

FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E & INDUSTRY CANADA RSS-132 & RSS-133

TEST REPORT

For

2G,3G wireless module

Model: UE910-NAR, UE910-NAD

Trade Name: Telit

Issued to

TELIT COMMUNICATIONS S.P.A. Via Stazione di Prosecco 5/b, 34010 SGONICO, TRIESTE - ITALY

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: March 25, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

	Issue		Effect	
Rev.	Date	Revisions	Page	Revised By
00	March 25, 2013	Initial Issue	ALL	Angel Cheng

TABLE OF CONTENTS

1.	TES	Γ RESULT CERTIFICATION
2.	EUT	DESCRIPTION
3.	TEC	Г METHODOLOGY
з.	IES	
	3.1	EUT CONFIGURATION
-	3.2	EUT EXERCISE
-	3.3	GENERAL TEST PROCEDURES
	3.4	DESCRIPTION OF TEST MODES
4.	INST	TRUMENT CALIBRATION
2	4.1	MEASURING INSTRUMENT CALIBRATION
2	4.2	MEASUREMENT EQUIPMENT USED
2	4.3	MEASUREMENT UNCERTAINTY
5.	FAC	ILITIES AND ACCREDITATIONS 11
4	5.1	FACILITIES
4	5.2	EQUIPMENT
-	5.3	TABLE OF ACCREDITATIONS AND LISTINGS 12
6.	SET	UP OF EQUIPMENT UNDER TEST
(5.1	SETUP CONFIGURATION OF EUT
(5.2	SUPPORT EQUIPMENT
7.	FCC	PART 22 & 24 REQUIREMENTS 14
	7.1	99% BANDWIDTH
-	7.2	PEAK POWER
	7.1	AVERAGE POWER
	7.2	ERP & EIRP MEASUREMENT
	7.3	OCCUPIED BANDWIDTH MEASUREMENT
	7.4	OUT OF BAND EMISSION AT ANTENNA TERMINALS
	7.5	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT
	7.6	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT
	7.7	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

1. TEST RESULT CERTIFICATION

	STANDA	ARD	TEST RESULT			
	APPLICABLE STANDARDS					
Date of Test:		March 11 ~ 23, 2013				
Mod	Model Number: UE910-NAR, UE910-NAD		-NAD			
Trad	e Name:	Telit				
Equipment Under Test:		2G,3G wireless module				
Appl	licant:	TELIT COMMUNICATIONS S.P.A. Via Stazione di Prosecco 5/b, 34010 SGONICO, TRIESTE - ITALY				

STANDARD	TEST RESULT
FCC 47 CFR PART 22 SUBPART H AND	
PART 24 SUBPART E	
&	No non-compliance noted
IC RSS-132 Issue 2: September 2005 and	
IC RSS-133 Issue 5: February 2009	

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-C: 2004 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 Subpart H and PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Viller Lee

Miller Lee Section Manager Compliance Certification Services Inc.

Reviewed by:

ina

Gina Lo Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	2G,3G wireless module
Trade Name	Telit
Model Number	UE910-NAR, UE910-NAD
Model Discrepancy	UE910-NAR - includes a voice codec UE910-NAD - not voice codec
Received Date	February 25, 2013
Power Supply	Power from Power Supply (DC 3.8 V)
Frequency Range	GPRS / EDGE: 850: 824.2 ~ 848.8 MHz GPRS / EDGE: 1900: 1850.2 ~ 1909.8 MHz WCDMA Band II: 1852.4 ~ 1907.6 MHz WCDMA Band V: 826.4 ~ 846.6MHz
Transmit Power (ERP & EIRP Power)	GPRS 850: 21.00 dBm GPRS 1900: 26.57 dBm EDGE 850: 20.99 dBm EDGE 1900: 26.59 dBm WCDMA Band II: 14.48 dBm WCDMA Band V: 20.61 dBm
Cellular Phone Protocol	GPRS: GMSK EDGE: 8PSK WCDMA: Quadrature Phase Shift Keying (QPSK) with Root-raised cosine pulse shaping filters (roll off = 0.22)
Type of Emission	GPRS 850: 248KGXW GPRS 1900: 246KGXW EDGE 850: 248KG7W EDGE 1900: 247KG7W WCDMA Band II: 4M20F9W WCDMA Band V: 4M21F9W
Antenna Gain	Gain: 2.14 dBi
Antenna Type	1/4 l Mobile Antenna

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>**RI7UE910NA**</u> filing to comply with Part 22 and Part 24 of the FCC 47 CFR Rules.
- 3. This submittal(s) (test report) is intended for IC ID: <u>5131A-UE910NA</u> filing to comply with RSS-132 and RSS-133.

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4: 2009, TIA/EIA-603-C: 2004 and FCC CFR 47, Part 2 and Part 22 Subpart H & Part 24 Subpart E.

The tests documented in this report were performed in accordance with IC RSS-132, SPSR503, RSS-133, SPSR510 and ANSI C63.4 and TIA/EIA-603-C.

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4: 2009.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4: 2009.

3.4DESCRIPTION OF TEST MODES

The EUT (model: UE910-NAR) had been tested under operating condition.

EUT staying in continuous transmitting mode was programmed.

GPRS / EDGE 850:

Channel Low (CH128), Channel Mid (CH190) and Channel High (CH251) were chosen for full testing.

GPRS / EDGE 1900:

Channel Low (CH512), Channel Mid (CH661) and Channel High (CH810) were chosen for full testing.

WCDMA Band II:

Channel Low (CH9262), Channel Mid (CH9400) and Channel High (CH9538) were chosen for full testing.

WCDMA Band V:

Channel Low (CH4132), Channel Mid (CH4182) and Channel High (CH4233) were chosen for full testing.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

4. INSTRUMENT CALIBRATION

4.1MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360131	03/21/2013	
Power Meter	Anritsu	ML2495A	1012009	06/05/2013	
Power Sensor	Anritsu	MA2411A	0917072	06/05/2013	
Temp. / Humidity Chamber	Terchy	MHG-150LF	930619	10/18/2013	

Wugu 966 Chamber A					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510268	11/14/2013	
EMI Test Receiver	R&S	ESCI	100064	02/28/2014	
Pre-Amplifier	Mini-Circults	ZFL-1000LN	SF350700823	01/12/2014	
Pre-Amplifier	MITEQ	AFS44-00102650- 42-10P-44	1415367	11/19/2013	
Bilog Antenna	Sunol Sciences	JB3	A030105	10/02/2013	
Bilog Antenna	Sunol Sciences	JB3	A030205	10/02/2013	
Horn Antenna	EMCO	3117	00055165	02/13/2014	
Horn Antenna	EMCO	3117	00055167	01/28/2014	
Horn Antenna	EMCO	3116	00026370	10/11/2013	
Loop Antenna	EMCO	6502	8905/2356	06/10/2013	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Site NSA	CCS	N/A	N/A	12/22/2013	
Test S/W	EZ-EMC (CCS-3A1RE)				

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS 5.1FACILITIES

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
 Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.
 Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	n TAF LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method -47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11		Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1SETUP CONFIGURATION OF EUT

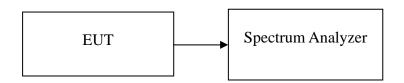
See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
	N/A						

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.


7. FCC PART 22 & 24 REQUIREMENTS

7.199% BANDWIDTH

LIMIT

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

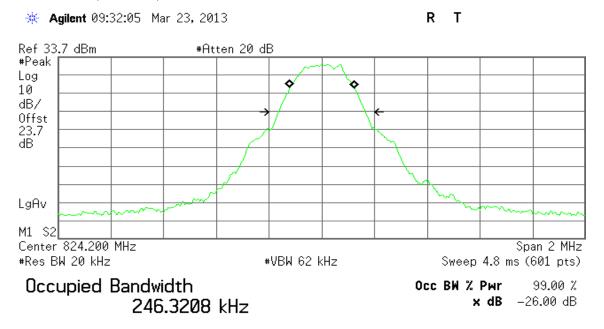
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

TEST RESULTS

No non-compliance noted.

Test Mode	СН	Frequency (MHz)	99% Bandwidth (kHz)
	128	824.200	246.3208
GPRS 850 (Class 12)	190	836.400	248.2368
	251	848.800	245.8998
	128	824.200	248.2761
EDGE 850 (Class 12)	190	836.570	248.8313
	251	848.800	247.1795
	512	1850.210	243.2782
GPRS 1900 (Class 12)	661	1880.000	246.3155
	810	1909.823	245.1765
	512	1850.173	243.6382
EDGE 1900 (Class 12)	661	1880.000	247.9991
	810	1909.800	247.2545

Test Data

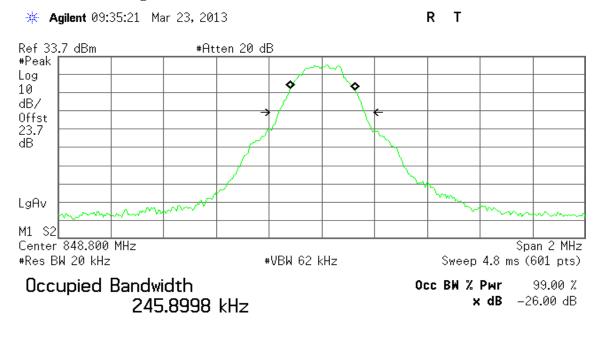

Test Mode	СН	Frequency (MHz)	99% Bandwidth (MHz)
	9262	1852.40	4.1896
WCDMA (Band II)	9400	1880.00	4.2000
	9538	1907.60	4.2012
	4132	826.40	4.2005
WCDMA (Band V)	4182	836.40	4.1824
(4233	846.60	4.2163

Compliance Certification Services Inc.FCC ID: RI7UE910NAIC: 5131A-UE910NA

Test Plot

GPRS 850 (CH Low)

Transmit Freq Error	1.028 kHz
x dB Bandwidth	330.472 kHz


GPRS 850 (CH Mid)

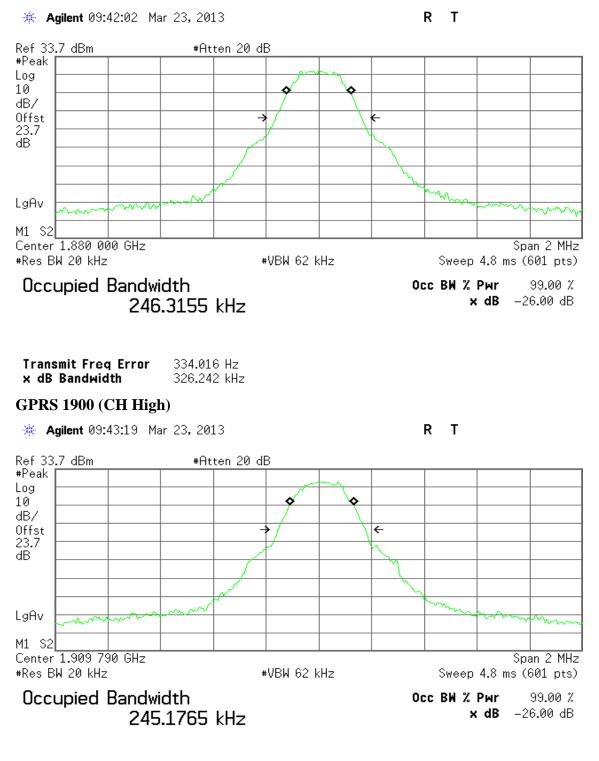
🔆 Agilent 09:34:22 Mar 23, 2013 R T Ref 33.7 dBm #Atten 20 dB #Peak Log ه Ô 10 dB/ Offst 23.7 dB LgAv M1 S2 Center 836.600 MHz Span 2 MHz #Res BW 20 kHz ₩VBW 62 kHz Sweep 4.8 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -26.00 dB 248.2368 kHz

Transmit Freq Error1.020 kHzx dB Bandwidth329.144 kHz

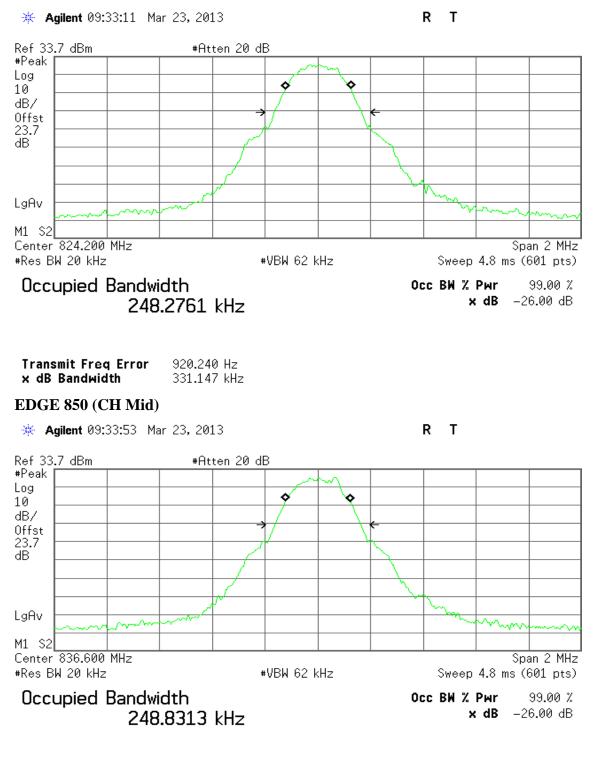


GPRS 850(CH High)

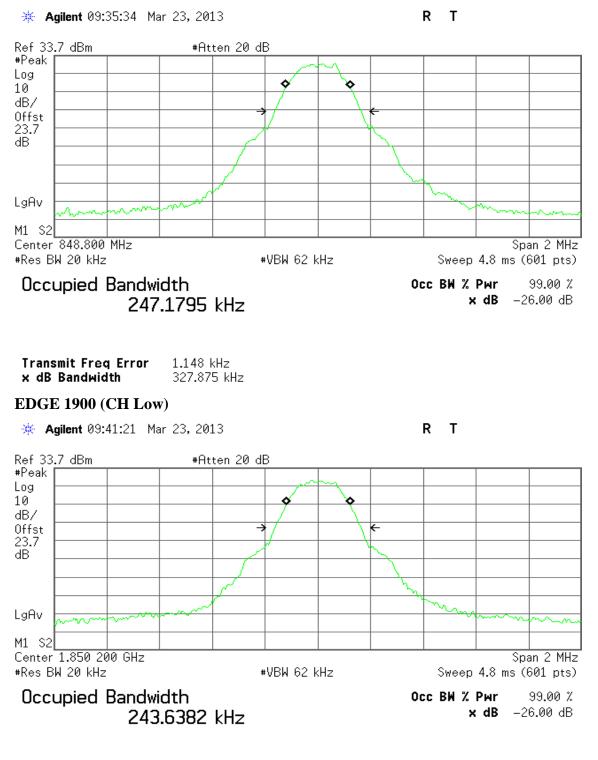
Transmit Freq Error	2.271 kHz
x dB Bandwidth	326.548 kHz


GPRS 1900 (CH Low)

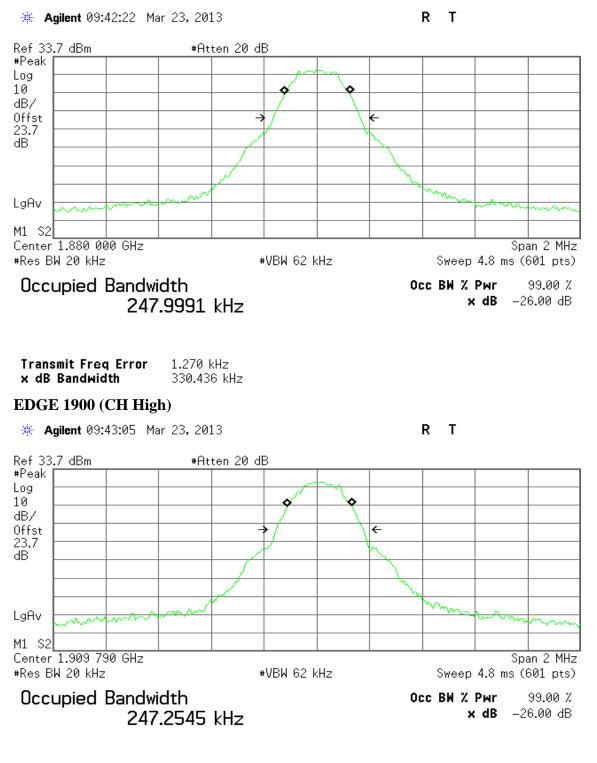
Transmit Freq Error	1.604 kHz
x dB Bandwidth	327.069 kHz

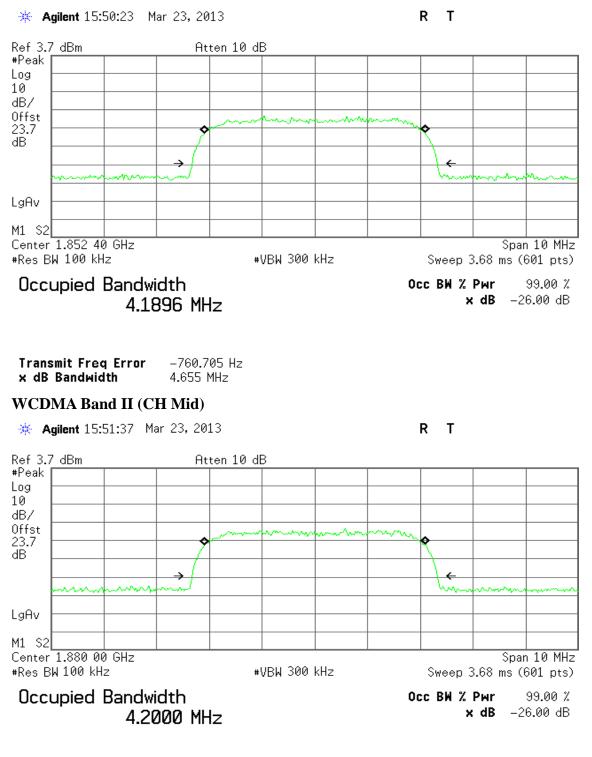

GPRS 1900 (CH Mid)

Transmit Freq Error	11.025 kHz
x dB Bandwidth	330.658 kHz

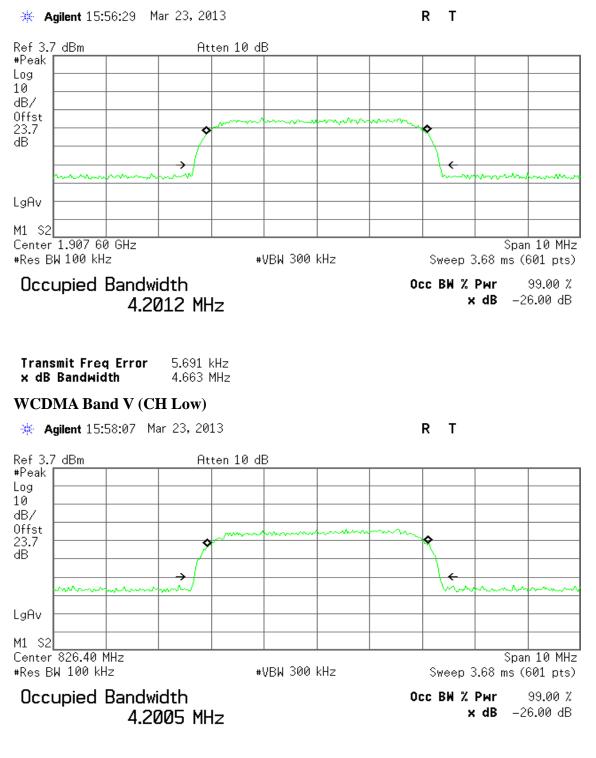

EDGE 850 (CH Low)

Transmit Freq Error	373.783 Hz
x dB Bandwidth	325.633 kHz

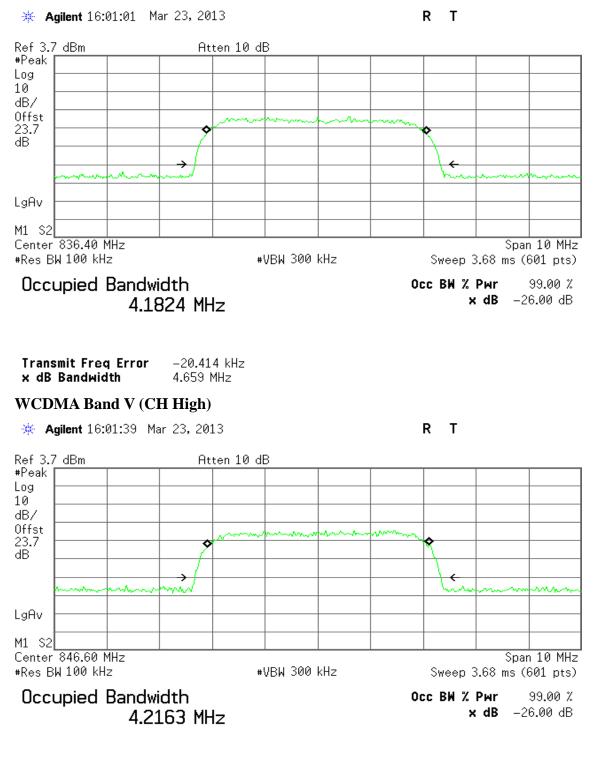

EDGE 850 (CH High)



EDGE 1900 (CH Mid)


WCDMA Band II (CH Low)

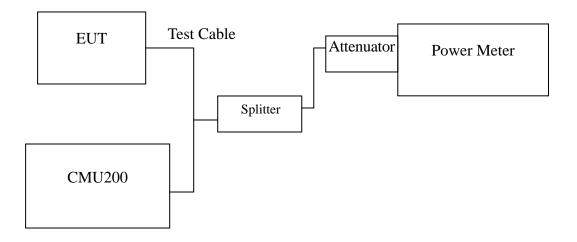
Transmit Freq Error 1.571 kHz x dB Bandwidth 4.659 MHz


WCDMA Band II (CH High)

Transmit Freq Error 22.845 kHz x dB Bandwidth 4.667 MHz

WCDMA Band V (CH Mid)

Transmit Freq Error 8.782 kHz x dB Bandwidth 4.678 MHz



7.2PEAK POWER

LIMIT

According to FCC §2.1046.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

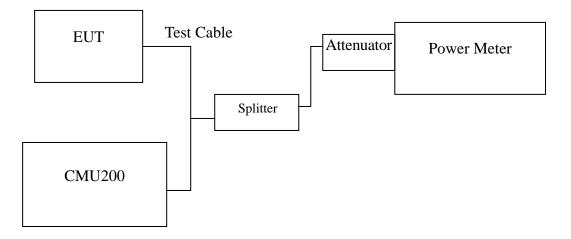
<u>Test Data</u>

Test Mode	СН	CH Frequency Peak Power (MHz) (dBm)		Output Power W
128		824.20	32.70	1.86209
GPRS 850	S 850 190 836.60		32.70	1.86209
	251	848.80	32.80	1.90546
	128 824.20		29.30	0.85114
EDGE 850	DGE 850 190 836.60		29.30	0.85114
	251	848.80	29.10	0.81283

Test Mode	СН	Frequency (MHz)	Peak Power (dBm)	Output Power W	
	512	1850.20	29.30	0.85114	
GPRS 1900	PRS 1900 661 1880.00		29.20	0.83176	
	810	1909.80	29.20	0.83176	
512 18		1850.20	27.70	0.58884	
EDGE 1900	DGE 1900 661 1880.00		27.80	0.60256	
	810	1909.80	27.90	0.61660	

Test Mode	СН	FrequencyPeak Power(MHz)(dBm)		Output Power W	
	9262	1852.40	26.71	0.46881	
(BAND II)	<u> </u>		26.49	0.44566	
	9538	1907.60	26.58	0.45499	
	4132	826.40	27.77	0.59841	
WCDMA (BAND V)	4182	836.40	28.20	0.66069	
	4233	846.60	28.19	0.65917	

Remark: The value of factor includes both the loss of cable and external attenuator



7.1AVERAGE POWER

LIMIT

For reporting purposes only.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

<u>Test Data</u>

Test Mode	СН	CH Frequency AVG Power (MHz) (dBm)		Output Power W
128		824.20	29.69	0.93104
GPRS 850	S 850 190 836.60		29.69	0.93104
	251	848.80	29.79	0.95273
	128 824.20		26.29	0.42557
EDGE 850	DGE 850 190 836.60		26.29	0.42557
	251	848.80	26.09	0.40642

Test Mode	СН	CH Frequency AVG Power (MHz) (dBm)		Output Power W	
	512	1850.20	23.28	0.21278	
GPRS 1900	PRS 1900 661 1880.00		23.18	0.20794	
	810	1909.80	23.18	0.20794	
512 185		1850.20	21.68	0.14721	
EDGE 1900	DGE 1900 661 1880.00		21.78	0.15064	
	810	1909.80	21.88	0.15415	

Test Mode	СН	CH Frequency AVG Power (MHz) (dBm)		Output Power W
	9262	1852.40	23.70	0.23442
(BAND II)	9/00 1880.00		23.66	0.23227
	9538	1907.60	23.68	0.23335
	4132	826.40	24.40	0.27542
WCDMA (BAND V)	4182	836.40	24.47	0.27990
	4233	846.60	24.45	0.27861

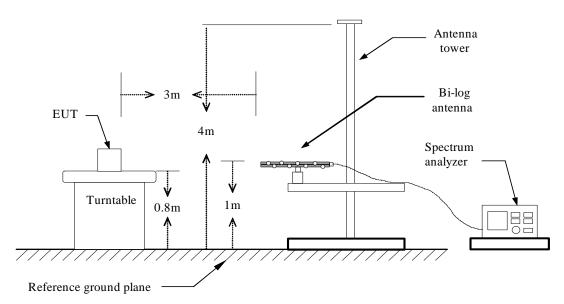
Remark: The value of factor includes both the loss of cable and external attenuator

7.2ERP & EIRP MEASUREMENT

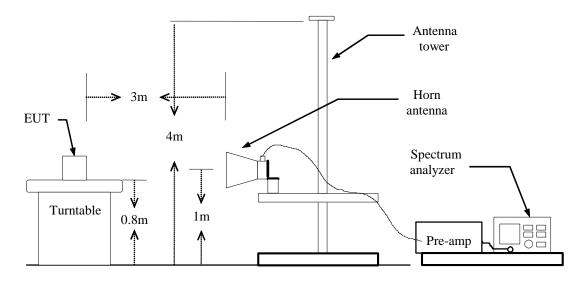
LIMIT

According to FCC §2.1046

FCC 22.913(b): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7 Watts.

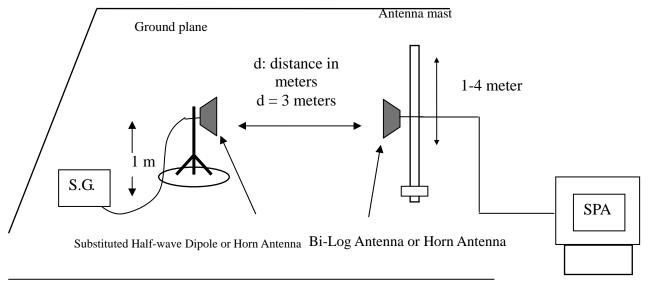

RSS-132 § 4.4 The maximum (ERP) shall be 6.3 Watts for mobile stations.

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.


RSS133 § 6.4: Mobile stations and hand-held portables are limited to 2 watts maximum (EIRP).

Test Configuration

Below 1 GHz



Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)-2.15 EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

No non-compliance noted.

GPRS 850 TEST DATA

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
128	824.20	V	16.68	3.39	6.24	19.53	38.45	-18.92
120	824.20	Н	18.07	3.39	6.24	20.92	38.45	-17.53
190	836.60	V	17.82	3.4	6.36	20.78	38.45	-17.67
190	836.60	Н	17.94	3.4	6.36	20.90	38.45	-17.55
251	848.80	V	17.89	3.4	6.4	20.89	38.45	-17.56
231	848.80	Н	18	3.4	6.4	*21.00	38.45	-17.45

GPRS 1900 TEST DATA

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
512	1850.20	V	21.41	5.37	5.67	21.71	33.00	-11.29
512	1850.20	Н	24.64	5.37	5.67	24.94	33.00	-8.06
661	1880.00	V	20.92	5.42	5.62	21.12	33.00	-11.88
001	1880.00	Н	26.21	5.42	5.62	26.41	33.00	-6.59
810	1909.80	V	23.44	5.48	5.56	23.52	33.00	-9.48
810	1909.80	Н	26.49	5.48	5.56	*26.57	33.00	-6.43

EDGE 850 Test Data

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
128	824.20	V	16.64	3.39	6.24	19.49	38.45	-18.96
120	824.20	Н	18.07	3.39	6.24	20.92	38.45	-17.53
100	836.60	V	17.64	3.4	6.37	20.61	38.45	-17.84
190	836.60	Н	17.92	3.4	6.36	20.88	38.45	-17.57
251	848.80	V	17.89	3.4	6.4	20.89	38.45	-17.56
231	848.80	Н	17.99	3.4	6.4	*20.99	38.45	-17.46

EDGE 1900 Test Data

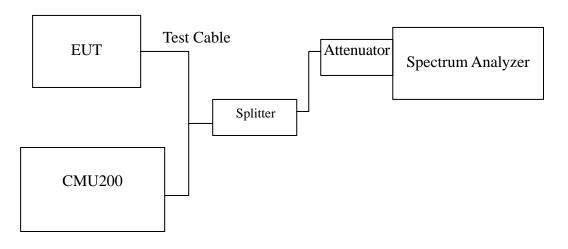
Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
512	1850.20	V	21.43	5.37	5.67	21.73	33.00	-11.27
512	1850.20	Н	24.65	5.37	5.67	24.95	33.00	-8.05
661	1880.00	V	21.41	5.42	5.62	21.61	33.00	-11.39
001	1880.00	Н	26.17	5.42	5.62	26.37	33.00	-6.63
910	1909.80	V	23.43	5.48	5.56	23.51	33.00	-9.49
810	1909.80	Н	26.51	5.48	5.56	*26.59	33.00	-6.41

WCDMA Test Data (BAND II)

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
9262	1852.40	V	15.21	5.37	5.67	15.51	33.00	-17.49
9202	1852.40	Н	13.93	5.37	5.67	14.23	33.00	-18.77
0.400	1880.00	V	12.23	5.42	5.61	12.42	33.00	-20.58
9400	1880.00	Н	13.36	5.42	5.61	13.55	33.00	-19.45
0529	1907.60	V	15.64	5.47	5.57	15.74	33.00	-17.26
9538	1907.60	Н	14.38	5.47	5.57	*14.48	33.00	-18.52

WCDMA Test Data (BAND V)

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
4132	826.40	V	16.51	3.39	6.27	19.39	38.45	-19.06
4132	826.40	Н	17.73	3.39	6.27	*20.61	38.45	-17.84
4182	836.40	V	15.41	3.4	6.35	18.36	38.45	-20.09
4162	836.40	Н	17.3	3.4	6.35	20.25	38.45	-18.20
4233	846.60	V	14.72	3.4	6.4	17.72	38.45	-20.73
4233	846.60	Н	16.1	3.4	6.4	19.10	38.45	-19.35



7.3OCCUPIED BANDWIDTH MEASUREMENT

LIMIT

According to §FCC 2.1049.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

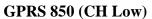
The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

No non-compliance noted

<u>Test Data</u>

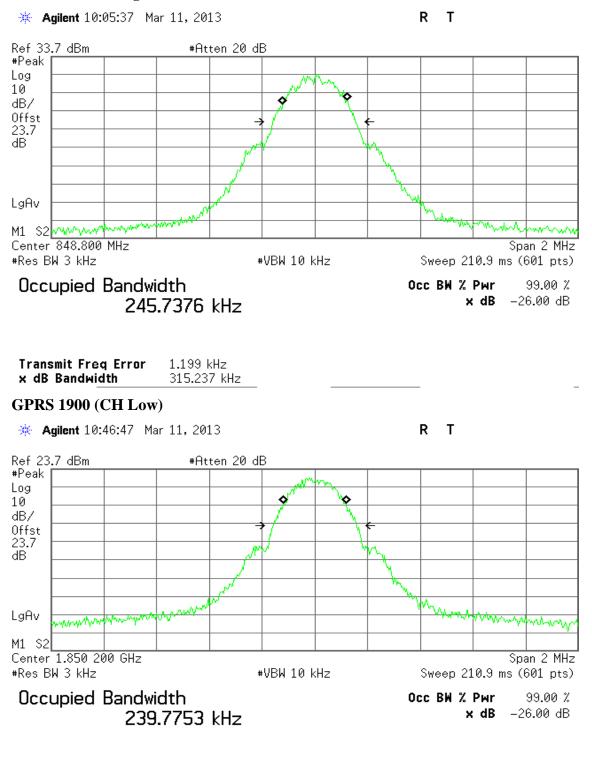
Test Mode	СН	Frequency (MHz)	99% Bandwidth (kHz)
	128	824.20	246.9473
GPRS 850	190	836.60	242.2995
	251	848.80	245.7376
	128	824.20	243.8002
EDGE 850	190	836.60	247.2487
	251	848.80	246.0641


Test Mode	СН	Frequency (MHz)	99% Bandwidth (kHz)
	512	1850.20	239.7753
GPRS 1900	661	1880.00	243.4224
	810	1909.80	242.1958
	512	1850.20	242.7806
EDGE 1900	661	1880.00	241.6970
	810	1909.80	247.6306

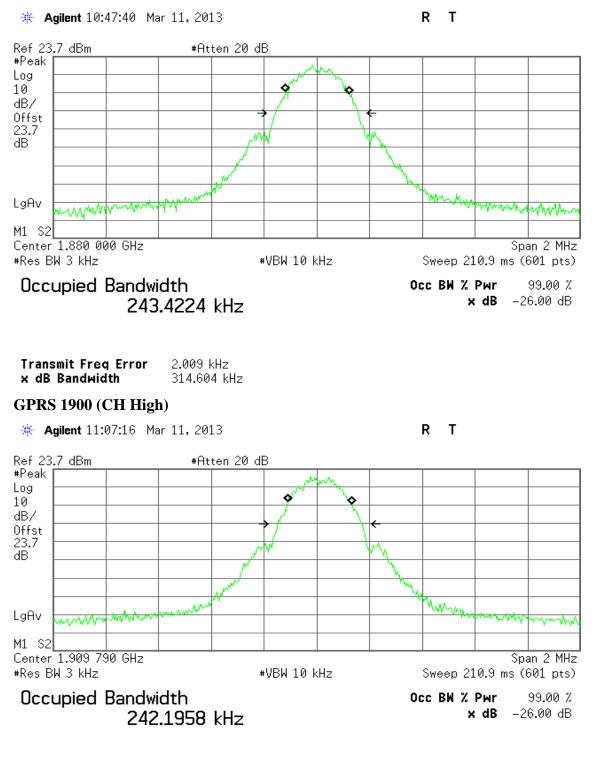
Test Mode	СН	Frequency (MHz)	99% Bandwidth (MHz)
	9262	1852.40	4.1806
WCDMA (Band II)	9400	1880.00	4.2129
~ /	9538	1907.60	4.1872
	4132	826.40	4.1836
WCDMA (Band V)	4182	836.40	4.1909
	4233	846.60	4.2086

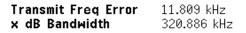
Compliance Certification Services Inc.FCC ID: RI7UE910NAIC: 5131A-UE910NA

Test Plot

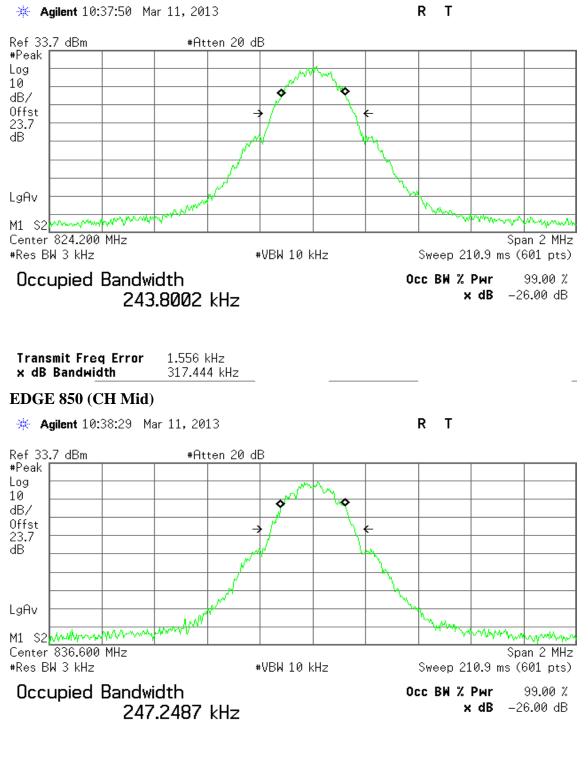


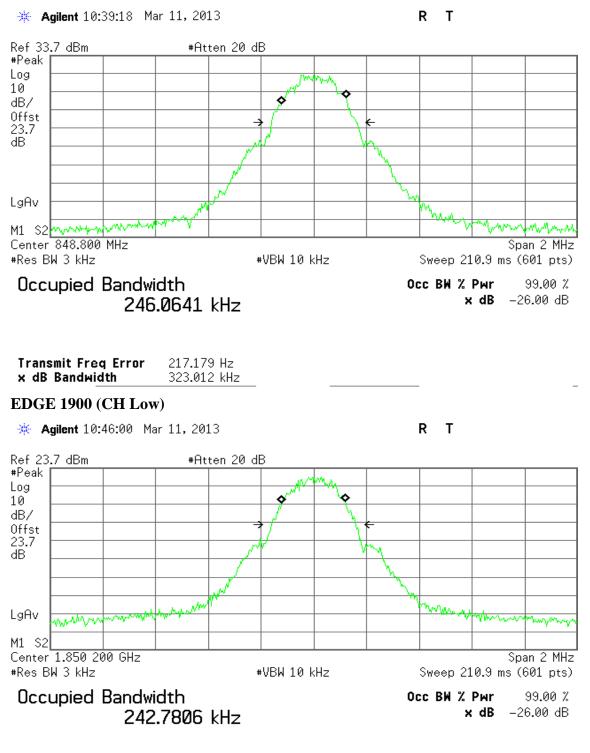
Transmit Freq Error1.211 kHzx dB Bandwidth313.981 kHz


GPRS 850(CH High)

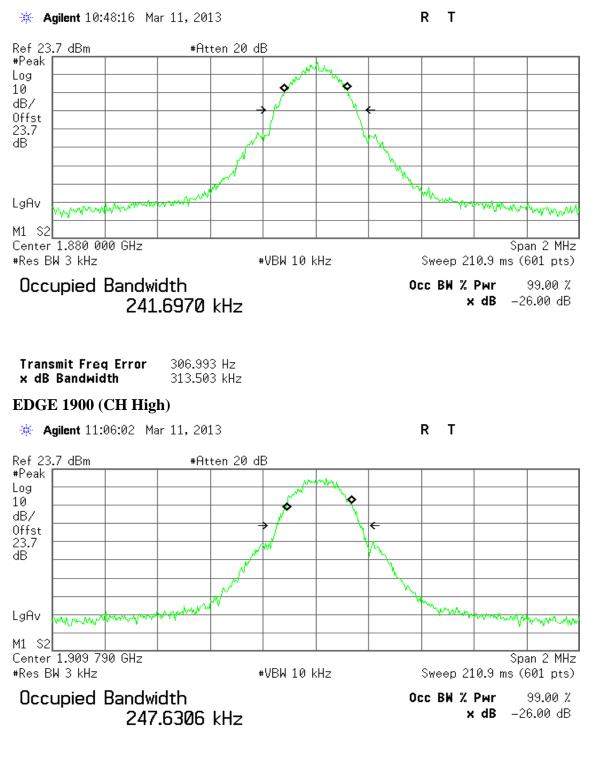


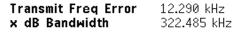
Transmit Freq Error	–230.076 Hz
x dB Bandwidth	316.490 kHz


GPRS 1900 (CH Mid)

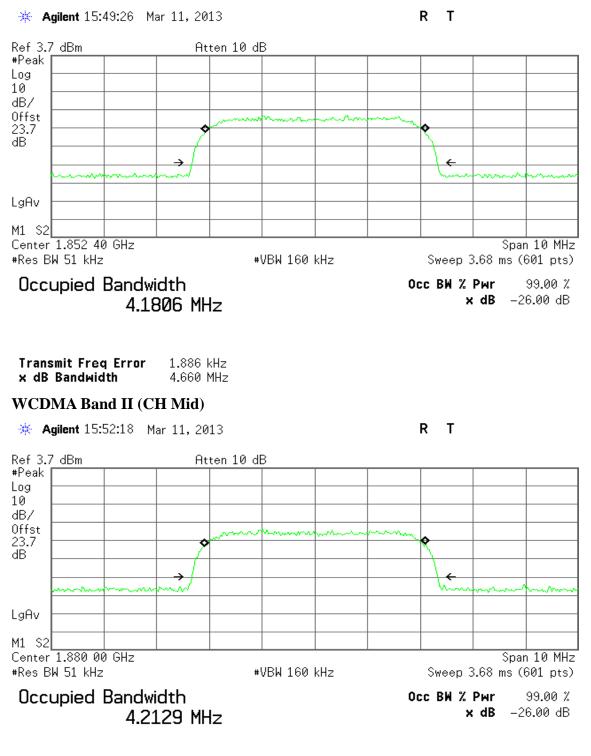


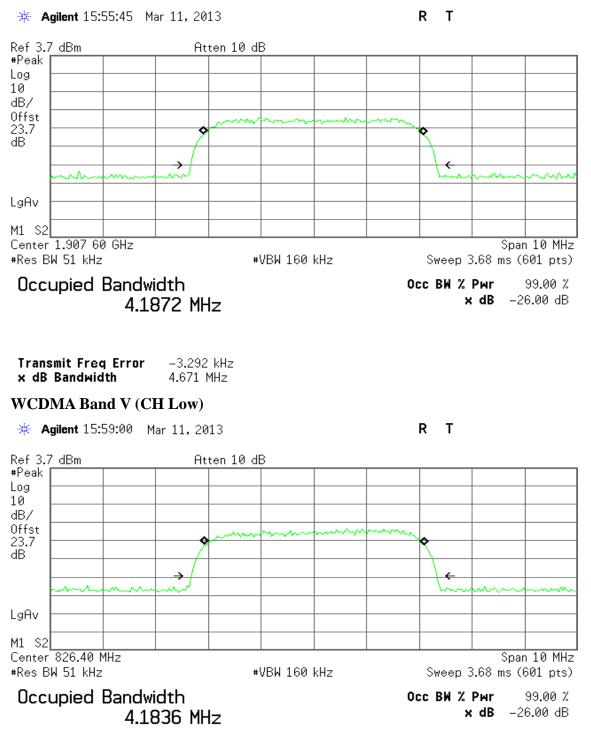
EDGE 850 (CH Low)


EDGE 850 (CH High)

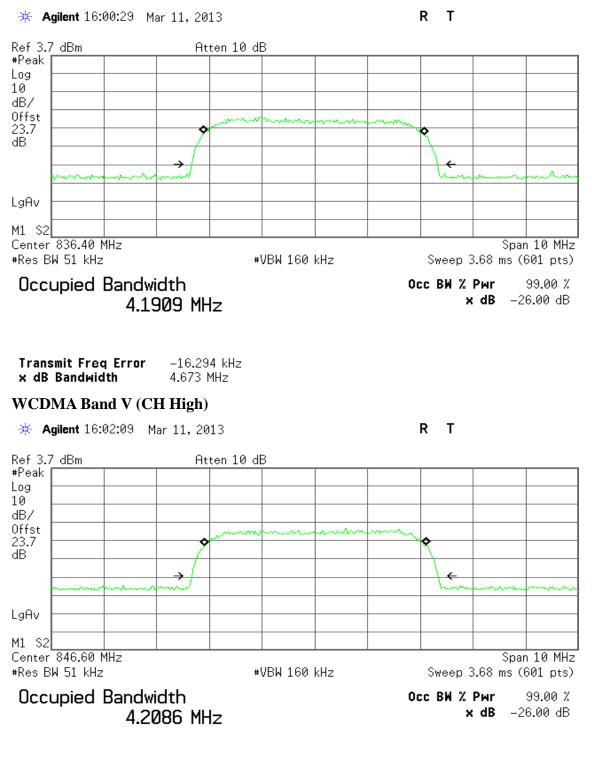


Transmit Freq Error	-662.881 Hz
x dB Bandwidth	320.491 kHz


EDGE 1900 (CH Mid)


WCDMA Band II (CH Low)

Transmit Freq Error 938.165 Hz x dB Bandwidth 4.677 MHz


WCDMA Band II (CH High)

Transmit Freq Error 14.986 kHz x dB Bandwidth 4.663 MHz

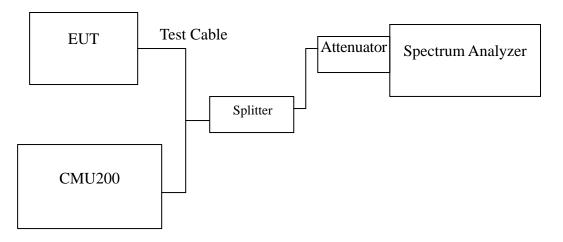
WCDMA Band V (CH Mid)

Transmit Freq Error8.271 kHzx dB Bandwidth4.678 MHz

7.40UT OF BAND EMISSION AT ANTENNA TERMINALS

LIMIT

According to FCC §2.1051, FCC §22.917, FCC §24.238(a). RSS-132 (4.5.2), RSS-133 (6.6).


<u>Out of Band Emissions</u>: The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease $43 + 10 \log P dB$.

Mobile Emissions in Base Frequency Range: The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission

Test Configuration

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz /1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

TEST RESULTS

No non-compliance noted.

Mode	СН	Location	Description
	128	Figure 7-1	Conducted spurious emissions, 30MHz - 20GHz
GPRS 850	190	Figure 7-2	Conducted spurious emissions, 30MHz - 20GHz
	251	Figure 7-3	Conducted spurious emissions, 30MHz - 20GHz

Mode	СН	Location	Description
	512	Figure 8-1	Conducted spurious emissions, 30MHz - 20GHz
GPRS 1900	661	Figure 8-2	Conducted spurious emissions, 30MHz - 20GHz
	810	Figure 8-3	Conducted spurious emissions, 30MHz - 20GHz

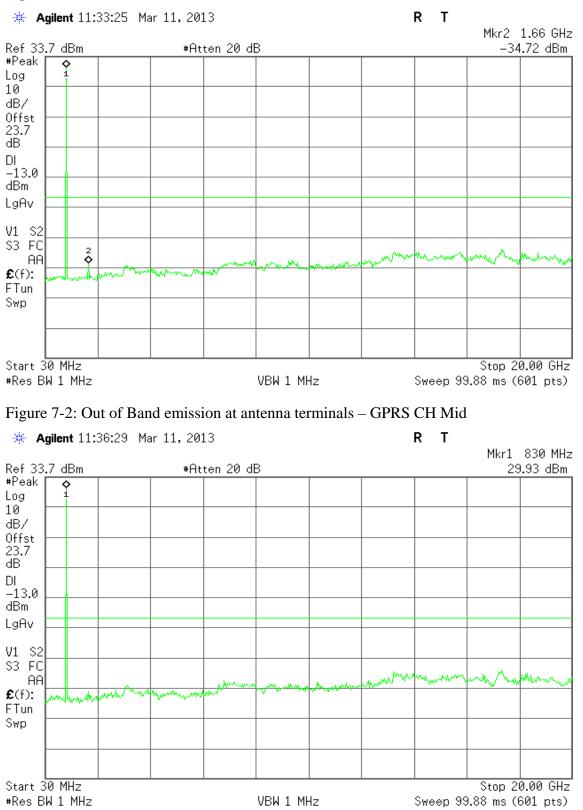
Mode	СН	Location	Description
CDDS 850	128	Figure 9-1	Band Edge emissions
GPRS 850	251	Figure 9-2	Band Edge emissions

Mode	СН	Location	Description
GPRS 1900	512	Figure 10-1	Band Edge emissions
GPK5 1900	810	Figure 10-2	Band Edge emissions

Mode	СН	Location	Description		
	128	Figure 11-1	Conducted spurious emissions, 30MHz - 20GHz		
EDGE 850	190	Figure 11-2	Conducted spurious emissions, 30MHz - 20GHz		
	251	Figure 11-3	Conducted spurious emissions, 30MHz - 20GHz		
	512	Figure 12-1	Conducted spurious emissions, 30MHz - 20GHz		
EDGE 1900	661	Figure 12-2	Conducted spurious emissions, 30MHz - 20GHz		
	810	Figure 12-3	Conducted spurious emissions, 30MHz - 20GHz		

Mode	СН	Location Description			
EDGE 850	128	Figure 13-1	Band Edge emissions		
EDGE 850	251	Figure 13-2	Band Edge emissions		
EDCE 1000	512	Figure 14-1	Band Edge emissions		
EDGE 1900	810	Figure 14-2	Band Edge emissions		

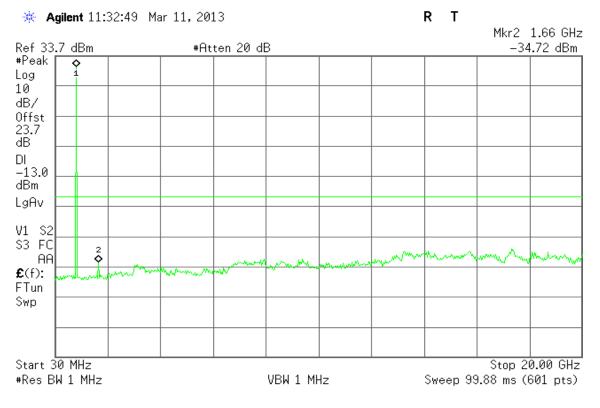
Mode	СН	Location	Description		
	9262	Figure 15-1	Conducted spurious emissions, 30MHz - 20GHz		
WCDMA (Band II)	9400	Figure 15-2	Conducted spurious emissions, 30MHz - 20GHz		
(2 4114 11)	9538	Figure 15-3	Conducted spurious emissions, 30MHz - 20GHz		
	4132	Figure 16-1	Conducted spurious emissions, 30MHz - 20GHz		
WCDMA (Band V)	4182	Figure 16-2	Conducted spurious emissions, 30MHz - 20GHz		
	4233	Figure 16-3	Conducted spurious emissions, 30MHz - 20GHz		


Mode	СН	Location	Description
WCDMA	9262	Figure 17-1	Band Edge emissions
(Band II)	9538	Figure 17-2	Band Edge emissions
WCDMA	4132	Figure 18-1	Band Edge emissions
(Band V)	4233	Figure 18-2	Band Edge emissions

Test Plot

<u>GPRS 850</u>

Figure 7-1: Out of Band emission at antenna terminals – GPRS CH Low



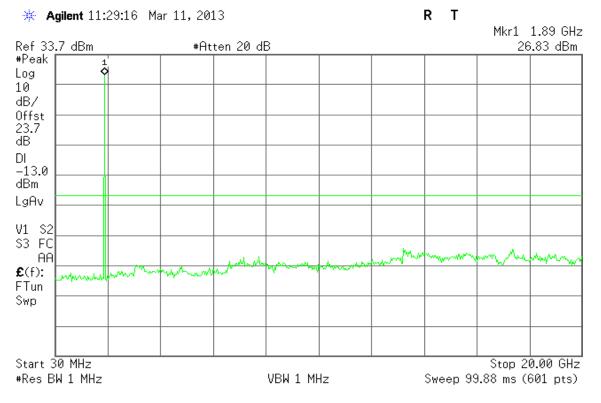
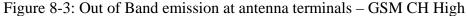

🔆 А	gilent	11:	38:02 Ma	ar 11, 201	13				RΤ		
	-					_					1.69 GHz
Ref 33	./ dE	5m		#Ht	ten 20 di	3				-35	5.93 dBm
ŧPeak	Ιĭ										
og	ΙŤ										
10	\vdash										
dB/											
)ffst											
23.7											
dB											
DI											
-13.0		2 \$		1				a Photo			
dBm		<u> </u>	and man and the second	hand marked	the state of the s			and the second second		and the	and the second
_gAv											
-9110											
V1 S2											
Start 3		17								Stop 2	0.00 GHz
≢Res B						VBW 1 MH	47		Sween 9	9.88 ms (
Mark		Tra		уре		Axis	12	Amplit		0.00 1113 (001 p(3)
1	ei	(1)		Freq		0 MHz		30.21			
2		(1)		Freq		59 GHz		-35.93			

Figure 7-3: Out of Band emission at antenna terminals – GPRS CH High


GPRS 1900

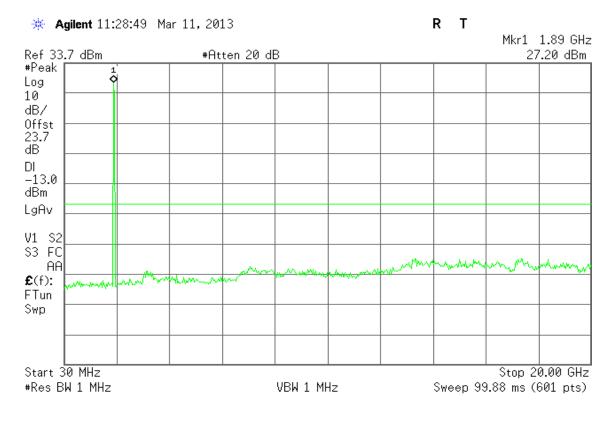
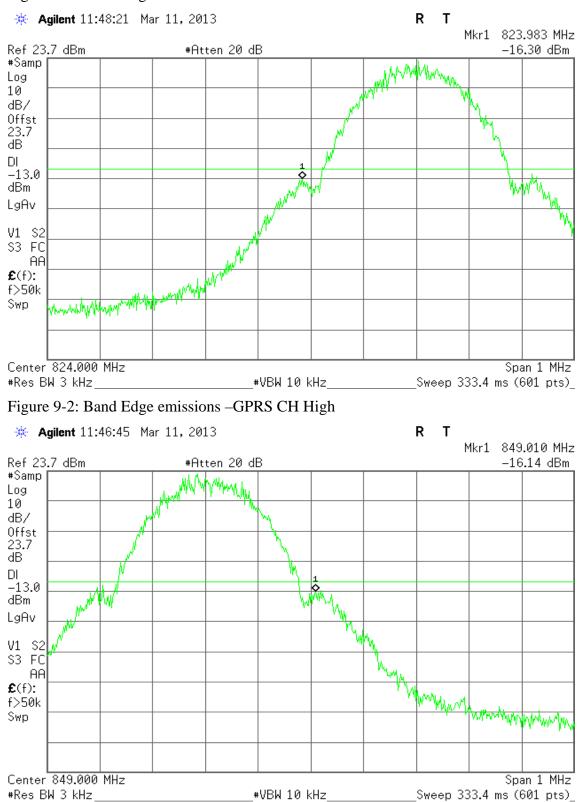
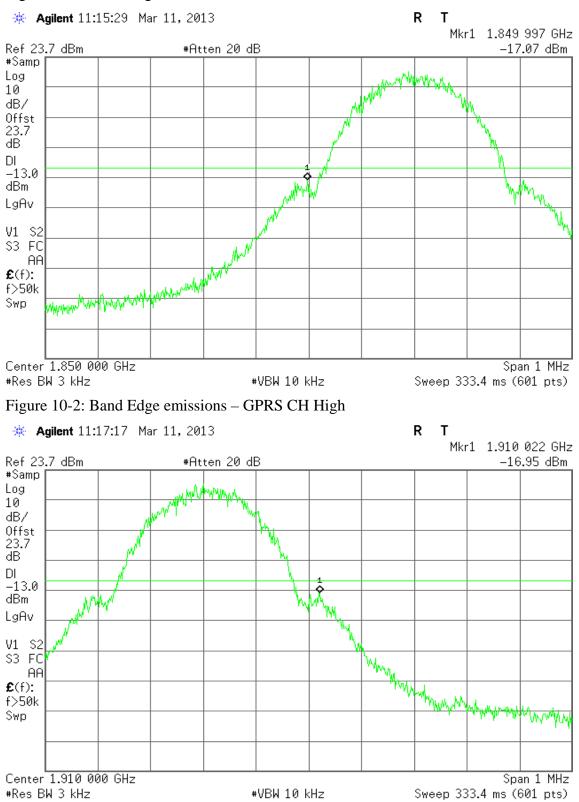

Figure 8-1: Out of Band emission at antenna terminals – GSM CH Low

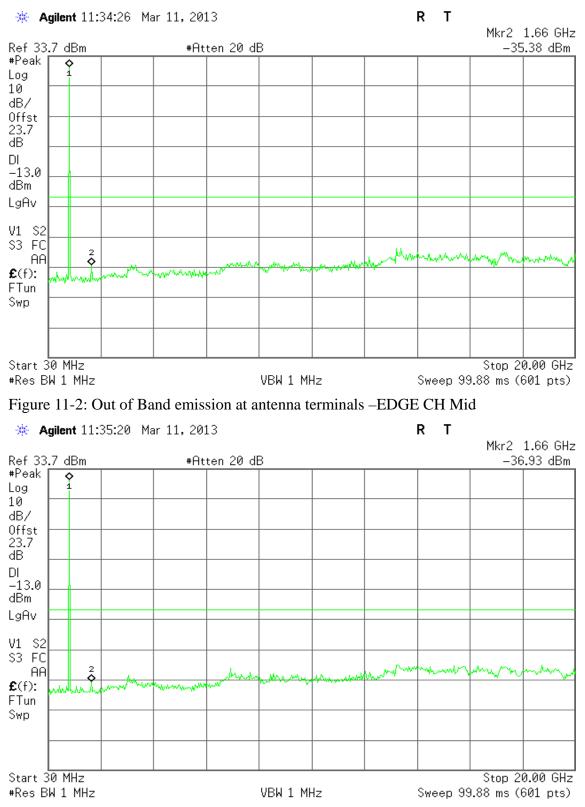
Figure 8-2: Out of Band emission at antenna terminals – GSM CH Mid



GPRS 850


Figure 9-1: Band Edge emissions – GPRS CH Low

GPRS 1900


Figure 10-1: Band Edge emissions – GPRS CH Low

EDGE 850

Figure 11-1: Out of Band emission at antenna terminals -EDGE CH Low

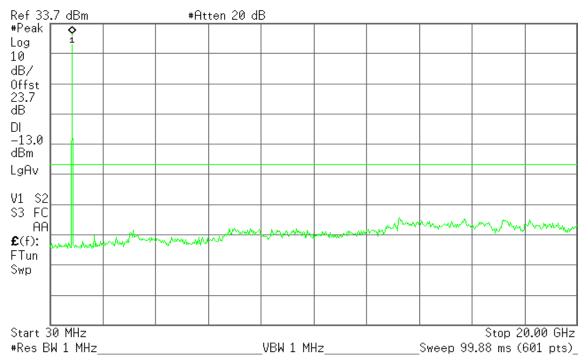
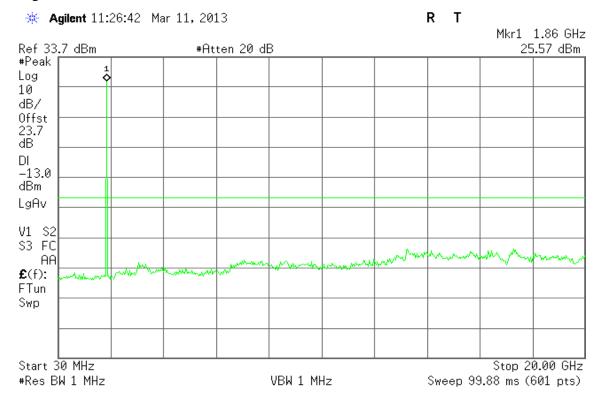
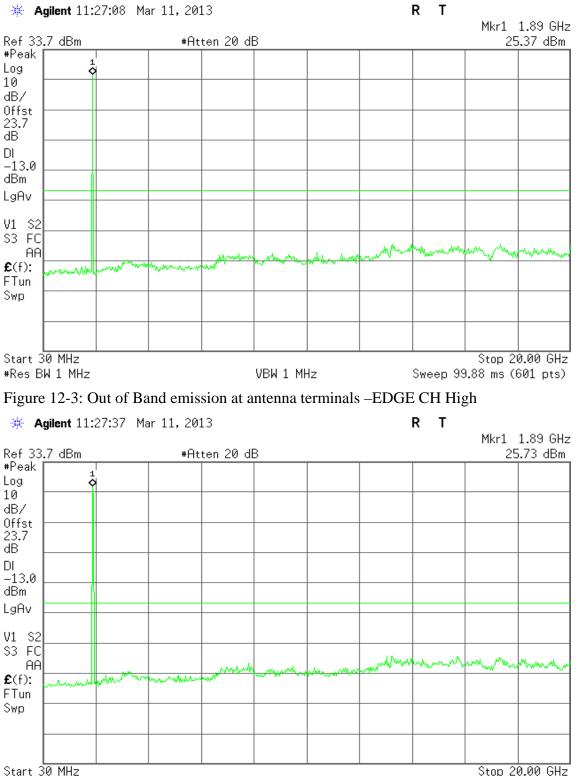


Figure 11-3: Out of Band emission at antenna terminals –EDGE CH High


🔆 Agilent 11:39:50 Mar 11, 2013

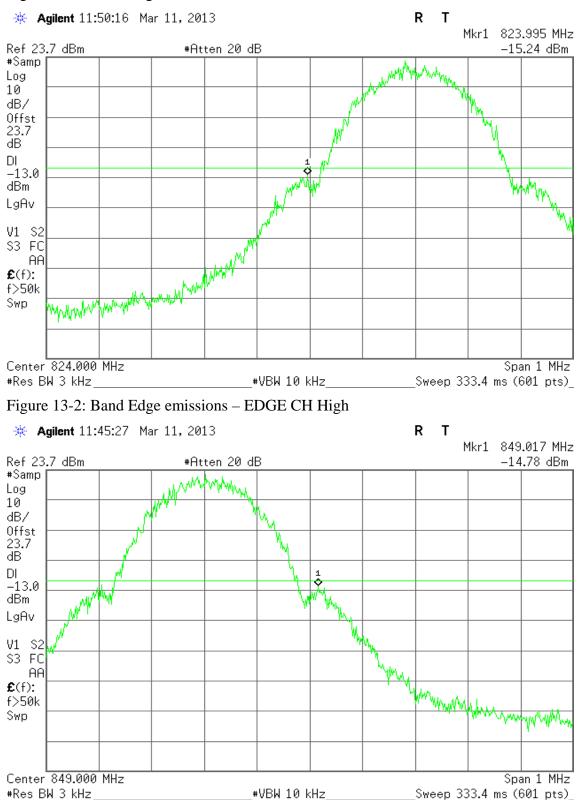
RΤ



EDGE 1900

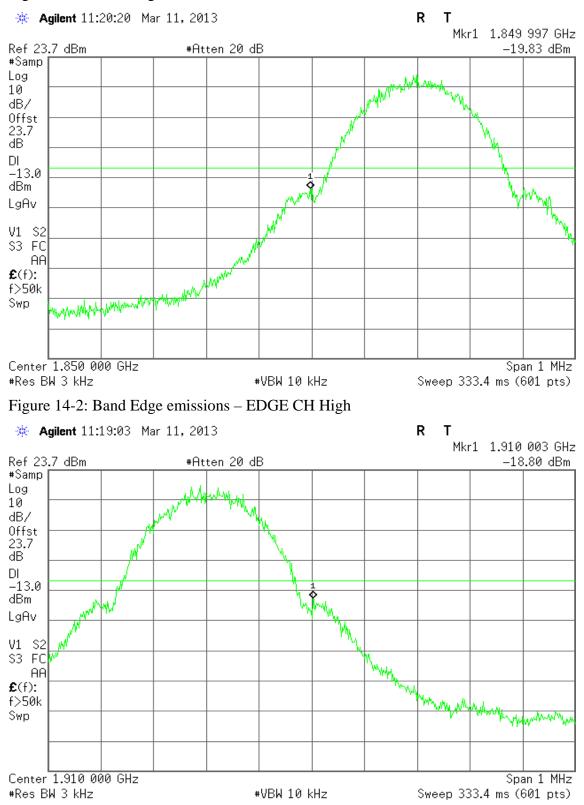
Figure 12-1: Out of Band emission at antenna terminals –EDGE CH Low

Figure 12-2: Out of Band emission at antenna terminals -EDGE CH Mid

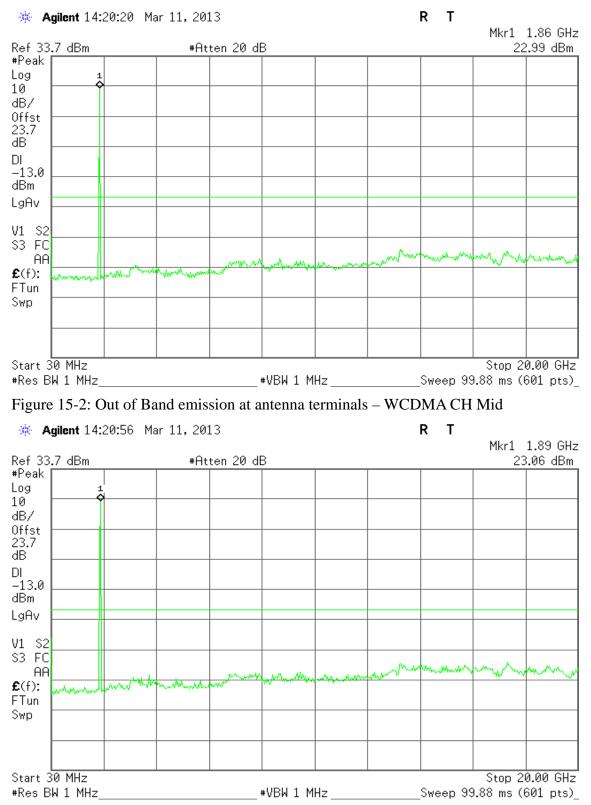


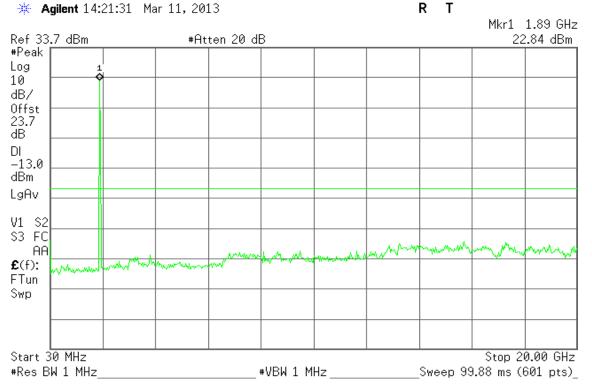
Stop 20.00 GHz Sweep 99.88 ms (601 pts)

EDGE 850


Figure 13-1: Band Edge emissions - EDGE CH Low

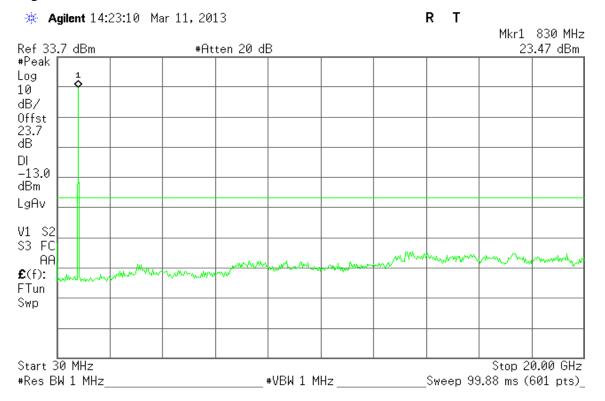
EDGE 1900


Figure 14-1: Band Edge emissions - EDGE CH Low



WCDMA Band II

Figure 15-1: Out of Band emission at antenna terminals - WCDMA CH Low



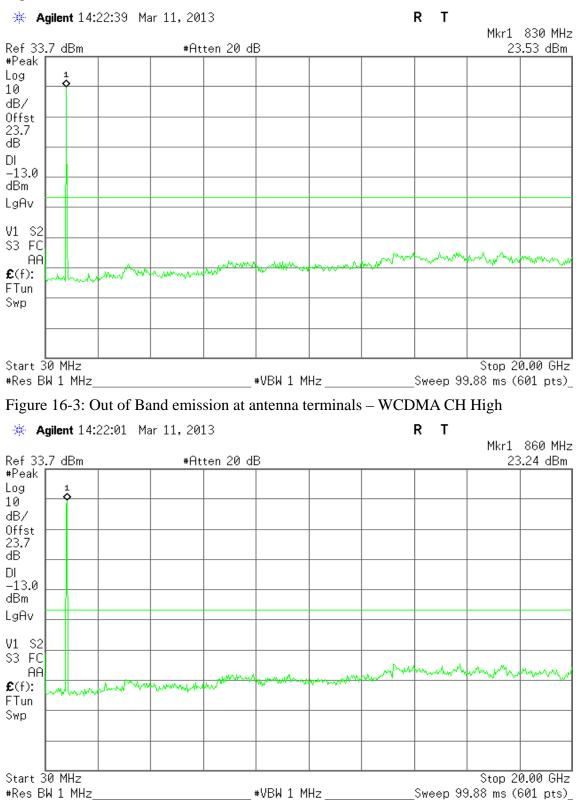


Figure 15-3: Out of Band emission at antenna terminals - WCDMA CH High

WCDMA Band V

Figure 16-1: Out of Band emission at antenna terminals - WCDMA CH Low

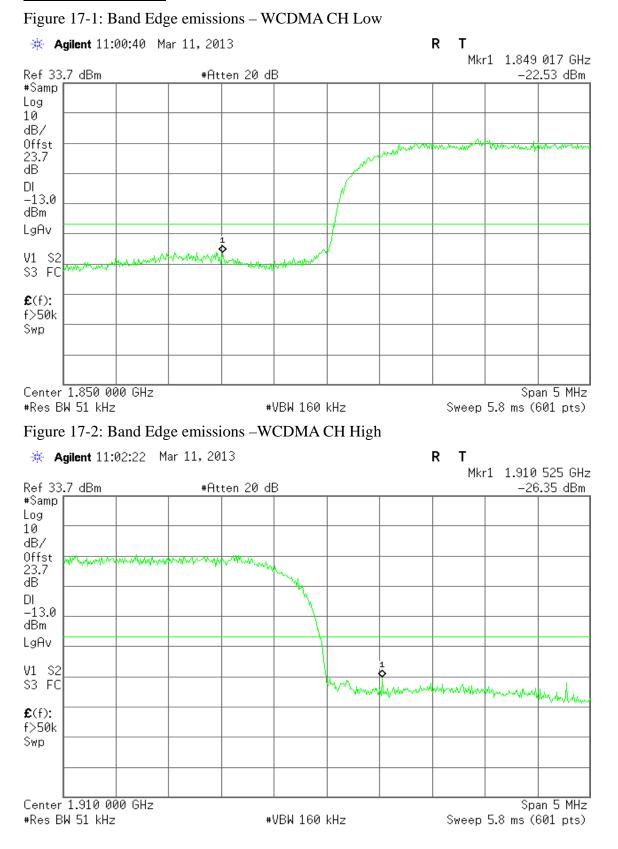
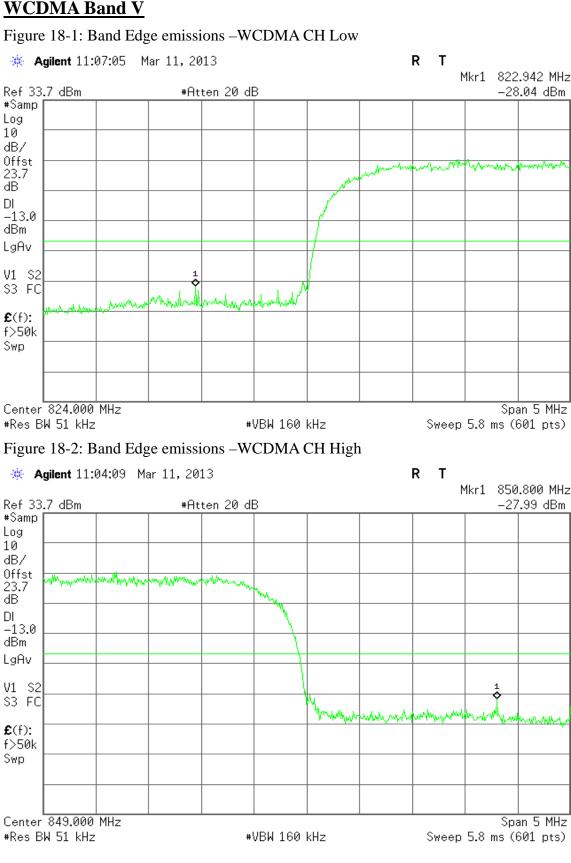
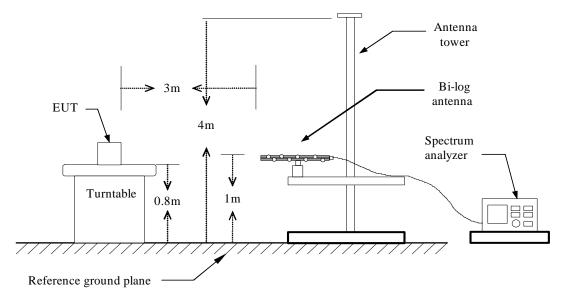


Figure 16-2: Out of Band emission at antenna terminals - WCDMA CH Mid

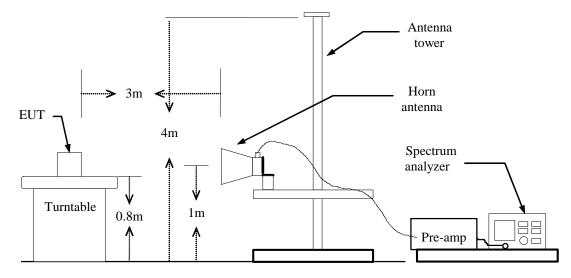


WCDMA Band II

WCDMA Band V

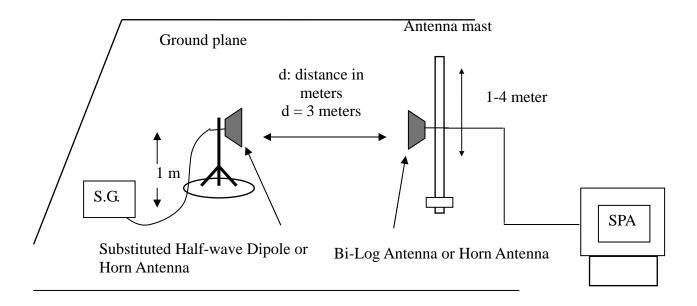

7.5FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

LIMIT


According to FCC §2.1053, RSS-132 (4.6) & RSS-133 (6.5).

Test Configuration

Below 1 GHz



Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Radiated Spurious Emission Measurement Result / Below 1GHz

Operation Mode:	: GPRS 850 / TX / CH 128	Test Date:	March 12, 2013
Temperature:	25°C	Tested by:	David Shu
Humidity:	55 % RH	Polarity:	Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
95.9600	-62.83	1.13	0.26	-63.70	-13.00	-50.70	V
126.0300	-68.29	1.32	-1.69	-71.30	-13.00	-58.30	V
226.9100	-80.36	1.79	5.37	-76.78	-13.00	-63.78	V
354.9500	-79.89	2.25	5.75	-76.39	-13.00	-63.39	V
439.3400	-79.92	2.53	5.9	-76.55	-13.00	-63.55	V
617.8200	-80.43	2.94	6.14	-77.23	-13.00	-64.23	V
60.0700	-53.96	0.88	-2.19	-57.03	-13.00	-44.03	Н
111.4800	-56.17	1.22	-1.76	-59.15	-13.00	-46.15	Н
204.6000	-70.52	1.65	4.2	-67.97	-13.00	-54.97	Н
346.2200	-70.86	2.21	5.8	-67.27	-13.00	-54.27	Н
472.3200	-73.03	2.62	5.72	-69.93	-13.00	-56.93	Н
529.5500	-75.64	2.75	6	-72.39	-13.00	-59.39	Н

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: GPRS 850 / TX / CH 190

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
95.9600	-61.33	1.13	0.26	-62.20	-13.00	-49.20	V
183.2600	-75.17	1.61	3.73	-73.05	-13.00	-60.05	V
346.2200	-79.27	2.21	5.8	-75.68	-13.00	-62.68	V
450.9800	-79.04	2.59	5.74	-75.89	-13.00	-62.89	V
529.5500	-81.48	2.75	6	-78.23	-13.00	-65.23	V
612.9700	-81.92	2.94	6.23	-78.63	-13.00	-65.63	V
60.0700	-53.59	0.88	-2.19	-56.66	-13.00	-43.66	Н
111.4800	-54.83	1.22	-1.76	-57.81	-13.00	-44.81	Н
216.2400	-72.79	1.74	5.36	-69.17	-13.00	-56.17	Н
345.2500	-71.04	2.2	5.8	-67.44	-13.00	-54.44	Н
402.4800	-71.31	2.41	5.97	-67.75	-13.00	-54.75	Н
516.9400	-73.74	2.7	6.07	-70.37	-13.00	-57.37	Н

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: GPRS 850 / TX / CH 251

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
95.9600	-60.43	1.13	0.26	-61.30	-13.00	-48.30	V
182.2900	-72.98	1.61	3.7	-70.89	-13.00	-57.89	V
203.6300	-75.33	1.65	3.94	-73.04	-13.00	-60.04	V
354.9500	-77.36	2.25	5.75	-73.86	-13.00	-60.86	V
448.0700	-78.55	2.58	5.74	-75.39	-13.00	-62.39	V
585.8100	-81.54	2.89	6.11	-78.32	-13.00	-65.32	V
60.0700	-49.53	0.88	-2.19	-52.60	-13.00	-39.60	Н
111.4800	-51.99	1.22	-1.76	-54.97	-13.00	-41.97	Н
161.9200	-63.8	1.5	1.61	-63.69	-13.00	-50.69	Н
390.8400	-68.3	2.32	6	-64.62	-13.00	-51.62	Н
516.9400	-70.44	2.7	6.07	-67.07	-13.00	-54.07	Н
584.8400	-74.14	2.89	6.1	-70.93	-13.00	-57.93	Н

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: GPRS 1900 / TX / CH 512

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
74.6200	-70.67	1	-1.11	-72.78	-13.00	-59.78	V
174.5300	-75.15	1.59	3	-73.74	-13.00	-60.74	V
224.9700	-80.41	1.78	5.36	-76.83	-13.00	-63.83	V
364.6500	-80.28	2.28	5.75	-76.81	-13.00	-63.81	V
441.2800	-79.22	2.54	5.87	-75.89	-13.00	-62.89	V
480.0800	-81.41	2.64	5.54	-78.51	-13.00	-65.51	V
102.7500	-68.13	1.16	-0.76	-70.05	-13.00	-57.05	Н
173.5600	-72.09	1.58	2.9	-70.77	-13.00	-57.77	Н
256.0100	-81.19	1.88	5.63	-77.44	-13.00	-64.44	Н
364.6500	-74.4	2.28	5.75	-70.93	-13.00	-57.93	Н
441.2800	-73.69	2.54	5.87	-70.36	-13.00	-57.36	Н
480.0800	-73.55	2.64	5.54	-70.65	-13.00	-57.65	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: GPRS 1900 / TX / CH 661

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
75.5900	-71.29	1.01	-0.94	-73.24	-13.00	-60.24	V
189.0800	-77.66	1.62	3.96	-75.32	-13.00	-62.32	V
336.5200	-78.18	2.17	5.76	-74.59	-13.00	-61.59	V
362.7100	-77.47	2.28	5.73	-74.02	-13.00	-61.02	V
441.2800	-80.14	2.54	5.87	-76.81	-13.00	-63.81	V
480.0800	-80.42	2.64	5.54	-77.52	-13.00	-64.52	V
75.5900	-70.28	1.01	-0.94	-72.23	-13.00	-59.23	Н
119.2400	-69.05	1.27	-2.07	-72.39	-13.00	-59.39	Н
172.5900	-73.1	1.58	2.8	-71.88	-13.00	-58.88	Н
364.6500	-74.79	2.28	5.75	-71.32	-13.00	-58.32	Н
441.2800	-74.1	2.54	5.87	-70.77	-13.00	-57.77	Н
480.0800	-74.81	2.64	5.54	-71.91	-13.00	-58.91	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: GPRS 1900 / TX / CH 810

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
75.5900	-72.26	1.01	-0.94	-74.21	-13.00	-61.21	V
183.2600	-77.41	1.61	3.73	-75.29	-13.00	-62.29	V
257.9500	-84.84	1.89	5.61	-81.12	-13.00	-68.12	V
364.6500	-81.98	2.28	5.75	-78.51	-13.00	-65.51	V
441.2800	-82.11	2.54	5.87	-78.78	-13.00	-65.78	V
480.0800	-82.46	2.64	5.54	-79.56	-13.00	-66.56	V
75.5900	-71.49	1.01	-0.94	-73.44	-13.00	-60.44	Н
121.1800	-67.19	1.28	-2	-70.47	-13.00	-57.47	Н
174.5300	-73.32	1.59	3	-71.91	-13.00	-58.91	Н
259.8900	-80.87	1.91	5.59	-77.19	-13.00	-64.19	Н
364.6500	-76.08	2.28	5.75	-72.61	-13.00	-59.61	Н
441.2800	-75.35	2.54	5.87	-72.02	-13.00	-59.02	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: EDGE 850 / TX / CH 128

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
95.9600	-62.35	1.13	0.26	-63.22	-13.00	-50.22	V
180.3500	-75.63	1.61	3.62	-73.62	-13.00	-60.62	V
303.5400	-83.62	2.11	5.67	-80.06	-13.00	-67.06	V
402.4800	-82.11	2.41	5.97	-78.55	-13.00	-65.55	V
455.8300	-80.31	2.6	5.82	-77.09	-13.00	-64.09	V
565.4400	-83.09	2.86	6.04	-79.91	-13.00	-66.91	V
60.0700	-53.58	0.88	-2.19	-56.65	-13.00	-43.65	Н
107.6000	-56.7	1.19	-1.39	-59.28	-13.00	-46.28	Н
204.6000	-70.67	1.65	4.2	-68.12	-13.00	-55.12	Н
319.0600	-74.62	2.17	5.71	-71.08	-13.00	-58.08	Н
390.8400	-71.77	2.32	6	-68.09	-13.00	-55.09	Н
516.9400	-74.59	2.7	6.07	-71.22	-13.00	-58.22	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: EDGE 850 / TX / CH 190

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
95.9600	-61.9	1.13	0.26	-62.77	-13.00	-49.77	V
179.3800	-74.52	1.61	3.52	-72.61	-13.00	-59.61	V
321.9700	-82.64	2.18	5.7	-79.12	-13.00	-66.12	V
448.0700	-78.23	2.58	5.74	-75.07	-13.00	-62.07	V
524.7000	-82.37	2.73	6.05	-79.05	-13.00	-66.05	V
625.5800	-81.46	2.96	6.16	-78.26	-13.00	-65.26	V
60.0700	-52.76	0.88	-2.19	-55.83	-13.00	-42.83	Н
111.4800	-56.51	1.22	-1.76	-59.49	-13.00	-46.49	Н
161.9200	-66.97	1.5	1.61	-66.86	-13.00	-53.86	Н
346.2200	-72.02	2.21	5.8	-68.43	-13.00	-55.43	Н
452.9200	-74.18	2.59	5.77	-71.00	-13.00	-58.00	Н
516.9400	-74.82	2.7	6.07	-71.45	-13.00	-58.45	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: EDGE 850 / TX / CH 251

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
74.6200	-71.47	1	-1.11	-73.58	-13.00	-60.58	V
186.1700	-76.72	1.62	3.85	-74.49	-13.00	-61.49	V
223.0300	-79.68	1.77	5.35	-76.10	-13.00	-63.10	V
364.6500	-79.98	2.28	5.75	-76.51	-13.00	-63.51	V
441.2800	-78.77	2.54	5.87	-75.44	-13.00	-62.44	V
480.0800	-80.98	2.64	5.54	-78.08	-13.00	-65.08	V
122.1500	-69.2	1.29	-1.93	-72.42	-13.00	-59.42	Н
174.5300	-72.92	1.59	3	-71.51	-13.00	-58.51	Н
364.6500	-74.72	2.28	5.75	-71.25	-13.00	-58.25	Н
441.2800	-73.19	2.54	5.87	-69.86	-13.00	-56.86	Н
480.0800	-74.22	2.64	5.54	-71.32	-13.00	-58.32	Н
537.3100	-78.67	2.77	6.22	-75.22	-13.00	-62.22	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
74.6200	-71.47	1	-1.11	-73.58	-13.00	-60.58	V
186.1700	-76.72	1.62	3.85	-74.49	-13.00	-61.49	V
223.0300	-79.68	1.77	5.35	-76.10	-13.00	-63.10	V
364.6500	-79.98	2.28	5.75	-76.51	-13.00	-63.51	V
441.2800	-78.77	2.54	5.87	-75.44	-13.00	-62.44	V
480.0800	-80.98	2.64	5.54	-78.08	-13.00	-65.08	V
122.1500	-69.2	1.29	-1.93	-72.42	-13.00	-59.42	Н
174.5300	-72.92	1.59	3	-71.51	-13.00	-58.51	Н
364.6500	-74.72	2.28	5.75	-71.25	-13.00	-58.25	Н
441.2800	-73.19	2.54	5.87	-69.86	-13.00	-56.86	Н
480.0800	-74.22	2.64	5.54	-71.32	-13.00	-58.32	Н
537.3100	-78.67	2.77	6.22	-75.22	-13.00	-62.22	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
76.5600	-72.72	1.01	-0.77	-74.50	-13.00	-61.50	V
180.3500	-76.23	1.61	3.62	-74.22	-13.00	-61.22	V
248.2500	-84.09	1.83	5.61	-80.31	-13.00	-67.31	V
337.4900	-78.33	2.17	5.77	-74.73	-13.00	-61.73	V
441.2800	-79.55	2.54	5.87	-76.22	-13.00	-63.22	V
480.0800	-80.12	2.64	5.54	-77.22	-13.00	-64.22	V
120.2100	-68.94	1.27	-2.06	-72.27	-13.00	-59.27	Н
172.5900	-73.32	1.58	2.8	-72.10	-13.00	-59.10	Н
364.6500	-73.48	2.28	5.75	-70.01	-13.00	-57.01	Н
441.2800	-74.19	2.54	5.87	-70.86	-13.00	-57.86	Н
480.0800	-74.3	2.64	5.54	-71.40	-13.00	-58.40	Н
499.4800	-77.85	2.7	5.89	-74.66	-13.00	-61.66	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
74.6200	-72.07	1	-1.11	-74.18	-13.00	-61.18	V
119.2400	-77.72	1.27	-2.07	-81.06	-13.00	-68.06	V
184.2300	-77.21	1.61	3.77	-75.05	-13.00	-62.05	V
224.0000	-82.82	1.78	5.35	-79.25	-13.00	-66.25	V
364.6500	-82.88	2.28	5.75	-79.41	-13.00	-66.41	V
441.2800	-81.69	2.54	5.87	-78.36	-13.00	-65.36	V
74.6200	-69.93	1	-1.11	-72.04	-13.00	-59.04	Н
120.2100	-67.9	1.27	-2.06	-71.23	-13.00	-58.23	Н
173.5600	-74.44	1.58	2.9	-73.12	-13.00	-60.12	Н
364.6500	-75.38	2.28	5.75	-71.91	-13.00	-58.91	Н
441.2800	-74.63	2.54	5.87	-71.30	-13.00	-58.30	Н
480.0800	-76.54	2.64	5.54	-73.64	-13.00	-60.64	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-54.55	0.97	-1.61	-57.13	-13.00	-44.13	V
101.7800	-57.71	1.16	-0.64	-59.51	-13.00	-46.51	V
216.2400	-77.08	1.74	5.36	-73.46	-13.00	-60.46	V
354.9500	-77.69	2.25	5.75	-74.19	-13.00	-61.19	V
448.0700	-81.25	2.58	5.74	-78.09	-13.00	-65.09	V
697.3600	-79.35	3.11	6.42	-76.04	-13.00	-63.04	V
71.7100	-46.11	0.97	-1.61	-48.69	-13.00	-35.69	Н
95.9600	-53.46	1.13	0.26	-54.33	-13.00	-41.33	Н
319.0600	-75.82	2.17	5.71	-72.28	-13.00	-59.28	Н
369.5000	-73.21	2.3	5.8	-69.71	-13.00	-56.71	Н
516.9400	-73.73	2.7	6.07	-70.36	-13.00	-57.36	Н
745.8600	-74.3	3.2	6.1	-71.40	-13.00	-58.40	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-56.19	0.97	-1.61	-58.77	-13.00	-45.77	V
138.6400	-64.49	1.39	-0.38	-66.26	-13.00	-53.26	V
215.2700	-76.8	1.73	5.37	-73.16	-13.00	-60.16	V
354.9500	-77.55	2.25	5.75	-74.05	-13.00	-61.05	V
623.6400	-80.51	2.95	6.14	-77.32	-13.00	-64.32	V
697.3600	-80.05	3.11	6.42	-76.74	-13.00	-63.74	V
71.7100	-45.54	0.97	-1.61	-48.12	-13.00	-35.12	Н
95.9600	-52.55	1.13	0.26	-53.42	-13.00	-40.42	Н
138.6400	-65.78	1.39	-0.38	-67.55	-13.00	-54.55	Н
345.2500	-72.58	2.2	5.8	-68.98	-13.00	-55.98	Н
516.9400	-73.51	2.7	6.07	-70.14	-13.00	-57.14	Н
757.5000	-74.24	3.22	6.25	-71.21	-13.00	-58.21	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-51.6	0.97	-1.61	-54.18	-13.00	-41.18	V
102.7500	-59.01	1.16	-0.76	-60.93	-13.00	-47.93	V
138.6400	-65.64	1.39	-0.38	-67.41	-13.00	-54.41	V
354.9500	-78.2	2.25	5.75	-74.70	-13.00	-61.70	V
623.6400	-80.5	2.95	6.14	-77.31	-13.00	-64.31	V
757.5000	-78.26	3.22	6.25	-75.23	-13.00	-62.23	V
71.7100	-45.63	0.97	-1.61	-48.21	-13.00	-35.21	Н
95.9600	-51.85	1.13	0.26	-52.72	-13.00	-39.72	Н
144.4600	-66.51	1.41	0.17	-67.75	-13.00	-54.75	Н
369.5000	-72.05	2.3	5.8	-68.55	-13.00	-55.55	Н
516.9400	-74.22	2.7	6.07	-70.85	-13.00	-57.85	Н
757.5000	-74.22	3.22	6.25	-71.19	-13.00	-58.19	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-50.46	0.97	-1.61	-53.04	-13.00	-40.04	V
95.9600	-58.5	1.13	0.26	-59.37	-13.00	-46.37	V
180.3500	-73.09	1.61	3.62	-71.08	-13.00	-58.08	V
354.9500	-77.21	2.25	5.75	-73.71	-13.00	-60.71	V
623.6400	-81.02	2.95	6.14	-77.83	-13.00	-64.83	V
828.3100	-75.47	3.39	6.28	-72.58	-13.00	-59.58	V
71.7100	-44.42	0.97	-1.61	-47.00	-13.00	-34.00	Н
95.9600	-51.12	1.13	0.26	-51.99	-13.00	-38.99	Н
144.4600	-65.08	1.41	0.17	-66.32	-13.00	-53.32	Н
369.5000	-71.96	2.3	5.8	-68.46	-13.00	-55.46	Н
529.5500	-74.14	2.75	6	-70.89	-13.00	-57.89	Н
826.3700	-69.64	3.39	6.26	-66.77	-13.00	-53.77	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-53.79	0.97	-1.61	-56.37	-13.00	-43.37	V
216.2400	-76.88	1.74	5.36	-73.26	-13.00	-60.26	V
354.9500	-76.89	2.25	5.75	-73.39	-13.00	-60.39	V
439.3400	-80.17	2.53	5.9	-76.80	-13.00	-63.80	V
610.0600	-81.35	2.94	6.29	-78.00	-13.00	-65.00	V
835.1000	-78.97	3.4	6.35	-76.02	-13.00	-63.02	V
71.7100	-44.3	0.97	-1.61	-46.88	-13.00	-33.88	Н
95.9600	-50.66	1.13	0.26	-51.53	-13.00	-38.53	Н
144.4600	-64.69	1.41	0.17	-65.93	-13.00	-52.93	Н
346.2200	-71.27	2.21	5.8	-67.68	-13.00	-54.68	Н
516.9400	-72.13	2.7	6.07	-68.76	-13.00	-55.76	Н
565.4400	-74.92	2.86	6.04	-71.74	-13.00	-58.74	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-49.21	0.97	-1.61	-51.79	-13.00	-38.79	V
101.7800	-56.09	1.16	-0.64	-57.89	-13.00	-44.89	V
354.9500	-76.31	2.25	5.75	-72.81	-13.00	-59.81	V
448.0700	-79.25	2.58	5.74	-76.09	-13.00	-63.09	V
623.6400	-79.74	2.95	6.14	-76.55	-13.00	-63.55	V
848.6800	-76.3	3.4	6.4	-73.30	-13.00	-60.30	V
71.7100	-41.75	0.97	-1.61	-44.33	-13.00	-31.33	Н
95.9600	-48.56	1.13	0.26	-49.43	-13.00	-36.43	Н
346.2200	-68.12	2.21	5.8	-64.53	-13.00	-51.53	Н
516.9400	-69.68	2.7	6.07	-66.31	-13.00	-53.31	Н
625.5800	-73.09	2.96	6.16	-69.89	-13.00	-56.89	Н
847.7100	-69.67	3.4	6.4	-66.67	-13.00	-53.67	Н

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Above 1GHz

Operation Mode	: GPRS 850 / TX / CH 128	Test Date:	March 12, 2013
Temperature:	25°C	Tested by:	David Shu
Humidity:	55 % RH	Polarity:	Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1651.000	-48.21	5.05	6.03	-47.23	-13.00	-34.23	V
4122.000	-49.27	8.47	9.5	-48.24	-13.00	-35.24	V
N/A							
2547.000	-41.39	6.42	6.22	-41.59	-13.00	-28.59	Н
4241.000	-43.21	8.54	9.59	-42.16	-13.00	-29.16	Н
N/A							

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: GPRS 850 / TX / CH 190

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1672.000	-46.31	5.07	5.99	-45.39	-13.00	-32.39	V
4185.000	-43.07	8.49	9.55	-42.01	-13.00	-29.01	V
N/A							
1651.000	-48.26	5.05	6.03	-47.28	-13.00	-34.28	Н
4122.000	-46.76	8.47	9.5	-45.73	-13.00	-32.73	Н
6593.000	-44.91	11.22	11.41	-44.72	-13.00	-31.72	Н
N/A							

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode: GPRS 850 / TX / CH 251

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4241.000	-48.28	8.54	9.59	-47.23	-13.00	-34.23	V
5095.000	-49.15	9.45	10.64	-47.96	-13.00	-34.96	V
N/A							
2512.000	-44.84	6.37	6.13	-45.08	-13.00	-32.08	Н
4185.000	-40.69	8.49	9.55	-39.63	-13.00	-26.63	Н
N/A							

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3702.000	-46.6	8.2	9.1	-45.70	-13.00	-32.70	V
5550.000	-45.15	10.06	10.81	-44.40	-13.00	-31.40	V
N/A							
3702.000	-48.95	8.2	9.1	-48.05	-13.00	-35.05	Н
5550.000	-46	10.06	10.81	-45.25	-13.00	-32.25	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3758.000	-51.34	8.23	9.16	-50.41	-13.00	-37.41	V
5984.000	-52.09	10.76	10.9	-51.95	-13.00	-38.95	V
N/A							
3758.000	-51.51	8.23	9.16	-50.58	-13.00	-37.58	Н
5641.000	-50.78	10.18	10.83	-50.13	-13.00	-37.13	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 55 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3933.000	-52.65	8.38	9.33	-51.70	-13.00	-38.70	V
6957.000	-46.93	11.54	11.85	-46.62	-13.00	-33.62	V
N/A							
4325.000	-51.44	8.61	9.66	-50.39	-13.00	-37.39	Н
5732.000	-49.83	10.24	10.85	-49.22	-13.00	-36.22	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1749.000	-47.07	5.2	5.85	-46.42	-13.00	-33.42	V
3296.000	-48.05	7.45	8.29	-47.21	-13.00	-34.21	V
7419.000	-43.14	12.12	12.57	-42.69	-13.00	-29.69	V
N/A							
1651.000	-47.82	5.05	6.03	-46.84	-13.00	-33.84	Н
4122.000	-47.83	8.47	9.5	-46.80	-13.00	-33.80	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
2512.000	-46.65	6.37	6.13	-46.89	-13.00	-33.89	V
4185.000	-41.06	8.49	9.55	-40.00	-13.00	-27.00	V
N/A							
1672.000	-46.82	5.07	5.99	-45.90	-13.00	-32.90	Н
4185.000	-45.29	8.49	9.55	-44.23	-13.00	-31.23	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
2547.000	-41.82	6.42	6.22	-42.02	-13.00	-29.02	V
4241.000	-43.85	8.54	9.59	-42.80	-13.00	-29.80	V
N/A							
4241.000	-48.04	8.54	9.59	-46.99	-13.00	-33.99	Н
5095.000	-51.05	9.45	10.64	-49.86	-13.00	-36.86	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3702.000	-48.66	8.2	9.1	-47.76	-13.00	-34.76	V
5550.000	-46.28	10.06	10.81	-45.53	-13.00	-32.53	V
N/A							
3702.000	-44.17	8.2	9.1	-43.27	-13.00	-30.27	Н
5550.000	-44.1	10.06	10.81	-43.35	-13.00	-30.35	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3758.000	-52.95	8.23	9.16	-52.02	-13.00	-39.02	V
5641.000	-51.98	10.18	10.83	-51.33	-13.00	-38.33	V
N/A							
3758.000	-51.51	8.23	9.16	-50.18	-13.00	-37.18	Н
5641.000	-50.78	10.18	10.83	-49.10	-13.00	-36.10	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
4003.000	-53.28	8.35	9.4	-52.23	-13.00	-39.23	V
6096.000	-50.95	10.63	10.98	-50.60	-13.00	-37.60	V
N/A							
3821.000	-52.59	8.29	9.22	-51.66	-13.00	-38.66	Н
7370.000	-43.57	12.07	12.49	-43.15	-13.00	-30.15	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3702.000	-47.83	8.2	9.1	-46.93	-13.00	-33.93	V
5564.000	-41.13	10.1	10.81	-40.42	-13.00	-27.42	V
N/A							
3702.000	-52.08	8.2	9.1	-51.18	-13.00	-38.18	Н
5557.000	-48.39	10.08	10.81	-47.66	-13.00	-34.66	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3758.000	-44.91	8.23	9.16	-43.98	-13.00	-30.98	V
5634.000	-47.05	10.18	10.83	-46.40	-13.00	-33.40	V
N/A							
3758.000	-48.2	8.23	9.16	-47.27	-13.00	-34.27	Н
5634.000	-51.83	10.18	10.83	-51.18	-13.00	-38.18	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3814.000	-41.29	8.28	9.21	-40.36	-13.00	-27.36	V
5718.000	-44.72	10.21	10.84	-44.09	-13.00	-31.09	V
N/A							
3814.000	-47.36	8.28	9.21	-46.43	-13.00	-33.43	Н
6138.000	-50.09	10.85	11.01	-49.93	-13.00	-36.93	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1651.000	-50.37	5.05	6.03	-49.39	-13.00	-36.39	V
4906.000	-55.35	9.27	10.45	-54.17	-13.00	-41.17	V
N/A							
1658.000	-49.37	5.06	6.02	-48.41	-13.00	-35.41	Н
5179.000	-54.88	9.54	10.67	-53.75	-13.00	-40.75	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1672.000	-49.82	5.07	5.99	-48.90	-13.00	-35.90	V
4738.000	-55.24	9.2	10.18	-54.26	-13.00	-41.26	V
N/A							
1672.000	-47.71	5.07	5.99	-46.79	-13.00	-33.79	Н
5102.000	-54.43	9.45	10.64	-53.24	-13.00	-40.24	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

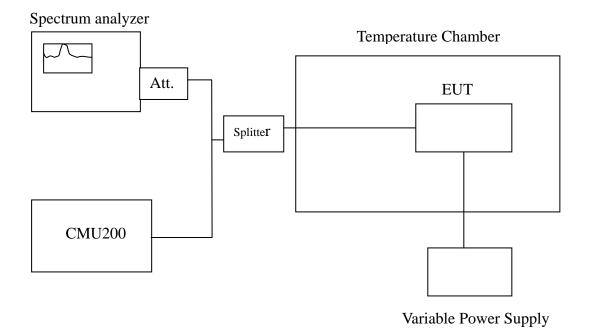
Temperature: 25°C

Humidity: 50 % RH

Test Date:March 12, 2013Tested by:David ShuPolarity:Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1693.000	-48.71	5.1	5.95	-47.86	-13.00	-34.86	V
5109.000	-55.92	9.46	10.64	-54.74	-13.00	-41.74	V
N/A							
1693.000	-48.11	5.1	5.95	-47.26	-13.00	-34.26	Н
4612.000	-54.21	9.13	9.98	-53.36	-13.00	-40.36	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



7.6FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235, RSS-132 (4.3) & RSS-133 (6.3). Frequency Tolerance: 2.5 ppm

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

TEST RESULTS

Reference Frequency: GPRS Mid Channel 836.6 MHz @ 20°C									
	Limit: +/- 2.5 ppm = 2090 Hz								
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)					
	50	836599999	-4						
	40	836599998	-5						
	30	836599995	-8						
	20	836600003	0						
3.7	10	836599997	-6	2090					
	0	836599994	-9						
	-10	836599993	-10						
	-20	836599997	-6						
	-30	836599996	-7						

No non-compliance noted.

Refe	Reference Frequency: GPRS Mid Channel 1880 MHz @ 20°C									
	Limit: ± 2.5 ppm = 4700 Hz									
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)						
	50	1879999997	-9							
	40	1879999998	-8							
	30	1879999995	-11							
	20	1880000006	0							
3.7	10	1879999992	-14	4700						
	0	1880000004	-2							
	-10	1879999995	-11							
	-20	1879999998	-8							
	-30	1879999997	-9							

Reference Frequency: EDGE Mid Channel 836.6 MHz @ 20°C									
Limit: +/- 2.5 ppm = 2090 Hz									
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)					
	50	83599998	-7						
	40	83599993	-12						
	30	83599983	-22						
	20	83600005	0						
3.7	10	83599991	-14	2090					
	0	83599995	-10						
	-10	83599994	-11						
	-20	83599993	-12						
	-30	83599999	-6						

Refe	Reference Frequency: EDGE Mid Channel 1880 MHz @ 20°C									
	Limit: ± 2.5 ppm = 4700 Hz									
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)						
	50	1879999998	-7							
	40	1879999997	-8							
	30	1879999996	-9							
	20	1880000005	0							
3.7	10	1879999992	-13	4700						
	0	1879999990	-15							
	-10	1879999996	-9							
	-20	1879999994	-11							
	-30	1879999999	-6							

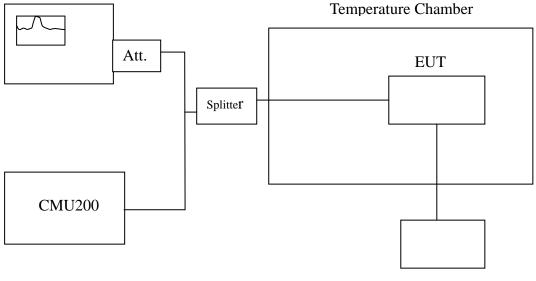
Reference Frequency: WCDMA Band II Mid Channel 1880 MHz @ 20°C								
Limit: ± 2.5 ppm = 4700 Hz								
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)				
	50	1879999996	-11					
	40	188000003	-4					
	30	1879999998	-9					
	20	188000007	0					
3.7	10	1879999995	-12	4700				
	0	1879999997	-10					
	-10	1879999995	-12					
	-20	1879999993	-14					
	-30	188000006	-1					

Reference Frequency: WCDMA Band V Mid Channel 836.6 MHz @ 20°C									
	Limit: +/- 2.5 ppm = 2090 Hz								
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)					
	50	836399997	3						
	40	836399996	2						
	30	836399998	4						
	20	836399994	0						
3.7	10	836399995	1	2090					
	0	836399996	2						
	-10	836399993	-1						
	-20	836400003	9						
	-30	836400005	11						

7.7FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §22.355, .FCC §24.235,


Frequency Tolerance: 2.5 ppm.

According to RSS-132 (4.3) & RSS-133 (6.3).

The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations and ± 1.0 ppm for base stations.

Test Configuration

Spectrum analyzer

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector.

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GPRS Mid Channel 836.6 MHz @ 20°C									
	Limit: ± 2.5 ppm = 2090Hz								
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)					
4.255		836600002	-1						
3.7	20	836600003	0	2090					
3.145	20	836600004	1	2090					
2.9END		836599975	-28						

Reference Frequency: GPRS Mid Channel 1880 MHz @ 20°C									
	Limit: ± 2.5 ppm = 4700 Hz								
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)					
4.255		188000002	-4						
3.7	20	1880000006	0	4700					
3.145	20	1880000005	-1	4700					
2.9END		1880000069	63						

Reference Frequency: EDGE Mid Channel 836.6 MHz @ 20°C					
Limit: ± 2.5 ppm = 2090Hz					
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)	
4.255	20	83600001	-4		
3.7		83600005	0	2090	
3.145		83600008	3	2090	
2.9END		83600007	-1		

Reference Frequency: EDGE Mid Channel 1880 MHz @ 20°C					
Limit: ± 2.5 ppm = 4700 Hz					
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)	
4.255	20	1880000002	-3		
3.7		1880000005	0	4700	
3.145		1880000006	1	4700	
2.9END		1880000004	-1		

Reference Frequency: WCDMA Band II Mid Channel 1880 MHz @ 20°C					
Limit: ± 2.5 ppm = 4700 Hz					
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)	
4.255	20	1880000003	-4		
3.7		1880000007	0	4700	
3.145		1879999989	-18	4700	
2.9End		1880000059	52		

Reference Frequency: WCDMA Band V Mid Channel 836.6 MHz @ 20°C					
Limit: ± 2.5 ppm = 2090Hz					
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)	
4.255	20	836400005	11		
3.7		836399994	0	2090	
3.145		836400003	9	2090	
2.9End		836400073	79		