

## **FCC Part 15 Certification** **Test Report**

**FCC ID: F9CC1SA**

**FCC Rule Part: 15.247**

**ACS Report Number: 03-0248-15C**

Manufacturer: Schlumberger Electricity, Inc.  
Equipment Type: Electricity Meter With Dual RF Transmitters  
Model: CENTRON™ ICARe

## **Theory of Operation**

---

# **Schlumberger**

## **ICARe Project Functional Specification**

---

CDP Requirement 3.1

This document describes the hardware and firmware functional specifications for the project.

**23 September 2002**

**Updated: 15 January 2004**

---

**Confidential and Trade Secret Information**

© Copyright Schlumberger Electricity, Inc., unpublished work, created 2002

## REVISION CHART

---

| Version     | Primary Author(s)    | Description of Version                                                         | Date Completed |
|-------------|----------------------|--------------------------------------------------------------------------------|----------------|
| Draft       | DP McConnell         | Initial draft                                                                  | 9/23/2002      |
| Draft       | DP McConnell         | Incorporated comments from Jerome Bartier, Eric Deschamps and Vladimir Borisov | 9/25/2002      |
| Draft       | DP McConnell         | Updated document with management requests                                      | 9/26/2002      |
| Draft       | DP McConnell         | Added R300 functionality                                                       | 10/1/2002      |
| Draft       | DP McConnell         | Added Interval and randomization examples                                      | 10/11/2002     |
| Draft       | DP McConnell         | Added RF power consumption assumptions                                         | 10/14/2002     |
| Draft       | DP McConnell         | MCU Requirements made more generic                                             | 11/19/2002     |
| Draft       | DP McConnell         | Updated document for company split and to address selected MCU                 | 1/16/2002      |
| Draft       | DP McConnell         | Changed CRF900 to COSMOS                                                       | 3/31/2003      |
| Draft       | DP McConnell         | Changed CentronCRF to ICARe                                                    | 4/10/2003      |
| Draft       | DP McConnell         | Updated document to reduce overlap with architectural spec                     | 5/15/2003      |
| Draft       | DP McConnell         | Inserted Mobile Network Section                                                | 7/14/2003      |
| Draft       | DP McConnell         | Incorporated comments from Product Services                                    | 8/23/2003      |
| Draft       | M.Peters/P.Chiumento | Updated Hardware and Firmware sections                                         | 12/19/2003     |
| Preliminary | DP McConnell         | Cleaned up format and made final changes from previous spec                    | 1/15/2004      |
|             |                      |                                                                                |                |

## TABLE OF CONTENTS

---

|          |                                                  |           |
|----------|--------------------------------------------------|-----------|
| <b>1</b> | <b><i>Introduction</i></b>                       | <b>6</b>  |
| 1.1      | Description                                      | 6         |
| 1.2      | Endpoint Function                                | 6         |
| <b>2</b> | <b><i>RF Network Services</i></b>                | <b>7</b>  |
| 2.1      | SchlumbergerSema CellNet Network System Services | 7         |
| 2.1.1    | Information Provided                             | 7         |
| 2.1.2    | FCC Regulation                                   | 8         |
| 2.1.3    | RF Characteristics for Fixed Network             | 8         |
| 2.2      | R300 Mobile Network System                       | 8         |
| 2.2.1    | Information Provided                             | 8         |
| 2.2.2    | FCC Regulation                                   | 8         |
| 2.2.3    | RF Characteristics for Mobile Network            | 9         |
| 2.3      | Schlumberger R900 Mobile Network System          | 9         |
| 2.3.1    | Information Provided                             | 9         |
| 2.3.2    | FCC Regulation                                   | 9         |
| 2.3.3    | RF Characteristics for Mobile Network            | 9         |
| <b>3</b> | <b><i>System Hardware Requirements</i></b>       | <b>10</b> |
| 3.1      | Power Supply Specification                       | 10        |
| 3.1.1    | Power supply inputs and outputs description      | 10        |
| 3.1.2    | Specification on inputs and outputs              | 11        |
| 3.1.2.1  | Power grid input specification                   | 11        |
| 3.1.2.2  | Serial Port interface power input specification  | 11        |
| 3.1.2.3  | 3.4V regulated output specification              | 11        |
| 3.1.2.4  | 2.65V regulated output specification             | 11        |
| 3.1.3    | Power Supply output current specification        | 12        |
| 3.2      | RF Section Specification                         | 13        |
| 3.2.1    | CRF ASIC part                                    | 13        |
| 3.2.2    | RF on board circuitry                            | 13        |
| 3.3      | CENTRON Meter Metrology Interface specification  | 14        |
| 3.4      | Manufacturing specification                      | 15        |
| 3.4.1    | Test Points                                      | 15        |
| 3.4.2    | Manufacturability                                | 15        |
| 3.4.3    | Mechanical guidelines                            | 15        |
| 3.5      | Qualification                                    | 15        |
| <b>4</b> | <b><i>System Firmware Requirements</i></b>       | <b>16</b> |
| 4.1      | Firmware Description                             | 16        |
| 4.2      | Firmware Requirements                            | 18        |
| <b>5</b> | <b><i>System RF Operation</i></b>                | <b>19</b> |
| 5.1      | RF Characteristics                               | 19        |
| 5.2      | Fixed Network Description                        | 19        |
| 5.2.1    | Spreading Code                                   | 19        |
| 5.3      | Mobile Network Description                       | 20        |
| 5.4      | R300 / R900 Transmissions                        | 22        |

|            |                                                         |           |
|------------|---------------------------------------------------------|-----------|
| <b>5.5</b> | <b>Interleaved Network Transmission Bandwidth .....</b> | <b>22</b> |
| <b>5.6</b> | <b>Transmission Randomization .....</b>                 | <b>23</b> |
| 5.6.1      | Fixed Network Randomization .....                       | 24        |
| 5.6.2      | R300 / R900 Mobile Network Randomization .....          | 24        |
| 5.6.3      | Agile Mobile Network Transmitter Randomization .....    | 24        |
| 5.6.4      | Fixed Network Intervals .....                           | 25        |
| 5.6.5      | Mobile Channel Selection.....                           | 26        |
| <b>6</b>   | <b>Specifications &amp; Standards .....</b>             | <b>28</b> |
| <b>6.1</b> | <b>Specifications.....</b>                              | <b>28</b> |
| 6.1.1      | Electrical .....                                        | 28        |
| 6.1.2      | Operating Environment.....                              | 28        |
| <b>6.2</b> | <b>Meter Base Requirements.....</b>                     | <b>28</b> |
| <b>6.3</b> | <b>External Standards.....</b>                          | <b>28</b> |
| 6.3.1      | ANSI Standards .....                                    | 28        |
| 6.3.2      | FCC Regulations.....                                    | 28        |
| 6.3.2.1    | CFR Title 47,Part 15, Subpart C, Paragraph 247 .....    | 28        |
| 6.3.2.2    | CFR Title 47,Part 15, Subpart C, Paragraph 249 .....    | 28        |
| <b>6.4</b> | <b>Internal Standards.....</b>                          | <b>28</b> |

## LIST OF FIGURES AND TABLES

---

|                                                                          |    |
|--------------------------------------------------------------------------|----|
| <i>Table 1 Fixed Network (CellNet) RF Transmitter Characteristics</i>    | 8  |
| <i>Table 2 Mobile Network (R300/R900) RF Transmitter Characteristics</i> | 9  |
| <i>Table 3 COSMOS Voltage Specifications</i>                             | 11 |
| <i>Table 4 Digital Circuit Voltage Requirements</i>                      | 11 |
| <i>Table 5 Component Current Requirements</i>                            | 12 |
| <i>Table 6 Power Supply Current Requirements</i>                         | 12 |
| <i>Table 7 CENTRON Interface Pinout</i>                                  | 14 |
| <i>Table 8 ICARe Firmware Modes</i>                                      | 17 |
| <i>Table 9 Mobile Channel Selections</i>                                 | 27 |
| <i>Table 10 Transmitter &amp; Receiver Channels</i>                      | 28 |
| <i>Table 11 Meter Specification Types</i>                                | 28 |
| <hr style="border: 1px solid black;"/>                                   |    |
| <i>Figure 1 RF Network Interfaces</i>                                    | 7  |
| <i>Figure 2 ICARe Block Diagram</i>                                      | 10 |
| <i>Figure 3 Metrology Energy Pulses</i>                                  | 14 |
| <i>Figure 4 LSYNC Signal</i>                                             | 14 |
| <i>Figure 5 ICARe Modes of Operation</i>                                 | 16 |
| <i>Figure 6 Fixed Network Bandwidth</i>                                  | 19 |
| <i>Figure 7 Fixed Network DSSS Pattern</i>                               | 20 |
| <i>Figure 8 Mobile Network Transmission Bandwidth</i>                    | 20 |
| <i>Figure 9 Mobile Transmitter 64 Channels</i>                           | 21 |
| <i>Figure 10 64 Channel Frequency Spacing</i>                            | 21 |
| <i>Figure 11 128 Channel Frequency Spacing</i>                           | 21 |
| <i>Figure 12 Interleaved Network RF Bands</i>                            | 22 |
| <i>Figure 13 Alternate Interleaved Network RF Bands</i>                  | 23 |
| <i>Figure 14 Mobile Transmitter Only Timing</i>                          | 23 |
| <i>Figure 15 RF Mobile and Fixed Interleaved Transmission Timing</i>     | 24 |
| <i>Figure 16 Fixed Network Interval Randomization</i>                    | 24 |
| <i>Figure 17 Mobile Network Randomization</i>                            | 24 |
| <i>Figure 18 Agile Network Mobile Randomization</i>                      | 25 |
| <i>Figure 19 Cumulative 2 with 18 Intervals</i>                          | 25 |
| <i>Figure 20 Cumulative 3 with 10 Intervals</i>                          | 26 |

# 1 INTRODUCTION

---

This document will describe the functional design specification for the ICARe RF electricity meter. The purpose of this project is to provide a meter module based on the COSMOS RFASIC developed in Montrouge, France and produced by Atmel. The design will allow the Centron meter to communicate in both the mobile and fixed network environments without hardware or programming modifications. The new module will be a lower cost over the existing CENTRON C1SC module in production.

## 1.1 Description

The ICARe will be a transmit-only meter module that collects and transmits metering data over the 902 - 928 MHz Industrial, Scientific and Medical (ISM) RF band. The unit will contain both a Direct Sequence Spread Spectrum (DSSS) transmitter and a Frequency Hopping (FSK) transmitter.

## 1.2 Endpoint Function

The ICARe functions as a RF transmitter that will support remote meter reading using both the mobile and the fixed network protocols. The mobile network functions will be the R300 (ITRON™ protocol) or the R900 (SURF© protocol). The fixed network function will be the CellNet© electricity endpoint protocol (PID2) to maintain legacy functionality.

The endpoint will be installed in the CENTRON meter as the register board. The metrology board will provide power and energy data to the endpoint in the same manner as a normal register board.

The endpoint will provide the following data depending on configuration:

- Cumulative energy readings using the ITRON protocol
- Cumulative energy readings using the Schlumberger SURF protocol
- Cumulative and interval readings using the SchlumbergerSema CellNet protocol

The endpoint will be able to transmit a combination of the fixed and one of the two mobile protocols in a deployment to support the 'Agile' network or any single protocol above based on the configuration loaded.

The endpoint will determine electrical energy data by counting pulses from the metrology board and then converting them to energy values for display and transmission. The endpoint will use a constant loaded during configuration to provide the correct energy values for the network being supported.

The endpoint will also use a serial protocol for configuration and testing using the register serial port.

It is also necessary for the endpoint to be able to be installed on previous meter bases with no modifications to the base to maintain the modularity requirement of the CENTRON meter.

## References:

**COSMOS RFASIC Requirements**, by Gilles Picard

**Schlumberger Qualification Test Specification for Solid-State Electricity Metering Products**, SLB-QTS 5.0

**SURF protocol Schlumberger Unlicensed Radio Frequency Protocol specifications**, Version 1.0 dated June 9, 1998

**Electric Interval Packet Transmission Randomization, White Paper**, by Susan Stulz dated 24 June 2002

**ICARe RF Protocols Specification**

**ICARe Product Vision**

**ICARe Business Case**

## 2 RF Network Services

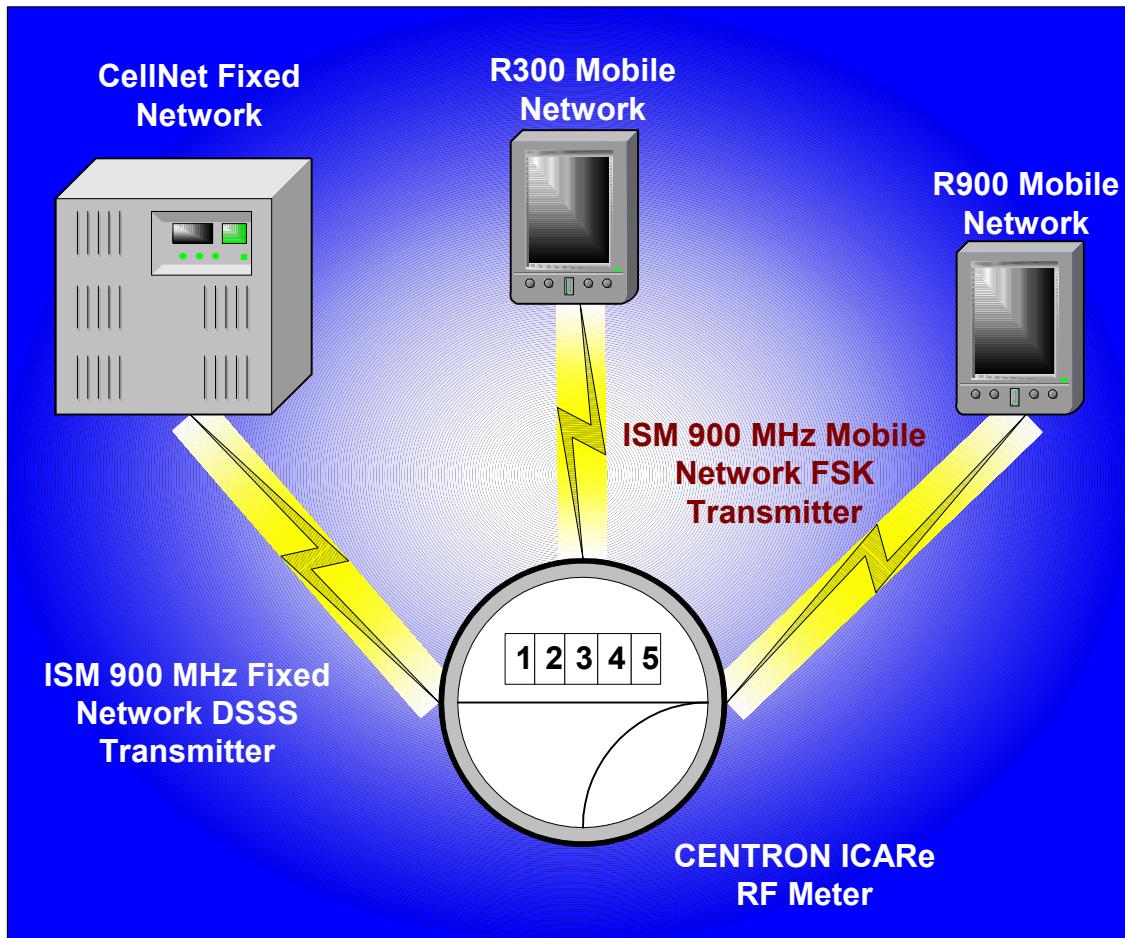



Figure 1 RF Network Interfaces

### 2.1 SchlumbergerSema CellNet Network System Services

The ICARe RF module will transmit a single channel of data at the 917 MHz using a Binary Phase Shift Keying (BPSK) spread spectrum transmitter. The transmitter is capable of transmitting both the On-Off-Keying (OOK) and the Cyclic Code Shift Keying (CCSK) chipping methods. The fixed network transmitter is capable of providing output power of  $25 \pm 1$  dBm to the antenna. The fixed network module transmits standard CellNet Protocol Identification 2 (PID2) packets to the network. Refer to the ICARe RF Protocols Specification for message format and details.

#### 2.1.1 Information Provided

The ICARe will provide the following information to the CellNet fixed network:

- Local Area Network Identifier (LAN ID)
- Meter ID
- Register Configuration
- Cumulative Active Energy delivered daily
- 10 or 18 Active consumption data intervals
- Power fail notification
- Reverse power flow notification
- Magnet switch activation flag

## 2.1.2 FCC Regulation

The fixed network transmitter operates and meets the requirements in the US code of federal regulations (CFR) Title 47, part 15, subpart C, paragraph 247 of the FCC rules.

## 2.1.3 RF Characteristics for Fixed Network

| Function                           | Requirement                                                |
|------------------------------------|------------------------------------------------------------|
| RF Frequency                       | 917.58 MHz                                                 |
| Spreading Modulation               | BPSK                                                       |
| Conducted Power Output             | 23 dBm $\pm 3$ dB (into 50 ohm load at 25° C)              |
| Power Output Temperature Variation | 23 dBm $\pm 3$ dB from -40/+85° C                          |
| Effective Radiated Power (ERP)     | +20 dBm minimum peak averaged over 180° azimuth angle      |
| Carrier Suppression                | -6 $\pm 6$ dB in 3 kHz RBW to adjacent spectral components |
| Side Lobe Suppression              | -13 dB to main lobe                                        |
| Data Modulation                    | OOK and CCSK                                               |
| Symbol Data Rate                   | 19.27 kBPS for OOK and CCSK                                |
| Chipping Rate                      | 1.22 MC/S for OOK and CCSK                                 |
| Chipping Code Length               | 63 bits for OOK and CCSK                                   |
| Preamble Length                    | 92 bits (Continuous BPSK SS)                               |
| Transmit Duration                  | 11.0 msec to 23.5 msec                                     |
| Fmning                             | <5kHz @ 1.22 MHz RBW                                       |
| PLL Stability                      | $\pm 60$ kHz from -40/+85° C over 15 years                 |
| FCC Certification                  | Per Part 15.107 and 15.247                                 |

**Table 1 Fixed Network (CellNet) RF Transmitter Characteristics**

## 2.2 R300 Mobile Network System

The R300 is a frequency-hopping RF transmitter that operates in the 910 to 920 MHz band. It transmits on an average of once per second with a randomized time interval to reduce interference and collisions. The R300 will operate at 0 dBm  $\pm 3$  dBm to the antenna. The R300 module transmits an Itron standard consumption message (SCM) protocol composed of 96-bits of data. Refer to the ICARe RF Protocols Specification for message format and details.

### 2.2.1 Information Provided

The ICARe will provide the following services to the Itron Mobile network:

- Module ID
- Meter Type
- Cumulative Active Energy
- Tamper Information

### 2.2.2 FCC Regulation

The fixed network transmitter operates and meets the requirements in the US code of federal regulations (CFR) Title 47, part 15, subpart C, paragraph 249 of the FCC rules.

### 2.2.3 RF Characteristics for Mobile Network

| Function                                | Requirement                                            |
|-----------------------------------------|--------------------------------------------------------|
| RF Frequency                            | 910 to 920 MHz                                         |
| Spreading Modulation                    | FSK                                                    |
| Conducted Power Output                  | -1.25 dBm conducted or 94 dBuV @ 3 Meters              |
| Power Output Variation over Temperature |                                                        |
| Effective Radiated Output Power (ERP)   | -3 to 0 dBm peak, 94 dBuV/m @ 3 Meters                 |
| On Air Transmission Time                | 6.71 milliseconds (ITRON), 7.4 milliseconds (SURF)     |
| Data Modulation                         | OOK                                                    |
| Data Rate                               | 16.384 kBPS (32 KHz clock, Manchester coded data)      |
| Data Pacing                             | 1 Packet per second typical (125 milliseconds minimum) |
| Transmit Duration                       | 6.71 msec                                              |
| Number of Channels                      | 32 Utilized (previous design), 48 Receiver channels    |
| Channel Bandwidth                       | 200 KHz transmitter, 208 KHz receiver                  |
| Frequency Stability                     | <750 KHz/ Packet                                       |
| Frequency Accuracy                      | ±3.75 MHz Max over Temperature                         |
| FCC Certification                       | Per Part 15.249                                        |

Table 2 Mobile Network (R300/R900) RF Transmitter Characteristics

## 2.3 Schlumberger R900 Mobile Network System

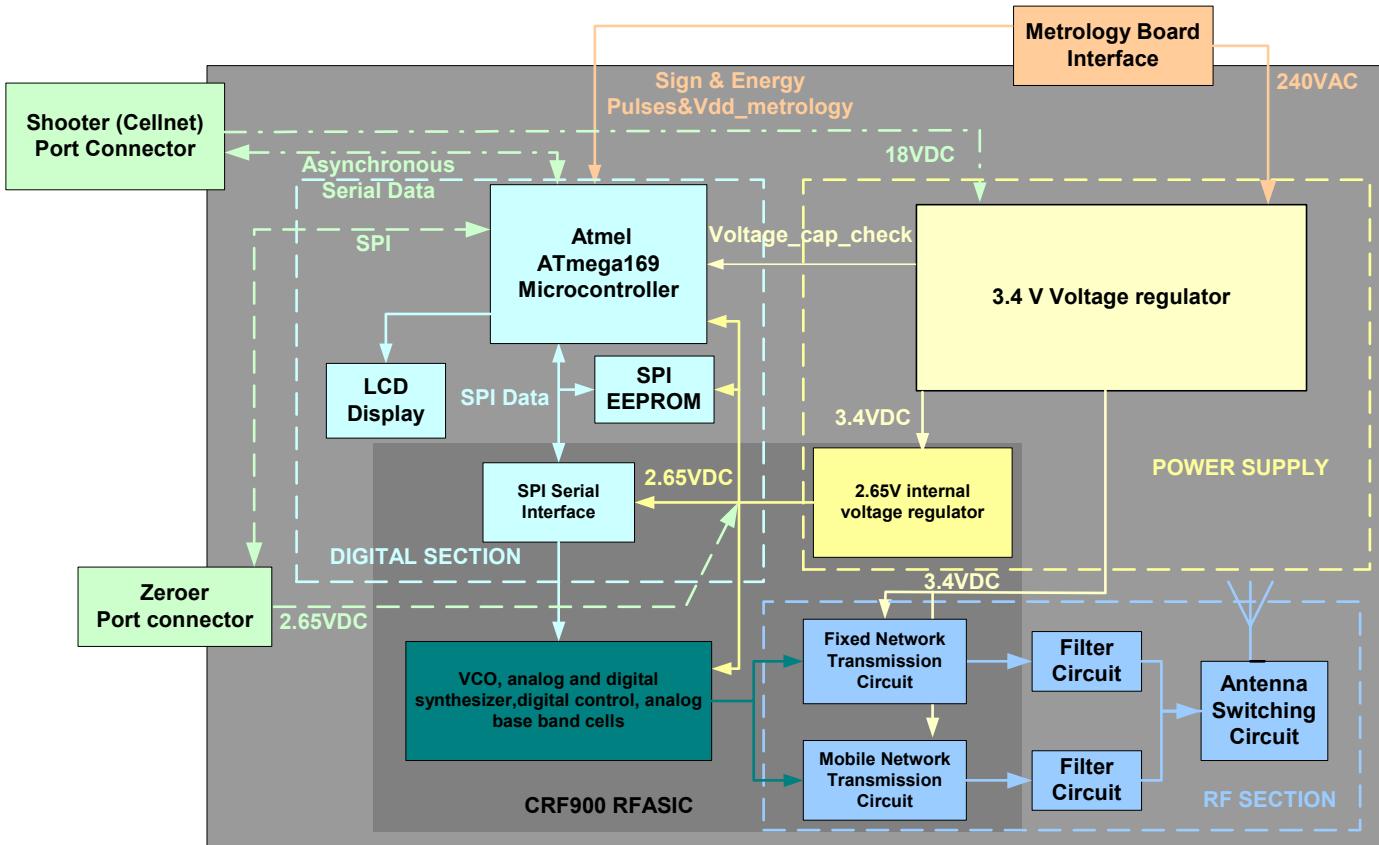
The R900 is a frequency-hopping RF transmitter that operates in the 910 to 920 MHz band. It transmits on an average of once every 2 to 4 seconds with a randomized time interval to reduce interference and collisions. The R900 will operate at 0 dBm ±3 dBm to the antenna. The R900 module transmits an Schlumberger SURF consumption message protocol composed of 116-bits of data. Refer to the ICARe RF Protocols Specification for message format and details.

### 2.3.1 Information Provided

The ICARe will provide the following standard services to the CellNet fixed network:

- Module ID
- Meter Type
- Cumulative Active Energy
- Tamper Information

### 2.3.2 FCC Regulation


The fixed network transmitter operates and meets the requirements in the US code of federal regulations (CFR) Title 47, part 15, subpart C, paragraph 249 of the FCC rules.

### 2.3.3 RF Characteristics for Mobile Network

Same as defined by the R300 in section 2.2.3.

### 3 SYSTEM HARDWARE REQUIREMENTS

The ICARe will function as a transmit-only meter module that will be installed in the register board slot in the CENTRON electricity meter. It will be configurable to provide a single channel of data to the CellNet fixed network, a single channel of data to the R300/R900 mobile networks, or a combination of fixed and mobile network data. The new design will maintain the present slot antenna design in use on the CENTRON C1SC.



**Figure 2 ICARe Block Diagram**

The CENTRON meter is composed of the base, the register board and the meter cover. The base contains the metrology board and provides energy pulses and voltage via the interface connector to the register board. This section will deal with the signals coming to the register board via the interface as well as the register board.

#### 3.1 Power Supply Specification

The power supply will be designed to meet the requirements of cost (PCB, component count, component cost), voltage regulation (normal processing, power fail detection) and current consumption (RF transmission, digital processing and voltage regulation)

##### 3.1.1 Power supply inputs and outputs description

The power supply will use external discrete components to get a regulated 3.4V from the 240VAC/120VAC main. This 3.4V will then be supplied to both the internal CRF voltage regulator and the internal CRF RF Power Amplifiers. The internal CRF voltage regulator will then provide a regulated 2.65V voltage to the micro-controller, EEPROM, CRF VCO, CRF analog and digital synthesizer, CRF digital control and the analog base band cell.

**Inputs:**

- 120 VAC or 240 VAC from the Metrology Board Interface when the meter is plug into a base
- 18 VDC unregulated from the Serial Port Interface when it is connected

**Outputs:**

- Regulated 3.4 VDC for the internal CRF power amplifier and voltage regulator
- Regulated 2.65 VDC for the Digital section and the CRF internal digital and analog cells

### 3.1.2 Specification on inputs and outputs

#### 3.1.2.1 Power grid input specification

The power supply is required to be capable of drawing power from both 120VAC and 240VAC-power line with minor changes. The power supply operational conditions are:

- The power line could have a 20% voltage variation
  - 120 VAC: 96 VAC < Power line < 144 VAC
  - 240 VAC: 192 VAC < Power line < 288 VAC
- The power supply will be capable of handling a 0 VAC potential for up to 100ms without triggering a power fail
- Power fail detection should be triggered when:
  - 120 VAC: power line voltage < 72 VAC for >100 mS
  - 240 VAC: power line voltage < 144 VAC for >100 mS

#### 3.1.2.2 Serial Port interface power input specification

The power supply will have an additional requirement of being capable to accept an unregulated 18 VDC via the serial port.

#### 3.1.2.3 3.4V regulated output specification

The 3.4V regulated will have to meet the specification for the COSMOS internal voltage regulator as well for the COSMOS internal Power amplifier supply voltage:

| Device                | Minimum Voltage | Typical Voltage | Maximum Voltage |
|-----------------------|-----------------|-----------------|-----------------|
| CRF Power Amplifier   | 2.4 VDC         |                 | 3.75 VDC        |
| CRF Voltage Regulator | 3.2 VDC         | 3.3 VDC         | 3.6 VDC         |
| Supply Ripple         |                 |                 | 20 mVpp         |

**Table 3 COSMOS Voltage Specifications**

#### 3.1.2.4 2.65V regulated output specification

The 2.65 VDC regulated outputs from the COSMOS are the preferable voltage sources for this design since they were designed specifically for the COSMOS voltage requirements and they will reduce the overall component costs. The CRF internal voltage regulators provide:

- One source for the internal features of the CRF controllable by the MCU.
- One source for the Digital circuitry on the board that is constantly on as long as 3.4 VDC is supplied.

The 2.65V digital source meets the specification for all the major digital components in the design.

| Device                     | Minimum Voltage | Maximum Voltage |
|----------------------------|-----------------|-----------------|
| Atmega169V Microcontroller | 1.8 VDC         | 5.5 VDC         |
| MicroChip 8kbit EEPROM     | 1.8 VDC         | 5.5 VDC         |
| CRF Internal Devices       | 1.8 VDC         | 3.15 VDC        |

**Table 4 Digital Circuit Voltage Requirements**

### 3.1.3 Power Supply output current specification

| Part                           | Descriptions                                                                       | Maximum Current Value       |
|--------------------------------|------------------------------------------------------------------------------------|-----------------------------|
| Micro-controller Atmega169V    | 16K ROM part                                                                       |                             |
| CPU                            | No sleep mode, run at 1Mhz on internal RC oscillator                               | 0.7mA                       |
| Analog Digital Converter (ADC) | standby when it is not used (200uS max conversion time~40 ADC clock)(200Khz clock) | 300uA active/5uA standby    |
| EEPROM                         | <b>8Kbit part</b>                                                                  |                             |
|                                | Standby mode                                                                       | 0.5uA                       |
|                                | Write 16-Byte page sequence in 5ms max                                             | 3mA                         |
|                                | Read sequence at 2Mhz clock                                                        | 0.5mA                       |
| COSMOS RFASIC                  | <b>RF Transmitter</b>                                                              |                             |
|                                | Shutdown mode                                                                      | 10uA                        |
|                                | Serial Communication 1Mhz max                                                      | 0.5mA                       |
|                                | Crystal and PLL stabilization in 10ms max                                          | 1.5mA                       |
|                                | Fix Transmission 25ms max at 23dBm                                                 | 350mA                       |
| Metrology Board Interface      | Mobile Transmission 10ms at 8dBm                                                   | 30mA                        |
|                                | <b>Pull up to convert a +/-2.5V in 0V-2.5V logic</b>                               | 130uA low/0uA high          |
|                                | Watt hour pulse duration 10ms                                                      | 130uA                       |
|                                | Lsync pulse                                                                        | 65uA                        |
| Power Supply                   | Energy sign                                                                        | 130uA positive/0uA negative |
|                                | <b>Power supply regulation</b>                                                     |                             |
|                                | Voltage capacitor detector                                                         | 70uA                        |
|                                | Quiescent current in the LDO                                                       | 100uA                       |

**Table 5 Component Current Requirements**

From the above table the following charge quantities will be needed for each operation as well as the DC current that the Power Supply will have to provide.

| Event Description                                                                                                                                                                                                                                                                                  | Total Charge Needed                                                  | Average Current                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Each 150s-period, the algorithm will write and read (worse case) 250Khz=>250bit/ms~32byte/ms~2page/ms) 2 locations of 2 pages of the EEPROM.                                                                                                                                                       | Read:1.5uC<br>Write:90uC<br>Total:91.5uC                             | I_EEPROM=1.5uA @ 150s period                                                |
| CRF transmission steps:<br>COSMOS RFASIC Serial communication: 54-byte max for a CCSK plus ~10 bytes for CRF configuration and start of transmission (@250Khz~64Byte/2ms)<br>25.58Mhz Crystal + PLL stabilization<br>Cellnet transmission every 300s period<br>Mobile transmission every 1s period | Serial com:1uC<br>Crystal+PLL:15uC<br>Cellnet:8.75mC<br>Mobile:300uC | I_CELLNET=(8.75+0.015+0.001)/300=30uA<br>I_MOBILE=(0.3+0.015+0.001)/1=316uA |
| Analog/Digital Converter (ADC):<br>Check the capacitor voltage every 9ms<br>Check for Temperature Compensation every 9ms<br>Check the metrology power supply(Vdd) every 9ms                                                                                                                        | ADC conversion:0.06uC                                                | I_Check_Cap=15uA<br>I_Check_RMS=15uA<br>I_Check_Metro=15uA                  |
| Metrology board interface :<br>3 lines are coming from the metrology:<br>Sign : when the energy is positive the line is at -2.5V<br>Lsync: Squared signal between 2.5V and -2.5V @60hz<br>Whpulse: -2.5V 10ms-pulse for one unity of 50Wh. Max frequency is 32Hz.                                  |                                                                      | I_Lsync=65uA<br>I_positive_sign=130uA<br>I_32HzWhpulse=41.6uA               |

**Table 6 Power Supply Current Requirements**

In Normal mode without transmission, the power supply should handle the following current:

- MCU - 700uA
- Metrology Board Interface Circuitry – 240 uA (no input pulses present)
- MCU ADC – 50 uA
- COSMOS Standby Current – 500 uA
- Power Supply – 180 uA
- **Total of 1.7mA DC current**

Here are the criteria that the power supply is required to provide:

- Handle 1.7mA DC current
- Handle 350mA-25ms transmission every 300s
- Handle 30mA-8ms transmission every 1s
- Handle 350mA 20ms power transmission
- All requirements are valid for 15 years product life time
- Power up the board and ready to transmit in less than 8.2s (see manufacturing specification)

## 3.2 RF Section Specification

### 3.2.1 CRF ASIC part

CRF ASIC is handling the major functions required by the network:

- Receive data from microprocessor and modulate it following the Cellnet protocol
- Receive data from microprocessor and modulate it following the R300 or R900 or SURF protocol
- Each timing related to the RF data is handle by the CRF ASIC through a 25.4883MHz crystal

### 3.2.2 RF on board circuitry

The RF circuitry is divided in two sections:

- Antenna
- Matching between antenna and the CRF ASIC

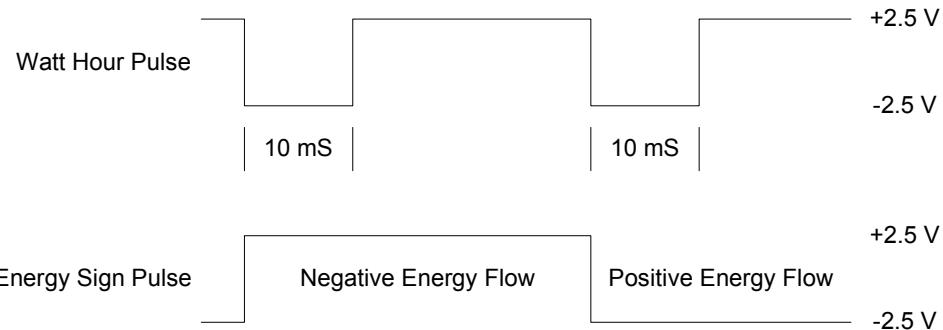
The antenna is required to:

- Have a minimum 0dB gain at 917.58MHz for both horizontal and vertical polarization
- Be matched for 50ohms in the 910MHz-920MHz band

The matching circuit between the CRF ASIC and the antenna:

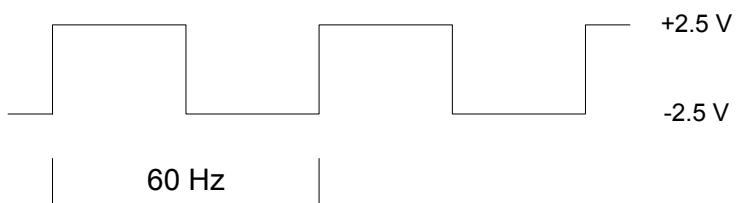
- Design a strip-line balun for both Cellnet and mobile Power amplifiers
- For cellnet, the Power amplifiers need to matched both at the fundamental (917.58MHz) and the second harmonic (1.835GHz)
- For Mobile, the power amplifier need to matched over the band 910MHz-920MHz
- Harmonics rejecter low pass filter to be design to have a minimum 40dB attenuation for harmonics 3,4 and 5
- For cellnet, balun and filter losses should be lower than 2dB
- For Mobile, balun and filter losses should be lower than 8dB

### 3.3 CENTRON Meter Metrology Interface specification


The endpoint will utilize the standard CENTRON interface for power and energy readings consisting of the following signals.

| Pin Number | Signal         |
|------------|----------------|
| 1          | 120/240 VAC    |
| 2          | +2.5 VDC       |
| 3          | LSYNC          |
| 4          | Sign Pulse     |
| 5          | Watthour Pulse |
| 6          | -2.5 VDC       |
| 7          | GND            |

**Table 7 CENTRON Interface Pinout**


The two outputs of the metrology board from pins 4 and 5 are pulses that represent the watthours measured and the direction (sign) of the energy flow. The Watthour Pulse is a normally high signal with a 10 millisecond; low going pulse to represent the energy signal.

The sign pulse is either a high signal representing a negative energy flow or low signal representing a positive energy flow.



**Figure 3 Metrology Energy Pulses**

The LSYNC signal is a 60 Hz square wave that will be present as long as power is available on the main. This is the signal that should be monitored to calibrate in real time the internal RC oscillator of the microprocessor



**Figure 4 LSYNC Signal**

For interfacing to the register board microcontroller, the signals from the metrology board will have to be level shifted to 2.65V-0V levels.

## 3.4 Manufacturing specification

### 3.4.1 Test Points

The module will contain test points to support manufacturing operations as well as providing necessary access to signals for debugging both the hardware and firmware. Each node of the circuit requires a test point. All the Test points will be used in ICT test whereas only some of the test points will be used to perform the FVT test. Manufacturing is specifying that the test points should be either all on the bottom layer of the board or on the top layer of the board. The number of test point per board should be limited to 102 test points (maximum of 2048 test points available on a fixture and panel of 20 boards). The test point should also be numerated from 0 to 101.

### 3.4.2 Manufacturability

- The component count cannot exceed 150 components on the design
- The unit must have test points for ICT and FVT testing
- Increase of the number of boards per panel from 16 to 20. Note: This will reduce the total board area and with the new LCD holder it will have an impact on the size of the onboard slot antenna.
- All components have to be surface mount to eliminate any through-hole processes.
- In order to meet the present burden and overhead costs of the RMR, the power supply will have to handle a transmission within 8.2s after power up while test in process.
- During the Meter Functional Test (MFT), the meter will be fully assembled with no external access to the board. A magnet to produce a magnet packet for the CellNet fixed network application will trigger the RF transmissions.

### 3.4.3 Mechanical guidelines

- The board material structure should follow the following optimum conditions:
  - 4 layers (layer1->14mils->layer2->28mils->layer3->14mils->layer4)
  - Material will be a FR4 (permittivity close to 4.6)
  - Inner layer should be 1oz thick (start and finish), external layer should start with 0.5oz thickness and finish with 1oz thickness
- Copper should stay at 20 mils from the edge of the board after scoring operation (manufacturing cutting operation requirement)
- Use of the new board-to-board connector pads (bigger pads for GND and 240VAC)
- Use of the newest LCD pads developed by mechanical Engineer to decrease problem in manufacturing
- Keep a space for the new bar code developed by manufacturing

## 3.5 Qualification

The module will be able to pass all standard qualification tests per the Schlumberger Electricity Qualification Test Specification listed in the references in section 5.

## 4 SYSTEM FIRMWARE REQUIREMENTS

The firmware will be located in the MCU ROM with a maximum of 16 kBytes of code space. The firmware will encompass the functionality of the CellNet and SURF protocols.

The firmware will be written in "C" for portability requirements. The code will be modular in nature with each unique function having its own module. This will enhance the reuse capability of the code for future projects. The code will be maintained using version control software at all times.

The firmware should attempt to maintain commonality with existing CENTRON products as much as possible. This will reduce the risk of introducing problems that have already been resolved back into the system. Both the CENTRON and RTEMS teams should review all firmware.

### 4.1 Firmware Description

The firmware will operate in several states shown in figure 2. These states will be used to validate ICARe power levels, support existing serial interfaces, verify and load the static and dynamic data, process metrology and power fail signals, update the LCD, save and verify dynamic data, and create and schedule RF messages for transmissions as needed. This diagram is the "large picture" with the details of the firmware to be presented in the firmware specification document.

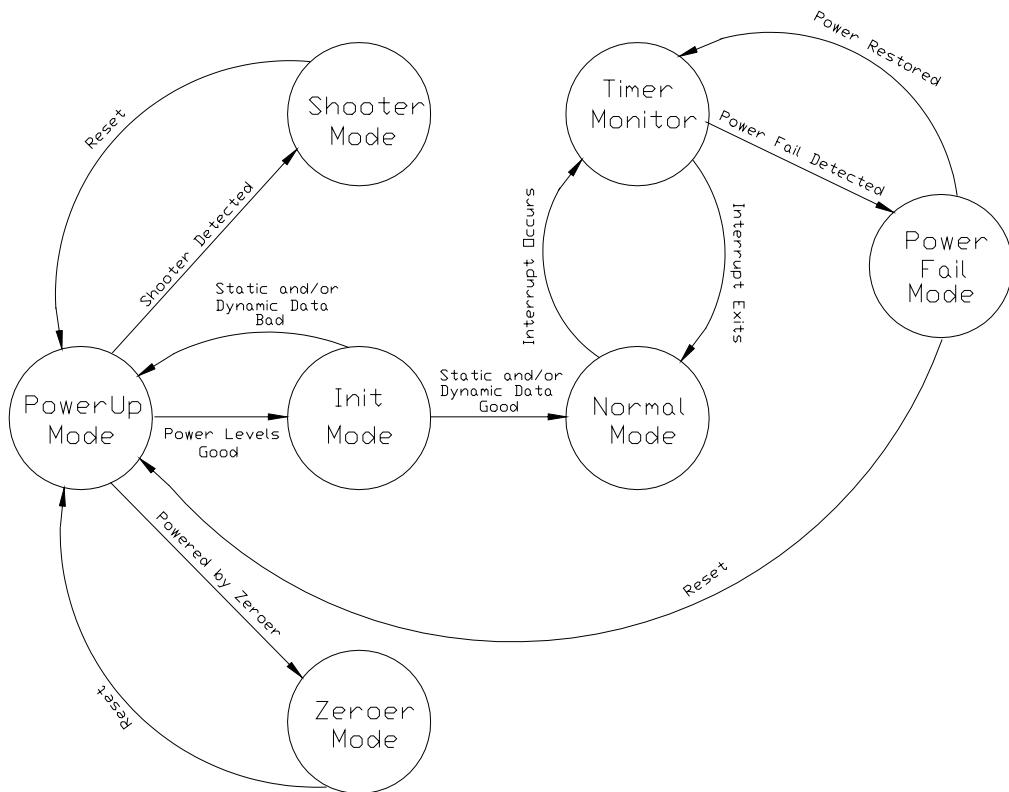



Figure 5 ICARe Modes of Operation

| Mode                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Power Up</b>       | <p>The Power Up mode will be the initial state of the module. It will enter this state upon a power on or watchdog reset. This mode will initialize the MCU's peripherals and then determine when the power levels are sufficient to progress to move onto the initialization mode. This state is exited when:</p> <ul style="list-style-type: none"> <li>• Shooter detected → Shooter Mode</li> <li>• Powered by Zeroer → Zeroer Mode</li> <li>• Power Levels good → Initialization Mode</li> </ul>                                                                                                                                                                                                                 |
| <b>Initialization</b> | <p>Once the module has verified that reliable supply power is present, the configuration data will be read from the nonvolatile memory and the module will initialize itself. This state is exited when one of the following conditions are met:</p> <ul style="list-style-type: none"> <li>• Invalid configuration → PowerUp Mode</li> <li>• Initialization successful → Normal Mode</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| <b>Normal</b>         | <p>This will be the main operating state for the module. In this state the module will update the LCD with the cumulative consumption value determine, implement the EEPROM data saving algorithm, and call functions to schedule and create RF messages for both Mobile and Fixed technologies. A pet of the watchdog is also performed in this normal mode loop.</p> <p>This mode is exited when:</p> <ul style="list-style-type: none"> <li>• Interruption from Timer Monitor → Timer Monitor Mode</li> </ul> <p>This mode is entered when:</p> <ul style="list-style-type: none"> <li>• Configuration is validated and loaded from Initialization Mode</li> <li>• Timer Monitor interrupt is complete</li> </ul> |
| <b>Shooter</b>        | <p>Shooter mode is entered when it is determined that the shooter is connected to the ICARe board. This mode will be used to configure the Fixed configuration parameters as well as other test utilities to support the Fixed network. This state is exited when:</p> <ul style="list-style-type: none"> <li>• Shooter RxD low for &gt; 1.5 msec forces watchdog reset → PowerUp Mode</li> </ul>                                                                                                                                                                                                                                                                                                                    |
| <b>Zeroer</b>         | <p>Zeroer mode was designed to support RMR using the I2C protocol. After power is determined to come from the Zeroer device, the firmware gathers data and awaits either a read or reset energy command from the user. This state is exited when:</p> <ul style="list-style-type: none"> <li>• Zeroer voltage is removed and forces reset → Power Up mode</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |
| <b>Timer Monitor</b>  | <p>The mode is entered via a timed internal interrupt. This interrupt when entered will conduct all metrology signal processing and check signal levels for possible power fail mode entry. This mode also operates as the firmware's freerun timer. This state is exited when:</p> <ul style="list-style-type: none"> <li>• Power Fail Detected → Power Fail Mode</li> <li>• Completion of tasks → Normal Mode</li> </ul>                                                                                                                                                                                                                                                                                           |
| <b>Power Fail</b>     | <p>Power fail mode commences when the Timer Monitor mode detects a possible power fail by evaluating several signals on board the ICARe. This mode is exit when:</p> <ul style="list-style-type: none"> <li>• Power Fail Detection Confirmed → Resets</li> <li>• Power Restored → Timer Monitor</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                           |

**Table 8 ICARe Firmware Modes**

## 4.2 Firmware Requirements

The ICARe firmware will perform the following functions:

- Count energy pulses from the metrology board
- Monitor the sign line from the metrology board for energy flow and open bond detection
- Maintain module CellNet and R300/R900 configuration data in EEPROM
- Maintain module cumulative and interval counts in EEPROM
- Monitor Power Fail and Power Recovery operations
- Update LCD with cumulative consumption and perform temperature compensation
- Load and validate static configuration and dynamic data
- Schedule RF Transmissions

Interface with Serial port

- ESP serial interface capability
- Use standard Shooter interface
- Maintain MMLIB functionality as much as possible
- Support the Zeroer and I<sup>2</sup>C functionality for the RMR version

Interface with COSMOS CRF

- SPI serial interface capability
- Provide RF configuration data to CRF
- Confirm RF messages sent

Transmit PID 2 Message Packets to CellNet fixed network

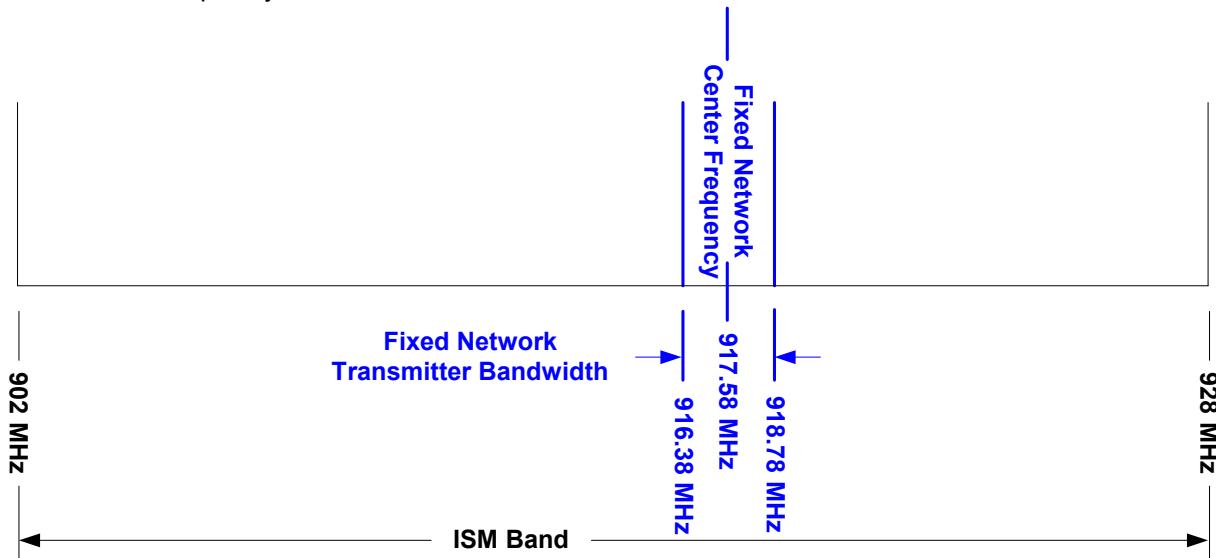
- Nominally transmitted every two native intervals (2.5 minute native interval) with a randomization period of one native interval. Packets could be transmitted from anywhere between 0 to 5 minutes minus one second.
- Consumption data packets, both CUMINT2 and CUMINT3
- Administrative packets, ADMIN3 only
- PowerFail and PowerUp packets
- Magnet Packets

Transmit R300/R900 Message Packets to mobile network

- Consumption data packet
- Nominally transmitted every 2 to 4 seconds randomized

Utilize present CENTRON algorithms in RTEMS applications

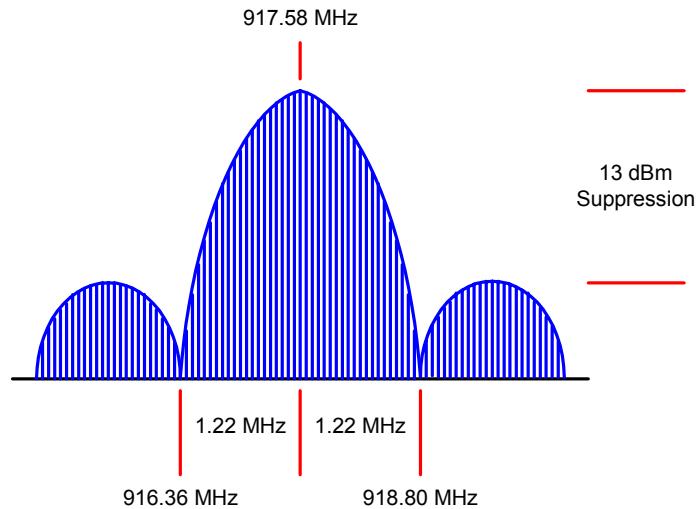
- Monitor the energy accumulation to detect the metrology bond wire failure
- Monitor the LSYNC line from the metrology board to aid in power fail detection
- Perform EEPROM backup every interval period and X Whr


## 5 SYSTEM RF OPERATION

### 5.1 RF Characteristics

The COSMOS RFASIC is designed to provide both direct sequence spread spectrum (DSSS) and frequency shift keying (FSK) transmissions in the 902 – 928 MHz ISM band. The characteristics of the transmitters for both the fixed (DSSS) and mobile (FSK) network transmitters are detailed in section 3 of the COSMOS RF ASIC Requirements Specification.

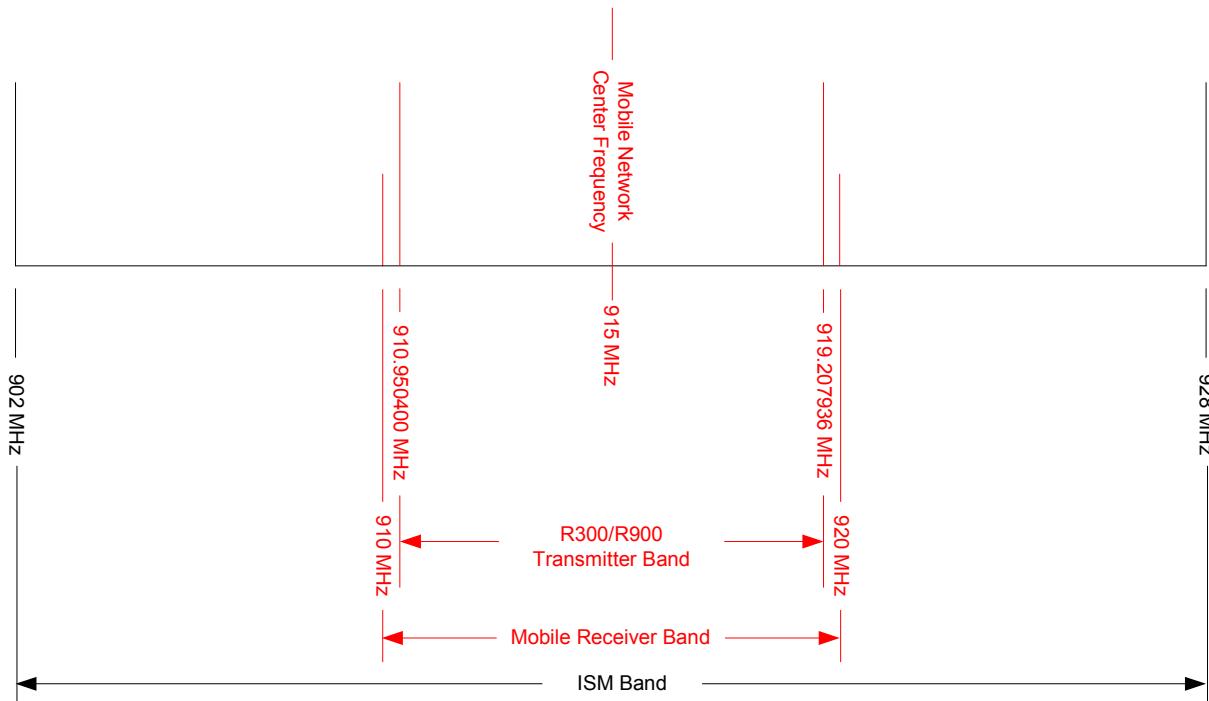
### 5.2 Fixed Network Description


The fixed network RF transmitter is designed for integration with the SchlumbergerSema CellNet Fixed RF Network. The RF transmitter specifically works within the CellNet RF local area network (LAN) in the unlicensed 900 MHz ISM band. The transmitter complies with title 47, part 15, section 247 of the FCC rules for radio frequency devices.

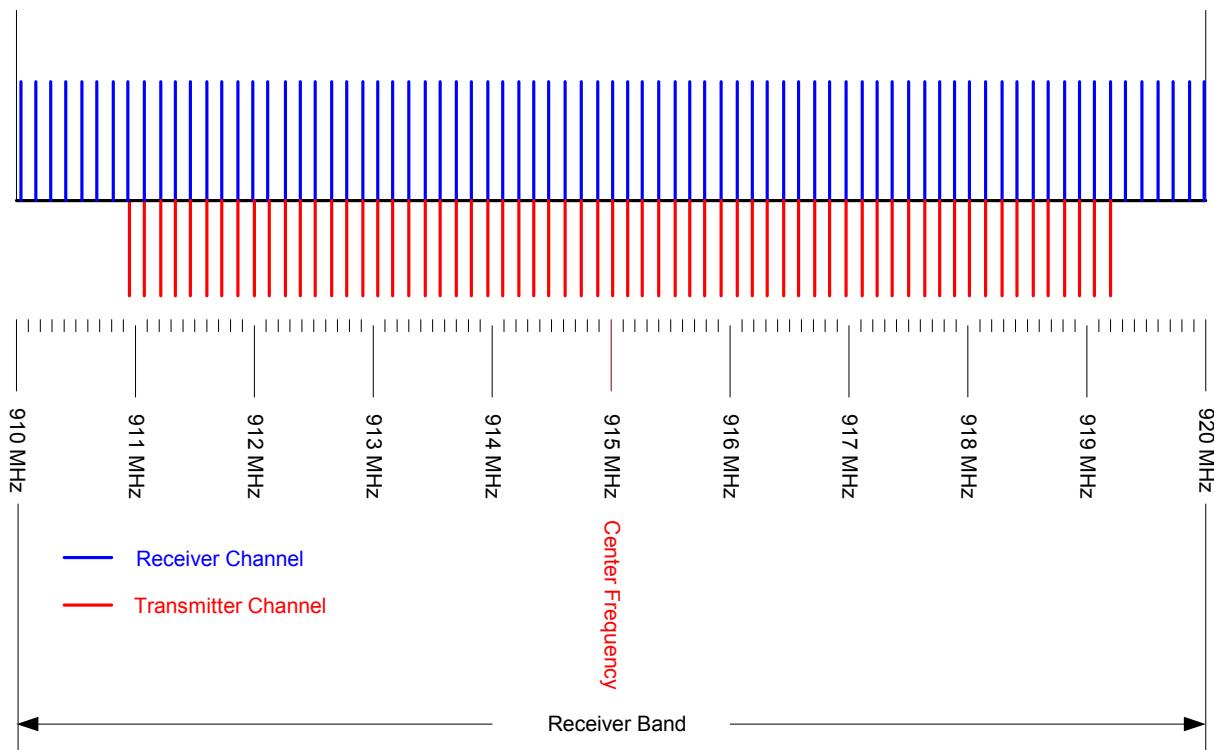
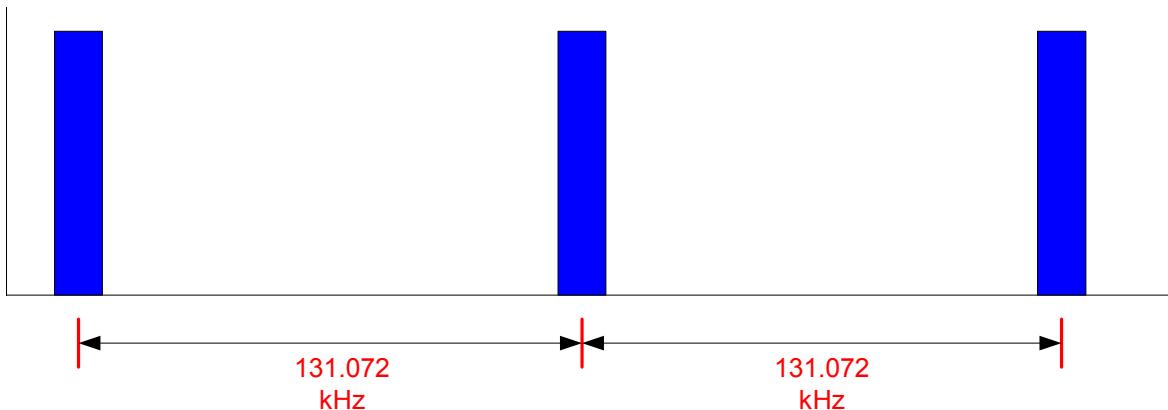
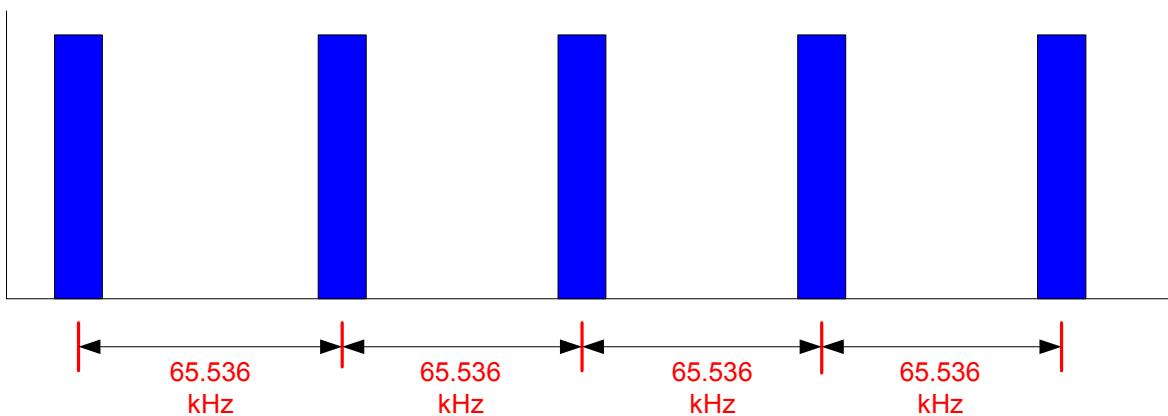


**Figure 6 Fixed Network Bandwidth**

#### 5.2.1 Spreading Code


The COSMOS RFASIC is capable of both On-Off Keying (OOK) and Cyclic Code Shift Keying (CCSK) for RF data transmission based on the requirements of the network. The 917.58 MHz carrier is Binary Phase Shift Keying (BPSK) modulated with a 63-bit pseudorandom code sequence. This COSMOS RFASIC design contains only one DSSS RF channel. For details about the OOK and CCSK messages refer to the ICARe RF Protocols Specification.






**Figure 7 Fixed Network DSSS Pattern**

### 5.3 Mobile Network Description

The mobile network works within the 900 MHz ISM band using a FSK transmitter. The system works within the range of 910 to 920 MHz using 77 receiver channels on the drive-by unit and one scanning channel on the handheld unit. The COSMOS RF is capable of providing either 64 channels with 131.072 kHz channel spacing or 128 channels with 65.536 kHz channel spacing.



**Figure 8 Mobile Network Transmission Bandwidth**

**Figure 9 Mobile Transmitter 64 Channels****Figure 10 64 Channel Frequency Spacing****Figure 11 128 Channel Frequency Spacing**

## 5.4 R300 / R900 Transmissions

The R300 and R900 use two different transmission methods that should be noted. The R900 transmissions are standard On-Off-Keying (OOK) while the R300 is a Manchester encoded signal. The R900 transmitter basically turns the amplifier on and off to represent a 1 and a 0 respectively for the OOK. The R300 Manchester encoded signal actually is a double chipset that has a 1 to 0 transition to represent a 1 and a 0 to 1 transition to represent a 0.

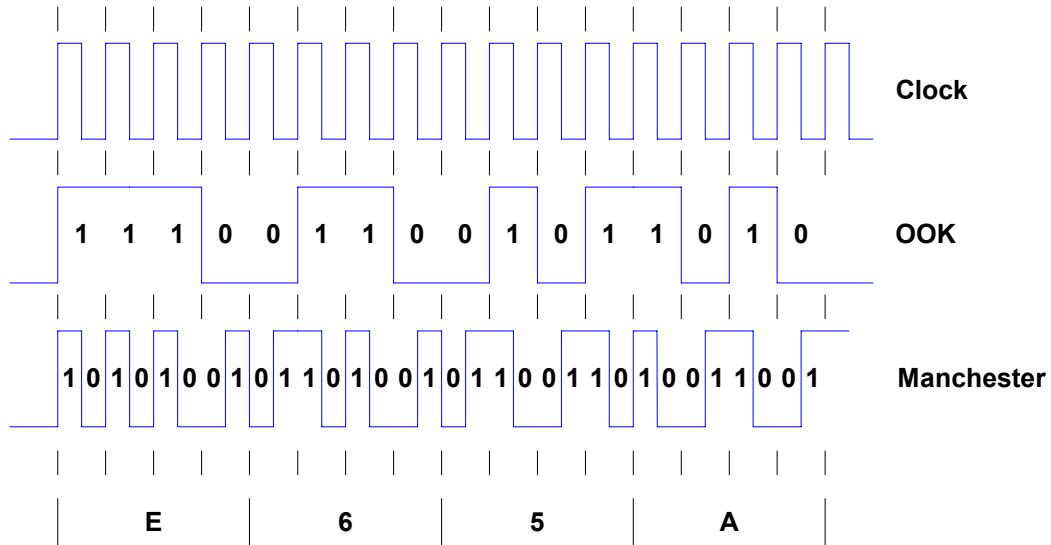



Figure 12 Mobile OOK versus Manchester Encoding

## 5.5 Interleaved Network Transmission Bandwidth

This first example shows the bands of operation based on the standard transmission bandwidths of both the fixed network and the mobile network transmitters.

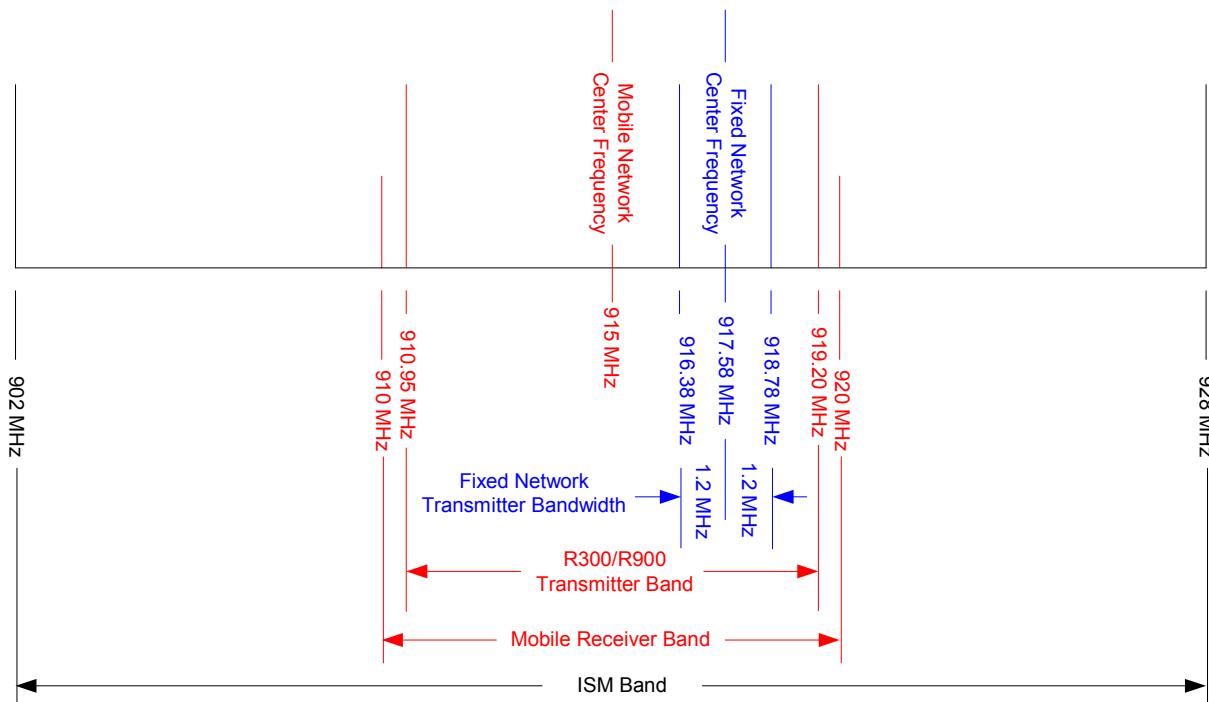
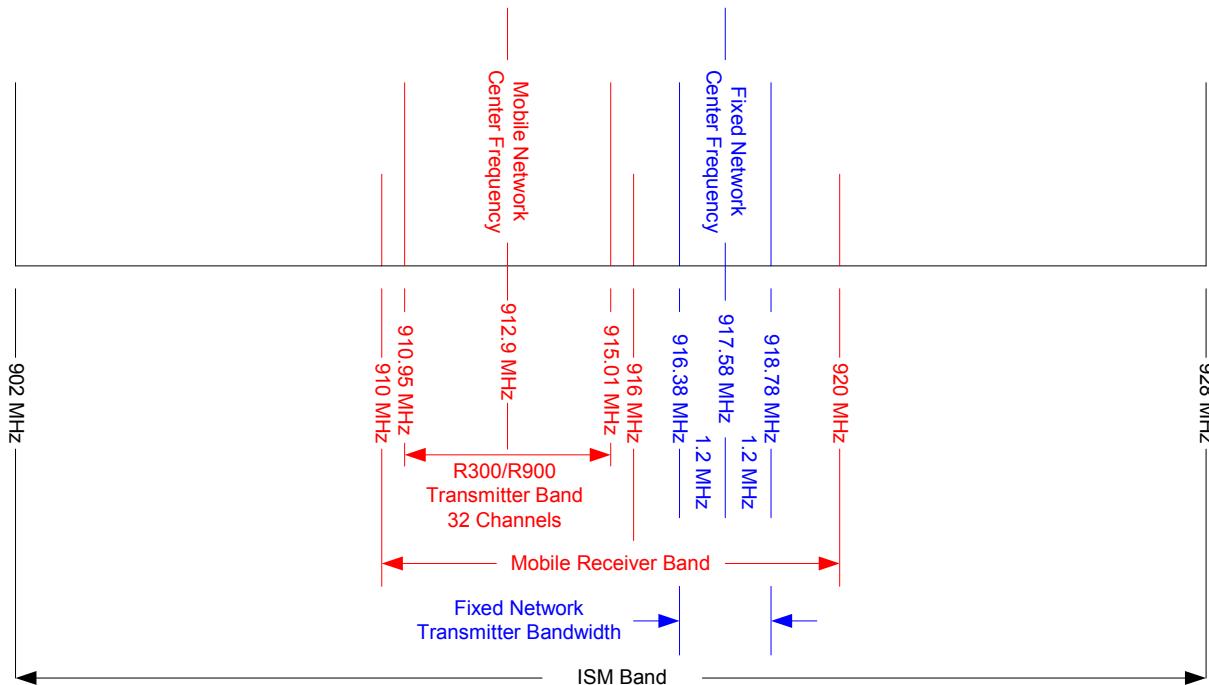
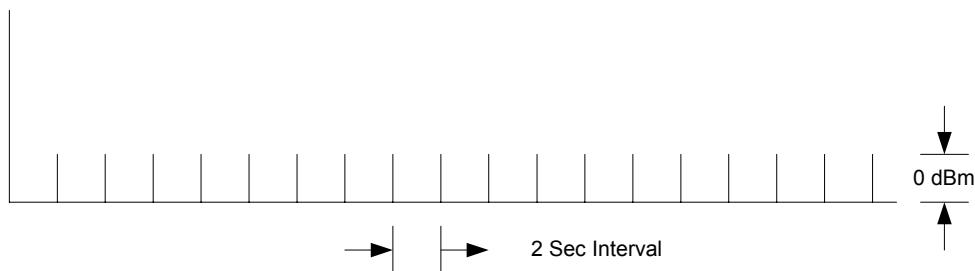




Figure 13 Interleaved Network RF Bands

If the mobile transmitter acts as a “jammer” and reduces the PSR of the fixed network operations, a possible second solution for the RF bands is shown below.




**Figure 14 Alternate Interleaved Network RF Bands**

## 5.6 Transmission Randomization

The ICARe will have the ability to transmit multiple data protocols from the same meter. The interleaving and transmitter selection will be controlled by the microcontroller, which will also maintain a common energy count for both systems. The data will be converted to the proper protocol and then transmitted on an interval period loaded during configuration.

The mobile data will be transmitted every 2 seconds randomized from 0.125 to 2 seconds when operated in R300/R900 mode only. This allows the unit to operate in existing mobile networks with no impact to operation.



**Figure 15 Mobile Transmitter Only Timing**

If operated as an interleaved transmitter with the fixed network data a transmission time of 2 – 4 seconds will be the data rate for the mobile transmitter. The fixed network transmitter will operate based on a native interval of 2.5 minutes (150 seconds) with a transmission rate of 2 native intervals or 5 minutes (300 seconds). This maintains a common legacy with existing residential electricity meters already in existence in fixed networks. While the two transmission mediums are integrated they will operate independently of each other.

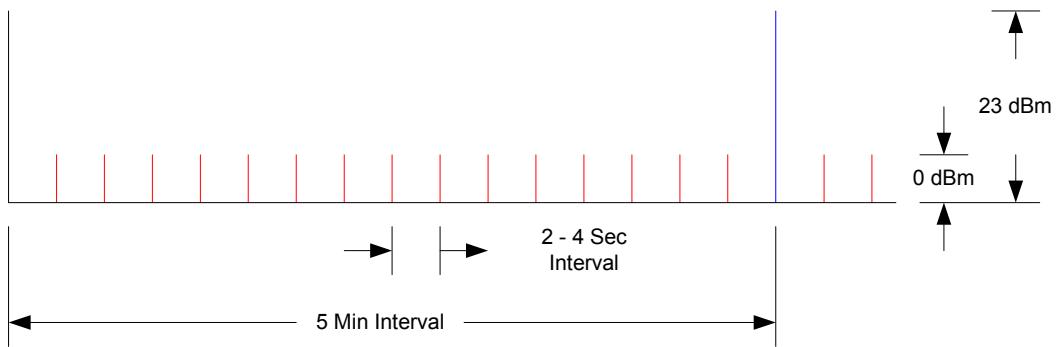



Figure 16 RF Mobile and Fixed Interleaved Transmission Timing

### 5.6.1 Fixed Network Randomization

The randomization of the fixed network takes place over a 150 second native interval from the EOI which is the default setup. The normal operation for most deployed residential fixed network endpoints are two native intervals of data per transmission. That means that while 150 seconds of interval data is collected, transmissions occur every 300 seconds. The randomization values will be between minimum of 1 second and a maximum of 140 seconds to allow for an additional clearance time of the message transmission.

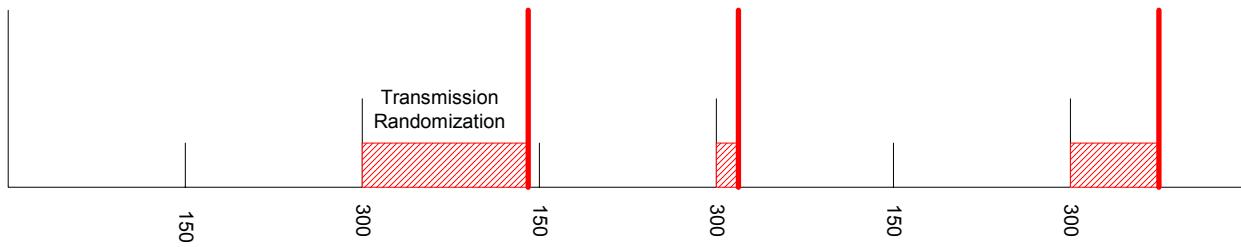



Figure 17 Fixed Network Interval Randomization

### 5.6.2 R300 / R900 Mobile Network Randomization

The randomization of the R300 / R900 mobile network takes place over a 2 second native interval. The normal operation for the mobile network is one transmission per second randomized. The mobile transmitter will transmit the cumulative data as it is updated as opposed to the native interval method of the fixed network.

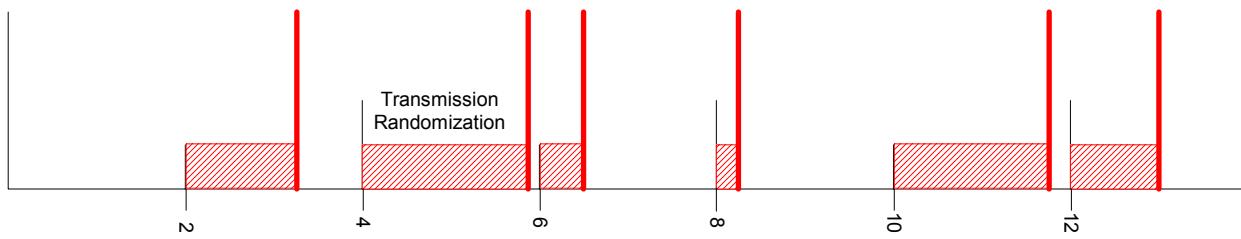



Figure 18 Mobile Network Randomization

### 5.6.3 Agile Mobile Network Transmitter Randomization

The randomization of the agile mobile network takes place over a 2 second native interval. The normal operation for the agile network is one transmission every 2 seconds randomized. The agile transmitter will transmit the R300 cumulative data followed immediately by the R900 as soon as sufficient power is available for the transmission.

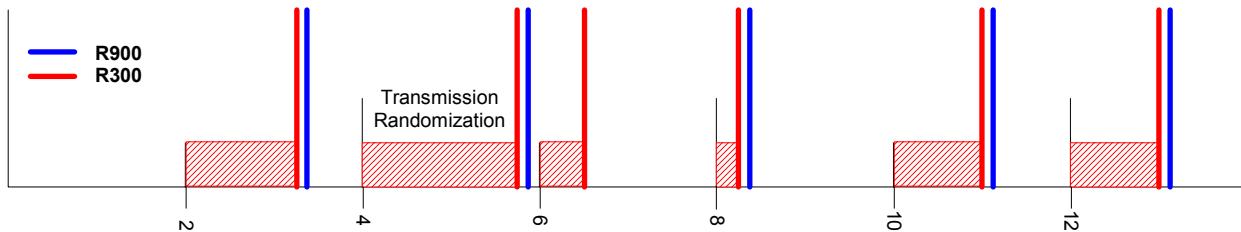



Figure 19 Agile Network Mobile Randomization

#### 5.6.4 Fixed Network Intervals

The fixed network transmissions include cumulative and interval data. There are two formats for the messages that can be transmitted. The first format is a Cumulative 2 (CumInt2) message that has 18 bytes of interval data that is transmitted along with the total energy cumulative count. Since the normal setup for the residential transmitter is to transmit every other native interval each transmission will include 2 intervals (300 seconds) of data. For the residential meter the data is the total energy accumulated during the interval.

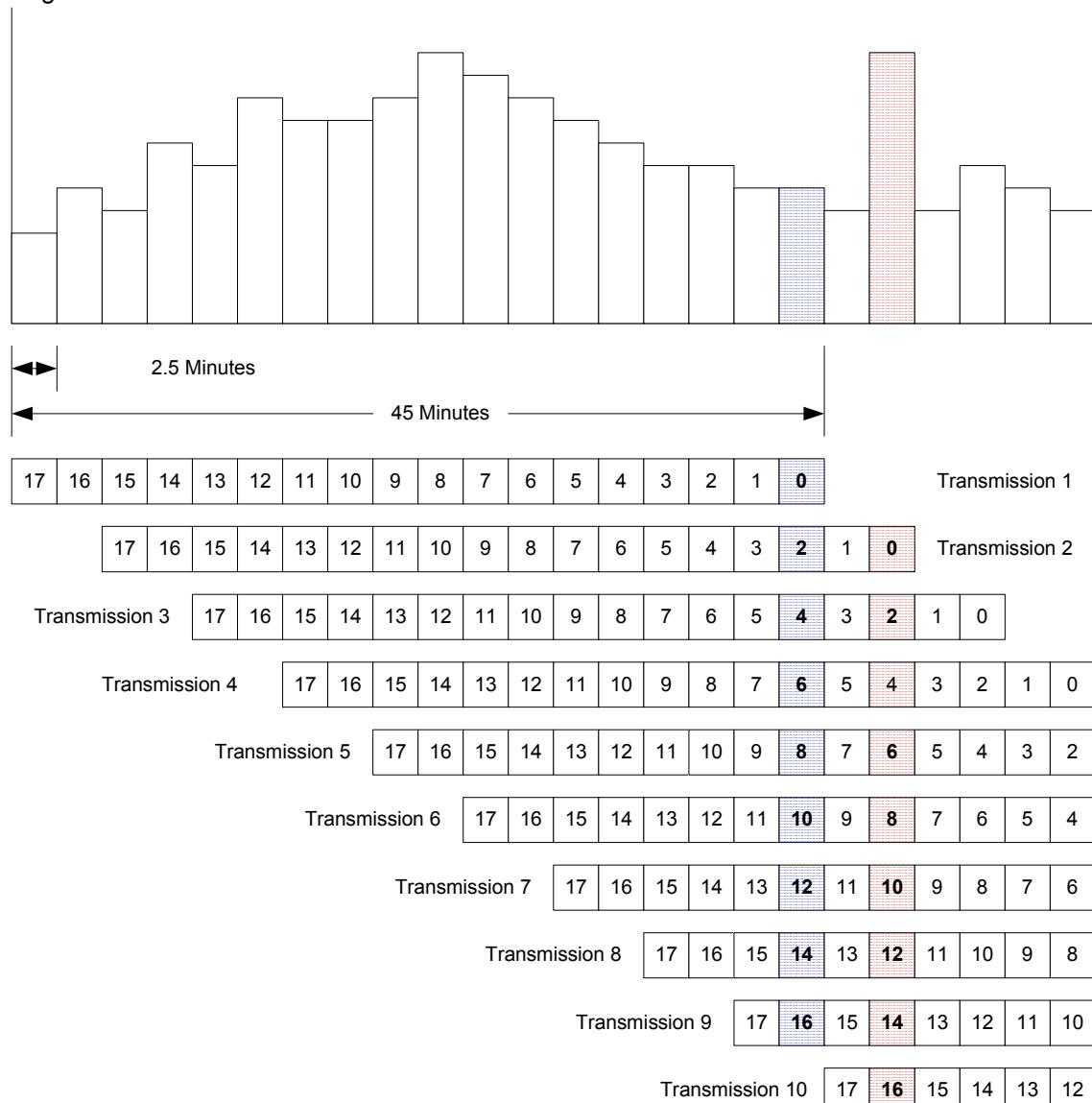
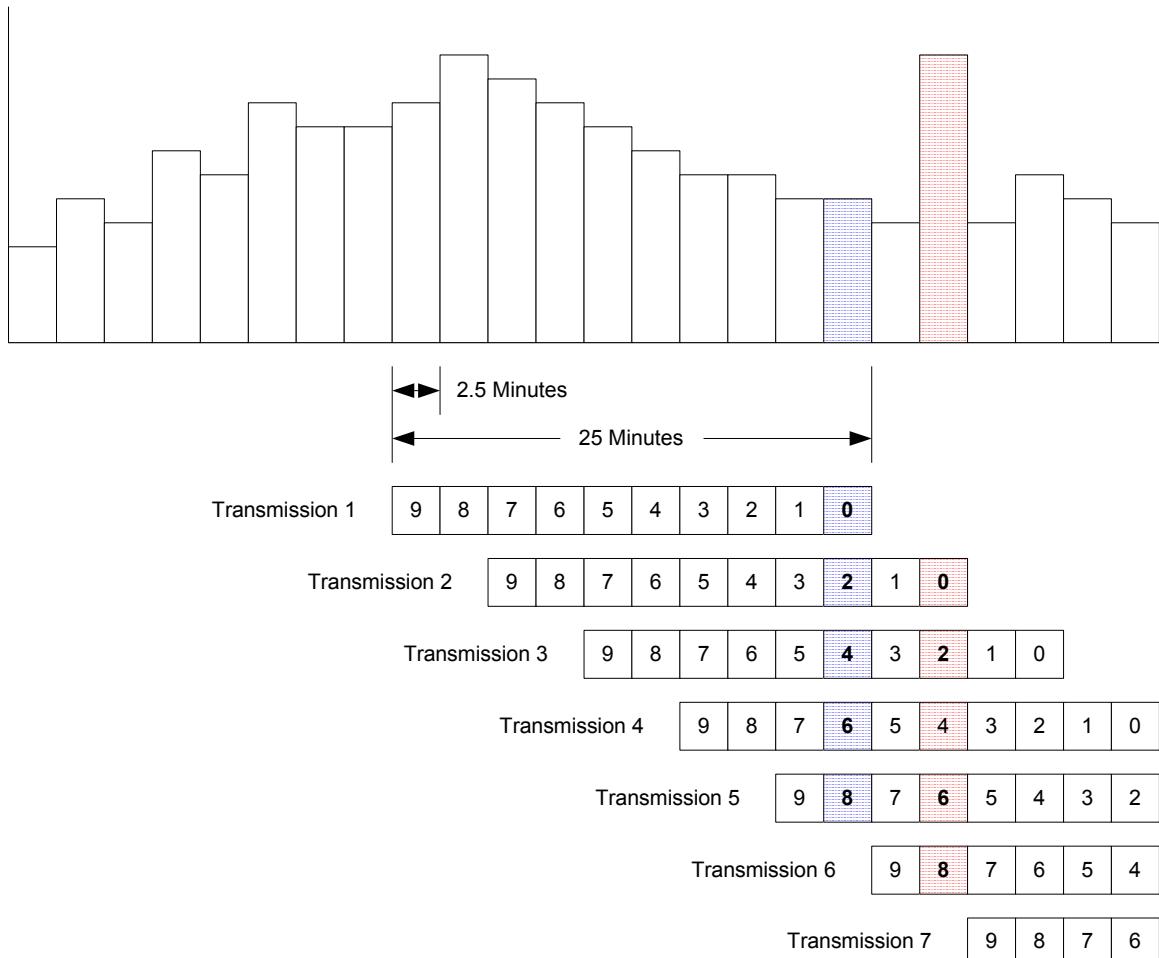




Figure 20 Cumulative 2 with 18 Intervals

The second format is a Cumulative 3 (CumInt3) message that has 10 15-bit intervals of data that is transmitted along with the total energy cumulative count. This message operates in a similar fashion to the cumulative 2 message.



**Figure 21 Cumulative 3 with 10 Intervals**

### 5.6.5 Mobile Channel Selection

Based on the equation given in the COSMOS RF specification version 2.4 the following table should give the correct N & M values to correspond with one of the allocated frequencies.

| N  | M  | Channel Frequency | Channel No. | N  | M  | Channel Frequency | Channel No. | N  | M  | Channel Frequency | Channel No. |
|----|----|-------------------|-------------|----|----|-------------------|-------------|----|----|-------------------|-------------|
|    |    |                   |             | 51 | 26 | 913769812         |             | 53 | 6  | 916652780         |             |
| 50 | 15 | 910952366         | 1           | 51 | 27 | 913835334         | 23          | 53 | 7  | 916718302         | 45          |
| 50 | 16 | 911017888         |             | 51 | 28 | 913900856         |             | 53 | 8  | 916783824         |             |
| 50 | 17 | 911083410         | 2           | 51 | 29 | 913966378         | 24          | 53 | 9  | 916849346         | 46          |
| 50 | 18 | 911148932         |             | 51 | 30 | 914031900         |             | 53 | 10 | 916914868         |             |
| 50 | 19 | 911214454         | 3           | 51 | 31 | 914097422         | 25          | 53 | 11 | 916980390         | 47          |
| 50 | 20 | 911279976         |             | 52 | 0  | 914162944         |             | 53 | 12 | 917045912         |             |
| 50 | 21 | 911345498         | 4           | 52 | 1  | 914228466         | 26          | 53 | 13 | 917111434         | 48          |
| 50 | 22 | 911411020         |             | 52 | 2  | 914293988         |             | 53 | 14 | 917176956         |             |
| 50 | 23 | 911476542         | 5           | 52 | 3  | 914359510         | 27          | 53 | 15 | 917242478         | 49          |
| 50 | 24 | 911542064         |             | 52 | 4  | 914425032         |             | 53 | 16 | 917308000         |             |
| 50 | 25 | 911607586         | 6           | 52 | 5  | 914490554         | 28          | 53 | 17 | 917373522         | 50          |
| 50 | 26 | 911673108         |             | 52 | 6  | 914556076         |             | 53 | 18 | 917439044         |             |
| 50 | 27 | 911738630         | 7           | 52 | 7  | 914621598         | 29          | 53 | 19 | 917504566         | 51          |
| 50 | 28 | 911804152         |             | 52 | 8  | 914687120         |             | 53 | 20 | 917570088         |             |
| 50 | 29 | 911869674         | 8           | 52 | 9  | 914752642         | 30          | 53 | 21 | 917635610         | 52          |
| 50 | 30 | 911935196         |             | 52 | 10 | 914818164         |             | 53 | 22 | 917701132         |             |
| 50 | 31 | 912000718         | 9           | 52 | 11 | 914883686         | 31          | 53 | 23 | 917766654         | 53          |
| 51 | 0  | 912066240         |             | 52 | 12 | 914949208         |             | 53 | 24 | 917832176         |             |
| 51 | 1  | 912131762         | 10          | 52 | 13 | 915014730         | 32          | 53 | 25 | 917897698         | 54          |
| 51 | 2  | 912197284         |             | 52 | 14 | 915080252         |             | 53 | 26 | 917963220         |             |
| 51 | 3  | 912262806         | 11          | 52 | 15 | 915145774         | 33          | 53 | 27 | 918028742         | 55          |
| 51 | 4  | 912328328         |             | 52 | 16 | 915211296         |             | 53 | 28 | 918094264         |             |
| 51 | 5  | 912393850         | 12          | 52 | 17 | 915276818         | 34          | 53 | 29 | 918159786         | 56          |
| 51 | 6  | 912459372         |             | 52 | 18 | 915342340         |             | 53 | 30 | 918225308         |             |
| 51 | 7  | 912524894         | 13          | 52 | 19 | 915407862         | 35          | 53 | 31 | 918290830         | 57          |
| 51 | 8  | 912590416         |             | 52 | 20 | 915473384         |             | 54 | 0  | 918356352         |             |
| 51 | 9  | 912655938         | 14          | 52 | 21 | 915538906         | 36          | 54 | 1  | 918421874         | 58          |
| 51 | 10 | 912721460         |             | 52 | 22 | 915604428         |             | 54 | 2  | 918487396         |             |
| 51 | 11 | 912786982         | 15          | 52 | 23 | 915669950         | 37          | 54 | 3  | 918552918         | 59          |
| 51 | 12 | 912852504         |             | 52 | 24 | 915735472         |             | 54 | 4  | 918618440         |             |
| 51 | 13 | 912918026         | 16          | 52 | 25 | 915800994         | 38          | 54 | 5  | 918683962         | 60          |
| 51 | 14 | 912983548         |             | 52 | 26 | 915866516         |             | 54 | 6  | 918749484         |             |
| 51 | 15 | 913049070         | 17          | 52 | 27 | 915932038         | 39          | 54 | 7  | 918815006         | 61          |
| 51 | 16 | 913114592         |             | 52 | 28 | 915997560         |             | 54 | 8  | 918880528         |             |
| 51 | 17 | 913180114         | 18          | 52 | 29 | 916063082         | 40          | 54 | 9  | 918946050         | 62          |
| 51 | 18 | 913245636         |             | 52 | 30 | 916128604         |             | 54 | 10 | 919011572         |             |
| 51 | 19 | 913311158         | 19          | 52 | 31 | 916194126         | 41          | 54 | 11 | 919077094         | 63          |
| 51 | 20 | 913376680         |             | 53 | 0  | 916259648         |             | 54 | 12 | 919142616         |             |
| 51 | 21 | 913442202         | 20          | 53 | 1  | 916325170         | 42          | 54 | 13 | 919208138         | 64          |
| 51 | 22 | 913507724         |             | 53 | 2  | 916390692         |             | 54 | 14 | 919273660         |             |
| 51 | 23 | 913573246         | 21          | 53 | 3  | 916456214         | 43          |    |    |                   |             |
| 51 | 24 | 913638768         |             | 53 | 4  | 916521736         |             |    |    |                   |             |
| 51 | 25 | 913704290         | 22          | 53 | 5  | 916587258         | 44          |    |    |                   |             |

Table 9 Mobile Channel Selections

| Xmtr Chan | Xmtr Chan Frequency | Rcvr Chan | Rcvr Chan Frequency | Xmtr Chan | Xmtr Chan Frequency | Rcvr Chan | Rcvr Chan Frequency |
|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|
| 1         | 910952366           | 95        | 910949978           | 33        | 915145774           | 63        | 915144282           |
| 2         | 911083410           | 94        | 911081050           | 34        | 915276818           | 62        | 915275354           |
| 3         | 911214454           | 93        | 911212122           | 35        | 915407862           | 61        | 915406426           |
| 4         | 911345498           | 92        | 911343194           | 36        | 915538906           | 60        | 915537498           |
| 5         | 911476542           | 91        | 911474266           | 37        | 915669950           | 59        | 915668570           |
| 6         | 911607586           | 90        | 911605338           | 38        | 915800994           | 58        | 915799642           |
| 7         | 911738630           | 89        | 911736410           | 39        | 915932038           | 57        | 915930714           |
| 8         | 911869674           | 88        | 911867482           | 40        | 916063082           | 56        | 916061786           |
| 9         | 912000718           | 87        | 911998554           | 41        | 916194126           | 55        | 916192858           |
| 10        | 912131762           | 86        | 912129626           | 42        | 916325170           | 54        | 916323930           |
| 11        | 912262806           | 85        | 912260698           | 43        | 916456214           | 53        | 916455002           |
| 12        | 912393850           | 84        | 912391770           | 44        | 916587258           | 52        | 916586074           |
| 13        | 912524894           | 83        | 912522842           | 45        | 916718302           | 51        | 916717146           |
| 14        | 912655938           | 82        | 912653914           | 46        | 916849346           | 50        | 916848218           |
| 15        | 912786982           | 81        | 912784986           | 47        | 916980390           | 49        | 916979290           |
| 16        | 912918026           | 80        | 912916058           | 48        | 917111434           | 48        | 917110362           |
| 17        | 913049070           | 79        | 913047130           | 49        | 917242478           | 47        | 917241434           |
| 18        | 913180114           | 78        | 913178202           | 50        | 917373522           | 46        | 917372506           |
| 19        | 913311158           | 77        | 913309274           | 51        | 917504566           | 45        | 917503578           |
| 20        | 913442202           | 76        | 913440346           | 52        | 917635610           | 44        | 917634650           |
| 21        | 913573246           | 75        | 913571418           | 53        | 917766654           | 43        | 917765722           |
| 22        | 913704290           | 74        | 913702490           | 54        | 917897698           | 42        | 917896794           |
| 23        | 913835334           | 73        | 913833562           | 55        | 918028742           | 41        | 918027866           |
| 24        | 913966378           | 72        | 913964634           | 56        | 918159786           | 40        | 918158938           |
| 25        | 914097422           | 71        | 914095706           | 57        | 918290830           | 39        | 918290010           |
| 26        | 914228466           | 70        | 914226778           | 58        | 918421874           | 38        | 918421082           |
| 27        | 914359510           | 69        | 914357850           | 59        | 918552918           | 37        | 918552154           |
| 28        | 914490554           | 68        | 914488922           | 60        | 918683962           | 36        | 918683226           |
| 29        | 914621598           | 67        | 914619994           | 61        | 918815006           | 35        | 918814298           |
| 30        | 914752642           | 66        | 914751066           | 62        | 918946050           | 34        | 918945370           |
| 31        | 914883686           | 65        | 914882138           | 63        | 919077094           | 33        | 919076442           |
| 32        | 915014730           | 64        | 915013210           | 64        | 919208138           | 32        | 919207514           |

Table 10 Transmitter &amp; Receiver Channels

# 6 SPECIFICATIONS & STANDARDS

---

## 6.1 Specifications

### 6.1.1 Electrical

Voltage Ratings: 120V & 240V  $\pm$  20%  
 • Frequency: 60 Hz  $\pm$  5%

### 6.1.2 Operating Environment

- Temperature: -40° C to +85° C
- Humidity: 0 to 95% relative humidity, noncondensing
- Accuracy:  $\pm$  0.5%
- Transient/Surge Suppression: ANSI C37.90.1-1994  
IEC 61000-4-4  
ANSI C62.45-1992
- High Voltage Surge: ANSI C62.41
- Electrostatic Discharge (ESD): ANSI C12.1-2001,  
10 pulses of 15kV direct contact to meter enclosure per IEC 61000-4-2
- Radio Frequency Interference (RFI): EMI/RFI fields of between 15 V/m for all frequency ranges between 14 kHz and 10 GHz.

## 6.2 Meter Base Requirements

The ICARe will be required to work in CENTRON meter with the following form, class, and voltage ratings:

| Class | Volts | Form |
|-------|-------|------|
| 20    | 120   | 3S   |
| 20    | 240   | 3S   |
| 20    | 240   | 4S   |
| 100   | 120   | 1S   |
| 200   | 120   | 12S  |
| 200   | 120   | 25S  |
| 200   | 240   | 2S   |
| 320   | 240   | 2S   |

Table 11 Meter Specification Types

## 6.3 External Standards

### 6.3.1 ANSI Standards

The system will be required to meet the following standards.

- ANSI C12.1 - 2001
- ANSI C12.20 (Class 0.5) – 1998 as a minimum requirement since the present metrology/base unit was certified under this standard. If at all possible, the meter should strive to qualify under the newer ANSI C12.20 (Class 0.5) –2002 specification where possible.

### 6.3.2 FCC Regulations

These regulations will be required to be verified using the in-house RF test facility for verification and a FCC certified RF OATS test facility for certification.

#### 6.3.2.1 CFR Title 47,Part 15, Subpart C, Paragraph 247

Applicable section for 902-928 MHz include:

|                                       |                      |
|---------------------------------------|----------------------|
| <b>Field strength of fundamental:</b> | <b>500 mV/m @ 3m</b> |
| <b>Field strength of harmonics:</b>   | <b>1.6 mV/m @ 3m</b> |

*“Frequency hopping systems shall have channel frequencies separated by a minimum of 25 KHz or 20 dB bandwidth of the hopping channel whichever is greater. Hopping channels are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter.”*

*“If the 20 dB bandwidth of the hopping channel is less than 250 KHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth is 250 KHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 KHz.”*

*“The maximum peak output power of the intentional radiator shall not exceed 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels.”*

*“If transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values above as appropriate, by the amount in dB gain of the antenna exceeds 6 dBi.”*

#### 6.3.2.2 CFR Title 47,Part 15, Subpart C, Paragraph 249

Applicable sections include:

|                                       |                      |
|---------------------------------------|----------------------|
| <b>Field strength of fundamental:</b> | <b>50 mV/m @ 3m</b>  |
| <b>Field strength of harmonics:</b>   | <b>500 uV/m @ 3m</b> |

*“Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits whichever is the lesser attenuation.”*

## 6.4 Internal Standards

The following internal quality standards will apply to this project.

- N-Q001 : Quality Manual
- N-Q017 : Documentation & Control of Changes
- N-Q034 : ECN
- N-Q043 : Calibration, Traceability of Electronic Measuring Equipment
- N-Q050 : ESD Control
- N-Q057 : Identifying the Latest Revision of Engineering Drawings
- N-Q071 : Initiating & Releasing New Engineering Drawings
- N-Q075 : Control of Software
- N-B010 : IPO Management