

CommScope

FlexWave Prism AWS3 MIMO HDM FCC 27:2017 MIMO Cellular Repeater Radio Report # TECO0042

TESTING NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

Last Date of Test: May 24, 2017 CommScope Model: FlexWave Prism AWS3 MIMO HDM

Radio Equipment Testing

Standards	
Specification	Method
FCC 27:2017	ANSI/TIA/EIA-603-D-2010

Results

Method Clause	Test Description	Applied	Results	Comments
2.2.1	Equivalent Isotropic Radiated Power (EIRP)	Yes	Pass	
2.2.1	Peak To Average Ratio	Yes	Pass	
2.2.2	Frequency Stability	Yes	Pass	
2.2.3	Emissions Bandwidth	Yes	Pass	
2.2.12	Spurious Radiated Emissions	Yes	Pass	
2.2.13	Spurious Conducted Emissions	Yes	Pass	
2.2.13	Band Edge Compliance	Yes	Pass	
2.2.13	Intermodulation	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Validated by the European Commission as a Notified Body under the R&TTE Directive. Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

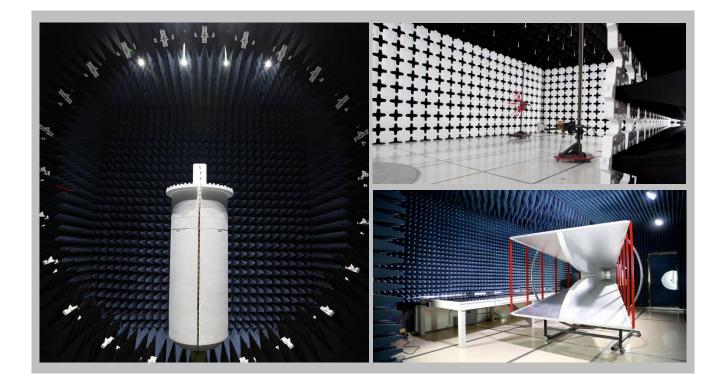
Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	MI			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
		VC	CI			
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157	

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams

Antenna Port Conducted Measurements DC Block and Spectrum EUT Analyzer Attenuator **RF** Adapter **Coaxial Cable Near Field Test Fixture Measurements** Spectrum Near Field Analyzer Probe EUT **Coaxial Cable Spurious Radiated Emissions** Fully anechoic shielded enclosure above 1 GHz. Semi-anechoic below 1 GHz 3m Test Distance (No absorber on the floor). Preamp **Coaxial Cable** and EUT Filters Measurement Antenna Spectrum Analyzer Flush Mounted Turn table, Non-reflective foam table to support EUT

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CommScope
Address:	501 Shenandoah Drive
City, State, Zip:	Shakopee, MN 55379
Test Requested By:	Joshua Wittman
Model:	FlexWave Prism AWS3 MIMO HDM
First Date of Test:	May 22, 2017
Last Date of Test:	May 24, 2017
Receipt Date of Samples:	May 22, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

20W MIMO Cellular RF Repeater/Industrial Booster. This RF module is part of a RF Repeater/Industrial Booster remote unit. It amplifies RF in the DownLink path for 2110-2180 MHz.

Testing Objective:

To demonstrate compliance of the Cellular repeater requirements of FCC 27L: 2017.

CONFIGURATIONS

Configuration TECO0042-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
AWS3 MIMO RF Module	CommScope	7761388-00-11	459644002

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Attenuator 1	Inmet Corporation	2N75W-30-296	None		
Attenuator 2	Aeroflex / Weinschel	57-30-43	QY541		

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Signal Generator 1	Aeroflex	IFR 3413	341007/003		
Signal Generator 2	Aeroflex	IFR 3413	341006/056		
48V DC Power Supply	TDK-Lambda	SWS300A-48	3LR-140Y11-0106HO411		
Laptop	Lenovo	T510	431436U		
Power Supply (Laptop)	Lenovo	92P1156	11S92P1156Z1ZDXN8A81AZ		
I/O Control Device	CommScope/ADC Telecommunications	1673542-21	MR222P8C		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Mains Cable (Laptop)	No	1.8m	No	AC Mains	Power Supply (Laptop)
DC Power Cable (Laptop)	No	1.8m	Yes	Power Supply (Laptop)	Laptop
DC Power Cable (I/O Control Device)	No	2.8m	Yes	48V DC Power Supply	I/O Control Device
Fiber Optic Cable	No	>3.0m	No	I/O Control Device	AWS3 MIMO RF Module
AC Mains Cable (AWS3 MIMO RF Module)	No	5.0m	No	AWS3 MIMO RF Module	AC Mains
Output Cable 1	No	1.5m	No	AWS3 MIMO RF Module	Attenuator 1
Output Cable 2	No	0.9m	No	AWS3 MIMO RF Module	Attenuator 2
Ethernet Cable	No	1.0m	No	I/O Control Device	Laptop
Coaxial Cable 1	No	1.8m	No	Signal Generator 1	I/O Control Device
Coaxial Cable 2	No	1.8m	No	Signal Generator 2	I/O Control Device
AC Mains Cable (Signal Generator 1)	No	1.8m	No	Signal Generator 1	AC Mains
AC Mains Cable (Signal Generator 2)	No	1.8m	No	Signal Generator 2	AC Mains

CONFIGURATIONS

Configuration TECO0042-2

Configuration TECO0042- 2					
EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
AWS3 MIMO RF Module	CommScope	7761388-00-11	459644002		

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Attenuator 1	Inmet Corporation	2N75W-30-296	None		
Attenuator 2	Aeroflex	48-30-34	RCU		

Remote Equipment Outs	side of Test Setup Bounda	ry	
Description	Manufacturer	Model/Part Number	Serial Number
Signal Generator 1	Aeroflex	IFR 3413	341007/003
Signal Generator 2	Aeroflex	IFR 3413	341006/056
48V DC Power Supply	TDK-Lambda	SWS300A-48	3LR-140Y11-0106HO411
Laptop	Lenovo	T510	431436U
Power Supply (Laptop)	Lenovo	92P1156	11S92P1156Z1ZDXN8A81AZ
I/O Control Device	CommScope/ADC Telecommunications	1673542-21	MR222P8C

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Mains Cable (Laptop)	No	1.8m	No	AC Mains	Power Supply (Laptop)
DC Power Cable (Laptop)	No	1.8m	Yes	Power Supply (Laptop)	Laptop
DC Power Cable (I/O Control Device)	No	2.8m	Yes	48V DC Power Supply	I/O Control Device
Fiber Optic Cable	No	>3.0m	No	I/O Control Device	AWS3 MIMO RF Module
AC Mains Cable (AWS3 MIMO RF Module)	No	5.0m	No	AWS3 MIMO RF Module	AC Mains
Output Cable 1	No	1.5m	No	AWS3 MIMO RF Module	Attenuator 1
Output Cable 2	No	0.9m	No	AWS3 MIMO RF Module	Attenuator 2
Ethernet Cable	No	1.0m	No	I/O Control Device	Laptop
Coaxial Cable 1	No	1.8m	No	Signal Generator 1	I/O Control Device
Coaxial Cable 2	No	1.8m	No	Signal Generator 2	I/O Control Device
AC Mains Cable (Signal Generator 1)	No	1.8m	No	Signal Generator 1	AC Mains
AC Mains Cable (Signal Generator 2)	No	1.8m	No	Signal Generator 2	AC Mains

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	5/22/2017	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	5/23/2017	Equivalent Isotropic Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	5/24/2017	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	5/24/2017	Emissions Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	5/24/2017	Peak To Average Ratio	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	5/24/2017	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	5/23/2017	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	5/24/2017	Intermodulation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

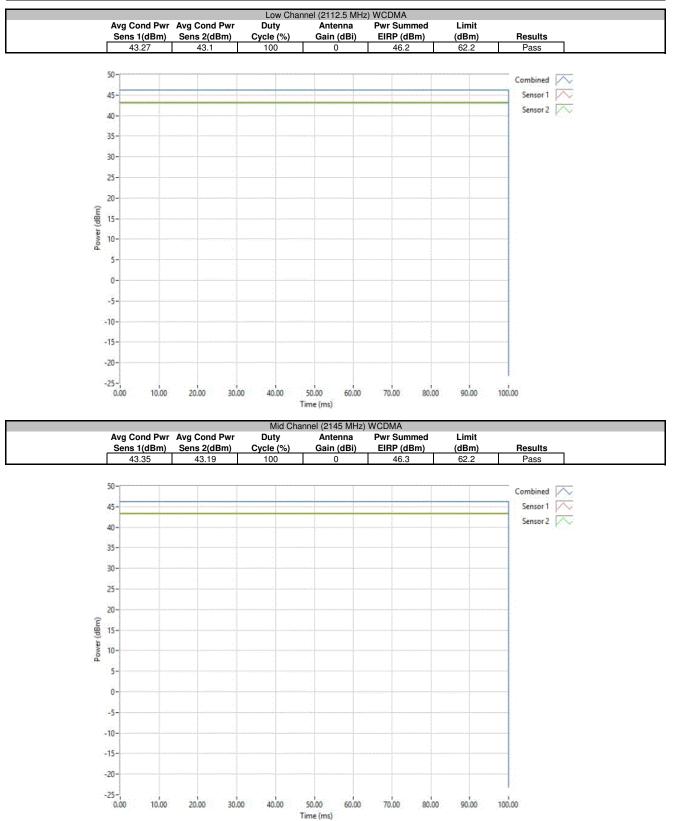
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Power	ETS Lindgren	7002-006	SRE	7/21/2016	7/21/2017
Meter - Power	ETS Lindgren	7002-006	SRA	3/20/2017	3/20/2018
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	NCR
Attenuator	S.M. Electronics	SA26B-20	RFW	2/14/2017	2/14/2018
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/16/2017	3/16/2018

TEST DESCRIPTION

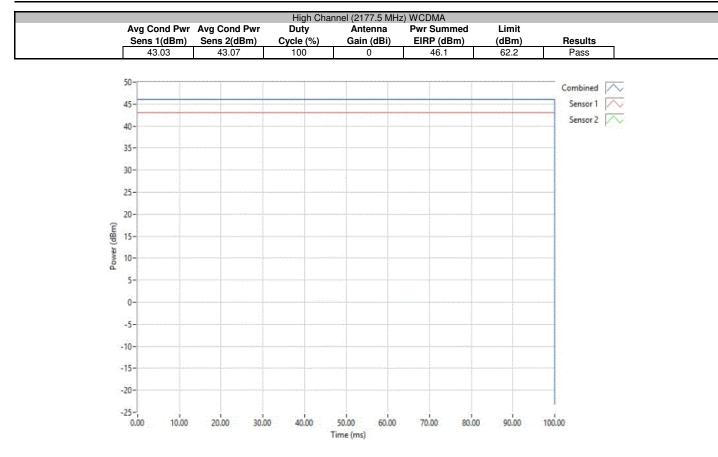
The measurement was made using a direct connection between the RF output of the EUT and an RF Power Sensor. The spectrum analyzer and signal generator were used to generate an offset for the cables and attenuators. An RF signal generator was used to create the modulated signal(s) listed in the datasheets. These signals were input into the EUT.

The RF output power was measured with the EUT set to the modes called out in the datasheet. The power measurement was made using a direct connection between the RF output of the EUT and an RF Power Sensor which only measures across the high time of the burst of the carrier.

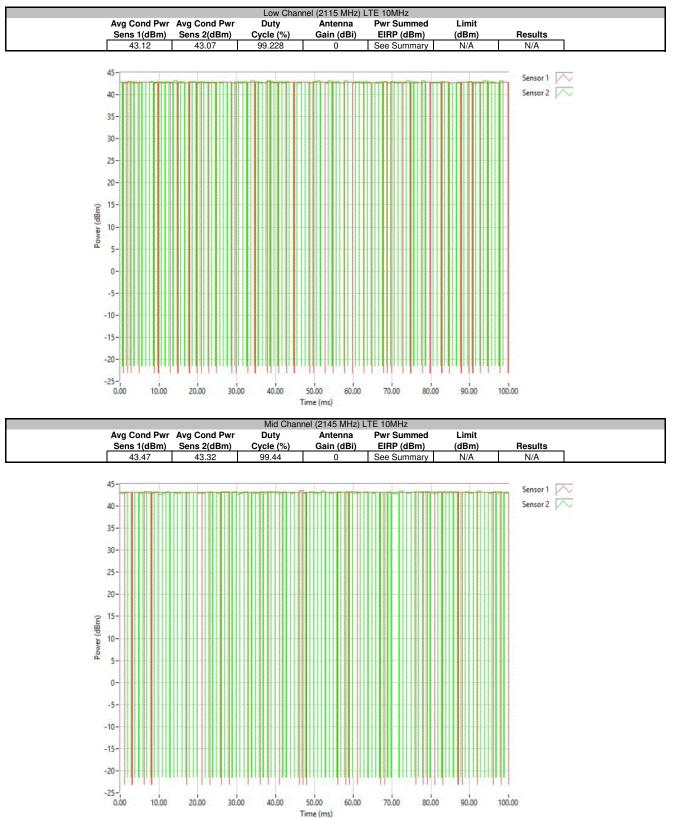
The observed duty cycle was noted but not needed to calculate the EIRP.

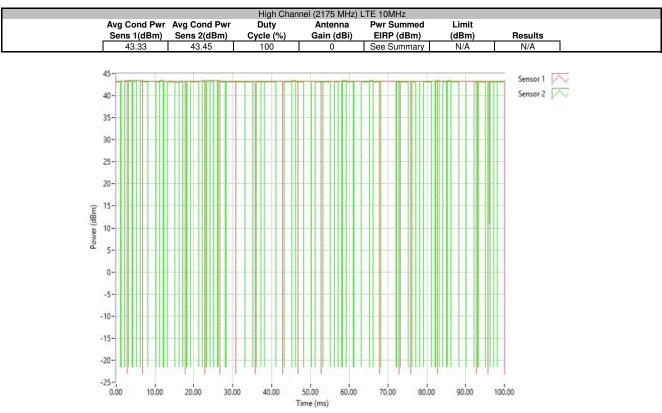

EIRP = Max Measured Power + Antenna gain (dBi)

The measurements from Port 1 and Port 2 were summed to determine the total average power in EIRP.



	lexWave Prism AWS3 N	IIMO HDM					Work Order:		
Serial Number: 45	59644002)5/23/17	
Customer: C	ommScope						Temperature: 2	22.3 °C	
Attendees: Jo							Humidity: 4		
Project: N							Barometric Pres.: 1		
Tested by: D			Power:	110VAC/60Hz			Job Site:	MN08	
EST SPECIFICATION	NS			Test Method					
CC 27:2017				ANSI/TIA/EIA-603-	D-2010				
OMMENTS									
			e reevaluated during installat			per port. Limit is	5 1040W (02.2 0Bm).	A intear summation	on was perior
eparately on the LTE	E 10MHz band because	the measured pulses did no	ot trigger at the same time on	the power sensors	s.				
EVIATIONS FROM T	FOT OT AND ADD								
	IEST STANDARD								
one	IEST STANDARD		A						
	1		Dustin	Pourla					
one	1	Signature	Dustin	Sparlo	_				
one	1	Signature	Avg Cond Pwr	Avg Cond Pwr	Duty	Antenna	Pwr Summed	Limit	
one	1	Signature		(Antenna Gain (dBi)	Pwr Summed EIRP (dBm)	Limit (dBm)	Results
one onfiguration #	1	Signature	Avg Cond Pwr	Avg Cond Pwr	Duty				Results Pass
one onfiguration # ww Channel (2112.5 M	1 MHz) WCDMA	Signature	Avg Cond Pwr Sens 1(dBm)	Avg Cond Pwr Sens 2(dBm)	Duty Cycle (%)		EIRP (dBm)	(dBm)	
one onfiguration # w Channel (2112.5 M d Channel (2145 MH	1 MHz) WCDMA łz) WCDMA	Signature	Avg Cond Pwr Sens 1(dBm) 43.27	Avg Cond Pwr Sens 2(dBm) 43.1	Duty Cycle (%) 100		EIRP (dBm) 46.2	(dBm) 62.2	Pass
one onfiguration # ww Channel (2112.5 M id Channel (2145 MH gh Channel (2177.5 I	1 MHz) WCDMA Iz) WCDMA MHz) WCDMA	Signature	Avg Cond Pwr Sens 1(dBm) 43.27 43.35	Avg Cond Pwr Sens 2(dBm) 43.1 43.19	Duty Cycle (%) 100 100		EIRP (dBm) 46.2 46.3	(dBm) 62.2 62.2	Pass Pass
one onfiguration # w Channel (2112.5 M id Channel (2145 MH gh Channel (2175.5 H w Channel (2115 M	1 MHz) WCDMA tz) WCDMA MHz) WCDMA tz) LTE 10MHz	Signature	Avg Cond Pwr Sens 1(dBm) 43.27 43.35 43.03	Avg Cond Pwr Sens 2(dBm) 43.1 43.19 43.07	Duty Cycle (%) 100 100 100		EIRP (dBm) 46.2 46.3 46.1	(dBm) 62.2 62.2 62.2	Pass Pass Pass
one onfiguration # w Channel (2112.5 M id Channel (2145 MH gh Channel (2175 H W Channel (2175 MH d Channel (2145 MH	1 WHz) WCDMA łz) WCDMA HHz) WCDMA Hz) LTE 10MHz z) LTE 10MHz	Signature	Avg Cond Pwr Sens 1(dBm) 43.27 43.35 43.03 43.12	Avg Cond Pwr Sens 2(dBm) 43.1 43.19 43.07 43.07	Duty Cycle (%) 100 100 99.228		EIRP (dBm) 46.2 46.3 46.1 See Summary	(dBm) 62.2 62.2 62.2 62.2 N/A	Pass Pass Pass N/A
one onfiguration # w Channel (2112.5 M id Channel (2145 M M Channel (2115 M id Channel (2115 M j Channel (2175 M	1 WH2) WCDMA H2) WCDMA MH2) WCDMA H2) UTE 10MH2 H2) LTE 10MH2 H2) LTE 10MH2 H2) LTE 10MH2	Signature	Avg Cond Pwr Sens 1(dBm) 43.27 43.35 43.03 43.12 43.47	Avg Cond Pwr Sens 2(dBm) 43.1 43.19 43.07 43.07 43.07 43.32	Duty Cycle (%) 100 100 99.228 99.44		EIRP (dBm) 46.2 46.3 46.1 See Summary See Summary	(dBm) 62.2 62.2 62.2 N/A N/A	Pass Pass N/A N/A
one onfiguration # w Channel (2112.5 M Id Channel (2145 MH g Channel (2115 M Id Channel (2115 M J Channel (2175 M	1 WH2) WCDMA H2) WCDMA MH2) WCDMA H2) UTE 10MH2 H2) LTE 10MH2 H2) LTE 10MH2 H2) LTE 10MH2	Signature	Avg Cond Pwr Sens 1(dBm) 43.27 43.35 43.03 43.12 43.47 43.33	Avg Cond Pwr Sens 2(dBm) 43.1 43.19 43.07 43.07 43.32 43.45	Duty Cycle (%) 100 100 99.228 99.44 100	Gain (dBi) 0 0 0 0 0 0 0 0	EIRP (dBm) 46.2 46.3 46.1 See Summary See Summary See Summary	(dBm) 62.2 62.2 62.2 N/A N/A N/A	Pass Pass N/A N/A
one onfiguration # w Channel (2112.5 M d Channel (2145 MH gh Channel (2177.5 M id Channel (2145 MH gh Channel (2145 MH gh Channel (2175 M) near Sum of the Pow	1 MHz) WCDMA Hz) WCDMA Hz) WCDMA Hz) LTE 10MHz Hz) LTE 10MHz Hz) LTE 10MHz ver (LTE 10MHz)	Signature	Avg Cond Pwr Sens 1(dBm) 43.27 43.35 43.03 43.12 43.47 43.33 Avg Cond Pwr	Avg Cond Pwr Sens 2(dBm) 43.1 43.19 43.07 43.07 43.32 43.45 Avg Cond Pwr	Duty Cycle (%) 100 100 99.228 99.44 100 Power Summed	Gain (dBi) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EIRP (dBm) 46.2 46.3 46.1 See Summary See Summary See Summary Pwr Summed	(dBm) 62.2 62.2 62.2 N/A N/A N/A N/A Limit	Pass Pass Pass N/A N/A N/A
one	1 WH2) WCDMA (z) WCDMA MH2) WCDMA H2) UTE 10MHz (z) LTE 10MHz H2) LTE 10MHz H2) LTE 10MHz H2) LTE 10MHz H2 10MHz	Signature	Avg Cond Pwr Sens 1(dBm) 43.27 43.35 43.03 43.12 43.47 43.47 43.33 Avg Cond Pwr Sens 1 (mW)	Avg Cond Pwr Sens 2(dBm) 43.1 43.9 43.07 43.07 43.45 Avg Cond Pwr Sens 2 (mW)	Duty Cycle (%) 100 100 99.228 99.44 100 Power Summed (mW)	Gain (dBi) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EIRP (dBm) 46.2 46.3 46.1 See Summary See Summary See Summary Pwr Summed EIRP (dBm)	(dBm) 62.2 62.2 62.2 N/A N/A N/A Limit (dBm)	Pass Pass Pass N/A N/A N/A Results





PEAK TO AVERAGE RATIO

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Aeroflex	48-30-34	RCU	9/15/2016	9/15/2017
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	NCR
Attenuator	S.M. Electronics	SA26B-20	RFW	2/14/2017	2/14/2018
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/16/2017	3/16/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. An RF signal generator was used to create the modulated signal(s) listed in the datasheets. These signals were input into the EUT.

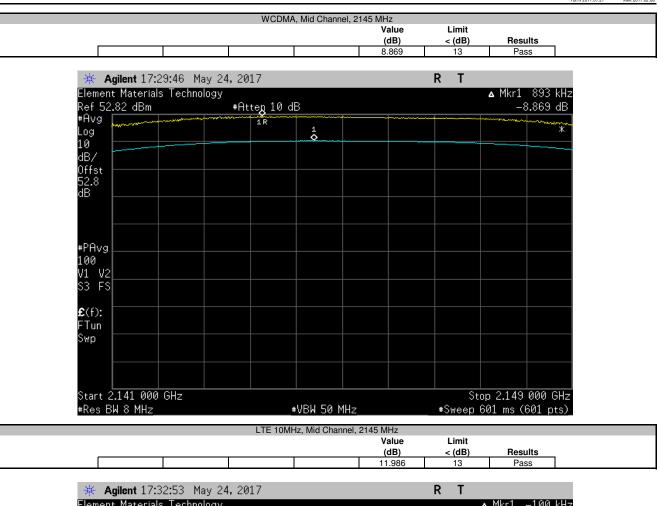
Because the conducted Output Power was measured using a RMS Average detector, the Peak to Average Ratio was measured to show that the maximum peak-max-hold spectrum to the maximum of the average spectrum does not exceed 13 dB.

The spectrum analyzer settings were as follows:

Span set to encompass the entire emission bandwidth, centered on the transmit channel.

The largest difference between the following two screen captures/traces was calculated:

>1st Screen Capture/Trace: Peak detector and trace max-hold.


>2nd Screen Capture/Trace: The same procedure and settings as was used for conducted Output Power.

PEAK TO AVERAGE RATIO

						TbtTx 2017.01.27	XMit 2017.02.08
EUT	FlexWave Prism AWS3	MIMO HDM			Work Order	: TECO0042	
Serial Number	: 459644002				Date	: 05/24/17	
Customer	CommScope				Temperature	: 21.6 °C	
Attendees	: Josh Wittman				Humidity	: 47.3% RH	
Project	None				Barometric Pres.	: 1008 mbar	
	: Dustin Sparks		Power:	110VAC/60Hz	Job Site	: MN08	
TEST SPECIFICA	TIONS			Test Method			
FCC 27:2017				ANSI/TIA/EIA-603-D-2010			
COMMENTS							
and all tests were	performed on port 2 unles		ted during installat	ion. System is rated at 20W (+43 d	IBm) per port. Port 2 was determined to	have the worst cas	se output power
	M TEST STANDARD						
None							
Configuration #	2	Signature	Justin	Sparls			
					Value	Limit	
					(dB)	< (dB)	Results
WCDMA							
	Mid Channel, 2145 MHz				8.869	13	Pass
LTE 10MHz							
	Mid Channel, 2145 MHz				11.986	13	Pass

PEAK TO AVERAGE RATIO

Agilent 17:32:53				R I	
Element Materials Tec	hnology			Δ Mki	r1 –100 kHz
Ref 52.82 dBm	#Atten 10)dB 🔥			-11.986 dB
#Avg Log 10	and the state of the		Martin mart an amount	Marker Marker	hand the
10 MM Contraction of the second secon					
52.8 dB					
#PAvg					
100 V1 V2					
S3 FS					
£(f):					
Swp					
Start 2.137 500 GHz					152 500 GHz
#Res BW 8 MHz		#VBW 50 MHz_		#Sweep 601 n	ıs (601 pts)_

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

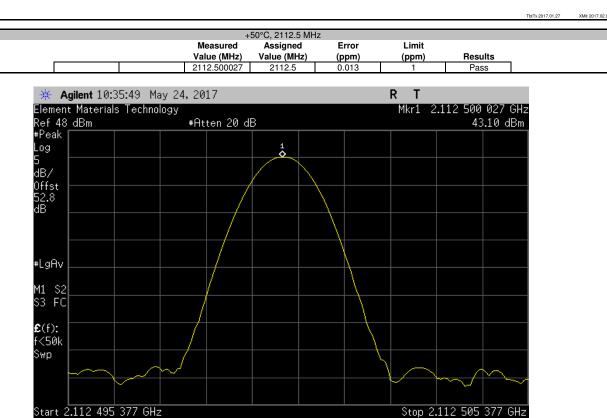
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	117	MLS	1/23/2017	1/23/2020
Attenuator	Aeroflex	48-30-34	RCU	9/15/2016	9/15/2017
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-32-3.5-	TBF	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUB	11/3/2014	11/3/2017
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	NCR
Attenuator	S.M. Electronics	SA26B-20	RFW	2/14/2017	2/14/2018
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/16/2017	3/16/2018

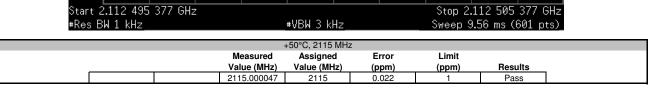
TEST DESCRIPTION

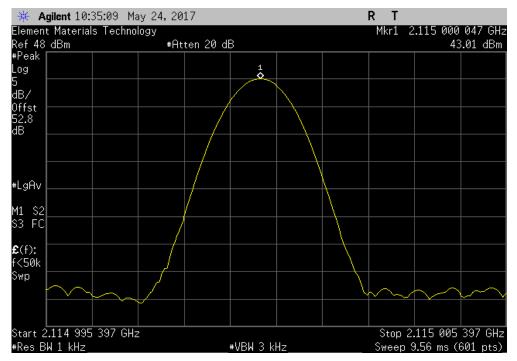
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. An RF signal generator was used to create the modulated signal(s) listed in the datasheets. These signals were input into the EUT.

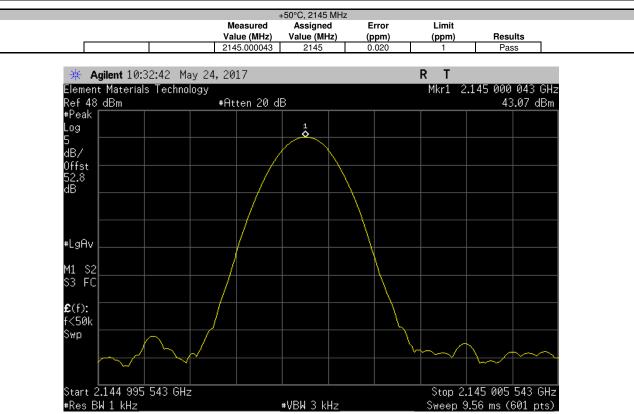
Measurements were made at the edges of the main transmit bands as called out on the data sheets. Testing was done with an absence of modulation in a CW mode of operation.

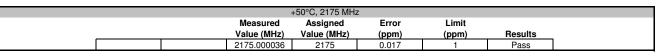
The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 $^{\circ}$ to +50 $^{\circ}$ C) and at 10 $^{\circ}$ C intervals.

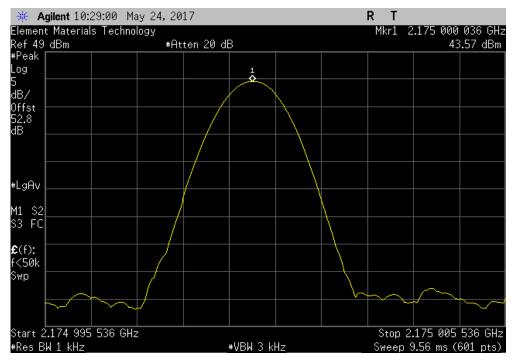

Per the requirements of FCC Part 27.54:

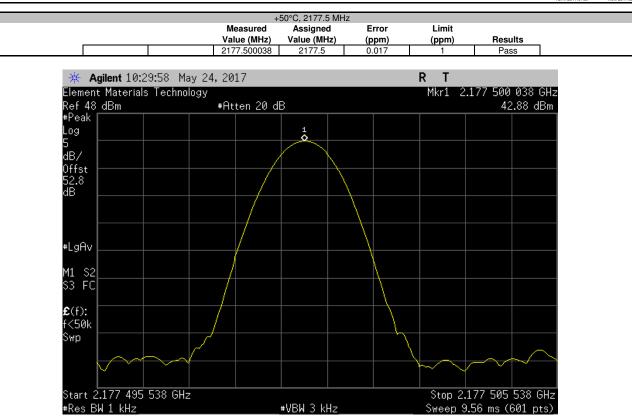

"The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation."

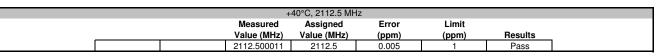

No specific limits are provided in either FCC 27.54, the product specific rule part, or FCC 2.1055, the equipment authorization procedure for testing frequency stability. While there are no limits called out, any results less than 1ppm will still allow the radio to be operating within the band.

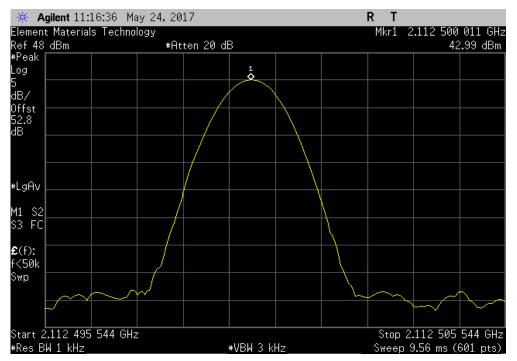

	FlexWave Prism AWS3 MIMO	HDM				TbtTx 2017.01.27	XMit 20
Serial Number					Date	: 05/24/17	
	: CommScope				Temperature		
Attendees	: Josh Wittman					: 47% RH	
	I: None			-	Barometric Pres.		
	: Dustin Sparks	Power: 120VAC/60Hz			Job Site		
T SPECIFICAT		Test Method					
27:2017		ANSI/TIA/EIA-6	03-D-2010				
MMENTS	nourmed to be 0 mer eventer	the entenne gain will be recursively a during the table to a set of the	roted at 00W/ (to JP	Dor next Devi 0	a dotermined	have the world	o outrut
	ssumed to be 0 - per customer, performed on port 2 unless oth	the antenna gain will be reevaluated during installation. System is erwise noted	rated at 20W (+43 dBm	i) per port. Port 2 wa	is determined to	have the worst cas	e output pov
an tests were	performed on port 2 diffess of	erwise noted.					
VIATIONS FRO	M TEST STANDARD						
ne							
<i></i>		24 0 0					
nfiguration #	2	Signature	>				
	I	Signature	Measured	Assigned	Error	Limit	
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
°C					<u></u>	wr /	
	2112.5 MHz		2112.500027	2112.5	0.013	1	Pass
	2115 MHz		2115.000047	2115.0	0.022	1	Pass
	2145 MHz		2145.000043	2145.0	0.020	1	Pass
	2175 MHz		2175.000036	2175.0	0.017	1	Pass
	2177.5 MHz		2177.500038	2177.5	0.017	1	Pass
0°C							
	2112.5 MHz		2112.500011	2112.5	0.005	1	Pass
	2115 MHz		2115.000025	2115.0	0.012	1	Pass
	2145 MHz		2145.000009	2145.0	0.004	1	Pass
	2175 MHz		2175.000019 2177.500021	2175.0	0.009	1	Pass
0°C	2177.5 MHz		2177.500021	2177.5	0.010	1	Pass
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2112.5 MHz 2115 MHz		2112.500044	2112.5	0.021	1	Pass
	2145 MHz		2145.000043	2145.0	0.022	1	Pass
	2175 MHz		2175.000003	2175.0	0.001	1	Pass
	2177.5 MHz		2177.500038	2177.5	0.017	1	Pass
0°C							
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2115 MHz		2115.000042	2115.0	0.020	1	Pass
	2145 MHz		2145.000043	2145.0	0.020	1	Pass
	2175 MHz		2175.000053	2175.0	0.024	1	Pass
	2177.5 MHz		2177.500038	2177.5	0.017	1	Pass
D°C	04405144		0110 500007	04405			
	2112.5 MHz		2112.500027	2112.5	0.013	1	Pass
	2115 MHz		2115.000046	2115.0	0.022	1	Pass
	2145 MHz 2175 MHz		2145.000043 2175.000052	2145.0 2175.0	0.020 0.024	1	Pass Pass
	2177.5 MHz		2177.500032	2177.5	0.017	1	Pass
)	2177.0 10112		2111.000000	2111.0	0.017		1 455
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2115 MHz		2115.000046	2115.0	0.022	1	Pass
	2145 MHz		2145.000043	2145.0	0.020	1	Pass
	2175 MHz		2175.000053	2175.0	0.024	1	Pass
	2177.5 MHz		2177.500038	2177.5	0.017	1	Pass
0°C							
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2115 MHz		2115.000042	2115.0	0.020	1	Pass
	2145 MHz		2145.00001	2145.0	0.005	1	Pass
	2175 MHz 2177.5 MHz		2175.000036	2175.0	0.017	1	Pass
°C	2177.3 WITZ		2177.500055	2177.5	0.025	1	Pass
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2112.5 MHz 2115 MHz		2112.500044 2115.000042	2112.5	0.021	1	Pass
	2145 MHz		2145.000009	2145.0	0.004	1	Pass
	2175 MHz		2175.000036	2175.0	0.017	1	Pass
	2177.5 MHz		2177.500038	2177.5	0.017	1	Pass
O°C							
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2115 MHz		2115.000046	2115.0	0.022	1	Pass
	2145 MHz		2145.000043	2145.0	0.020	1	Pass
	2175 MHz		2175.000036	2175.0	0.017	1	Pass
	2177.5 MHz		2177.500038	2177.5	0.017	1	Pass
mal Voltage	2112.5 MHz		2112.500044	2112.5	0.021	4	Pass
	2112.5 MHz 2115 MHz		2112.500044 2115.000025	2112.5	0.021	1	Pass Pass
	2145 MHz		2145.000043	2145.0	0.012	1	Pass
	2175 MHz		2175.000053	2175.0	0.020	1	Pass
	2177.5 MHz		2177.500055	2177.5	0.025	1	Pass
reme Voltage (1							
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2115 MHz		2115.000042	2115.0	0.020	1	Pass
	2145 MHz		2145.000043	2145.0	0.020	1	Pass
	2175 MHz		2175.000036	2175.0	0.017	1	Pass
	2177.5 MHz		2177.500038	2177.5	0.017	1	Pass
reme Voltage (1							
	2112.5 MHz		2112.500044	2112.5	0.021	1	Pass
	2115 MHz		2115.000042	2115.0	0.020	1	Pass
	2145 MHz		2145.000043	2145.0	0.020	1	Pass
	0175 1411						
	2175 MHz 2177.5 MHz		2175.000036 2177.500038	2175.0 2177.5	0.017 0.017	1	Pass Pass

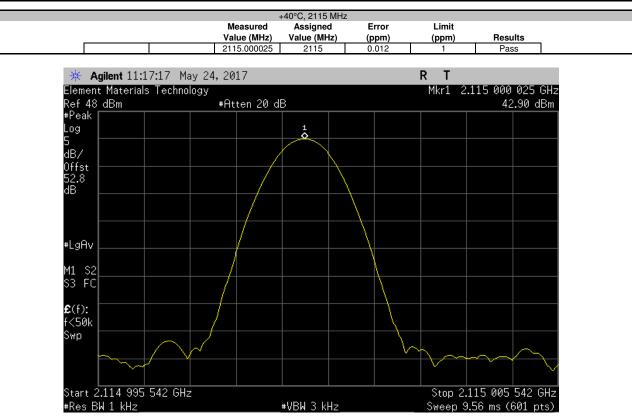


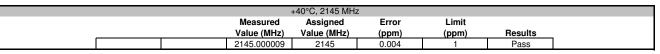


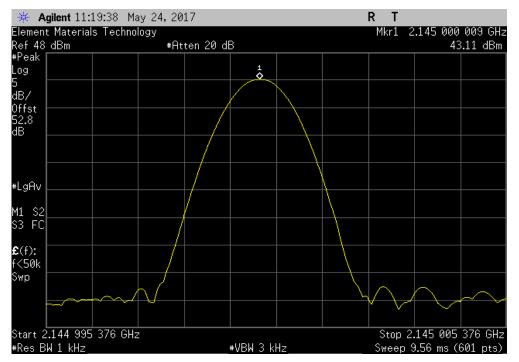


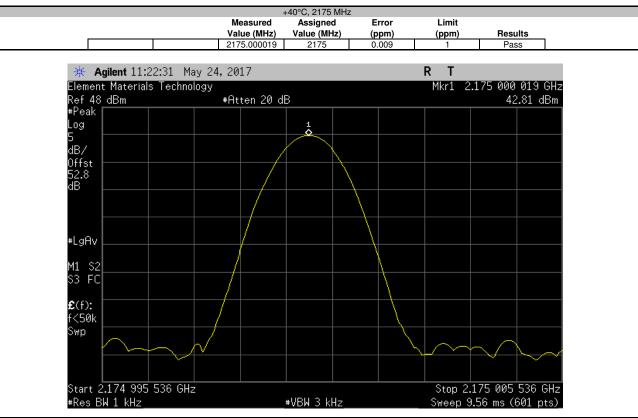

XMit 2017.02.0

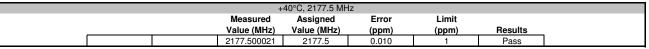


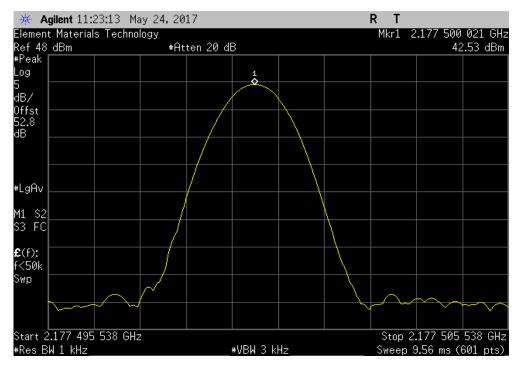


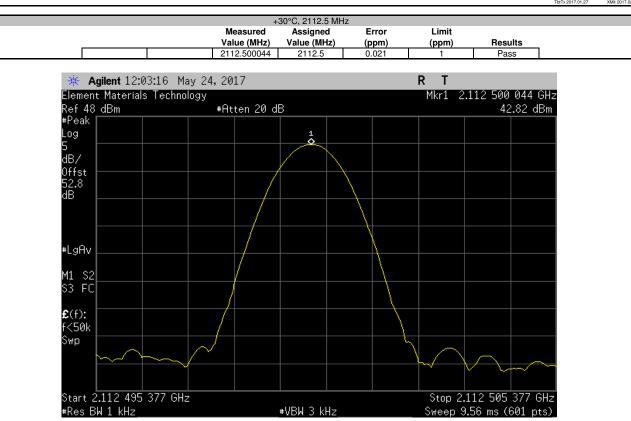


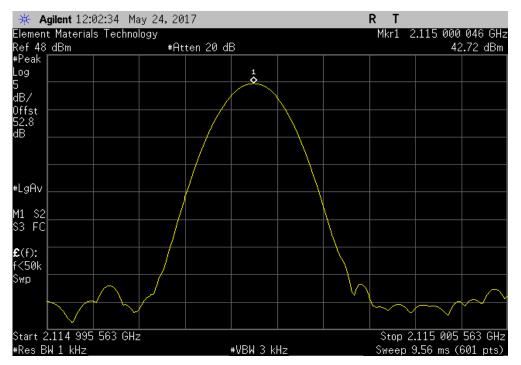


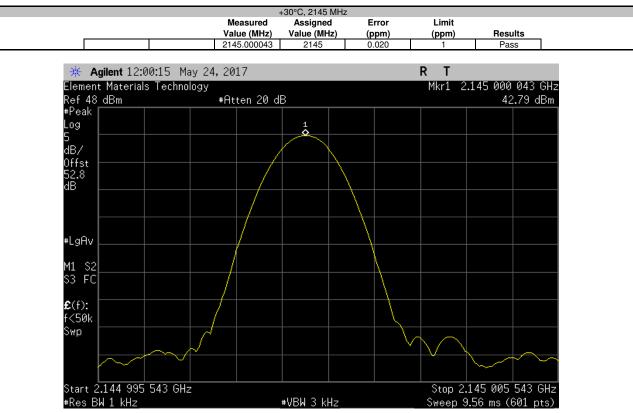


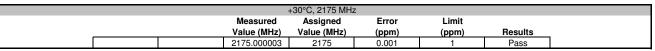


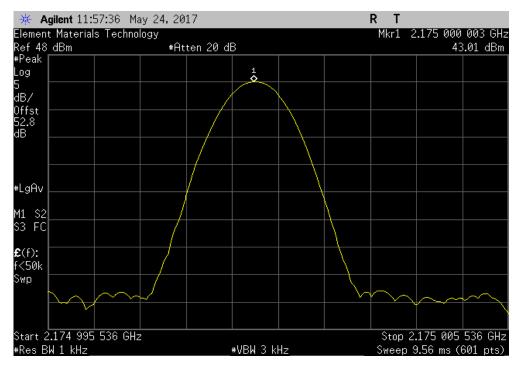


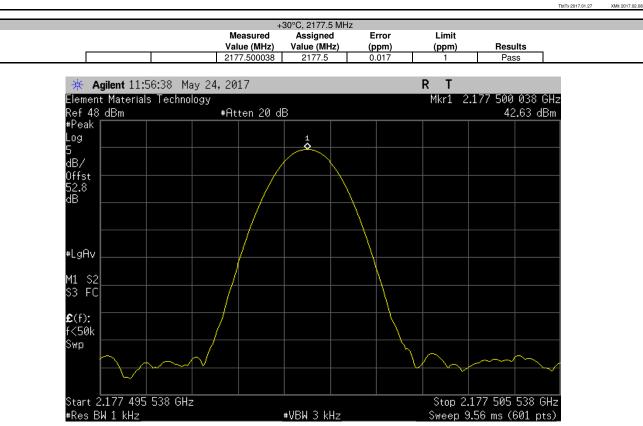


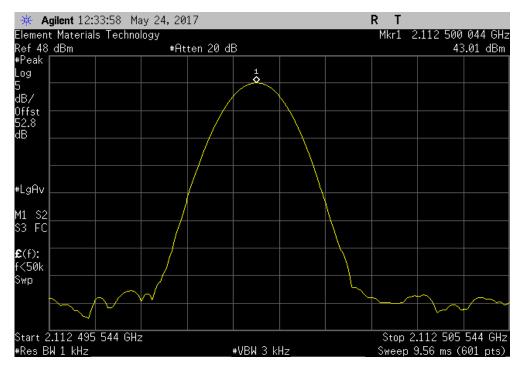


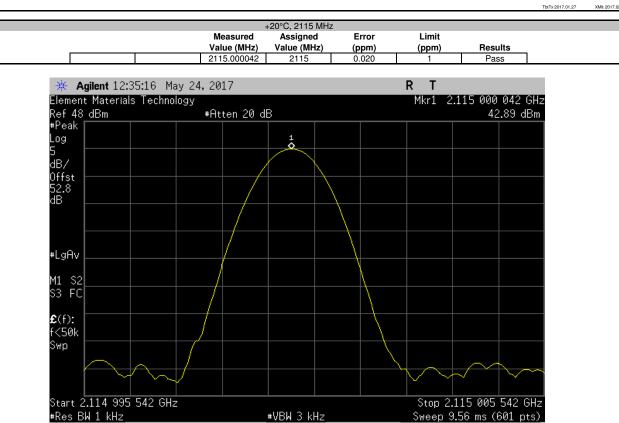

XMit 2017.02.08

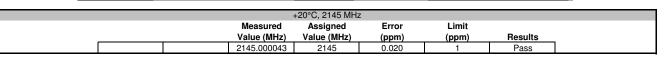

TbtTx 2017.01.27

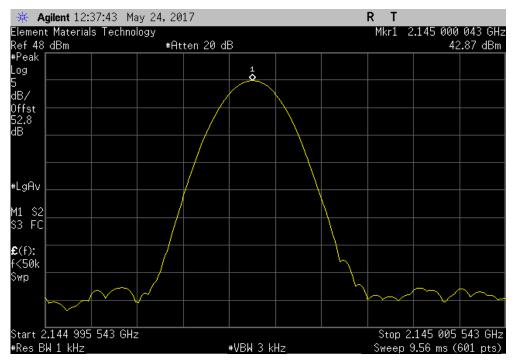


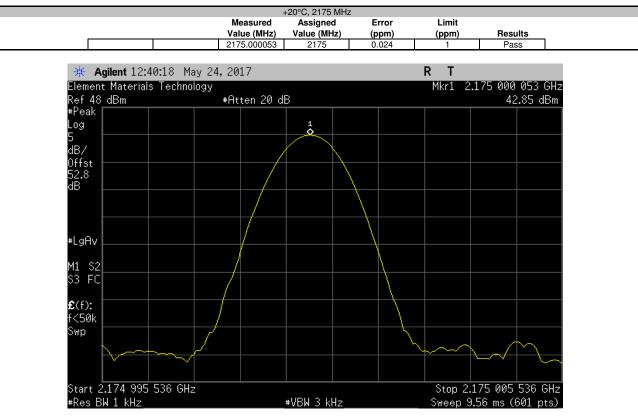

	-	+30°C, 2115 MHz	:		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	2115.000046	2115	0.022	1	Pass

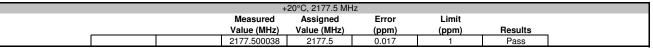


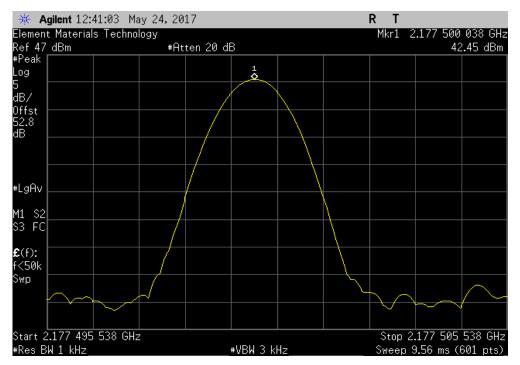


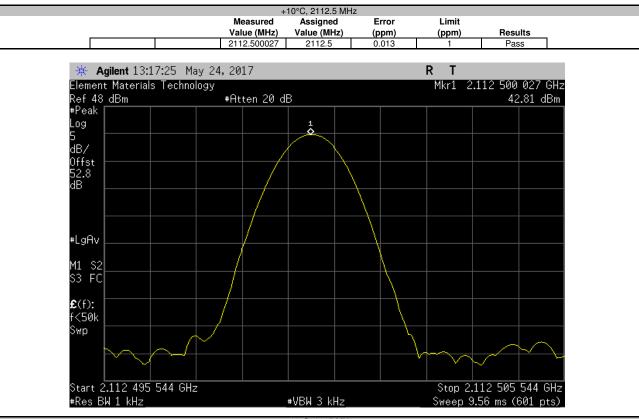



	+	20°C, 2112.5 MH	z		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	2112.500044	2112.5	0.021	1	Pass

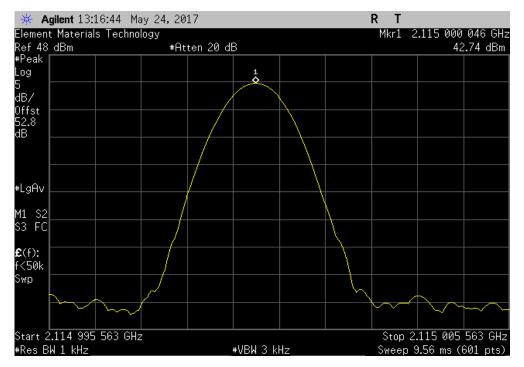


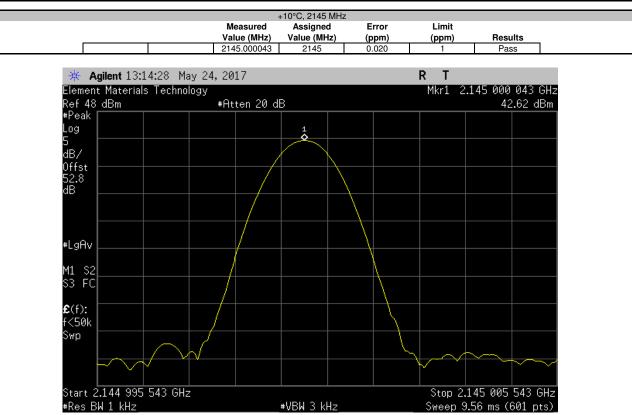


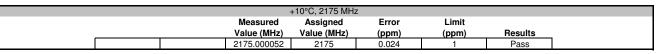


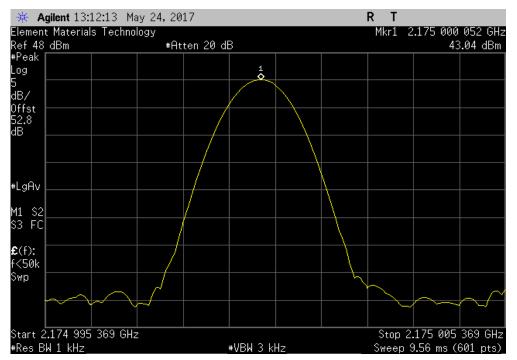


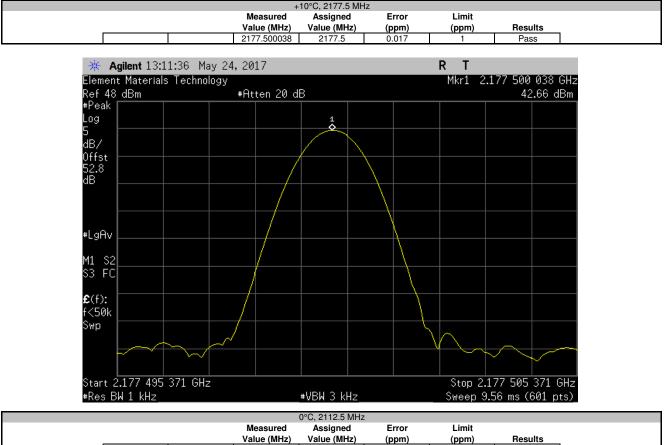
XMit 2017.02.08

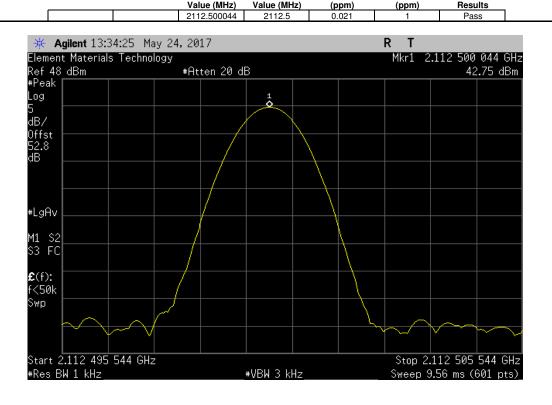


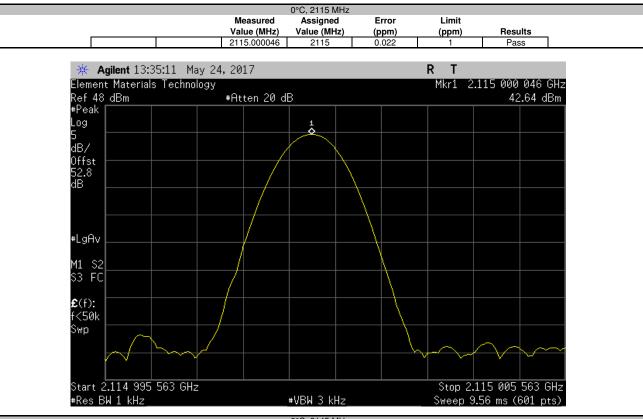


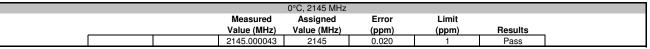


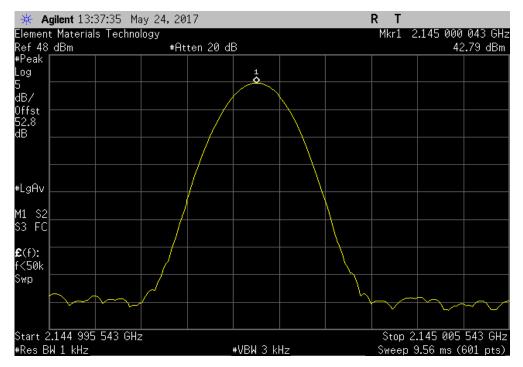

		+10°C, 2115 MHz	2			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	_
	2115.000046	2115	0.022	1	Pass	l

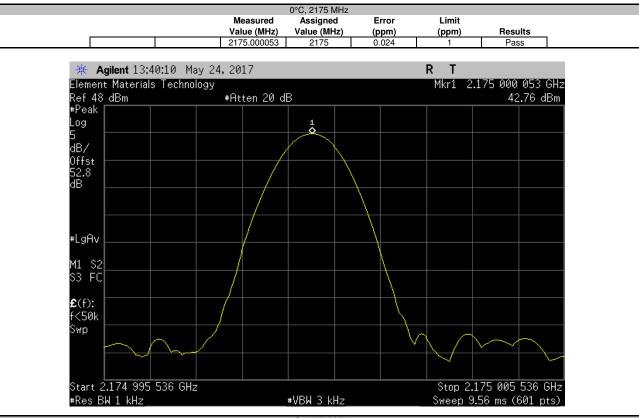


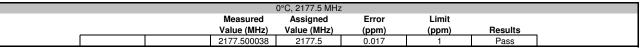


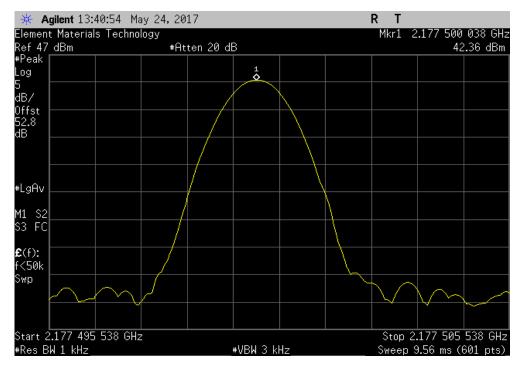






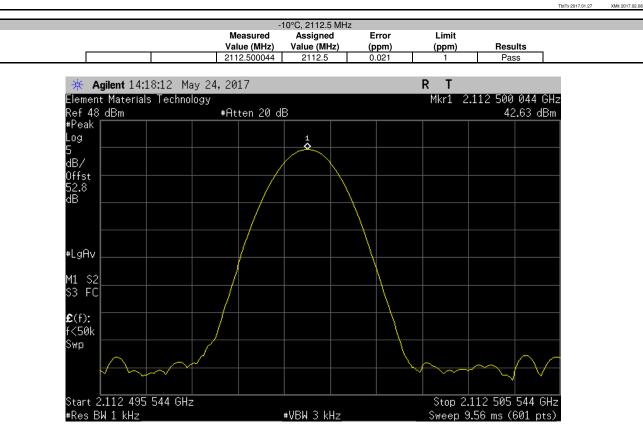


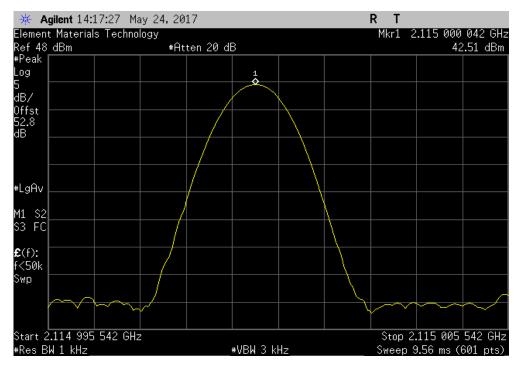




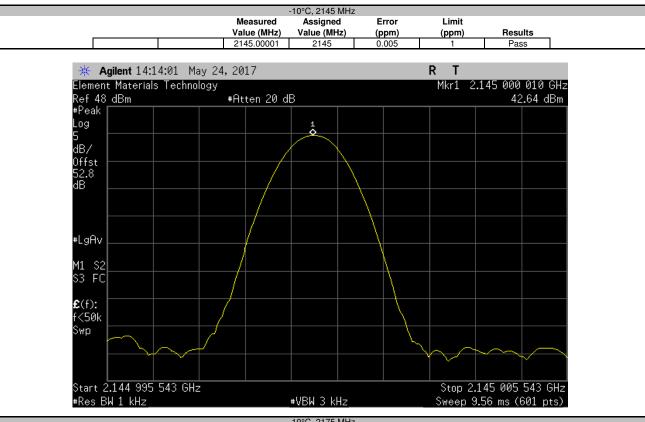
XMit 2017.02.08

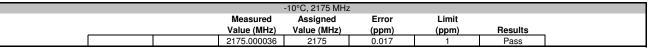
TbtTx 2017.01.27

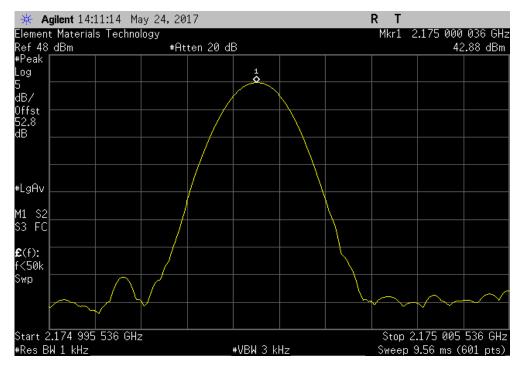


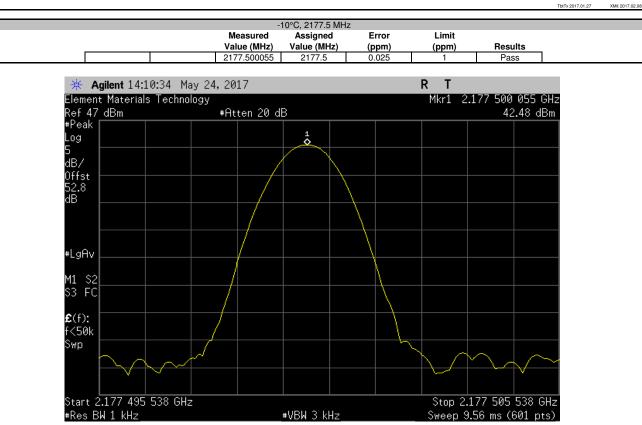


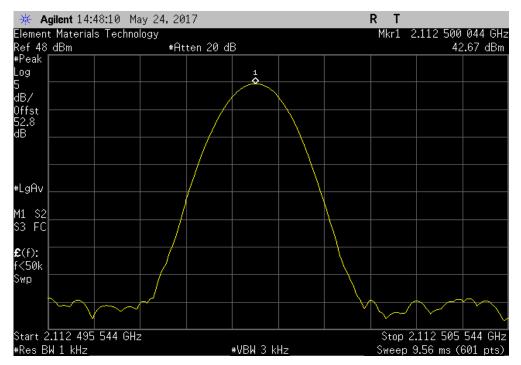
XMit 2017.02.08

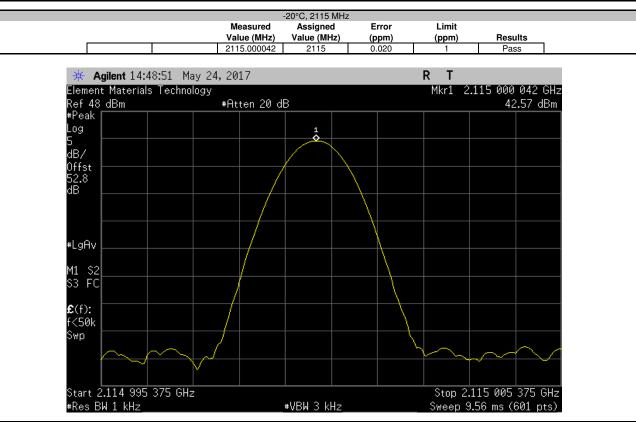

TbtTx 2017.01.27

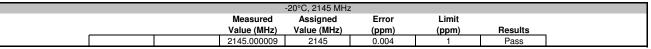


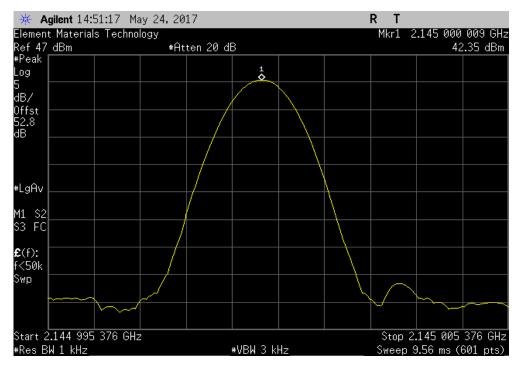

		-10°C, 2115 MHz	2		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	2115.000042	2115	0.020	1	Pass



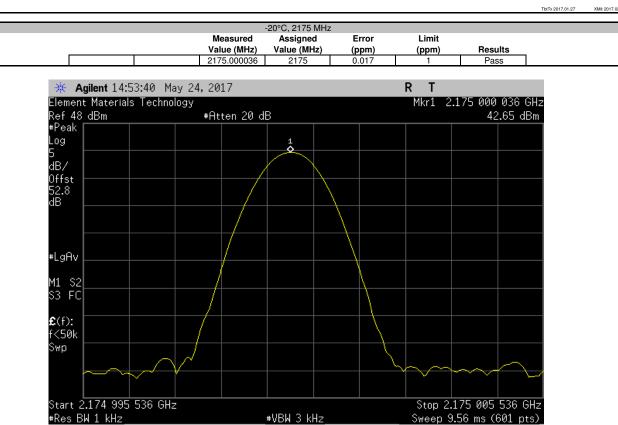


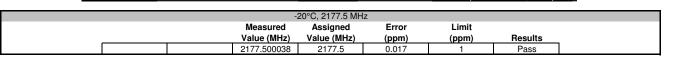


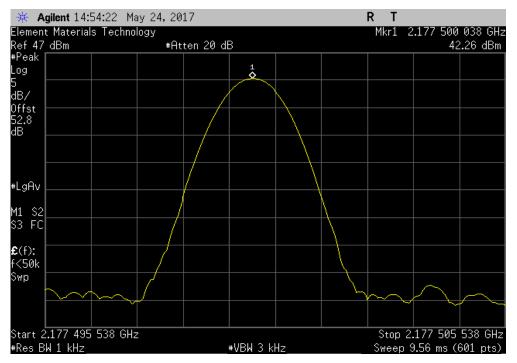

XMit 2017.02.08



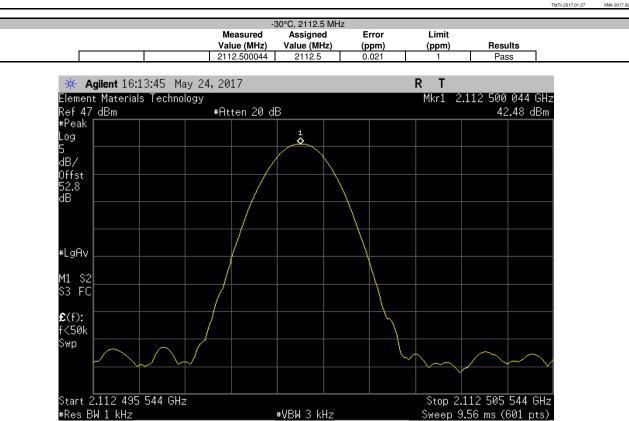
-20°C, 2112.5 MHz								
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		2112.500044	2112.5	0.021	1	Pass		

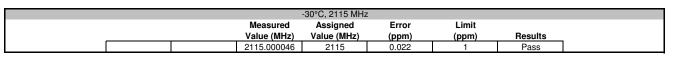


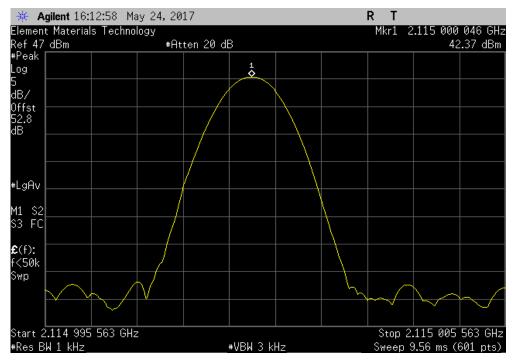


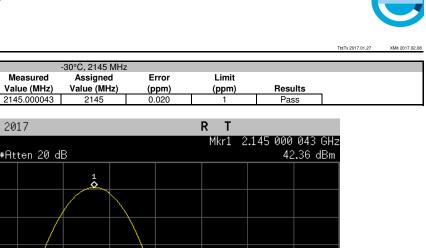


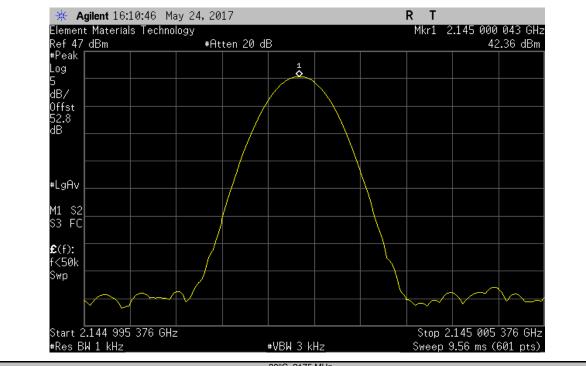
XMit 2017.02.08

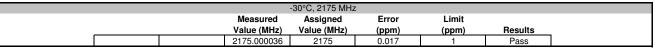

TbtTx 2017.01.27

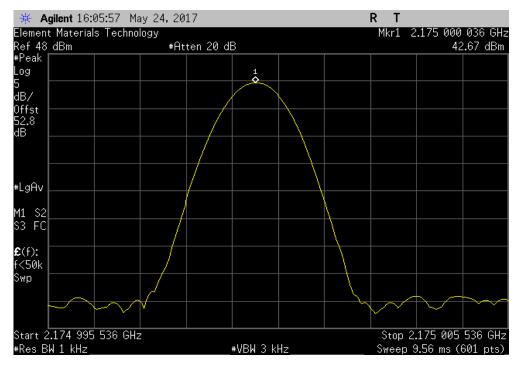


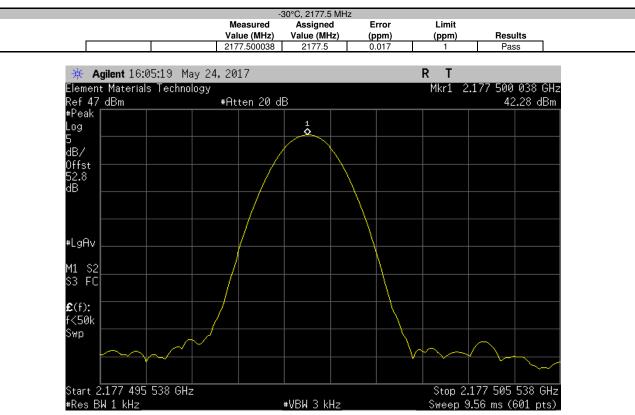


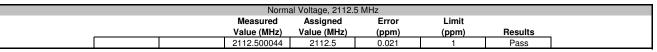


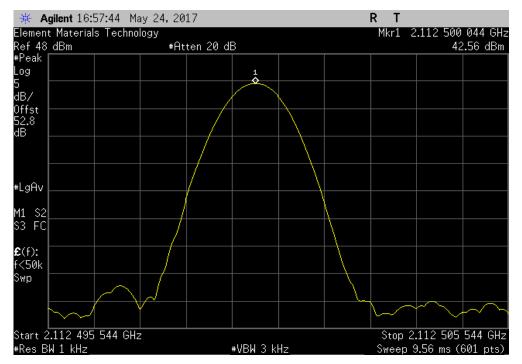

XMit 2017.02.08

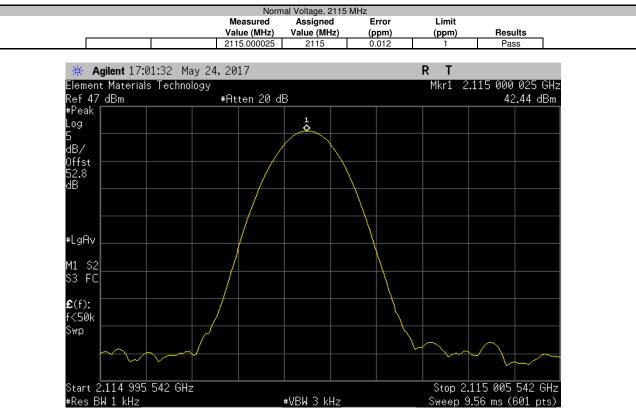


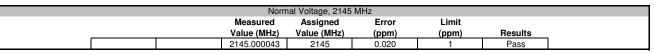


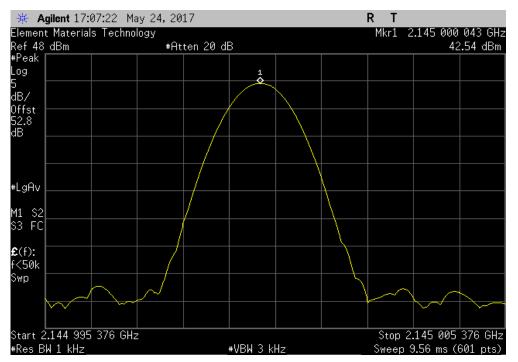


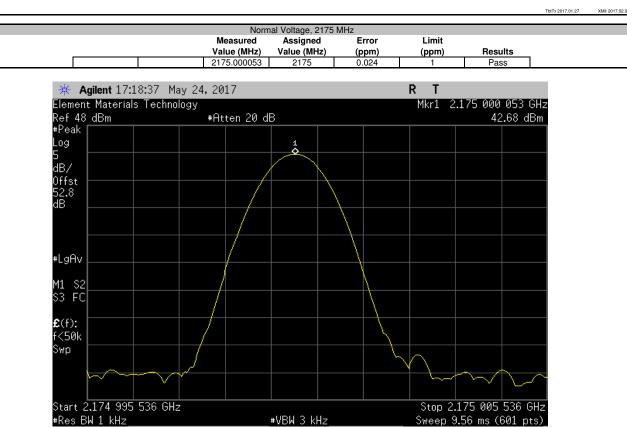


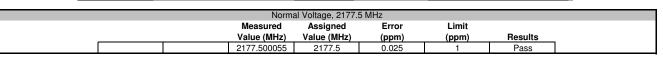


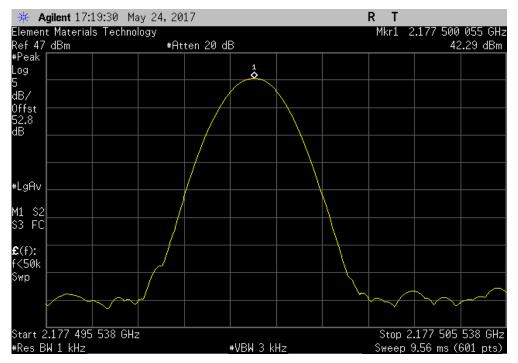


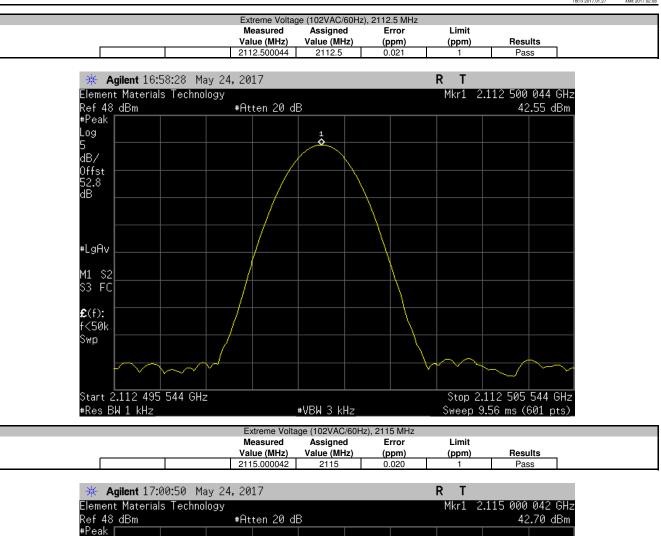


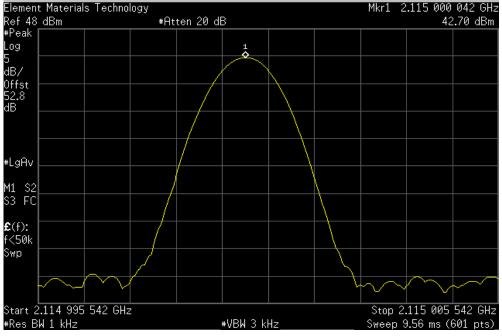


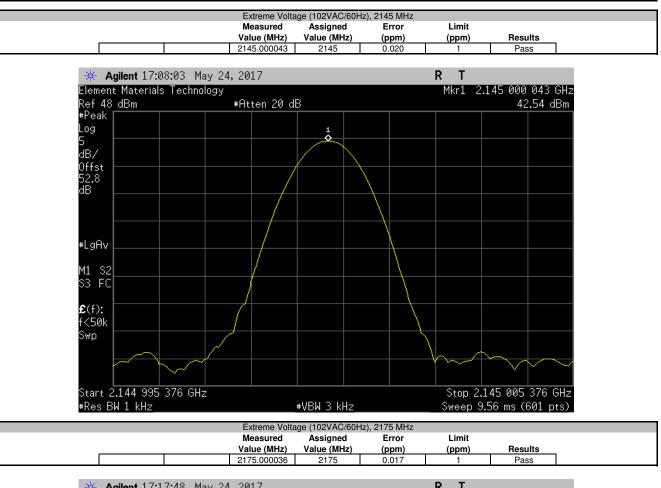

XMit 2017.02.08

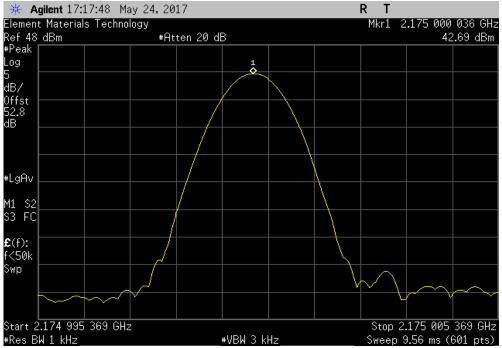

TbtTx 2017.01.27

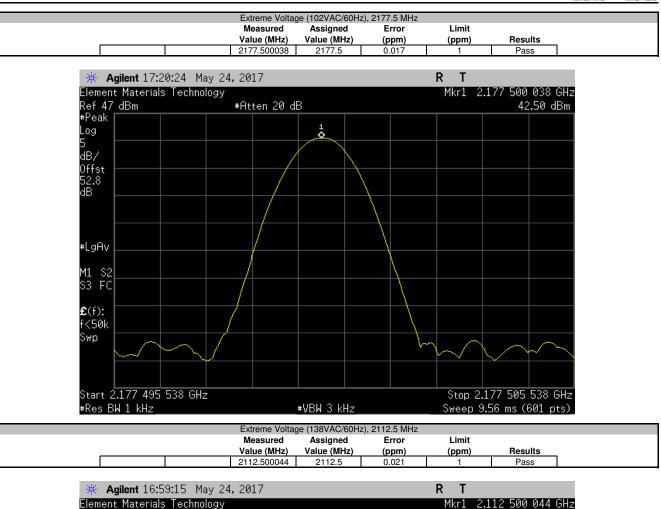


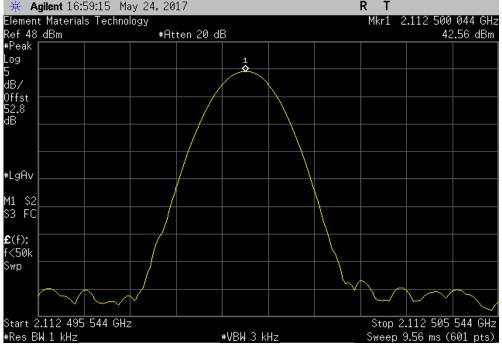


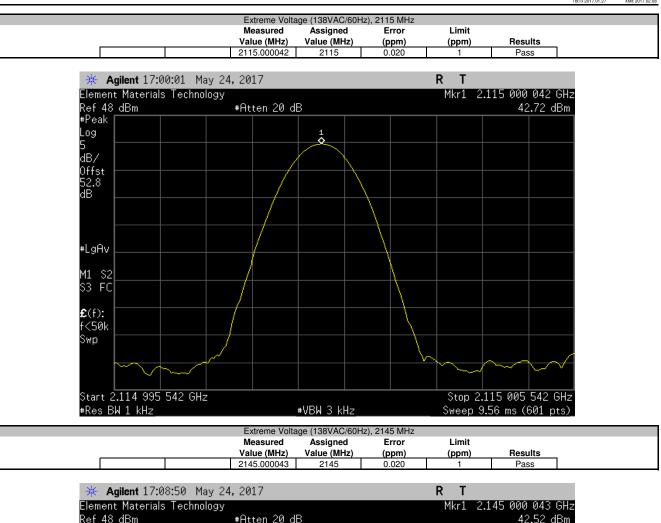


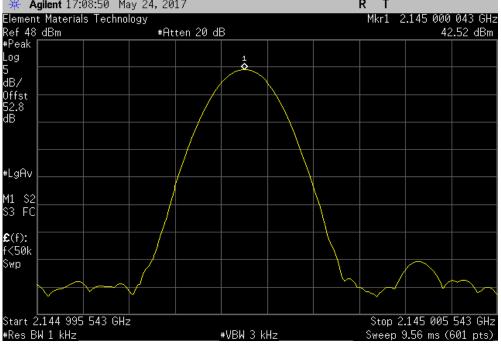


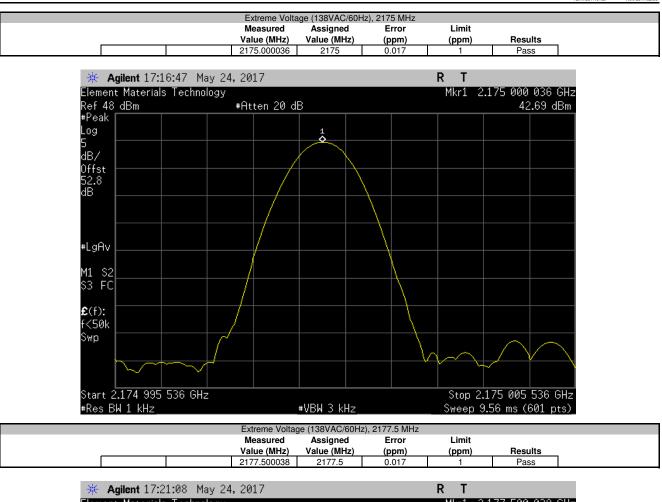


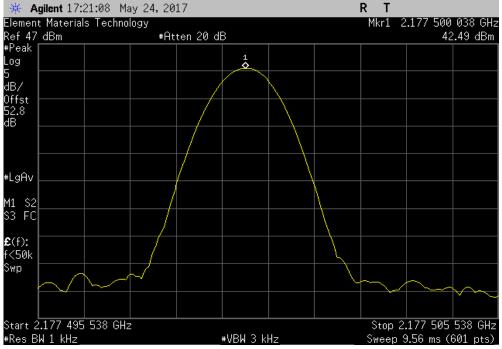












XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Aeroflex	48-30-34	RCU	9/15/2016	9/15/2017
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	NCR
Attenuator	S.M. Electronics	SA26B-20	RFW	2/14/2017	2/14/2018
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/16/2017	3/16/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. An RF signal generator was used to create the modulated signal(s) listed in the datasheets. These signals were input into the EUT.

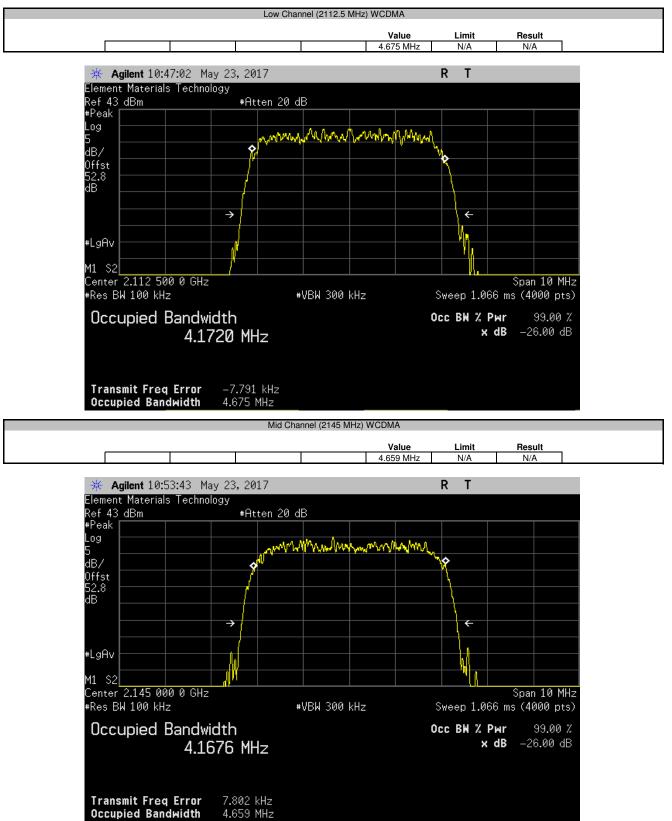
The spectrum analyzer settings were as follows:

>RBW = Approx. 1% of the emission bandwidth (B). This was an iterative process to determine the RBW based on the emissions bandwidth (B).

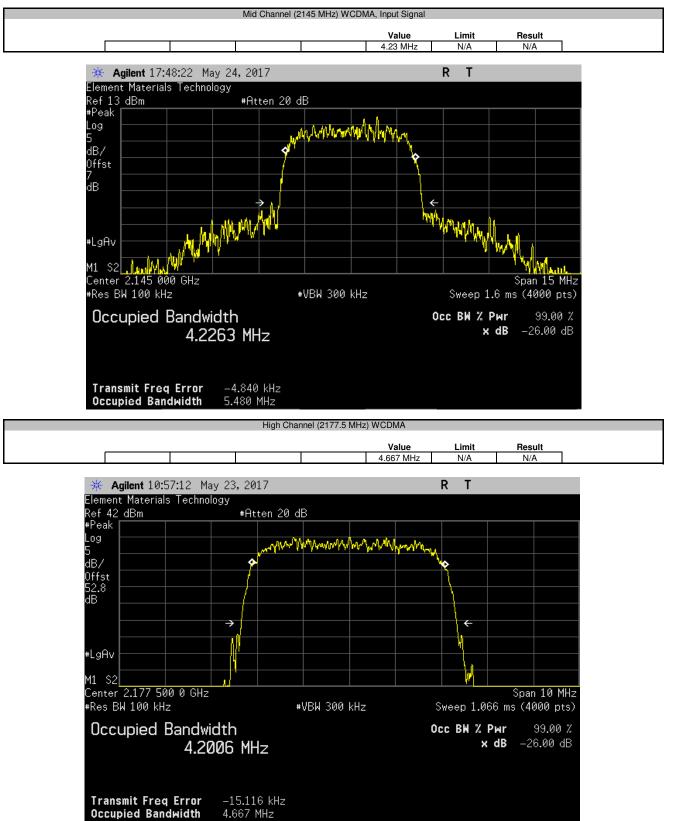
≻VBW= > ŘBW

>A peak detector was used

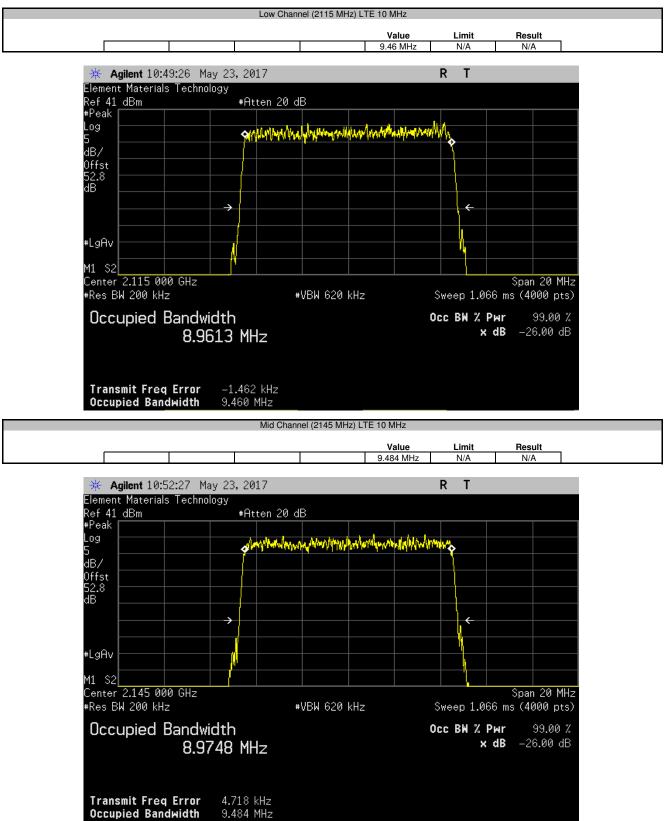
➤Trace max hold.

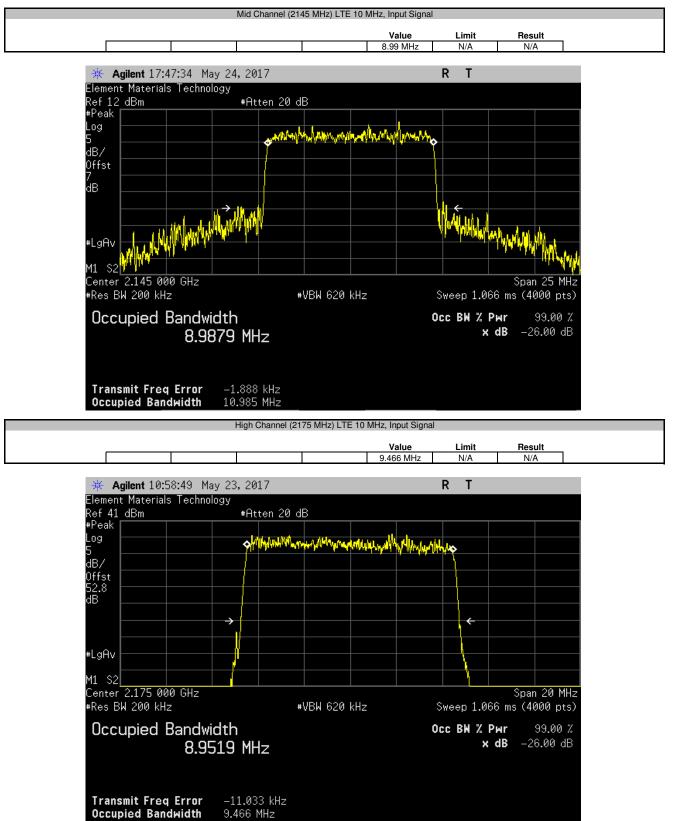

The spectrum analyzer occupied bandwidth measurement function was then used to measure the 26 dB emission bandwidth.

There is no required limit to be met in the rule part for this test. The purpose of the test is to both report the results and to utilize the emission bandwidth for setting the channel power integration bandwidth during conducted output power testing.



	exWave Prism AWS3 MIMO	HDM			Work Order:		
Serial Number: 459	9644002				Date: 0	05/24/17	
Customer: Cor	ommScope				Temperature: 2	21.6 °C	
Attendees: Jos	sh Wittman				Humidity: 4		
Project: Nor	one				Barometric Pres.: 1	1008 mbar	
Tested by: Dus	ustin Sparks		Pow	er: 110VAC/60Hz	Job Site:	MN08	
EST SPECIFICATIONS	IS			Test Method			
CC 27:2017				ANSI/TIA/EIA-603-D-2010			
OMMENTS							
VIATIONS FROM TE	EST STANDARD						
EVIATIONS FROM TE one onfiguration #	2		Dustin	Sparls			
ne		Signature	Dustin	Sparlo	Value	Limit	Result
ne nfiguration #	2	Signature	Dustin	Sparlo	Value 4.675 MHz	Limit	Result N/A
ne nfiguration # w Channel (2112.5 MF	2 IHz) WCDMA	Signature	Sustin	Sparlo		-	
ne nfiguration # v Channel (2112.5 MH d Channel (2145 MHz)	2 IHz) WCDMA z) WCDMA	Signature	Dustin	Sparlo	4.675 MHz	N/A	N/A
ne nfiguration # v Channel (2112.5 MH d Channel (2145 MHz) d Channel (2145 MHz)	2 IHz) WCDMA z) WCDMA) WCDMA, Input Signal	Signature	Sustin	Sparlo	4.675 MHz 4.659 MHz	N/A N/A	N/A N/A
nfiguration # v Channel (2112.5 MH I Channel (2145 MHz) I Channel (2145 MHz) h Channel (2177.5 M)	2 IHz) WCDMA 2) WCDMA, Input Signal IHz) WCDMA	Signature	Sustin	Sparlo	4.675 MHz 4.659 MHz 4.23 MHz 4.667 MHz	N/A N/A N/A N/A	N/A N/A N/A
ne nfiguration # V Channel (2112.5 MH I Channel (2145 MHz) I Channel (2145 MHz) h Channel (2115 MHz V Channel (2115 MHz	2 IHz) WCDMA z) WCDMA, Input Signal MHz) WCDMA z) LTE 10 MHz	Signature	Dustin	Sparlo	4.675 MHz 4.659 MHz 4.23 MHz 4.667 MHz 9.46 MHz	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
w Channel (2112.5 MHz) d Channel (2145 MHz) d Channel (2145 MHz) d Channel (2175.5 MHz) w Channel (2177.5 MHz) d Channel (2145 MHz)	2 IHz) WCDMA z) WCDMA, Input Signal MHz) WCDMA z) LTE 10 MHz	Signature	Sustin	Sparlo	4.675 MHz 4.659 MHz 4.23 MHz 4.667 MHz	N/A N/A N/A N/A	N/A N/A N/A N/A





SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting WCDMA, LTE 5MHz and LTE 10MHz - low channel (2112.5 MHz WCDMA/LTE 5MHz, 2115 MHz LTE 10MHz), mid channel (2145 MHz), and high channel (2177.5 MHz WCDMA/LTE 5MHz, 2175 MHz LTE 10MHz)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

TECO0042 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 26500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interva
Generator - Signal	Agilent	N5182A	TIF	8/12/2014	36 mc
Power Sensor	Agilent	N8481A	SQN	8/15/2016	12 mc
Meter - Power	Agilent	N1913A	SQL	8/15/2016	12 mc
Attenuator	Fairview Microwave	SA18E-20	TWZ	9/23/2016	12 m
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/29/2016	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 m
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12 m
Filter - High Pass	Micro-Tronics	HPM50111	LFN	9/23/2016	12 m
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	9/22/2016	12 m
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 m
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2/14/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/1/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	9/15/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 m
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	0 mc
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	12 m

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The EUT was tested with shielded terminations on the RF output ports instead of antennas.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted.

The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

SPURIOUS RADIATED EMISSIONS

						EmiR5 2017.01.25	PSA-ESCI 2017.01.26
Wo	ork Order		Date:	05/22/17	1 1	\bigcirc	2
	Project		Temperature:	22.1 °C	Just	ntoo	ras
	Job Site		Humidity:	39.5% RH		-(
Serial	Number		Barometric Pres.:	1014 mbar	Tested by:	Dustin Sparks	
		FlexWave Prism AW	'S3 MIMO HDM				
	iguration						
C	Customer	CommScope					
		Josh Wittman, Mark	McGraw				
EL	JT Power	110VAC/60Hz					
Operati	ing Mode		A, LTE 5MHz and LTE 1				
oporati		10MHZ), mid channe	l (2145 MHz), and high c	hannel (2177.5 MH	<u>z WCDMA/LTE 5MHz, 2</u>	175 MHz LTE 1	0MHz)
D	eviations	None					
Co	omments	None					
Test Speci	fications			Test Met	hod		
FCC 27:20	17				/EIA-603-D-2010		
Run #	4	Test Distance (m) 3 Antenna	Height(s)	1 to 4(m)	Results	Pass
0 т							
υŢ							
-10 -							
-10 -							
-20 -							
-30							
E							
щ -40 -							
σ							
-50 +							
-60 -							
-70 -							
-70 -							
-70 -							
-70							
-80)	10	0	1000	10000		100000
	0	10	0	1000 MH7	10000		100000
-80	0	10	0	1000 MHz	10000	■ PK ◆	100000 AV QP

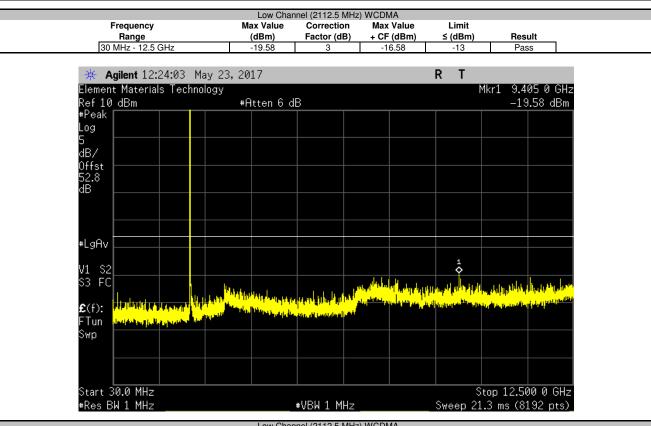
	Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
	6524.742	3.1	289.0	Vert	PK	9.27E-08	-40.3	-13.0	-27.3	High channel, LTE 10MHz
	6531.425	1.0	116.1	Horz	PK	8.85E-08	-40.5	-13.0	-27.5	High channel, LTE 5MHz
	6462.533	1.2	134.1	Horz	PK	8.26E-08	-40.8	-13.0	-27.8	Mid channel, WCDMA
	6531.092	1.0	22.1	Vert	PK	7.89E-08	-41.0	-13.0	-28.0	High channel, LTE 5MHz
	6527.342	2.9	326.9	Horz	PK	7.89E-08	-41.0	-13.0	-28.0	High channel, LTE 10MHz
	6464.142	1.0	276.0	Vert	PK	7.71E-08	-41.1	-13.0	-28.1	Mid channel, WCDMA
	6336.000	3.9	272.9	Horz	PK	7.36E-08	-41.3	-13.0	-28.3	Low channel, WCDMA
	6339.125	1.0	264.0	Vert	PK	7.20E-08	-41.4	-13.0	-28.4	Low channel, WCDMA
	4309.225	1.0	158.0	Vert	PK	2.38E-08	-46.2	-13.0	-33.2	Mid channel, WCDMA
	4312.300	1.0	214.1	Horz	PK	2.28E-08	-46.4	-13.0	-33.4	Mid channel, WCDMA
	4224.342	1.0	325.0	Vert	PK	2.03E-08	-46.9	-13.0	-33.9	Low channel, WCDMA
	4227.392	1.0	66.1	Horz	PK	1.98E-08	-47.0	-13.0	-34.0	Low channel, WCDMA
	8617.658	1.0	268.0	Vert	PK	3.69E-09	-54.3	-13.0	-41.3	Mid channel, WCDMA
	8621.458	1.0	119.1	Horz	PK	3.29E-09	-54.8	-13.0	-41.8	Mid channel, WCDMA
	8447.508	1.0	72.0	Horz	PK	3.21E-09	-54.9	-13.0	-41.9	Low channel, WCDMA
	8711.825	1.0	176.0	Horz	PK	3.21E-09	-54.9	-13.0	-41.9	High channel, WCDMA
	8710.175	1.0	275.9	Vert	PK	3.07E-09	-55.1	-13.0	-42.1	High channel, WCDMA
	8450.450	3.3	0.0	Vert	PK	2.93E-09	-55.3	-13.0	-42.3	Low channel, WCDMA

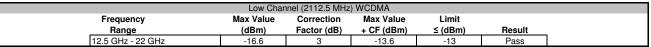
XMit 2017.02.08

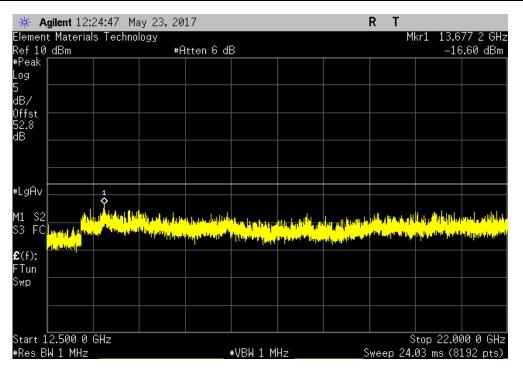
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Aeroflex	48-30-34	RCU	9/15/2016	9/15/2017
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	NCR
Attenuator	S.M. Electronics	SA26B-20	RFW	2/14/2017	2/14/2018
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/16/2017	3/16/2018

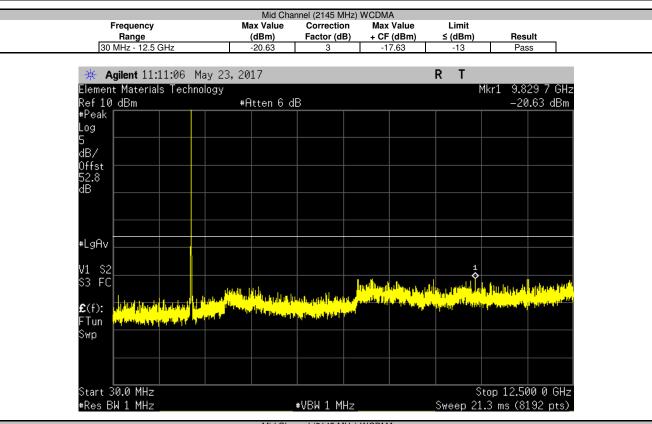
TEST DESCRIPTION

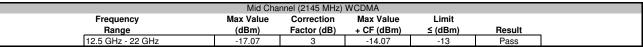

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Analyzer plots utilizing a 1 MHz resolution bandwidth and no video filtering were made for each mode listed in the datasheet.

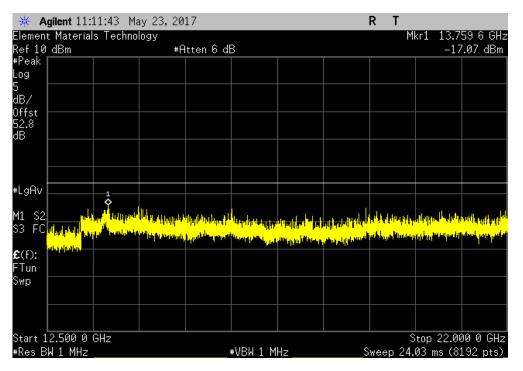

An RF signal generator was used to create the modulated signal(s) listed in the datasheets. These signals were input into the EUT.

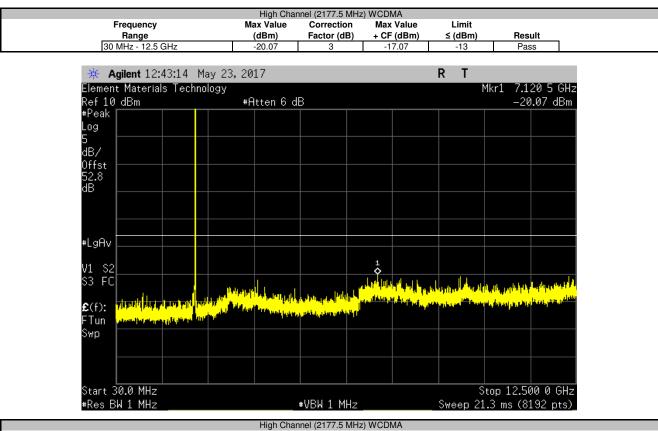

The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than or equal to the limit. Emissions close to the limit were re-measured using an RMS Average detector to match the method used during output power measurements.

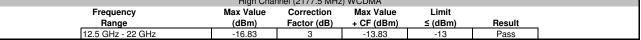
EUT.	FlexWave Prism AWS3 M					Work Order:	TECODOAD	
Serial Number:							05/24/17	
	CommScope					Temperature:		
	Josh Wittman					Humidity:		
Project:						Barometric Pres.:		
	Dustin Sparks		Power: 110VAC/60	u-		Job Site:		
ST SPECIFICATIO			Test Metho			Job Sile:	IVINUO	
CC 27:2017	ONS			IA-603-D-2010				
56 27:2017			ANSI/TIA/E	IA-603-D-2010				
OMMENTS								
		ner, the antenna gain will be reevalua etermined to have the worst case out				rrection factor deriv	ved from the formu	ula 10log(n),
are n is the numi	ber of ports. Port 2 was d	etermined to have the worst case out	put power and all tests were p	erformed on port 2 unless	otherwise noted.			
VIATIONS FROM	TEST STANDARD							
one								
	2	L	Funting Der	9				
		Signature	Justin & par.	la				
one onfiguration #		Signature	Frequency	lo Max Value	Correction	Max Value	Limit	
		Signature	-{		Correction Factor (dB)	Max Value + CF (dBm)	Limit ≤ (dBm)	Result
onfiguration #	2	<u> </u>	Frequency	Max Value				Result Pass
onfiguration #	2 5 MHz) WCDMA	2	Frequency Range	Max Value (dBm)	Factor (dB)	+ CF (dBm)	≤ (dBm)	
w Channel (2112.5 w Channel (2112.5	2 5 MHz) WCDMA 5 MHz) WCDMA	, , , , , , , , , , , , , , , , , , ,	Frequency Range 30 MHz - 12.5 GHz	Max Value (dBm) -19.58	Factor (dB) 3	+ CF (dBm) -16.58	≤ (dBm) -13	Pass
w Channel (2112.5 w Channel (2112.5 d Channel (2145 M	2 5 MHz) WCDMA 5 MHz) WCDMA MHz) WCDMA		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz	Max Value (dBm) -19.58 -16.6	Factor (dB) 3 3	+ CF (dBm) -16.58 -13.6	≤ (dBm) -13 -13	Pass Pass
onfiguration # ww Channel (2112.5 ww Channel (2112.5 id Channel (2145 M id Channel (2145 M	2 5 MHz) WCDMA 5 MHz) WCDMA MHz) WCDMA Hz) WCDMA		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz	Max Value (dBm) -19.58 -16.6 -20.63	Factor (dB) 3 3	+ CF (dBm) -16.58 -13.6 -17.63	≤ (dBm) -13 -13 -13 -13	Pass Pass Pass
onfiguration # w Channel (2112.5 w Channel (2112.5 id Channel (2145 M id Channel (2145 M igh Channel (2177.3	2 5 MHz) WCDMA 5 MHz) WCDMA MHz) WCDMA MHz) WCDMA 5 MHz) WCDMA		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz	Max Value (dBm) -19.58 -16.6 -20.63 -17.07	Factor (dB) 3 3	+ CF (dBm) -16.58 -13.6 -17.63 -14.07	≤ (dBm) -13 -13 -13 -13 -13	Pass Pass Pass Pass
w Channel (2112.5 w Channel (2112.5 d Channel (2145 M d Channel (2145 M gh Channel (2177.3 gh Channel (2177.3	2 5 MH2) WCDMA 5 MH2) WCDMA MH2) WCDMA 4H2) WCDMA 5 MH2) WCDMA 5 MH2) WCDMA 5 MH2) WCDMA		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz	Max Value (dBm) - 19.58 - 16.6 - 20.63 - 17.07 - 20.07	Factor (dB) 3 3	+ CF (dBm) -16.58 -13.6 -17.63 -14.07 -17.07	≤(dBm) -13 -13 -13 -13 -13 -13	Pass Pass Pass Pass Pass
w Channel (2112.5 w Channel (2112.5 d Channel (2145 M d Channel (2145 M gh Channel (2177.1 gh Channel (2177.1 w Channel (2175.1	2 5 MHz) WCDMA 5 MHz) WCDMA MHz) WCDMA Hz) WCDMA 5 MHz) WCDMA 5 MHz) WCDMA 5 MHz) WCDMA MHz) LTE 10MHz		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 22 GHz	Max Value (dBm) -19.58 -16.6 -20.63 -17.07 -20.07 -16.83	Factor (dB) 3 3	+ CF (dBm) -16.58 -13.6 -17.63 -14.07 -17.07 -13.83	≤ (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Pass Pass Pass Pass Pass Pass
w Channel (2112.5 w Channel (2112.5 w Channel (2112.5 id Channel (2145 M gh Channel (2177.4 gh Channel (2177.4 w Channel (2115 N w Channel (2115 N	2 5 MHz) WCDMA 5 MHz) WCDMA 4Hz) WCDMA 4Hz) WCDMA 5 MHz) WCDMA 5 MHz) WCDMA 5 MHz) WCDMA MHz) LTE 10MHz MHz) LTE 10MHz		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz	Max Value (dBm) -19.58 -16.6 -20.63 -17.07 -20.07 -6.83 -20.31	Factor (dB) 3 3 3 3 3 3 3 3 3 3 3 3	+ CF (dBm) -16.58 -13.6 -17.63 -14.07 -17.07 -13.83 -17.31	≤ (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Pass Pass Pass Pass Pass Pass Pass Pass
w Channel (2112.5 w Channel (2112.5 w Channel (2112.5 id Channel (2145 M id Channel (2145 M gh Channel (2177.1 w Channel (2177.3 w Channel (2115 M id Channel (2115 M	2 5 MHz) WCDMA 5 MHz) WCDMA MHz) WCDMA MHz) WCDMA 5 MHz) WCDMA 5 MHz) WCDMA 5 MHz) UTE 10MHz MHz) LTE 10MHz MHz) LTE 10MHz		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz	Max Value (dBm) -19.58 -16.6 -20.63 -17.07 -20.07 -16.83 -20.07 -16.83 -20.01 -16.4	Factor (dB) 3 3 3 3 3 3 3 3 3 3 3 3	+ CF (dBm) -16.58 -13.6 -17.63 -14.07 -17.07 -13.83 -17.31 -13.4	≤ (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Pass Pass Pass Pass Pass Pass Pass Pass
	2 5 MHz) WCDMA 5 MHz) WCDMA MHz) WCDMA MHz) WCDMA 5 MHz) WCDMA 5 MHz) WCDMA 5 MHz) WCDMA MHz) LTE 10MHz MHz) LTE 10MHz MHz) LTE 10MHz MHz) LTE 10MHz MHz) LTE 10MHz		Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz 12.5 GHz - 22 GHz 30 MHz - 12.5 GHz	Max Value (dBm) -19.58 -16.6 -20.63 -17.07 -20.07 -16.83 -20.31 -16.4 -19.97	Factor (dB) 3 3 3 3 3 3 3 3 3 3 3 3	+ CF (dBm) -16.58 -13.6 -17.63 -14.07 -17.07 -13.83 -17.31 -13.4 -16.97	 <(dBm) -13 	Pass Pass Pass Pass Pass Pass Pass Pass

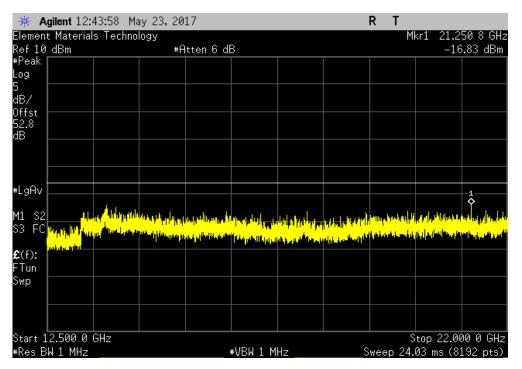


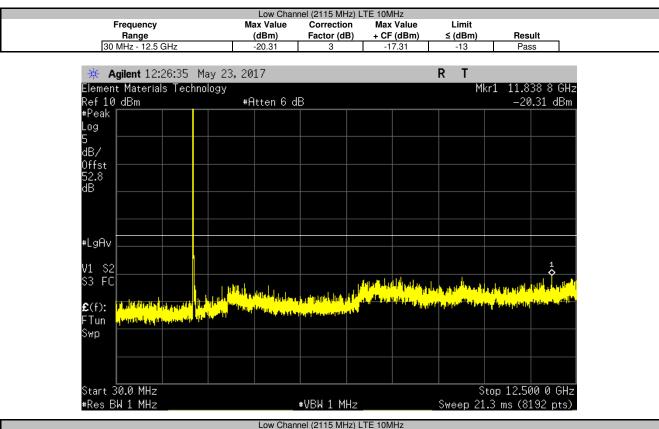


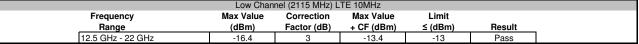


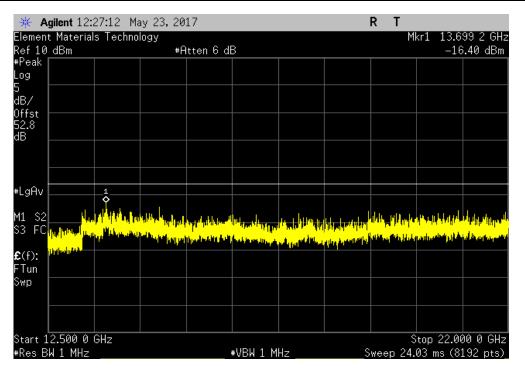

(Mit 2017.02

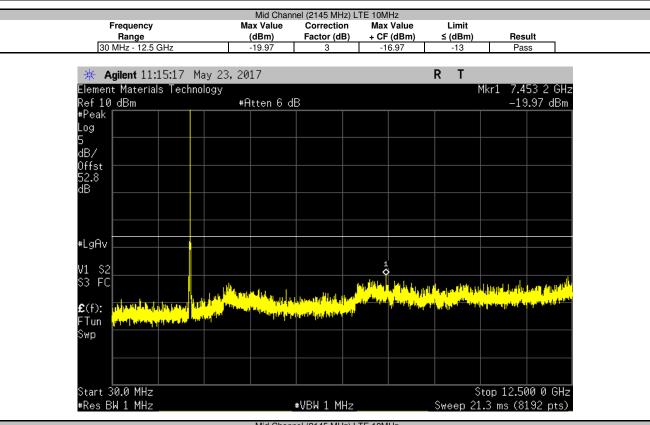

TbtTx 2017.01.27



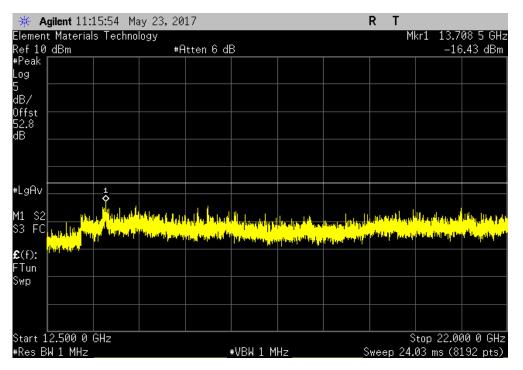


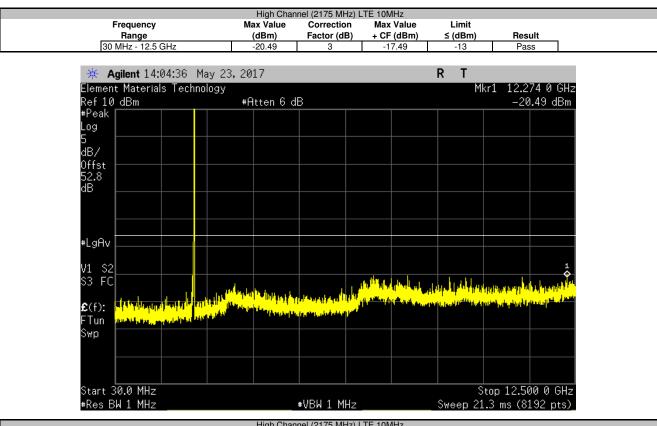


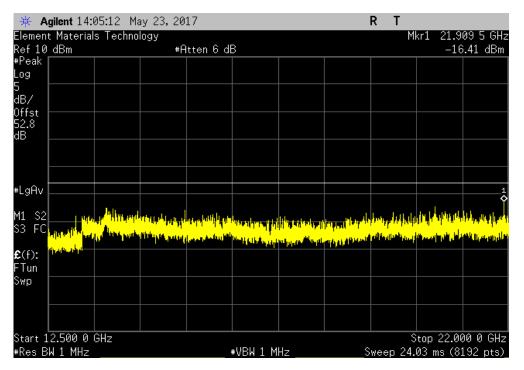



TbtTx 2017.01.27

(Mit 2017.02.




	Mid Chan	nel (2145 MHz) L	TE 10MHz			
Frequency	Max Value	Correction	Max Value	Limit		
Range	(dBm)	Factor (dB)	+ CF (dBm)	≤ (dBm)	Result	
12.5 GHz - 22 GHz	-16.43	3	-13.43	-13	Pass	



(Mit 2017.02.0)

TbtTx 2017.01.27

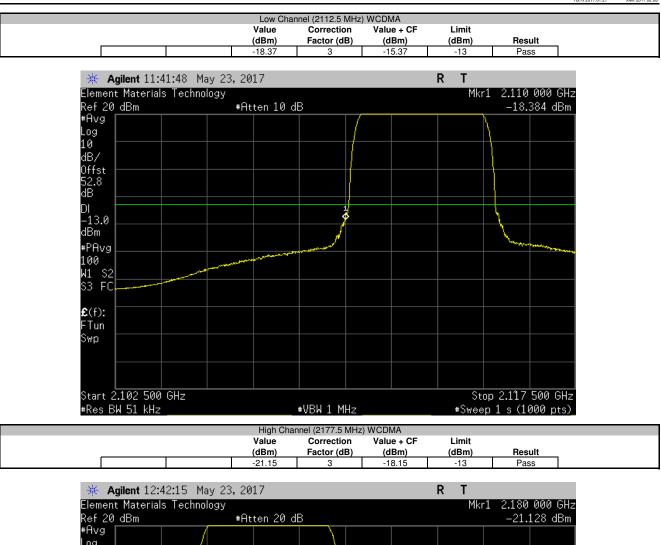
	High Channel (2175 MHz) LTE 10MHz								
Frequency	Max Value	Correction	Max Value	Limit					
Range	(dBm)	Factor (dB)	+ CF (dBm)	≤ (dBm)	Result				
12.5 GHz - 22 GHz	-16.41	3	-13.41	-13	Pass				

XMit 2017.02.08

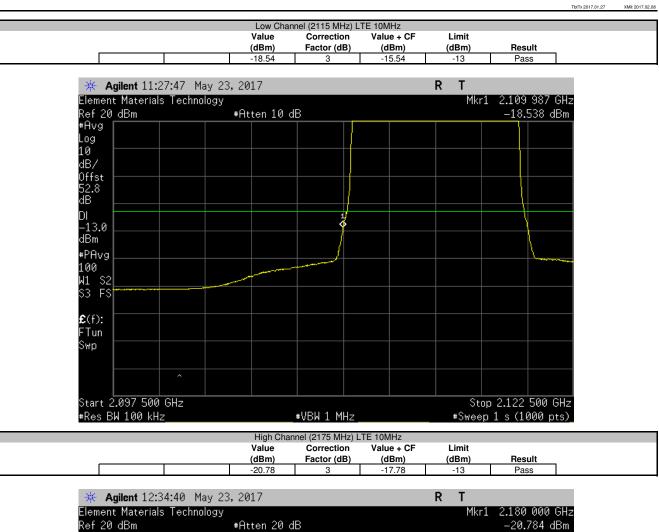
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Aeroflex	48-30-34	RCU	9/15/2016	9/15/2017
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	NCR
Attenuator	S.M. Electronics	SA26B-20	RFW	2/14/2017	2/14/2018
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/16/2017	3/16/2018

TEST DESCRIPTION


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. An RF signal generator was used to create the modulated signal(s) listed in the datasheets. These signals were input into the EUT.


The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in the available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.


The spectrum was scanned below the lower band edge and above the higher band edge. The resolution bandwidth was set to approximately 1% of the measured emissions bandwidth within the first 1 MHz block adjacent to the transmit band. An average RMS detector was used to match the method used during Output Power. The screen capture shows the margin between the measured value and the limit at the band edge. Failing measurements were re-measured using the channel power integration method as called out in the standard.

EUT: Flex	xWave Prism AWS3 MIM) HDM				Work Order:	TECO0042	
Serial Number: 459	644002						05/23/17	
Customer: Con	mmScope					Temperature:	24.2 °C	
Attendees: Jos	sh Wittman					Humidity:	40% RH	
Project: Non						Barometric Pres.:		
Tested by: Dus	stin Sparks		Power: 110VAC/60Hz			Job Site:	MN08	
EST SPECIFICATIONS	6		Test Method					
CC 27:2017			ANSI/TIA/EIA-6	i03-D-2010				
ntenna gain is assume where n is the number of	of ports. Port 2 was dete		ed during installation. System is ut power and all tests were perfo			rrection factor deriv	ved from the form	ula 10log(n),
	of ports. Port 2 was dete					rrection factor deriv	ved from the form	ula 10log(n),
ntenna gain is assume where n is the number of EVIATIONS FROM TES	of ports. Port 2 was dete			ormed on port 2 unles		rrection factor deriv	red from the form	ula 10log(n),
ntenna gain is assume here n is the number o EVIATIONS FROM TES one	of ports. Port 2 was dete ST STANDARD	mined to have the wors	ut power and all tests were perfo	ormed on port 2 unles		Value + CF (dBm)	Limit (dBm)	
ntenna gain is assume here n is the number of EVIATIONS FROM TES one onfiguration #	of ports. Port 2 was dete ST STANDARD	mined to have the wors	ut power and all tests were perfo	vrmed on port 2 unles	s otherwise noted.	Value + CF	Limit	
ntenna gain is assume here n is the number of EVIATIONS FROM TES one onfiguration #	of ports. Port 2 was dete ST STANDARD 2 12) WCDMA	mined to have the wors	ut power and all tests were perfo	vrmed on port 2 unles Value (dBm)	s otherwise noted. Correction Factor (dB)	Value + CF (dBm)	Limit (dBm)	Result
ntenna gain is assume where n is the number of EVIATIONS FROM TES lone	of ports. Port 2 was dete ST STANDARD 2 Hz) WCDMA Hz) WCDMA	mined to have the wors	ut power and all tests were perfo	Value (dBm) -18.37	s otherwise noted. Correction Factor (dB)	Value + CF (dBm) -15.37	Limit (dBm) -13	Result Pass

M Agient 12.04.40	May 20, 2017		N 1	
Element Materials Tech	nology		Mk	
Ref 20 dBm	#Atten 20 dB			-20.784 dBm
#Avg				
Log 10				
10				
dB/				
0ffst 52.8 dB				
52.8 JD				
DI -13.0		ų.		
dBm /				
#PAvg		\		
100				
W1 S2				
\$3 FC				
£ (f):				
FTun				
Swp				
Start 2.167 500 GHz		<u>.</u>	St	op 2.192 500 GHz
#Res BW 100 kHz	#	VBW 1 MHz		ep 1 s (1000 pts)_

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Aeroflex	48-30-34	RCU	9/15/2016	9/15/2017
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAF	NCR	NCR
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAE	NCR	NCR
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	NCR
Attenuator	S.M. Electronics	SA26B-20	RFW	2/14/2017	2/14/2018
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/16/2017	3/16/2018

TEST DESCRIPTION

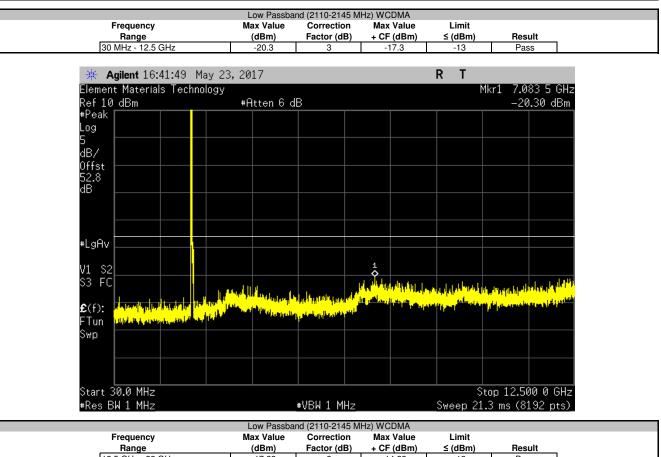
Analyzer plots utilizing a 1MHz resolution bandwidth and no video filtering were made for each modulation type.

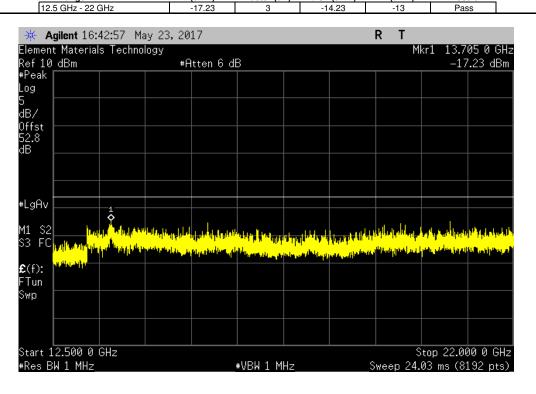
An RF signal generator was used to create the modulated signal(s) listed in the datasheets. These signals were input into the EUT.

The EUT was configured with an input of two CW pulses at the edges of the band and a modulated pulse in the band. The purpose of the test is to insure that no additional signals are creating by having multiple carriers in the passband of the EUT.

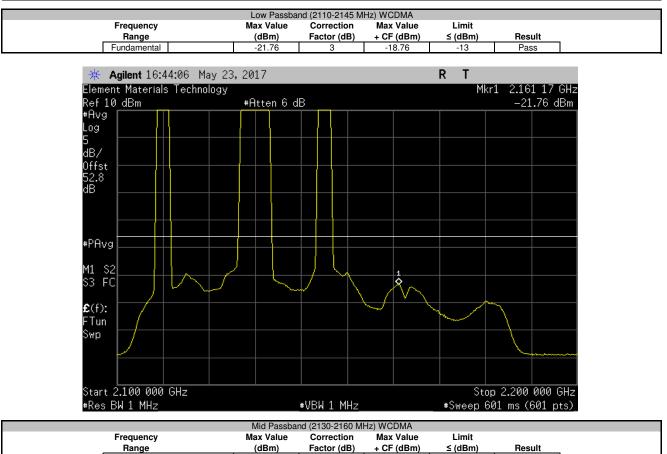
Analyzer plots utilizing a 1MHz resolution bandwidth and no video filtering were made for each modulation type.

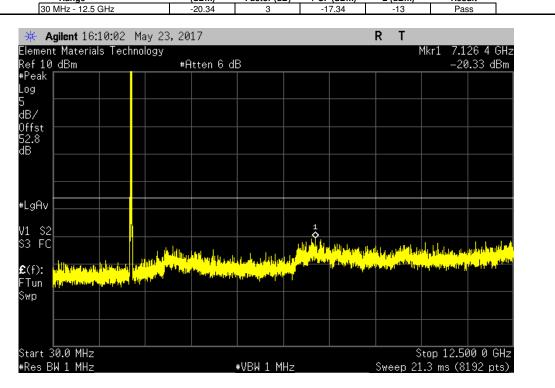
The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than or equal to the spurious conducted emissions limits. Measurements close to the limit were re-measured using a RMS average detector.

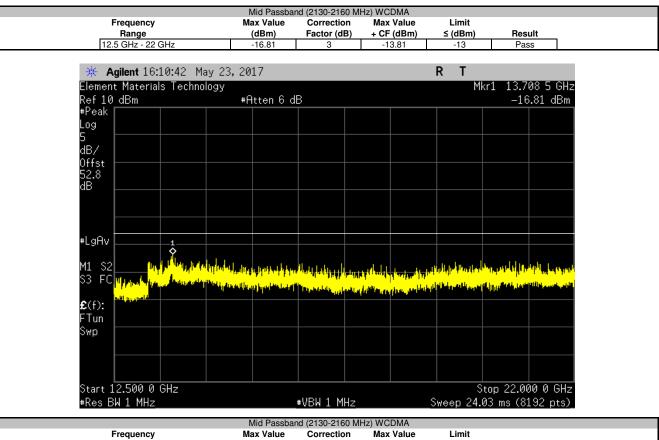



		-	TbtTx 2017.01.27 XMit 2017.02.
EUT: FlexWave Prism AWS3 MIMO HDM		Work Order:	TECO0042
Serial Number: 459644002		Date:	05/24/17
Customer: CommScope		Temperature:	21.6 °C
Attendees: Josh Wittman		Humidity:	43.6% RH
Project: None		Barometric Pres.:	1011 mbar
Tested by: Dustin Sparks	Power: 110VAC/60Hz	Job Site:	MN08
TEST SPECIFICATIONS	Test Method		
FCC 27:2017	ANSI/TIA/EIA-603-D-2010		
COMMENTS			
Antenna gain is assumed to be 0 - per customer, the antenna gain will be reevalua where n is the number of ports. Port 2 was determined to have the worst case out within the allowable band were made to show that all Intermodulation emissions of the shown of the statement of	tput power and all tests were performed on port 2 unless		

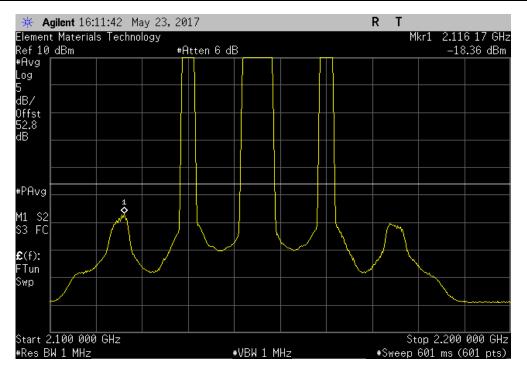
DEVIATIONS F	ROM TEST	STANDARD
None		

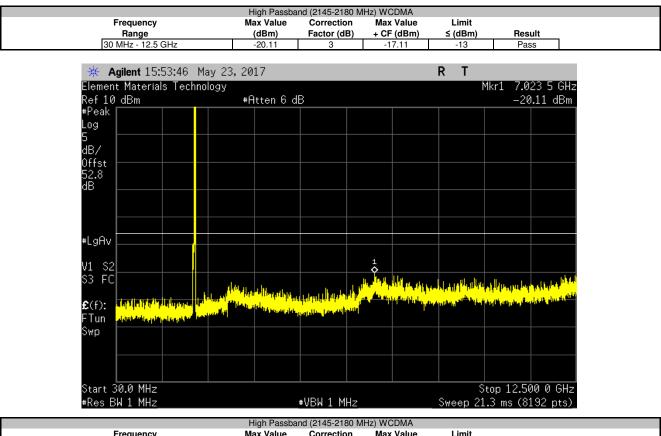

Configuration #	2	Cianatura	Susting pard	25				
		Signature	Frequency Range	Max Value (dBm)	Correction Factor (dB)	Max Value + CF (dBm)	Limit ≤ (dBm)	Result
ow Passband (2110-2145	MHz) WCDMA		30 MHz - 12.5 GHz	-20.3	3	-17.3	-13	Pass
ow Passband (2110-2145	MHz) WCDMA		12.5 GHz - 22 GHz	-17.23	3	-14.23	-13	Pass
ow Passband (2110-2145	MHz) WCDMA		Fundamental	-21.76	3	-18.76	-13	Pass
Aid Passband (2130-2160	MHz) WCDMA		30 MHz - 12.5 GHz	-20.34	3	-17.34	-13	Pass
/lid Passband (2130-2160	MHz) WCDMA		12.5 GHz - 22 GHz	-16.81	3	-13.81	-13	Pass
Nid Passband (2130-2160	MHz) WCDMA		Fundamental	-18.36	3	-15.36	-13	Pass
ligh Passband (2145-2180	MHz) WCDMA		30 MHz - 12.5 GHz	-20.11	3	-17.11	-13	Pass
ligh Passband (2145-2180	MHz) WCDMA		12.5 GHz - 22 GHz	-16.09	3	-13.09	-13	Pass
ligh Passband (2145-2180	MHz) WCDMA		Fundamental	-19.6	3	-16.6	-13	Pass
ow Passband (2110-2145	MHz) LTE 10 MHz		30 MHz - 12.5 GHz	-20.31	3	-17.31	-13	Pass
ow Passband (2110-2145	MHz) LTE 10 MHz		12.5 GHz - 22 GHz	-17.44	3	-14.44	-13	Pass
ow Passband (2110-2145	MHz) LTE 10 MHz		Fundamental	-22.58	3	-19.58	-13	Pass
/lid Passband (2130-2160	MHz) LTE 10 MHz		30 MHz - 12.5 GHz	-20.28	3	-17.28	-13	Pass
Aid Passband (2130-2160	MHz) LTE 10 MHz		12.5 GHz - 22 GHz	-16.62	3	-13.62	-13	Pass
lid Passband (2130-2160	MHz) LTE 10 MHz		Fundamental	-22.61	3	-19.61	-13	Pass
ligh Passband (2145-2180	MHz) LTE 10 MHz		30 MHz - 12.5 GHz	-19.87	3	-16.87	-13	Pass
ligh Passband (2145-2180	MHz) LTE 10 MHz		12.5 GHz - 22 GHz	-16.55	3	-13.55	-13	Pass
High Passband (2145-2180	MHz) LTE 10 MHz		Fundamental	-23.38	3	-20.38	-13	Pass

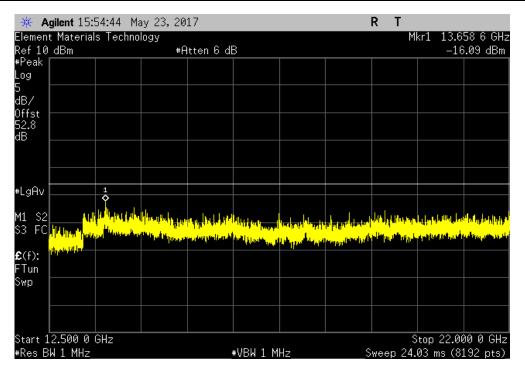


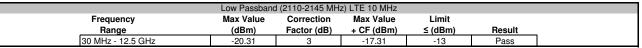


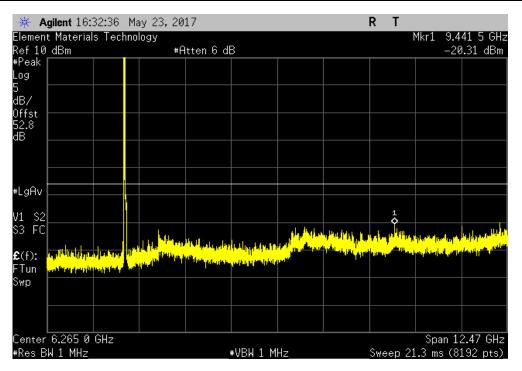


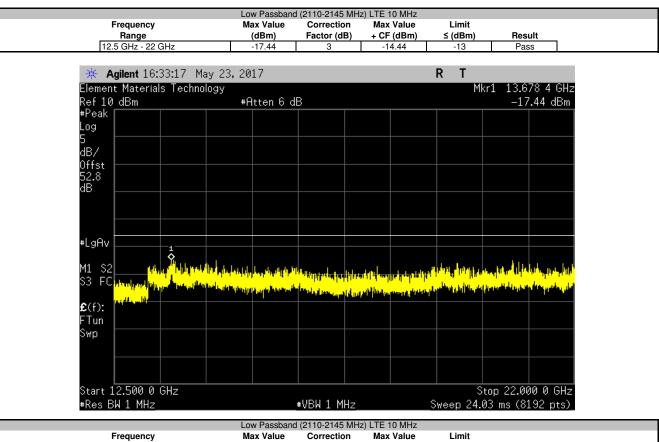


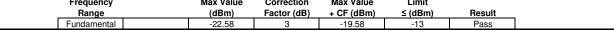







Frequency	Max Value	Correction	Max Value	Limit	
Range	(dBm)	Factor (dB)	+ CF (dBm)	≤ (dBm)	Result
12.5 GHz - 22 GHz	-16.09	3	-13.09	-13	Pass


XMit 2017.02.08


TbtTx 2017.01.27 High Passband (2145-2180 MHz) WCDMA Frequency Max Value Correction Max Value Limit + CF (dBm) Range (dBm) Factor (dB) ≤ (dBm) Result Fundamental -19.6 3 -16.6 -13 Pass R T 🔆 Agilent 15:56:06 May 23, 2017 Element Materials Technology Mkr1 2.109 79 GHz Ref 10 dBm #Atten 6 dB -19.60 dBm #Avg Log 5 dB/ 0ffst 52.8 dB #PAvg 1 M1 S2 S3 FC £(f): FTun Swp Start 2.075 00 GHz Stop 2.200 00 GHz #Res BW 1 MHz #VBW 1 MHz #Sweep 601.2 ms (601 pts)

