FCC Test Report FCC Part 22, 24 / RSS 132,133

For the

Digital Security Controls, a Division of Tyco Safety Products Canada Ltd.

GSM/Ethernet Alarm Communicator

Model Number: TL265GS/TL260GS/GS2065/GS2060
With Motorola G24-L QuadBand GSM/GPRS Module

FCC ID: F5309GS260L
IC ID: 160A-GS260L

TEST REPORT \#: EMC_TYCOS_014_08001_FCC22_24
DATE: 2009-01-28

CIIA Authorized Test Lab
LAB CODE 20020328-00

FCC listed: A2LA accredited IC recognized \# 3462B

Table of Contents

1 ASSESSMENT4
2 ADMINISTRATIVE DATA5
2.1 Identification of the Testing Laboratory Issuing the EMC Test Report 5
2.2 IDENTIFICATION OF THE CLIENT 5
2.3 IDENTIFICATION OF THE MANUFACTURER 5
3 EQUIPMENT UNDER TEST (EUT)6
3.1 Specification of the Equipment under Test 6
3.2 Identification of the Equipment Under Test (EUT) 6
3.3 IDENTIFICATION OF ACCESSORY EQUIPMENT 7
4 SUBJECT OF INVESTIGATION8
5 MEASUREMENTS 9
5.1 RF Power Output 9
5.1.1 FCC 2.1046 Measurements required: RF power output. 9
5.1.2 Limits: 9
5.1.2.1 FCC 22.913 (a) Effective radiated power limits. 9
5.1.2.2 FCC 24.232 (b)(c) Power limits. 9
5.1.3 Conducted Output Power Measurement procedure: 9
5.1.4 Radiated Output Power Measurement procedure: 10
5.1.5 ERP Results 850 MHz band: 11
5.1.6 EIRP Results 1900 MHz band: 11
5.2 Spurious Emissions Radiated 24
5.2.1 FCC 2.1053 Measurements required: Field strength of spurious radiation. 24
5.2.2 Limits: 24
5.2.2.1 FCC 22.917 Emission limitations for cellular equipment. 24
5.2.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment. 24
5.2.3 Radiated out of band measurement procedure: 25
5.2.4 Radiated out of band emissions results on EUT: 27
5.2.4.1 Test Results Transmitter Spurious Emission GSM850: 27
5.2.4.2 Test Results Transmitter Spurious Emission PCS-1900: 46
5.2.5 RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-132 \& 133 58
5.2.5.1 Test Results Receiver Spurious Emission GSM850 59
Test Results Receiver Spurious Emission GSM850 62
5.2.5.2 Test Results Receiver Spurious Emission GSM1900 65
Test Results Receiver Spurious Emission GSM1900 67
Test Results Receiver Spurious Emission GSM1900 68
5.2.6 Limits 71
5.2.7 Results, TX Transmit Line: 72
5.2.8 TX Transmit Neutral: 74
5.2.9 RX Transmit Line: 76
5.2.10 RX Transmit Neutral: 78
6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS 80

7 REFERENCES... 81
8 BLOCK DIAGRAMS ... 82
9 REVISION HISTORY.. 84

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS132 and RSS133.

Company	Description	Model \#
Digital Security Controls, a Division of Tyco Safety Products Canada Ltd.	GSM/Ethernet Alarm Communicator	TL265GS/TL260GS/GS2065/GS2060

Technical responsibility for area of testing:

2008-01-28	EMC \& Radio	Marc Douat (EMC Project Engineer)	Marc Douat I am approving this document
Date	Section	Name	Signature

This report is prepared by:

2008-01-28 \quad EMC \& Radio \quad Ahmad Safdari \quad Ahmad | Digitally signed by |
| :--- |
| Ahmad Safdari |
| Reason: I am the |

Date Section Name Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

The test results of this test report relate exclusively to radiated measurement only. Radio module used in this product has been previously certified under its own FCC and IC ID. Refer to report ID \# MOTRAD_FCC.17967.doc FCC/ IC/ID \# IHDT56HQ1/109O-HQ1

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	$+\mathbf{1 (4 0 8)} 586 \mathbf{6 2 0 0}$
Fax:	$\mathbf{+ 1 (4 0 8) ~ 5 8 6 ~ 6 2 9 9}$
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Ahmad Safdari

2.2 Identification of the Client

Applicant's Name:	Digital Security Controls, a Division of Tyco Safety Products Canada Ltd.
Street Address:	$\mathbf{3 3 0 1}$ Langstaff Road
City/Zip Code	Concord L4K 4L2
Country	Canada
Contact Person:	Dan Nita
Phone No.	905-760-3000, Ext. 2706
e-mail:	dnita@dsc.com

2.3 Identification of the Manufacturer

Same as above applicant

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name of EUT (if not same as Model No.)	TL265GS/TL260GS/GS2065/GS2060
Description	GSM/Ethernet Alarm Communicator
Model No.	TL265GS/TL260GS/GS2065/GS2060
FCC-ID	160A-GS260L
IC-ID (Industry Canada)	824.2MHz - 848.8MHz for GSM 850 1850.2MHz - 1909.8MHz for PCS 1900
Frequency Range:	GMSK
Type(s) of Modulation:	124 for GSM-850, 299 for PCS-1900
Number of Channels:	TL265GS internal antenna, TL260GS External antenna
Antenna Type:	Conducted : Tests not performed by Cetecom.
Madiated : see section 5.1.5 and 5.1.6.	
Max. Output Power:	29.64dBm (0.920W) @ PCS 1909.8MHz EIRP values

3.2 Identification of the Equipment Under Test (EUT)

EUT \#	TYPE	MANF.	MODEL	SERIAL \#
1	EUT	Digital Security Controls, a Division of Tyco Safety Products Canada Ltd.	TL265GS	N/A
2	EUT	Digital Security Controls, a Division of Tyco Safety Products Canada Ltd.	TL260GS	N/A

3.3 Identification of Accessory equipment

AE \#	TYPE	MODEL
$\mathbf{1}$	AC Adapter	PTD1640U-CC
$\mathbf{2}$	Battery	CA1270
$\mathbf{3}$	DSC Control Panel	N/A

4 Subject of Investigation

All testing was performed on the EUT listed in Section 3. The EUT was maximized in the X,Y, Z positions, all data in this report shows the worst case between horizontal and vertical polarization for above 1 GHz .

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS132 and RSS133.

This EUT contains an FCC approved module with the FCC ID IHDT56HQ1. This report refers only to the radiated measurements in GSM technology.

Model GS2060 and GS2065 is a Cellular communicator module using only a GSM/GPRS communication channel. The product is identical in construction and functionality with the model TL260GS and TL265GS with the exception of the IP Ethernet communicator section which is not populated.

5 Measurements

5.1 RF Power Output

5.1.1 FCC 2.1046 Measurements required: RF power output.

Power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on circuit elements as specified. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

5.1.2 Limits:

5.1.2.1 FCC 22.913 (a) Effective radiated power limits.

The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts.

5.1.2.2 FCC 24.232 (b)(c) Power limits.

(b) Mobile/portable stations are limited to 2 Watts effective isotropic radiated power (EIRP).
(c) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement over the full bandwidth of the channel.

5.1.3 Conducted Output Power Measurement procedure:
 Based on TIA-603C 2004

2.2.1 Conducted Carrier Output Power Rating

1. Connect the equipment as shown in the above diagram. A Digital Radiocommunication Tester (DRT) is used to enable the EUT to transmit and to measure the output power.
2. Adjust the settings of the DRT to set the EUT to its maximum power at the required channel.
3. Record the output power level measured by the DRT.
4. Correct the measured level for all losses in the RF path.
5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

5.1.4 Radiated Output Power Measurement procedure:

Based on TIA-603C 2004

2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.
2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) - Analyzer reading (dBm).
7. Determine the ERP using the following equation:

ERP $(\mathrm{dBm})=\mathbf{L V L}(\mathrm{dBm})+\mathbf{L O S S}(\mathrm{dB})$
8. Determine the EIRP using the following equation:
$\mathbf{E I R P}(\mathrm{dBm})=\mathbf{E R P}(\mathrm{dBm})+2.14(\mathrm{~dB})$
9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. Spectrum analyzer settings $=\mathbf{r b w}=\mathbf{v b w}=\mathbf{3 M H z}$
(note: Steps 5 and 6 above are performed prior to testing and LOSS is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.)

5.1.5 ERP Results 850 MHz band:

Power Control Level	Burst Peak ERP
5	$\leq 38.45 \mathrm{dBm}(7 \mathrm{~W})$

Frequency (MHz)	Effective Isotropic Radiated Power (dBm)
	GSM
$\mathbf{8 2 4 . 2}$	$\mathbf{3 2 . 6 4 (3 0 . 5)}$
$\mathbf{8 3 6 . 6}$	$\mathbf{3 2 . 8 2 (3 0 . 6 8)}$
$\mathbf{8 4 8 . 8}$	$\mathbf{3 3 . 5 5 (3 1 . 4)}$

*Values reported are EIRP and (ERP) in parentheses.

5.1.6 EIRP Results 1900 MHz band:

Power Control Level	Burst Peak EIRP
0	\leq 33dBm (2W)

Frequency (MHz)	Effective Isotropic Radiated Power (dBm)
	GSM
1850.2	28.37
1880.0	29.5
1909.8	29.64

EIRP (GSM 850) CHANNEL 128 §22.913(a)

```
EUT:
```

Customer:: DSC / Tyco
Test Mode: GSM 850
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: $\quad 120 \mathrm{VAC}$ and internal battery
Comments:

SWEEP TABLE: "EIRP $\mathbf{8 5 0}$ CH $\mathbf{1 2 8} \mathbf{V "}$					
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
819.2 MHz	829.2 MHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (GSM 850) CHANNEL 190 §22.913(a)

EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode:
GSM 850
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: $\quad 120 \mathrm{VAC}$ and internal battery
Comments:

SWEEP TABLE: "EIRP 850 CH 190 V"					
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
831.6 MHz	841.6 MHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM
	MaxPeak				

EIRP (GSM 850) CHANNEL 251 §22.913(a)
EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode: GSM 850
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: $\quad 120 \mathrm{VAC}$ and internal battery
Comments:

SWEEP TABLE: "EIRP 850 CH $\mathbf{2 5 1}$ V"					
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
843.8 MHz	853.8 MHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (GPRS 850) CHANNEL 128 §22.913(a)

EUT:
Customer:
Test Mode:
ANT Orientation:
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments: TT @ 326; ANT @ 138

SWEEP TABLE: "EIRP 850 CH 128 V"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
819.2 MHZ	829.2 MHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (GPRS 850) CHANNEL 190 §22.913(a)
EUT:
Customer:
Test Mode:
Tyco/DSC
GSM 850
ANT Orientation: H
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments: TT @ 160;ANT @ 124

SWEEP TABLE: "EIRP 850 CH 190 H"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
831.6 MHz	841.6 MHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM
		MaxPeak			

EIRP (GPRS 850) CHANNEL 251 §22.913(a)
EUT:
Customer::
04GI10/TL265GS
Test Mode:
Tyco/DSC
GSM 850
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage:
Comments
AC Adapter + Internal Battery
TT @ 326; ANT @ 138

SWEEP TABLE: "EIRP 850 CH 251 V"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
843.8 MHz	853.8 MHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (PCS-1900) CHANNEL 512 §24.232(b)
EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode:
GSM1900
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: $\quad 120 \mathrm{VAC}$ and internal battery
Comments:

SWEEP TABLE: "EIRP 1900 CH512"

Short Description:	EIRP PCS				1900 for channel-512
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.8 GHz	1.9 GHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (PCS-1900) CHANNEL 661 §24.232(b)

EUT:
Customer:
Test Mode:
ANT Orientation:
EUT Orientation: V
Test Engineer: Chris
Voltage: $\quad 120 \mathrm{VAC}$ and internal battery
Comments:

SWEEP TABLE: "EIRP 1900 CH661"

Short Description:	EIRP PCS				1900 for channel-661
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.9 GHz	1.9 GHz	MaxPeak MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (PCS-1900) CHANNEL 810 §24.232(b)

```
EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode: GSM1900
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
```

SWEEP TABLE: "EIRP 1900 CH810"

Short Description:	EIRP PCS				1900 for channel-810
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.9 GHz	1.9 GHz	MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (PCS-1900) CHANNEL 512 §24.232(b)

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 1900 CH 512
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "EIRP 1900 CH512"

Short Description:	EIRP PCS 1900 for channel-512			
Start	Stop	Detector	Meas.	IF
Frequency	Frequency		Time	Bandw.
1.8 GHz	1.9 GHz	MaxPeak	Coupled	3 MHz

EIRP (PCS-1900) CHANNEL 661 §24.232(b)

```
EUT: 04GI10/TL265GS
Customer: Tyco/DSC
Test Mode: GSM 1900 CH 661
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "EIRP 1900	CH661"			
Short Description:		EIRP PCS 1	1900 for	channel-661
Start Stop	Detector	Meas.	IF	Transducer
Frequency Frequency		Time	Bandw .	
1.9 GHz 1.9 GHz	MaxPeak MaxPeak	Coupled	3 MHz	DUMMY-DBM

EIRP (PCS-1900) CHANNEL 810 §24.232(b)

```
EUT: 04GI10
Customer:: Tyco/DSC
Test Mode: GSM 1900 CH 810
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "EIRP 1900 CH810"
Short Description: EIRP PCS 1900 for channel-810

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.9 GHz	1.9 GHz	MaxPeak	Coupled	3 MHz	DMMY

5.2 Spurious Emissions Radiated

5.2.1 FCC 2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission.

5.2.2 Limits:

5.2.2.1 FCC 22.917 Emission limitations for cellular equipment.

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.
(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (\mathrm{P}) \mathrm{dB}$.
(b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.2.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.
(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (\mathrm{P}) \mathrm{dB}$.
(b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the
carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.2.3 Radiated out of band measurement procedure:

Based on TIA-603C 2004

2.2.12 Unwanted emissions: Radiated Spurious

1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
3. Set the spectrum analyzer to measure peak hold with the required settings.
4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions ($\mathbf{L V L}$) up to the tenth harmonic of the carrier frequency.
5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS $=$ Generator Output Power (dBm) - Analyzer reading (dBm).
7. Determine the level of spurious emissions using the following equation:

Spurious (dBm) = LVL (dBm) + LOSS (dB):
8. Repeat steps 4,5 and 6 with all antennas vertically polarized.
9. Determine the level of spurious emissions using the following equation:

Spurious (dBm) $=\mathbf{L V L}(\mathrm{dBm})+$ LOSS (dB):
10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.
(note: Steps 5 and 6 above are performed prior to testing and LOSS is recorded by test software. Steps 3, 4 and 7 above are performed with test software.)

Spectrum analyzer settings:

Res B/W: 1 MHz
Vid B/W: 1 MHz

Measurement Survey:

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GSM-850 \& PCS-1900 bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 \& PCS-1900 band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

Radiated emission measurements were made only with Circuit Switched mode GMSK modulation because this mode represents the worse case emission for all the modulations for GSM. See section 5.5.4.1 and 5.5.4.3

Radiated emissions measurements were made also with UMTS FDD mode. See section 5.5.4.2 and 5.5.4.4

5.2.4 Radiated out of band emissions results on EUT:

5.2.4.1 Test Results Transmitter Spurious Emission GSM850:

Harmonics	$\begin{gathered} \text { Tx ch-128 } \\ \text { Freq. (MHz) } \end{gathered}$	Level (dBm)	$\begin{gathered} \text { Tx ch-190 } \\ \text { Freq. (MHz) } \end{gathered}$	Level (dBm)	$\begin{gathered} \text { Tx ch-251 } \\ \text { Freq. (MHz) } \end{gathered}$	Level (dBm)
2	1648.4	NF	1673.2	NF	1697.6	NF
3	2472.6	NF	2509.8	NF	2546.4	NF
4	3296.8	NF	3346.4	NF	3395.2	NF
5	4121	NF	4183	NF	4244	NF
6	4945.2	NF	5019.6	NF	5092.8	NF
7	5769.4	NF	5856.2	NF	5941.6	NF
8	6593.6	NF	6692.8	NF	6790.4	NF
9	7417.8	NF	7529.4	NF	7639.2	NF
10	8242	NF	8366	NF	8488	NF
NF $=$ NOISE FLOOR						

RADIATED SPURIOUS EMISSIONS (GSM-850) TX: 30MHz-1GHz

Spurious emission limit -13 dBm

Antenna: vertical

Note:

1.The peak above the limit line is the carrier freq.
2.This plot is valid for low, mid \& high channels (worst-case plot)

```
EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode: GSM 850 CH }12
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
```

Comments:
SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850)TX: 30MHz-1GHz

```
EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode: GSM 850 CH 190
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
```

SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850)TX: 30MHz-1GHz

```
EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode: GSM 850 CH 251
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
SWEEP TABLE: "FCC 24 Spur 30M-1G_V"
\begin{tabular}{llllll} 
Start & Stop & Detector & Meas. & IF & Transducer \\
Frequency & Frequency & & Time & Bandw. & \\
30.0 MHz & 1.0 GHz & MaxPeak & Coupled & 1 MHz & DUMMY-DBM
\end{tabular}
```


RADIATED SPURIOUS EMISSIONS (GSM-850) TX: 30MHz-1GHz

Spurious emission limit -13 dBm

Antenna: vertical

Note:

1.The peak above the limit line is the carrier freq.
2.This plot is valid for low, mid \& high channels (worst-case plot)

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 850 CH 128
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments: marker placed on uplink
```

SWEEP TABLE:	"FCC $\mathbf{2 4}$ Spur $\mathbf{3 0 M - 1 G _ V "}$				
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) TX: $\mathbf{3 0 M H z}-\mathbf{1 G H z}$

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 850 CH 190
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments: marker placed on uplink
SWEEP TABLE: "FCC 24 Spur 30M-1G_V"
\begin{tabular}{llllll} 
Start & Stop & Detector & Meas. & IF & Transducer \\
Frequency & Frequency & & Time & Bandw. & \\
30.0 MHz & 1.0 GHz & MaxPeak & Coupled & 1 MHz & DUMMY-DBM
\end{tabular}
```


RADIATED SPURIOUS EMISSIONS (GSM-850) TX: $\mathbf{3 0 M H z}-\mathbf{1 G H z}$

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 850 CH 251
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments: marker placed on uplink
SWEEP TABLE: "FCC 24 Spur 30M-1G_V"
\begin{tabular}{llllll} 
Start & Stop & Detector & Meas. & IF & Transducer \\
Frequency & Frequency & & Time & Bandw. & \\
30.0 MHz & 1.0 GHz & MaxPeak & Coupled & 1 MHz & DUMMY-DBM
\end{tabular}
```


RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 128: $1 \mathrm{GHz}-1.58 \mathrm{GHz}$

```
EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode: GSM 850 CH 128
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
```

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	1.6 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 190: 1GHz - 1.58GHz

```
Test Mode: GSM 850 CH 190
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
SWEEP TABLE: "FCC 22Spuri 1-1.58G"
\begin{tabular}{llllll} 
Start & Stop & Detector & Meas. & IF & Transducer \\
Frequency & Frequency & & Time & Bandw. & \\
1.0 GHz & 1.6 GHz & MaxPeak & Coupled & 1 MHz & DUMMY-DBM
\end{tabular}
```


RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 251: 1GHz $-\mathbf{1 . 5 8 G H z}$

```
EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode: GSM 850 CH }25
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
SWEEP TABLE: "FCC 22Spuri 1-1.58G"
\begin{tabular}{llllll} 
Start & Stop & Detector & Meas. & IF & Transducer \\
Frequency & Frequency & & Time & Bandw. & \\
1.0 GHz & 1.6 GHz & MaxPeak & Coupled & 1 MHz & DUMMY-DBM
\end{tabular}
```


RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 128: 1GHz - 1.58GHz

```
EUT: 04GI10/TL265GS
Customer: Tyco/DSC
Test Mode: GSM 850 CH 128
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	1.6 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 190: $1 \mathrm{GHz}-1.58 \mathrm{GHz}$

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 850 CH 190
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	1.6 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 251: 1GHz $-\mathbf{1 . 5 8 G H z}$

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 850 CH 251
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	1.6 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 128: $1.58 \mathrm{GHz}-9 \mathrm{GHz}$

EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode: GSM 850 CH 128
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: $\quad 120 \mathrm{VAC}$ and internal battery
Comments:

SWEEP TABLE:	"FCC 22Spuri 1.58-9G"				
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.6 GHz	9.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 190: 1.58GHz - 9GHz

```
EUT: 04GI12b / C01 / TL260GS
```

Customer: DSC / Tyco
Test Mode: GSM 850 CH 190
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:

SWEEP TABLE:	"FCC 22Spuri 1.58-9G"				
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.6 GHz	9.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 251: 1.58GHz - 9GHz

```
EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode: GSM 850 CH 251
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
```

SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.6 GHz	9.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 128: $1.58 \mathrm{GHz}-9 \mathrm{GHz}$

```
EUT:
Customer: Tyco/DSC
04GI10/TL265GS
Test Mode: GSM 850 CH 128
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.6 GHz	9.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 190: 1.58GHz - 9GHz

```
EUT:
Customer: Tyco/DSC
04GI10/TL265GS
Test Mode: GSM 850 CH 190
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.6 GHz	9.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx CHANNEL 251: 1.58GHz - 9GHz

EUT: 04GI10/TL265GS
Customer: Tyco/DSC
Test Mode: GSM 850 CH 251
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: AC Adapter + Internal Battery
Comments:

SWEEP TABLE:	"FCC 22Spuri 1.58-9G"				
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.6 GHz	9.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

5.2.4.2 Test Results Transmitter Spurious Emission PCS-1900:

Harmonic	$\begin{gathered} \text { Tx ch-512 } \\ \text { Freq.(MHz) } \end{gathered}$	Level (dBm)	$\begin{gathered} \text { Tx ch-661 } \\ \text { Freq. (MHz) } \end{gathered}$	Level (dBm)	$\begin{gathered} \text { Tx ch-810 } \\ \text { Freq. (MHz) } \end{gathered}$	Level (dBm)
2	3700.4	NF	3760	NF	3819.6	NF
3	5550.6	NF	5640	NF	5729.4	NF
4	7400.8	NF	7520	NF	7639.2	NF
5	9251	NF	9400	NF	9549	NF
6	11101.2	NF	11280	NF	11458.8	NF
7	12951.4	NF	13160	NF	13368.6	NF
8	14801.6	NF	15040	NF	15278.4	NF
9	16651.8	NF	16920	NF	17188.2	NF
10	18502	NF	18800	NF	19098	NF
NF $=$ NOISE FLOOR						

RADIATED SPURIOUS EMISSIONS(PCS 1900) TX: $30 \mathrm{MHz}-\mathbf{1 G H z}$ Antenna: Horizontal

EUT:	04GI12b / C01 / TL260GS				
Customer:	Tyco/DSC				
Test Mode:	GSM 1900				
ANT Orientat					
EUT Orientat	V				
Test Enginee	Chris				
Voltage:	AC Adapter + Internal Battery				
Comments:					
SWEEP TABLE: "FCC 24 Spur 30M-1G_V"					
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY - DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) TX: 30MHz-1GHz

Antenna: Vertical

EUT:
Customer:
Test Mode:
ANT Orientation:
EUT Orientation: V
Test Engineer: Chris
Voltage:
Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_H"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) TX: $30 \mathrm{MHz}-\mathbf{1 G H z}$

Antenna: Horizontal

EUT:
04GI10/TL265GS
Customer: Tyco/DSC
Test Mode: GSM 1900
ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_H"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) TX: $30 \mathrm{MHz}-\mathbf{1 G H z}$

Antenna: Vertical

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 1900
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) Tx CHANNEL 512: $1 \mathrm{GHz}-3 \mathrm{GHz}$

```
EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode: GSM1900 CH 512
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
```


RADIATED SPURIOUS EMISSIONS(PCS 1900) Tx CHANNEL 661: $1 \mathrm{GHz}-3 \mathrm{GHz}$

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 1900 CH 661
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 24Spuri 1-3G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	3.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) Tx CHANNEL 661: 3GHz - 18GHz

EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode: GSM1900 CH 661
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:

SWEEP TABLE: "FCC 24Spuri $\mathbf{3 - 1 8 G "}$					
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
3.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) Tx CHANNEL 512: 3GHz - 18GHz

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 1900 CH 512
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
3.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) Tx CHANNEL 661: 18-19.1GHz

```
EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode: GSM1900 CH 661
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments:
```

SWEEP TABLE: "FCC 24spuri 18-19.1G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
18.0 GHz	19.1 GHz	Average	Coupled	1 MHz	DUMMY-DBM

RADIATED SPURIOUS EMISSIONS(PCS 1900) Tx: 18-19.1GHz

```
EUT: 04GI10/TL265GS
Customer:: Tyco/DSC
Test Mode: GSM 1900
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 24spuri 18-19.1G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
18.0 GHz	19.1 GHz	Average	Coupled	1 MHz	DUMMY-DBM

Test Results Transmitter Spurious Emission UMTS FDD2:

Harmonics	Tx ch-9262 Freq. (MHz)	Level (dBm)	Tx ch-9400 Freq. (MHz)	Level (dBm)	$\begin{aligned} & \text { Tx ch-9538 } \\ & \text { Freq. (MHz) } \end{aligned}$	Level (dBm)
2	3704.8	NF	3760	NF	3815.2	NF
3	5557.2	NF	5640	NF	5722.8	NF
4	7409.6	NF	7520	NF	7630.4	NF
5	9262	NF	9400	NF	9538	NF
6	11114.4	NF	11280	NF	11445.6	NF
7	12966.8	NF	13160	NF	13353.2	NF
8	14819.2	NF	15040	NF	15260.8	NF
9	16671.6	NF	16920	NF	17168.4	NF
10	18524	NF	18800	NF	19076	NF

5.2.5 RECEIVER RADIATED EMISSIONS

§ 2.1053 / RSS-132 \& 133

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 GHz and 26.5 GHz very short cable connections to the antenna was used to minimize the noise level.

Limits
SUBCLAUSE § RSS-133

Frequency (MHz)	Field strength ($\mu \mathrm{V} / \mathrm{m}$)	Measurement distance (m)
0.009-0.490	2400/F (kHz)	300
0.490-1.705	24000/F (kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

No significant emissions measurable. Plots reported here represent the worse case emissions.

5.2.5.1 Test Results Receiver Spurious Emission GSM850

30M-1GHz, Antenna Vertical
This plot is valid for low, mid \& high channels (worst-case plot)

```
EUT: 04GI12b / C01 / TL260GS
Customer:: DSC / Tyco
Test Mode: GSM 850; IDLE
ANT Orientation: V
EUT Orientation: V
Test Engineer: SAM
Voltage: 120v
Comments:
```


SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	3141-\#1186_Vert

Receiver Spurious Emission GSM850 30M-1GHz, Antenna Horizontal

This plot is valid for low, mid \& high channels (worst-case plot)

```
EUT: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Test Mode: GSM 850; IDLE
ANT Orientation: H
EUT Orientation: V
Test Engineer: SAM
Voltage: 120v
Comments:
```

SWEEP TABLE: "CANDA RE_30M-1G_Hor"					
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	$3141-\# 1186 _H o r z$

Receiver Spurious Emission GSM850 30M-1GHz, Antenna Horizontal

This plot is valid for low, mid \& high channels (worst-case plot)

```
EUT: 04GI10 / TL265GS
Customer:: DSC / Tyco
Test Mode: GSM 850; IDLE
ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris
Voltage: 120v
Comments:
```

SWEEP TABLE: "CANDA RE_30M-1G_Hor"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	3141-\#1186_Horz

Test Results Receiver Spurious Emission GSM850

30M-1GHz, Antenna Vertical

```
EUT: 04GI10 / TL265GS
Customer:: DSC / Tyco
Test Mode: GSM 850; IDLE
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: 120v
Comments:
```

SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	3141-\#1186_Vert

Receiver Spurious Emission GSM850: 1-18GHz

```
EUT / Description: 04GI10/TL265GS
Customer: Tyco/DSC
Operation Mode: GSM 850
ANT Orientation: : V
EUT Orientation:: H
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments::
```

SWEEP TABLE: "CANADA RE_1-18G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	\#326horn_AF_horz

Receiver Spurious Emission GSM850: 1-18GHz

EUT / Description: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Operation Mode: GSM 850
ANT Orientation: : V
EUT Orientation:: V
Test Engineer: Chris
Voltage: $\quad 120 \mathrm{VAC}$ and internal battery
Comments::

SWEEP TABLE: "CANADA RE_1-18G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	\#326horn_AF_horz

5.2.5.2 Test Results Receiver Spurious Emission GSM1900

30M-1GHz, Antenna Vertical
This plot is valid for low, mid \& high channels (worst-case plot)

```
EUT: 04GI12b / C01 / TL260GS
Customer: Tyco/DSC
Test Mode: GSM 1900
ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM

Receiver Spurious Emission GSM1900 30M-1GHz, Antenna Horizontal

This plot is valid for low, mid $\&$ high channels (worst-case plot)

```
EUT: 04GI12b / C01 / TL260GS
Customer:: Tyco/DSC
Test Mode: GSM 1900
ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter + Internal Battery
Comments:
```

SWEEP TABLE: "FCC 24 Spur 30M-1G_H"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	DUMMY-DBM

Test Results Receiver Spurious Emission GSM1900

30M-1GHz, Antenna Vertical

EUT:	04GI10 / TL265GS
Customer:	DSC / Tyco
Test Mode:	GSM; IDLE
ANT Orientation:	V
EUT Orientation:	V
Test Engineer:	Chris
Voltage:	120v
Comments:	

SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	3141-\#1186_Vert

Test Results Receiver Spurious Emission GSM1900

30M-1GHz, Antenna Horizontal

```
EUT:
Customer:: DSC / Tyco
Test Mode: GSM; IDLE
ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris
Voltage: 120v
Comments:
```

SWEEP TABLE:	"CANDA RE_30M-1G_Hor"				
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	3141-\#1186_Horz

Receiver Spurious Emission GSM1900: 1-18GHz

```
EUT / Description: 04GI10/TL265GS
Customer: Tyco/DSC
Operation Mode: GSM; Idle
ANT Orientation: : V
EUT Orientation:: H
Test Engineer: Chris
Voltage:
    AC Adapter + Internal Battery
Comments::
```

SWEEP TABLE: "CANADA RE_1-18G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	\#326horn_AF_horz

Receiver Spurious Emission GSM1900: 1-18GHz

```
EUT / Description: 04GI12b / C01 / TL260GS
Customer: DSC / Tyco
Operation Mode: GSM; Idle
ANT Orientation: : V
EUT Orientation:: V
Test Engineer: Chris
Voltage: 120VAC and internal battery
Comments::
```

SWEEP TABLE: "CANADA RE_1-18G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
1.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	\#326horn_AF_horz

5.2.6 Limits

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

$\S 15.107$ (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Limit

Frequency of Emission (MHz)	Conducted Limit $(\mathrm{dB} \mu \mathrm{V})$	
	Quasi-Peak	Average
	66 to 56^{*}	56 to 46^{*}
$0.15-0.5$	56	46
$0.5-5$	60	50
$5-30$	VBW $=\mathbf{1 0 K H z}$	

5.2.7 Results, TX Transmit Line:

EUT: 04GI12b / C01 / TL260GS
Manufacturer: DSC / Tyco
Test Mode: GSM 1900
ANT Orientation: N/A
EUT Orientation: H
Test Engineer: Chris
Power Supply: 110VAC
Comments:
Level [dB $\mu \mathrm{V}$]

MES 55022 cond MaxPk
MES 55022 cond Avg
LIM EN 55022 V QP Voltage QP Limit
—— LIM EN 55022 V AV Voltage AV Limit

LIMIT LINE: "EN 55022 v AV"

Short Description:		Voltage AV Limit
4/27/1998 2:24PM		
Frequency	Level	
MHz	$\mathrm{dB} \mu \mathrm{V}$	
0.150000	56.00	
0.500000	46.00	
5.000000	46.00	
5.000000	50.00	
30.000000	50.00	
LIMIT LINE: "EN 55022 V QP"		
Short Description:		Voltage QP Limit
4/27/1998 2:24PM		
Frequency	Level	
MHz	$\mathrm{dB} \mu \mathrm{V}$	
0.150000	66.00	
0.500000	56.00	
5.000000	56.00	
5.000000	60.00	
30.000000	60.00	

5.2.8 TX Transmit Neutral:

EUT: 04GI12b / C01 / TL260GS
Manufacturer: DSC / Tyco
Test Mode: GSM 1900
ANT Orientation: N/A
EUT Orientation: H
Test Engineer: Chris
Power Supply: 110VAC
Comments:
Level $[\mathrm{dB} \mu \mathrm{V}]$

——MES 55022 cond MaxPk

- MES 55022 cond Avg
—— LIM EN 55022 V QP Voltage QP Limit
_ LIM EN 55022 V AV Voltage AV Limit

LIMIT LINE: "EN 55022 V AV"

Short Description:
4/27/1998 2:24PM
Frequency Level
MHz dB $\mu \mathrm{V}$
$0.150000 \quad 56.00$
$0.500000 \quad 46.00$
5.000000 46.00
$5.000000 \quad 50.00$
$30.000000 \quad 50.00$

LIMIT LINE: "EN 55022 V QP"
Short Description: Voltage QP Limit
4/27/1998 2:24PM
\(\left.$$
\begin{array}{rr}\text { Frequency } \\
M H z\end{array}
$$ \begin{array}{r}Level

dB \mu \mathrm{V}\end{array}\right\}\)| | |
| ---: | ---: |
| 0.150000 | 66.00 |
| 0.500000 | 56.00 |
| 5.000000 | 56.00 |
| 5.000000 | 60.00 |
| 30.000000 | 60.00 |

Voltage AV Limit

Voltage QP Limit

5.2.9 RX Transmit Line:

EUT: 04GI12b / C01 / TL260GS
Manufacturer: DSC / Tyco
Test Mode: GSM 1900 idle
ANT Orientation: N/A
EUT Orientation: H
Test Engineer: Chris
Power Supply: 110VAC
Comments:

Level [$\mathrm{dB} \mu \mathrm{V}$]

[^0]
LIMIT LINE: "EN 55022 v AV"

Short Description:		Voltage AV Limit
4/27/1998 2:24PM		
Frequency	Level	
MHz	$\mathrm{dB} \mu \mathrm{V}$	
0.150000	56.00	
0.500000	46.00	
5.000000	46.00	
5.000000	50.00	
30.000000	50.00	
LIMIT LINE: "EN 55022 V QP"		
Short Description:		Voltage QP Limit
4/27/1998 2:24PM		
Frequency	Level	
MHz	$\mathrm{dB} \mu \mathrm{V}$	
0.150000	66.00	
0.500000	56.00	
5.000000	56.00	
5.000000	60.00	
30.000000	60.00	

5.2.10 RX Transmit Neutral:

EUT: 04GI12b / C01 / TL260GS
Manufacturer: DSC / Tyco
Test Mode: GSM 1900 idle
ANT Orientation:: N/A
EUT Orientation:: H
Test Engineer:: Chris
Power Supply: : 110VAC
Comments: :
Level $[\mathrm{dB} \mu \mathrm{V}$]

- MES 55022 cond MaxPk

MES 55022 cond Avg
—— LIM EN 55022 V QP Voltage QP Limit
—— LIM EN 55022 V AV Voltage AV Limit

LIMIT LINE: "EN 55022 v AV"

Short Description:		Voltage AV Limit
4/27/1998 2:24PM		
Frequency	Level	
MHz	$\mathrm{dB} \mu \mathrm{V}$	
0.150000	56.00	
0.500000	46.00	
5.000000	46.00	
5.000000	50.00	
30.000000	50.00	
LIMIT LINE: "EN 55022 V QP"		
Short Description:		Voltage QP Limit
4/27/1998 2:24PM		
Frequency	Level	
MHz	$\mathrm{dB} \mu \mathrm{V}$	
0.150000	66.00	
0.500000	56.00	
5.000000	56.00	
5.000000	60.00	
30.000000	60.00	

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Cal Due	Interval
01	Spectrum Analyzer	ESIB 40	Rohde \& Schwarz	100107	May 2009	1 year
02	Spectrum Analyzer	FSEM 30	Rohde \& Schwarz	100017	May 2009	1 year
03	Signal Generator	SMY02	Rohde \& Schwarz	836878/011	May 2009	1 year
04	Power-Meter	NRVD	Rohde \& Schwarz	0857.8008.02	May 2009	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2009	1 year
06	$\begin{aligned} & \text { Horn Antenna (1- } \\ & 18 \mathrm{GHz} \text {) } \end{aligned}$	$\begin{aligned} & \text { SAS- } \\ & 200 / 571 \\ & \hline \end{aligned}$	AH Systems	325	June 2009	1 year
07	Horn Antenna (1826.5 GHz)	3160-09	EMCO	1240	June 2009	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2009	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	$\begin{aligned} & \hline \text { JS4- } \\ & 00102600 \end{aligned}$	Miteq	00616	May 2009	1 year
13	Power Sensor	URV5-Z2	Rohde \& Schwarz	DE30807	May 2009	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde \& Schwarz	847958/008	May 2009	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde \& Schwarz	832221/06	May 2009	1 year
16	LISN	ESH3-Z5	Rohde \& Schwarz	836679/003	May 2009	1 year
17	Loop Antenna	6512	EMCO	00049838	July 2010	2 years

7 References

Title 47-Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 2--FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS October 1, 2001.

Title 47-Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 22 PUBLIC MOBILE SERVICES October 1, 1998.

FCC Report and order 02-229 September 24, 2002.
Title 47-Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 24 PERSONAL COMMUNICATIONS SERVICES October 1, 1998.

ANSI / TIA-603-C-2004 Land Mobile FM or PM Communications Equipment Measurement and Performance Standard November 7, 2002.

8 BLOCK DIAGRAMS

Conducted Testing

Radiated Testing

ANECHOIC CHAMBER

9 Revision History

[^0]: MES 55022 cond MaxPk
 MES 55022 cond Avg
 LIM EN 55022 V QP
 Voltage QP Limit

 - LIM EN 55022 V AV Voltage AV Limit

