Power	. 17
4.1.1 Test Specification	. 17
4.1.2 Test Location	. 17
4.1.3 Tested by	. 17
4.1.4 Test Procedure	. 17
4.1.5 Test Equipment and Support Equipment	. 19
4.1.6 Results - Test Data	. 19
4.2 Spectrum Mask	. 19
4.2.1 Test Specification	. 19
4.2.2 Test Location	. 20
4.2.3 Tested by	. 20
4.2.4 Test Procedure	. 20
4.2.5 Test Equipment and Support Equipment	. 21
4.2.6 Results - Test Data	. 21
4.3 Radiated Spurious	. 23
4.3.1 Test Specification	. 23
4.3.2 Test Location	. 23
4.3.3 Tested by	. 24
4.3.4 Test Procedure	. 24
4.3.5 Test Equipment and Support Equipment	. 26

136 Results - Test Data	26
4.4. Conducted Spurious	
4.4 Conducted Spurious	
4.4.1 Test Specification	
4.4.2 Test Location	
4.4.3 Tested by	
4.4.4 Test Procedure	
4.4.5 Test Equipment and Support Equipment	
4.4.6 Results - Test Data	
4.5 Frequency Stability	
4.5.1 Test Specification	
4.5.2 Test Location	
4.5.3 Tested by	
4.5.4 Test Procedure	
4.5.5 Test Equipment and Support Equipment	
4.5.6 Results - Test Data	
APPENDIX A: RADIATED SPURIOUS PLOTS - VERTICAL	
Radiated Spurious Plots - Horizontal	51
APPENDIX B: CONDUCTED SPURIOUS PLOTS	72
APPENDIX C: ANTENNA SPEC SHEETS	
REFERENCES	
HISTORY	

1 INTRODUCTION

1.1 Purpose

This document provides a test plan and report for Radio Type Approval testing of the "MainStreet Broadband Wireless System" according to applicable FCC standards. This test report is to show compliance according to the FCC Part 101 requirements and FCC Part 2 methods for the MainStreet Broadband Wireless System – **Basestation from 27.5GHz to 28.35GHz** using *Telaxis Communications Corp. (Millitech) Radios* to achieve certification in the United States.

1.2 Scope

This document shall be used to evaluate "MainStreet Broadband Wireless - Basestation 28GHz" conformance to the test requirements contained in applicable FCC standards. The test results are documented according to the test methods as mentioned in the FCC standards, and are to be submitted with the FCC Form 731 "Application for Equipment Authorization. This report is to show compliance for the 27.5GHz to 28.35GHz band only.

2 EQUIPMENT UNDER TEST (EUT)

2.1 Equipment Description

The Broadband Wireless System is a network of Network Interface Units connected to Base Stations via wireless links and the Base Stations are, in turn, connected to the ATM Backbone Network via wired or point to point wireless links. A Network Manager augments the network. The system consists of a TDM QPSK downstream and two TDMA upstream Differential Coded QPSK burst mode per ARIC card.

The ATM Radio Interface Cards (ARIC) connects to external transmitters and receivers via coax cable. Typically there is one BTS per cell and is connected to the Backbone Network usually via OC-3. The BTS is the hub that delivers and collects all the wireless traffic from and to the subscribers in the BTS coverage area. The BTS is also the linking point between the subscribers and the Backbone Network.

The 36170 card cages/shelves are housed in Newbridge 19" equipment racks.

The external transmitters and receivers is typically mast mounted or mounted on a flat surface of the building.

Indoor BTS Equipment

Figure 1 shows the components that are required for the BTS. The number of ARICs required depends on the number of users supported. Today's system configuration can handle up to 6 ARIC cards, operating with one OTU.

The minimum set of components required to support the first user is:

- 1 36170 Peripheral Shelf
- 1 Control Card Interconnect Panel
- 1 System Synchronization Unit
- 1 or 2 Switching Hub Cards (for redundancy)
- 1 or 2 Control Cards (for redundancy)
- 1 ATM Radio Interface Card
- 1 OC-3/STM1 Card (assuming the BTS is connected to an ATM backbone)
- 1-Combiner/splitter unit
- 1 Transmitter (OTU)
- 1 Receiver (ORU)
- External -48 v power supply for the transmitter, receiver and BTS shelf
- 2 90° sectored antenna (one for transmit, one for receive)

Figure 1: Base Transceiver Station

External RF Equipment

The ARICs are connected to a Combiner/Splitter complex, which is used to interface to the mastmounted transmitter(s) and receiver(s). This equipment is developed/provided by an OEM supplier. The OEM supplier for the ORU and OTU that has been tested and mentioned within this report is:

> Telaxis Communications Corporation (name changed from Millitech) 20 Industrial Drive east P.O Box 109 South Deerfield Massachusetts 01373-0109, USA

The base station radio equipment is located on pole mounts such that each sector has dedicated transmitters and receivers. The transmitters and receivers are mounted directly onto their respective sector antennas as shown in Figure 2 below.

Figure 2 Typical Multi transmitter or receiver installation (vertical stacking)

2.2 EUT Configuration

Model Number	Name and Description	S/N
90-4907-01	36170 High Power Peripheral Shelf	18990124306
90-2507-11	Standalone Hub Card	033980104629
90-2507-11	Standalone Hub Card	489601009740
90-3346-01	Control Card 2	09990110620

This document contains Confidential Information of Newbridge Networks Corporation.

Issued Version 1.0 Last Revised: 99.10.25		Page 11 of 89	
90-3347-01	SSU 3 Module	10980110769	
90-4905-03	OC3 –2 MMF	11990115109	
90-6474-01	MAU	04990110991	
90-6206-01	ARIC card	Sample #7	
90-6206-01	ARIC card	Prototype #8	
90-6206-01	ARIC card	Sample # none	
		(K1MMM0, tuner)	
90-6206-01	ARIC card	Sample #6	
90-2190-01	36170 Peripheral Shelf	02960113098	
90-6085-01	Standalone Hub Card	35980110108	
90-3346-01	Control Card 2	34980100354	
90-6206-01	ARIC card	Sample #17	
90-6206-01	ARIC card	Sample #18	
PS6-A19 (9832)	Pulsar Microwave Combiner/Splitter	None	
PS6-A19 (9832)	Pulsar Microwave Combiner/Splitter	None	
9031237801	OTU (TX) Basestation Telaxis (Millitech)	82710586	
9031238101	ORU (RX) Basestation Telaxis (Millitech)	82710588	
90-6516-01	Bias-Tee	none	
90-6210-01	NIU (CPE) 28110	23990108967	
90-6626-01	OTRU (CPE) Transceiver /	991633649	

59ET0004

2.3 EUT Cables

Part Number	Cable Type	Length	Shield	Connector
		(m)		Hoods
90-2296-04	ISL Cable Optical	10.0	none	none

Antenna Unit

59ET0004 Page 12 of 89

N/A	RJ45 shielded cable	5.0	Foil	metalized
N/A	coaxial cable	2.0	braid	SMA

2.4 System Test Configuration

2.4.1 Justification

Issued Version 1.0

The system was configured with 6 ARIC cards with each carrier having a bandwidth (BW) of 36MHz, which is the maximum the OTU (TX) Basestation radio can handle. The TX IF modulated carriers are combined together and fed to the OTU to achieve a maximum RF level of \geq +19dBm per carrier for a total output power of +27dBm. Only one carrier was used to operate with the OTRU (CPE) and NIU to achieve traffic. Operating with the maximum carriers and widest bandwidth will provide the worst condition based on intermodulation, spurious and spectral re-growth.

For the frequency stability measurements, an external source was used to provide an IF CW to the radio units. Only the OTU and ORU were placed in the temperature chamber during this specific test due to the 36170 shelf will usually be in a temperature-controlled environment, but meets all internal performance requirements between the temperatures of -5° C to $+55^{\circ}$ C.

For all tests, the EUT was configured to simulate a typical application. The testing was conducted using only cables recommended for use with the EUT by Newbridge. Attention was made to follow any recommended chassis grounding, cable routing, etc. in the Newbridge Technical Practices.

The EUT was placed according to the required set ups detailed in the test specifications and methods within this document for each type of radio type approval test (FCC Part 101 and 2).

The test result for conducted and radiated spurious were performed by an external lab (KTL Ottawa) and complied together in this test report. The measurements were taken according to the instructions mentioned in the FCC Part 2 and Part 101.

Figure 3 Diagram of System Configuration

This document contains Confidential Information of Newbridge Networks Corporation.

2.4.2 Functional Interconnect

Figure 4 Block Diagram of Functional Interconnect

MainStreet Broadband Wireless Components

BTS

ARIC, Tuner, AMM, MAU Combiner, Splitter, Bias-Tee

Surge Arrestor

OTU, ORU

90 Degree Sectored Antennae

CPE

T1/E1 Services Card Commercial GateWay (CGW) Surge Arrestor

OTRU

12" Antenna

3 Regulatory COMPLIANCE Summary

This report has been read and approved by the appropriate departments responsible for its implementation. All changes found necessary for compliance will be incorporated into production.

The EUT as configured in this report meets the requirements indicated below. The results of these tests apply only to items tested and provide an indication of hardware quality during operation and maintenance in their intended environment.

Declaration of Compliance

"This equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations. To the best of my knowledge, these tests were performed using measurement procedures consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards. Each unit manufactured, imported or marketed, as defined in the Commission's regulations, will conform to the sample(s) tested within the variations that can be expected due to quantity production and testing on a statistical basis. I further certify that the necessary measurements were made by Newbridge Networks Corporation, 600 March Road, Kanata, Ontario, K2K2E6. and KTL, 3325 River Road RR#5, Ottawa, Ontario, K1V 1H2 "

Standard	Measurement Type	Method/ Limit	Pass/Fail
			Criteria
FCC Part 101 &	Output Power	Section 2.1046 / Section 101.113	Pass
FCC Part 2	Spectrum Mask (Occupied Bandwidth)	Section 2.1049 / Section 101.111(a)(2)(ii)	Pass
(10-1-98 edition)	Radiated Spurious	Section 2.1053 & 2.1057 / Section 101.111(a)(2)(ii)	Pass
	Conducted Spurious	Section 2.1051 & 2.1057 / Section 101.111(a)(2)(ii)	Pass
	Frequency Stability	Section 2.1055 / Section 101.107	Pass

Regulatory Compliance Requirements

Vito Scaringi

Wireless Approvals Specialist

Newbridge Networks Corporation		59ET0004
Issued Version 1.0	Last Revised: 99.10.25	Page 16 of 89

Date Oct.25/1999

4 TEST RESULTS

4.1 RF Output Power

4.1.1 Test Specification

Standard	FCC Part 101 section 101.113 (edition 10-1-98)	
Method	FCC Part2 section 2.1046 (edition 10-1-98)	
Limits	Maximum EIRP of +55dBW	
4.1.2 Test Location		
Test Laboratory	Newbridge Networks Corporation, Design Integrity Laboratory	
Address	600 March Road Kanata, Ontario K2K 2E6	
Prime Contact	Vito Scaringi, Wireless Approvals Specialist	
4.1.3 Tested by		
Test Engineer	Vito Scaringi, Wireless Approvals Specialist	
Company	Newbridge Networks Corporation	

4.1.4 Test Procedure

The output power was adjusted to have each carrier set at approximately \geq +19dBm, giving a total output power at the antenna port of +27dBm maximum. The transmitter can support a maximum of 6 carriers or less, each with a BW of 36MHz or smaller.

Therefore, the worst condition was tested, using 6 carriers each set at a BW of 36MHz which is the maximum configuration this power amplifier will be operating. All power measurements were taken in normal operation (modulated).

RF Power Output Test Setup

- (1) Calibrate power meter to the proper frequency of transmission.
- (2) Enable OTU and add the appropriate attenuation at the antenna port to avoid damage to the power meter.

(3) Measure output power at the low and high end of the band of operation of the OTU. Measure the attenuator and compensate with an offset.

4.1.5 Test Equipment and Support Equipment

Instrument	Mfr./Model / S/N	Range	Calibration
Power Meter	Hewlett Packard/ Model EPM-441A Tool # 8067	N/A	Last: 98/11/13 Due: 99/11/13
Power Sensor	Hewlett Packard/ Model 8487A Tool # 10419	-30dBm to +20dBm	Last: 99/08/23 Due: 00/08/23

4.1.6 Results - Test Data

Unit under Test	Frequency Band (MHz)	Maximum EIRP Level
OTU		+18dBW maximum (6 carriers)
Telaxis (Millitech) Basestation Transmitter	27650 to 28350	+10dBW maximum per carrier

Antenna Gain of 90 degree sector antenna: 21dBi

Each carrier set at +19dBm (-11dBW), with a total of +27dBm (-3dBW) at the antenna port Conversion from dBm to dBW: +19dBm - 30dB= -11dBW

4.2 Spectrum Mask

4.2.1 Test Specification

Standard	FCC Part 101 section 101.11	11(a)(2)(ii) (edition 10-1-98)
Method	FCC Part 2 section 2.1049	(edition 10-1-98)
Limits	A=11+0.4(P-50) =10logB	(B= 850MHz)

Newbridge Networks Corporat	tion	59ET0004
Issued Version 1.0	Last Revised: 99.10.25	Page 20 of 89
4.2.2 Test Location		
Test Laboratory	Newbridge Networks Corporation, Design Integrity Laboratory	
Address	600 March Road Kanata, Ontario K2K 2E6	
Prime Contact	Vito Scaringi, Wireless Approvals Specialist	
4.2.3 Tested by		
Test Engineer	Vito Scaringi, Wireless Approvals Specialist	
Company	Newbridge Networks Corporation	

4.2.4 Test Procedure

The measurements were done with 6 ARIC cards inserted in the 36170 shelf and the 12:2 combiner. Each carrier was adjusted at the RF output to approximately +19dBm, which gave a measured total power at the antenna port of +27dBm.

Spectrum Mask measurement setup

Center frequency	Last carrier set at 28,332MHz (each carrier is 36MHz)
Sweeping time	Automatic
Resolution bandwidth	1 MHz
Video bandwidth	\geq 300 kHz (video averaging of display is allowed)
Y scale	10 dB/Div

(1) Set the settings of a spectrum analyzer as follows:

- (2) Connect spectrum analyzer at the antenna port and record the spectrum shape. Perform measurements at the edge of the frequency block with all 6 carriers grouped side by side near the higher end of the assigned band. Repeat measurements at the lower end of the assigned band or to the lowest frequency the transmitter can operate at.
- (3) Overlay the FCC mask and verify that it does not exceed the limits.

4.2.5 Test Equipment and Support Equipment

Mfr./Model / S/N	Range	Calibration
Hewlett Packard/ Model 8564/	9kHz to 40GHz	Last: 98/11/13 Due: 99/11/13
	Mfr./Model / S/N Hewlett Packard/ Model 8564/ Tool # 738	Mfr./Model / S/N Range Hewlett Packard/ 9kHz to 40GHz Model 8564/ Tool # 738

4.2.6 Results - Test Data

Downlink frequency range: 27,650 to 28, 350MHz

The highest frequency the last carrier will operate is at 28,332MHz with 36MHz carriers.

The lowest frequency the first carrier will operate at is 27,668MHz with 36MHz carriers

Note: The OTU will not operate below 27,650MHz, therefore the spectrum mask is offset by 150MHz from the edge of the first carrier.

Each carrier BW= 36MHz

4.3 Radiated Spurious

4.3.1 Test Specification

Standard	FCC Part 101 section 101.111(a)(2)(iii) (edition 10-1-98)
Limit	43 +10log Pmean

4.3.2 Test Location

Test Laboratory	KTL Ottawa Inc.
Address	3325 River Road R.R.5 Ottawa, Ontario K1V 1H2
Prime Contact	Ted Grant, Manager Electromagnetic Services

This document contains Confidential Information of Newbridge Networks Corporation.

4.3.3 Tested by

Test Engineer

Wayne Clarke

Company

KTL Ottawa Inc.

4.3.4 Test Procedure

The measurements were done with 6 ARIC cards inserted in the 36170 shelf and the 12:2 combiner. Each carrier was adjusted at the RF output to approximately \geq +19dBm, which gave a measured total power at the antenna port of +27dBm.

The reference level was measured with the vertical polarized 90-degree sector antenna that had a gain of 21dBi. Once the reference level was defined, the final measurements were taken with the OTU port terminated with a 50Ω load.

All radiated spurious measurements were taken in semi-anechoic room at a distance of 3 meters in the vertical and horizontal polarization.

The system was setup in maximum configuration as indicated in figure 3 (section 2.4.1).

Radiated Spurious measurement setup

Radiated Spurious Setup in a Semi- Anechoic Chamber at KTL Ottawa Laboratories

4.3.5 Test Equipment and Support Equipment

Instrument	Mfr./Model / S/N	Range	Calibration
Spectrum Analyzer	HP 8565E	9kHz to 50GHz	Last: 99/06/16
	SN #FA000981		Due: 00/06/16
Biconical Antenna	EMCO/ 3109	20 MHz to 300Mhz	Last: 98/09/24
	SN #9204-2708		Due: 99/09/24
Log Periodic	EMCO/ LPA-25	200MHz to 1GHz	Last: 98/07/27
Antenna	SN #1141		Due: 99/09/24
Horn Antenna	EMCO/ 3115	1GHz to 18GHz	Last: 98/10/30
	SN #4336		Due: 99/10/30
Horn Antenna	Electro-Metrics/	18GHz to 26.5GHz	Last: 97/07/29
	SH-50/60-1		Due: 00/07/29
	SN # FA000479		
Horn Antenna	Electro-Metrics/	26.5GHz to 40GHz	Last: 97/07/29
	SH-50/60-2		Due: 00/07/29
	SN # FA000485		
Horn Antenna	Millitech/ SGH-19-	40GHz to 60GHz	Last: 97/04/25
	RP000		Due: 00/04/25
	SN #021		
Horn Antenna	Millitech/ SGH-12-	60GHz to 90GHz	Last: 97/04/25
	RP000		Due: 00/04/25
	SN #031		
Horn Antenna	Millitech/ SGH-08-	90GHz to 140GHz	Last: 98/10/13
	RP000		Due: 01/10/13
	SN #FA001296		
Harmonic Mixer	HP 11970V	50GHz to 75GHz	Last: 97/02/25
	SN #2521A01150		Due: 00/02/25
Harmonic Mixer	HP 11970W	75GHz to 110GHz	Last: 98/10/13
	SN #2521A01465		Due: 01/10/13

4.3.6 Results - Test Data

<u>Note 1</u>: Ignore the limit lines on the plots specified in Appendix A, for the calculations during the measurements were wrong. The new levels are calculated and specified in the Table below for a spurious measured or midband of each graph that does not display a spurious.

The spurious were verified from 30MHz to 100GHz and were below the limits. See Appendix A for plots. Antenna Gain = 21dBi Total Output Power = +27dBm (-3dBW) or 0.5W A= 43+10log(Pmean in watts) ; therefore, A= 40dB

The total power measured at a distance of 3 meters was 94dBuV over a 216MHz bandwidth (6 carriers x 36MHzBW) using a 21dBi, 90 degree sector antenna in the vertical polarization. Total output power at the antenna port = +27dBm (0.5watts)

<u>NOTE 2:</u>

When a RBW of 10kHz was used, a correction factor of -4 dB was subtracted to the limit line (10log 4/10 = -4dB).

When a RBW of 3kHz was used, a correction factor of 1.25 dB was subtracted from the limit level. (10 log 4/3 = 1.25 dB).

Cables losses were not taken into consideration for the calculations, but would be used if spurious were within 5 dBs of the limits. (Above 50GHz a correction factor was added into the HP spectrum analyzer according to the harmonic mixer specifications).

Calculations

Absolute Level = (measured level) + (Propagation loss) – (Receiver Antenna Gain) – (RBW correction factor)

Limit Level = Absolute Level -A;

where $A = 43+10\log$ (Pmean in watts) therefore, $A = 43+10\log 0.5=40$ dB

Propagation Loss = $32 \text{ dB} + 20 \log f(\text{MHz}) + 20 \log d (\text{km})$

(All measurements were taken at 3 meters distance)

i.e.: Reference level at 27.75GHz

Absolute Reference Level = 94dBuV + (32 + 88.87 - 50.46) – 15.28dB = 149.13dBuV Limit Level = 149.13- 40 = 109.13dBuV **Radiated Spurious Measurements (Vertical Polarization)**

Absolute Level = (measured level) + (Propagation loss) – (Receiver Antenna Gain) – (RBW correction factor)

Reference level at 27.75GHz

Absolute Reference Level = 94dBuV + (32 + 88.87 - 50.46) - 15.28dB = 149.13dBuV

Limit Level = 149.13- 40 = **109.13dBuV**

	1					1		
Frequency (MHz)	Measured Level (dBuV)	Polarization (V/H)	Propagation Losses (dB)	RX Antenna Gain (dBi)	RBW correction Factor (dB)	Attenuation below Pmean (dB)	Spurious Measured (dBuV)	Limit Level (dBuV)
38.6	35	V	13.2741712	-10	1.25	40	17.02417	109.13
151	35	V	25.121964	1.2	1.25	40	17.67196	109.13
250	30	V	29.5012253	1.3	1.25	40	16.95123	109.13
525	37	V	35.9456112	6.8	1.25	40	24.89561	109.13
725	34	V	38.7491852	5.9	1.25	40	25.59919	109.13
1260	24.17	V	43.549836	5.6	1.25	40	20.86984	109.13
2500	20	V	49.5012253	8.2	1.25	40	20.05123	109.13
3500	18	V	52.423786	8.1	-4	40	26.32379	109.13
7000	22	V	58.4443859	9.6	-4	40	34.84439	109.13
14000	25	V	64.4649858	12	-4	40	41.46499	109.13
20000	25	V	67.563025	15.73	-4	40	40.83303	109.13
23000	27	V	68.7769818	16.79	-4	40	42.98698	109.13
25250	22	V	69.5876527	17.58	1.25	40	32.75765	109.13
31000	17	V	71.369659	16	1.25	40	31.11966	109.13
33500	22	V	72.0433212	16.56	1.25	40	36.23332	109.13
37500	27	V	73.0230504	17.44	1.25	40	41.33305	109.13
41250	26	V	73.8509042	22.75	1.25	40	35.8509	109.13
43750	25	V	74.3619862	23	1.25	40	35.11199	109.13
46250	27	V	74.8446598	23.2	1.25	40	37.39466	109.13
48750	26	V	75.3019175	23.35	1.25	40	36.70192	109.13
55000	28	V	76.3496789	23.6	-4	40	44.74968	109.13

This document contains Confidential Information of Newbridge Networks Corporation.

N	Newbridge Networks Corporation					ЕТ0004		
Is	sued Version 1.	rsion 1.0 Last Revised: 99.10.25 Page 29 of 89			29 of 89			
67500	28	V	78.1285006	23	-4	40	47.1285	109.13
77500	32	V	79.3284591	23.45	-4	40	51.87846	109.13
82500	30	V	79.8715041	23.6	-4	40	50.2715	109.13
87500	30	V	80.3825862	23.65	-4	40	50.73259	109.13
92500	32	V	80.8652597	22.55	-4	40	54.31526	109.13
97500	32	V	81.3225174	22.8	-4	40	54.52252	109.13

	Radiated Spurious Measurements (Horizontal Polarization)							
Absolute	Level = (m	easured level) + (Propagatio	on loss) – factor)	(Receiver An	tenna Gain)	– (RBW co	prrection
			Reference	level at 27	7.75GHz			
	Absolute R	eference Leve	el = 94dBuV +	(32 + 88.8	7 - 50.46) –	15.28dB = 1	49.13dBuV	
		Lir	nit Level = 149). 13- 40 =	109.13dBuV			
Frequency (MHz)	Measured Level (dBuV)	Polarization (V/H)	Propagation Losses (dB)	RX Antenna Gain (dBi)	RBW correction Factor (dB)	Attenuation below Pmean (dB)	Spurious Measured (dBuV)	Limit Level (dBuV)
84	32	Н	20.02801	0.8	1.25	40	9.978011	109.13
122	35	Н	23.26962	0.2	1.25	40	16.81962	109.13
250	34	Н	29.50123	1.3	1.25	40	20.95123	109.13
525	39	Н	35.94561	6.8	1.25	40	26.89561	109.13
1250	17	Н	43.48063	5.5	1.25	40	13.73063	109.13
2500	12	Н	49.50123	8.2	1.25	40	12.05123	109.13
3500	12	Н	52.42379	8.1	1.25	40	15.07379	109.13
4500	12	Н	54.60668	9	1.25	40	16.35668	109.13
5500	12	Н	56.34968	8.9	1.25	40	18.19968	109.13
6500	15	Н	57.80069	9.9	1.25	40	21.65069	109.13
7500	17	Н	59.04365	9.4	1.25	40	25.39365	109.13
8500	15	Н	60.1308	10	1.25	40	23.8808	109.13
9500	15	Н	61.0969	10.1	1.25	40	24.7469	109.13
10500	15	Н	61.96621	10.6	1.25	40	25.11621	109.13

This document contains Confidential Information of Newbridge Networks Corporation.

Ne	wbridge Netw	orks Corporation	1			59E	Т0004	
Iss	ued Version 1.	0	Last Revised:	99.10.25		Page 30) of 89	
11500	14	Н	62.75638	11.6	1.25	40	23.90638	109.13
12500	15	Н	63.48063	11.2	1.25	40	26.03063	109.13
14000	17	Н	64.46499	12	1.25	40	28.21499	109.13
15500	18	Н	65.34906	14.4	1.25	40	27.69906	109.13
16500	17	Н	65.8921	14.1	1.25	40	27.5421	109.13
17500	17	Н	66.40319	10.9	1.25	40	31.25319	109.13
19000	17	Н	67.1175	15.38	1.25	40	27.4875	109.13
21500	20	Н	68.19119	16.26	1.25	40	30.68119	109.13
24175	25	Н	69.20975	17.23	1.25	40	35.72975	109.13
28250	23	Н	70.56279	15.39	-4	40	42.17279	109.13
30500	23	Н	71.22842	15.89	-4	40	42.33842	109.13
31500	30	Н	71.50864	16.11	-4	40	49.39864	109.13
33500	32	Н	72.04332	16.56	-4	40	51.48332	109.13
35250	22	Н	72.48561	16.94	1.25	40	36.29561	109.13
36000	32	Н	72.66848	17.11	1.25	40	46.30848	109.13
37000	28	Н	72.90646	17.33	1.25	40	42.32646	109.13
38000	30	Н	73.1381	17.56	1.25	40	44.3281	109.13
39250	30	Н	73.41922	17.83	1.25	40	44.33922	109.13
41250	25	Н	73.8509	22.75	1.25	40	34.8509	109.13
43750	25	Н	74.36199	23	1.25	40	35.11199	109.13
46138	28.67	Н	74.8236	23.2	1.25	40	39.0436	109.13
48750	27	Н	75.30192	23.4	1.25	40	37.65192	109.13
55000	27	Н	76.34968	23.6	-4	40	43.74968	109.13
67500	27	Н	78.1285	23	-4	40	46.1285	109.13
77500	32	Н	79.32846	23.45	-4	40	51.87846	109.13
82500	32	Н	79.8715	23.55	-4	40	52.3215	109.13
87500	32	Н	80.38259	23.6	-4	40	52.78259	109.13
92500	32	Н	80.86526	22.5	-4	40	54.36526	109.13
97500	32	Н	81.32252	22.8	-4	40	54.52252	109.13

Type Examination

The same setup and equipment was also tested according to the FCC Part 15 Subpart B and Bellcore GR-1089 standards and met Class A for radiated emission measurements.

4.4 Conducted Spurious

4.4.1 Test Specification

Standard	FCC Part 101 section 101.111(a)(2)(iii) (edition 10-1-98)
Limit	+10log Pmean

4.4.2 Test Location

Test Laboratory	KTL Ottawa Inc.
Address	3325 River Road R.R.5 Ottawa, Ontario K1V 1H2
Prime Contact	Ted Grant, Manager Electromagnetic Services
4.4.3 Tested by	
Test Engineer	Vito Scaringi, Wireless Approvals Specialist
Company	Newbridge Networks Corporation

4.4.4 Test Procedure

The conducted spurious are measured at the antenna port of the OTU in normal operation.

The measurements were done with 6 ARIC cards inserted in the 36170 shelf and the 12:2 combiner. Each carrier was adjusted at the RF output to approximately \geq +19dBm, which gave a measured total power at the antenna port of +27dBm.

Measured emissions at the frequencies, which are outside the occupied bandwidth up to 100GHz.

Conducted Spurious measurement setup

Newbridge Networks Corporation

Last Revised: 99.10.25

Conducted Spurious Setup at KTL Ottawa Laboratories

4.4.5 Test Equipment and Support Equipment

Instrument	Mfr./Model / S/N	Range	Calibration
Harmonic Mixer	HP 11970V	50GHz to 75GHz	Last: 97/02/25
	SN #2521A01150		Due: 00/02/25
Harmonic Mixer	HP 11970W	75GHz to 110GHz	Last: 98/10/13
	SN #2521A01465		Due: 01/10/13
Spectrum Analyzer	HP 8565E	9kHz to 50GHz	Last: 99/06/16
- •	SN #FA000981		Due: 00/06/16

4.4.6 Results - Test Data

The spurious were verified from 30MHz to 100GHz and were below the limits. See Appendix B for plots and calculations of limit lines.

Total Output Power = +27dBm (-3dBW) or 0.5W A= 43+10log(Pmean in watts) Therefore, A= 40dB

<u>Note</u>: A correction factor of 4dB for the different resolution bandwidth used from RBW= 10kHz to 4kHz; (10log 10/4 = 4dB) was ignored and taken as worst conditions. Cables losses were not taken into consideration for the calculations, but would be used if spurious were within 5 dBs of the limits. (Above 50GHz a correction factor was added into the HP spectrum analyzer according to the harmonic mixer specifications).

The reference output power measured was 0.6dBm over a 216MHz bandwidth after the attenuators and cable losses. Total output power at the antenna port = +27dBm (0.5watts)

Limit = (measured level) – A; where $A = 43+10\log$ (Pmean in watts)

 $A = 43 + 10 \log 0.5 = 40 dB$

i.e.: 0.6dBm - 40 = 39.4dBm (reference level)

4.5 Frequency Stability

4.5.1 Test Specification

Standard	FCC Part 101 section 101.107		
Limit	+/- 10ppm		
4.5.2 Test Location Test Laboratory	Newbridge Networks Corporation, Design Integrity Laboratory		
Address	600 March Road Kanata, Ontario K2K 2E6		
Prime Contact	Vito Scaringi, Wireless Approvals Specialist		

4.5.3 Tested by

Test Engineer Company Vito Scaringi, Wireless Approvals Specialist Newbridge Networks Corporation

4.5.4 Test Procedure

For the frequency stability measurements, an external source was used to provide an IF CW to the radio units. Only the OTU and ORU were placed in the temperature chamber during this specific test due to the 36170 shelf will be in a temperature-controlled environment, and can operate within a range of -10C to +55C.

All measurements were taken according to the method mentioned in the FCC Part 2, where a reading was taken at every 10° C intervals and the supply voltage was varied to the range of 38Vdc to -56Vdc.

<u>Note:</u> The BTS operates only on DC, therefore the DC supply was varied to show that the frequency is not affected by voltage fluctuation.

Frequency Stability measurement setup

4.5.5 Test Equipment and Support Equipment

Instrument	Mfr./Model / S/N	Range	Calibration	
Spectrum Analyzer	Hewlett Packard/ Model 8564/ Tool # 738	9kHz to 40GHz	Last: 98/11/13 Due: 99/11/13	
Frequency Generator	Hewlett Packard/ Model 8648C/ Tool # 8323	9kHz to 3.2GHz	Last: 98/04/06 Due: 00/04/06	

4.5.6 Results - Test Data

Nominal DC Supply Voltage to Radio is -48Vdc

Note: An external supply was used to vary the DC source from -38V to -56V.

Temperature (°C)	Frequency (kHz)	Measured Frequency (kHz)		Tolerance
		Supply voltage		Limit
				(+/-10ppm)
		-38Vdc	-56Vdc	
-30	27 650 000	27 649 996. 2	27 649 996.2	<1ppm
-20	27 650 000	27 649 996. 2	27 649 996.2	<1ppm
-10	27 650 000	27 649 996. 2	27 649 996.2	<1ppm
0	27 650 000	27 649 996. 3	27 649 996.3	<1ppm
10	27 650 000	27 649 996. 5	27 649 996.5	<1ppm
20	27 650 000	27 649 996. 7	27 649 996.7	<1ppm
30	27 650 000	27 649 997. 0	27 649 997.0	<1ppm
40	27 650 000	27 649 997. 0	27 649 997.0	<1ppm
50	27 650 000	27 649 997. 2	27 649 997.2	<1ppm
APPENDIX A: RADIATED SPURIOUS PLOTS - VERTICAL

(Vertical Polarization)

REFERENCE LEVEL

The total power measured at a distance of 3 meters was 94dBuV over a 216MHz bandwidth (6 carriers x 36MHzBW) using a 21dBi, 90 degree sector antenna in the vertical polarization. Total output power at the antenna port = +27dBm (0.5watts)

59ET0004 Page 38 of 89

SWP 280sec

59ET0004

59ET0004 Page 41 of 89

59ET0004 Page 42 of 89

59ET0004

The spurious that are seen here are the actual 6 carriers within the 850MHz occupied bandwidth with the antenna port terminated with a 50-ohm load.

59ET0004 Page 44 of 89

59ET0004 Page 45 of 89

59ET0004

59ET0004 Page 47 of 89

59ET0004 Page 48 of 89

59ET0004 Page 49 of 89

59ET0004 Page 50 of 89

L 77.0dΒμV	16	1 d B/					
							9R01837 VERTICAL
							FIELD STRENGTH OF
							SPURIOUS RADIATIO
ويقددون ويراقي والمحافظ	يو م م و طور وا	الحمو المراسما		 -	مىلىدى بىل	L Marine and	
sadirada diyana aya kana ka ka ka sa		****		 يد . احد ارغون	با مراريدار	~	
enterde dagente, en besider		****	.*************************************	 يو. 44 ماريكېر س	, they have a second	~~~~	
enderado de antes de activita, e		****		 يد . اد د ارندون	,tayl, softer	~,i~i~q;u_~,~	
**************************************		#**** #**	.*********	 بن ر ک ^ر کر کور	,hayl,so, ha yl		
**************************************			-*************************************	 	,* - ,*,*,***		
**************************************	Lando Terrar Anna an An		- ************************************	 ين ، 24 رايلور 	,,,,,,,, .	· · · · · · · · · · · · · · · · · · ·	

Radiated Spurious Plots - Horizontal

(Horizontal Polarization)

59ET0004

59ET0004

Page 53 of 89

59ET0004

Page 54 of 89

59ET0004

59ET0004

Page 57 of 89

59ET0004

Page 58 of 89

59ET0004

Page 59 of 89

59ET0004

Page 60 of 89

59ET0004

Page 61 of 89

59ET0004

59ET0004

59ET0004

59ET0004

59ET0004

59ET0004

Page 67 of 89

59ET0004

Page 68 of 89

59ET0004

59ET0004 Page 70 of 89

59ET0004 Page 71 of 89

APPENDIX B: CONDUCTED SPURIOUS PLOTS

<u>REFERENCE LEVEL</u>

9R01837 Conducted Spurious at Antenna Port

The reference output power measured was 0.6dBm over a 216MHz bandwidth after the attenuators and cable losses. Total output power at the antenna port = +27dBm (0.5watts)

Limit = (measured level) – A; where $A = 43+10\log$ (Pmean in watts)

A correction factor of 4dB for the different resolution bandwidth used from RBW= 10kHz to 4kHz; (10log 10/4 = 4dB) was ignored and taken as worst conditions.

 $A = 43 + 10 \log 0.5 = 40 dB$

i.e.: 0.6dBm - 40 = 39.4dBm (reference level)
59ET0004 Page 73 of 89

The spurious that are seen here are the actual 6 carriers within the 850MHz occupied bandwidth.

59ET0004 Page 75 of 89

9R01837 Conducted Spurious at Antenna Port

59ET0004 Page 76 of 89

Issued Version 1.0

APPENDIX C: ANTENNA SPEC SHEETS

Page 2 6/3

	Gain and Antenna Facto Manufactured by I Model Number: 3109 3.0 Meter Calibration	rs för Biconical Aotenna EMC Test Systems Serial Number, 2708 Polarization: Horizontal		
 Frequency (MHz)	Antenna Factor (dB)	Galn Numeric	Gain dBi	
20	16.7	0.01	-20.5	
30	13.6	0.04	-13,9	
40	12.0	0.11	-9.7	
50	10.3	0.24	-5.2	
60	8.5	0.54	-2.7	
70	5.1	0.54	-1,9	
80	7.5	0.20	0.8	
90	8.5	1.19	0,8	
100	97	1.12	0.5	
110	10.8	1.05	0.Z	
120	11.6	1.05	0.2	
130	12.0	1.12	0.5	
140	12.5	1.16	8.7	
150	12.5	13	12	
160	12.3	1.57	2.0	
170	12.4	1.75	24	
180	12.2	2.05	31	
197	12.5	2.00	37	
200	13.6	184	26	
210	:4 3	171	23	
220	15.3	1.51	18	
230	15.9	: 44	16	
240	18.4	1.97	: 4	
250	16.9	1 35	1 3	
260	17.0	1.00	1.0	
270	17.2	1.42	17	
280	17 8	1.45	16	
200	187	1 22	10	
200	19.1	1 17	7.2	
300	10.1	6.17	u.)	

Specification compliance testing factor (3.0 meter specing) to be added to receiver meter reading in dBV to convert to field intensity in dBV/meter. Calibrated 03 Aug 99 (DD/MMYYYY). Calibration per ANSI C33.5.

Page 2 of 3

Gain and Anteona Factors for Log Periodic Anteona Manufactured by Electro - Metrics Model Number: LPA-25 Sarial Number: 1141 3.0 Meter Calibration Polarization: Horizostal

		Gair		
Frequency (MHz)	Factor (dB)	Gain Numet-c	dBi	
200	11.6	2.88	4. 5	
725	11 1	4.08	6.1	
250	12.2	3.96	6.0	
275	13.3	3.75	5.7	
300	14.8	3.13	5.0	
225	14 8	3.68	5.7	
350	15.0	4.02	6.0	
275	153	≄.39	6.4	
400	15.9	4.29	6.3	
425	16 1	4,65	6.7	
450	16.6	4.64	6.7	
475	17.1	4.60	6.6	
600	17.8	4.33	6.4	
625	17.8	4.81	6.8	
650	18.3	4.73	6.7	
575	18.6	4.76	6.B	
600	18.8	4.94	6.9	
625	19.1	5.02	7.0	
650	19.6	4.84	6.9	
675	21.1	3.73	5.7	
700	21.4	3.75	5.7	
725	21.5	3.91	5.9	
750	21.4	4.26	6.3	
775	21.4	4.54	66	
803	21.5	4.72	6.7	
825	22.0	4.49	65	
850	22.3	4.44	6.ö	
875	22.7	4.38	64	
90D	22.8	4.41	ô.4	
925	23.1	4.41	64	
950	23.6	4.17	6.2	
976	24.2	3.77	5.8	
1000	24.6	3.65	5.6	

Specification compliance testing factor (0.0 motor spacing) to be added to receiver motor reading in dBV to convert to ligit intensity in dBV/mater. Catibrated 04 Aug 99 (DD/MM/YYYY) - Cultivation per ANSI C63.5.

Page 1 of 1

......

EEMC TEST SYSTEMS. Le A Repairing of ESCO Classifier Corporation

Gain and Antenna Factors for Double Ridged Guide Antenna

Manufactured by EMC Test Systems Model Number: 3115 Serial Number: 4336

3.0 Meter Calibration

(MHz) Factor (dB) Nu		
1005 25.7 2	2.80 4.5	
1500 27.0 4	L,76 5.6	
2003 29.0	5.24 7.2	
2500 29.9 é	6.65 8.2	
3000 31.6	3.47 B.1	
3500 32.9 6	1.53 8.1	
4000 33.8 6	3.98 B.4	
4500 34.3	7.90 9.0	
5000 35.4	7.51 8.8	
5500 36.1	7,83 8.9	
6000 38.4 8	3.5 ð 9.3	
6500 38.5 9	9.64 9.9	
7000 37.5	9.22 9.6	
7500 38.3	3,75 9.4	
8000 38.4 9	9,61 9,8	
55DO 38,8 1	0.03 10.0	
9000 38,5 9000	9.50 9.8	
9500 39.7 1	0.15 10.1	
10000 40.0 1	0.50 10.2	
10500 40.1 1	1.37 10.8	
11200 40.2 1	2.05 10.8	
11500 39.9 1	4.37 11.6	
12000 39.5 1	5.98 12.0	
12500 40.9 1	3.21 11.2	
13000 41.4 1.	2,89 11.1	
13500 41.6 1	3.25 11.2	
14000 41.1 1	5.87 12.0	
14500 41.ā 1	6.42 11.9	
15000 41.3 1	5.29 11.8	
15500 39.6 2	7.70 14.4	
16000 39.4 3	0,9-6 14,9	
16500 40.5 2	5.42 14.1	
17000 42.6 1	8.58 12.2	
17500 44.2 1.	2.30 10.9	
18000 44.9 1	1.10 10.5	

Specification compliance testing factor (3.0 meter spacing) to be added to receiver meter reading in dBuV to convert to field intensity in dBuV/meter. Calibrated 30 Oct 97 (DD/MM/YYYY). Calibration per ANSI C63.5.

Issued Version 1.0

-

I

Last Revised: 99.10.25

59ET0004

Page 81 of 89

		PRODUCES THE DISH.	<i>⊨</i> ∆,
	10-07 07 :5:44 7-	2753 #886 PCE	
	EI BAIN A	-ECTRO-METRICS 9TANDARD 10 ANTENNA FACTORS	
	4	IODEL BH-50-1 Iorn Antenna	
	FREQUENCY	ANTENNA FACTOR	
~~~~	(MHz)	(dB)	(42)
	18.00	40.26	15.02
	18.25	40,31	15.11
	18.50	40.34	15.20
	18.75	40.37	15.29
	17.00	40.40	15.38
	19.25	40,42	15.46
	19.50	40.45	15.55
	19.75	40,47	15.44
	20.00	40.49	15.73
	20.25	40.51	15.82
	20.50	40.53	15.91
	20.75	40.55	15.99
	21.00	40.54	16.09
	21.25	40.58	16.17
	21.50	40.57	15 76
	21,75	40.60	14.35
	22.00	40.61	16.44
	22.25	40.62	16-57
	22.50	40.43	16.61
	22,75	40.54	14.70
	23.00	40.65	16.79
	23.25	40.65	16.68
:	23.50	40.66	16 94
	23.75	40.65	17.05
	24.00	40.66	17.14
	24.25	40.66	17.23
	24.50	40.67	17.32
	24,75	40,67	17.41
	25.00	40.66	17.49
	25.25	40.66	17.58
	25.50	40.65	17.67
	25.75	40.466	17.76
	26.00	40.65	17.85
	26.25	40.63	17.94
	26.50	40.64	18.0Z

**Issued Version 1.0** 

.

## **59ET0004**

#### Page 82 of 89

.

.

٤.

ee 3

2.5	10100167 NH:54	MULTILEK INC OTTAKN
•	12-07-87 15:45 7	2753 #825 9 <b>03</b>
· · ·	E	LECTRO-METRICS

#### ELECTRO-METRICS STANDARD GAIN AND ANTENNA FACTORS MODEL SH--50-2 HORN ANTENNA

Last Revised: 99.10.25

	FREQUENCY (714;)	ANTENNA FACTOR (dB)	GAIN (db)	
	Z6.50	43.66	15.00	
	20.73	43.67	15.08	
	27.25	43.72	13.11	
	27.50	43.74	10,17	
	27.75	43.70	10722	
	- 28.00	43.81	14.20	
	28.25	47 67	15 70	
	28.50	43.63 At 85	15 44	
	28.00	43.03	13,44	
· •	29.00	47 09		
-	20 25			
	27.13	43.71	13.61	
	27.30	43.73	15.6/	
	27.73	43.72	15./Z	
	30.00	43.78 AT 00	15.78	
	30 50	43.70	12.03	
	30,30	44,00	13.47	
	30.73	44.01	15.94	
	31.00	44.03	16.00	
	31.20	44.04	18.06	
	71 78	- 44.00 - AA 07	16.11	
	31,79	*****	14.17	
×.0	72 94	44.08	16.22	
	32.20	44.09	18.28	
	32,30	44,10	14.33	
	3X1/3	44.12	16.39	
	33.00	44.13	16.44	
	50,25	44.14	16.30	
	73,20	44,13	14.30	
	33.72	44.15	10.01	
	34,00	44.10	10.57	
	34.50	44.47		
	74 75	44 19		
	35.00	AA 19	10.43	
	35.25	44 20		
•	35.50	44.20	12 AA	
• i		44.20	17.00	
	36.00	AA 71	17.08	
	36.25	4 77	17.17	
	36, 50	44.27	17.17	
· • ·	34.75	44 73	17 78	
· i	37.00	44 27	17 17	
	37 34	44 73	11.33	

.

**Issued Version 1.0** 

t de la

. .

÷ ..

-----

Page 83 of 89

._ 10-100-01 UD-02-02-02-THE PLET AND COMMEN LA.----27**5**3 **2**826 **P**84 16-07-07 15:46 1-. . 1 ELECTRO-METRICS STANDARD GAIN AND ANTENNA FACTORS NODEL BH-S0-2 . HORN ANTENNA (CONT D)

FREQUENCY (MHz)	ANTENNA FACTOR (db)	5AIN (d8)	
37.50	44.24	17,44	
37.75	44.24	17.50	
39.00	44.24	17.56	
38.25	44.24	17.61	
38.50	44.24	17.47	
38.75	44.24	17,72	
37.00	44.24	17.78	
37.25	44.24	17.83	
37.50	44.24	17.89	
39.75	44.24 +	17.94	
40.00	44.24	18.00	

٠

.

.







.



FREQ.	CONV. LOSS	REF. LVL OFS	PREG.	CONV. LOSS	REF. LVL OFS
50.00	35.9	5.9	63.00	34.4	4.4
50.50	35.4	5.4	53.50	34.0	4.0
51.00	34,6	4,8	64.00	33,9	3.9
5:,50	36.3	5.3	64.50	34.2	4.2
52.00	34.8	4.8	65.00	34.3	4.3
52.50	34.5	4.5	65.50	34.0	4.0
53,00	34.5	4.5	65.00	34.2	4.2
53.50	34.0	4.0	66.50	34.3	4.3
54.00	34.2	4.2	67.00	34.4	4.4
54.50	94,4	4.4	67.50	33.9	3.3
55.00	34.0	4.0	68.00	34.0	4.0
55.50	34,0	4.0	68.50	34.3	4.3
56.00	34.5	4.6	69.00	34.2	4.2
56.50	33.9	3.9	69.50	34.0	4.0
57.00	33.9	3.9	70.00	34.5	4.5
57,50	39.9	3.9	70.50	34.7	4.7
58.00	34.0	4.0	71.00	34.7	4.7
58.50	33.6	3.6	71.50	34.7	4.7
59.00	33.7	3.7	72.00	34.6	4.8
59.50	34.1	4. i	72.50	35.0	5.0
60.00	33.5	3,5	73.00	34.9	4.9
50.50	33.7	3.7	73.50	34.5	4.5
61.00	34.2	4,2	74.30	35.1	5.i
51.50	34.3	4.3	74.50	35.5	5.8
62.00	34.0	4,0	75.00	35.3	5.3
62.50	34.2	4.2			

RECOMMENDED CALIBRATION CYCLE: TUREE YEARS

HEWLETT

11970W CALIBRATION



j			-			
	FREG.	CONV. LOSS	REF. LVL OFS	FREQ.	CONV. LOSS	REF. LVL OFS
	75.00	39.7	9.7	93.00	40.3	±0.3
	76,00	40.0	10.0	94.00	40.5	10.5
	77.00	38.9	9.9	95.00	40.4	10.4
ł	78.00	39.2	9.2	96.00	40.6	10.6
	79.00	39.1	<b>9.1</b>	97.00	40.7	10.7
	80,00	39.1	9.1	98.00	40.7	10.7
l	B1.00	36.9	5.9	99.00	40.9	10.9
	52.00	36.9	8.9	100.00	41.1	11.1
ľ	83.00	39.1	8.1	101.00	41.1	11.1
	84,00	39.0	9.0	102.00	41.5	11.8
ļ	85,00	38.8	8.8	103,00	41.5	11.5
ĺ	96.00	39.3	9,3	104.00	41.5	11.5
	87.00	39.4	9.4	105.00	41.8	11.8
	88.00	39,3	9.3	105.00	41.6	11.8
	89.00	39.6	9.6	107.00	42.1	12.1
	90.00	38,6	9.5	108.90	42.1	12.1
ļ	91.00	39.9	9,9	109.00	42.7	<b>12</b> .7
	92,00	38.8	9.9	110.00	42.7	12.7
-						

RECOMMENDED CALIBRATION CYCLE: THREE YEARS

### REFERENCES

- [1] FCC, 47 CFR Part101 Fixed Microwave Services, edition 10-1-98
- [2] FCC, 47 CFR Part 2 Frequency Allocation and Radio Treaty Matters: General Rules and Regulations, edition 10-1-98
- [3] ANSI, C63.4, Methods of Measurement of Radio Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz, 1992.
- [4] Bellcore, GR-1089-CORE Electromagnetic Compatibility and Electrical Safety Generic Criteria for Network Telecommunication Equipment, Issue 1, November 1994.
- [5] Bellcore, GR-1089-ILR Revised and Additional Criteria for GR-1089-CORE, Issue 1A, JULY 1996.
- [6] Bellcore, TR-NWT-001089 Electromagnetic Compatibility and Electrical Safety Generic Criteria for Network Telecommunication Equipment, Issue 1, October, 1991.
- [7] FCC, 47 CFR Part 15 Radio Frequency Devices, 1995
- [8] Industry Canada, ICES-003 Interference-Causing Equipment Standard DIGITAL APPARATUS, Issue 2, Revision 1, 1995.
- [9] ISO, GUIDE 25 General requirements for the competence of calibration and testing laboratories, Third Edition, 1990.

# HISTORY

This document was created from the document template GQP0001, version 8.2.

Version 1.0 **Date** 99.10.25

**Person** V.Scaringi Reason Issued