FCC Permissive Class 2 Test Report For the B&B Electronics Inc. Airborne WLAN Module

FCC ID: F4AWLNG551 IC: 3913A-WLNG551

WLL JOB# 12627-01 Rev 0 August 30, 2012

Prepared for:

B&B Electronics 707 Dayton Road, Ottawa, IL, 61350

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

Testing Certificate AT-1448

FCC Permissive Class 2 Test Report For the B&B Electronics Inc. Airborne WLAN Module

FCC ID: F4AWLNG551 IC: 3913A-WLNG551

WLL JOB# 12627-01 Rev 0 August 30, 2012

Prepared by:

Steven Dovell Compliance Engineer

Reviewed by:

Steven D. Koster Vice President

Abstract

This report has been prepared on behalf of B&B Electronics to support the attached Class 2 permissive change. The Permissive Class 2 Test Report for a Direct Sequence Spread Spectrum Transmitter under Part 15.247 (10/2010) of the FCC Rules and Regulations and Spectrum Management and Telecommunications Policy RSS-210 issue 8 of Industry Canada. This Certification Test Report documents the test configuration and test results for the B&B Electronics Airborne WLAN Module.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ACLASS under Certificate AT-1448 as an independent FCC test laboratory.

The B&B Electronics Airborne WLAN Module complies with the limits for a Direct Sequence Spread Spectrum Transmitter under FCC Part 15.247 and Industry Canada RSS-210.

.

Revision History	Description of Change	Date
Rev 0	Initial Release	August 30,2012

Table of Contents

Abstract	ii
1 Introduction	
1.1 Reason for Class 2 Permissive Change	4
1.2 Compliance Statement	
1.3 Test Scope	4
1.4 Test Dates	4
1.5 Test and Support Personnel	4
1.6 Abbreviations	5
2 Equipment Under Test	6
2.1 EUT Identification & Description	6
2.2 Antenna Listings	7
2.3 Test Configuration	7
2.4 Testing Algorithm	
2.5 Test Location	
2.6 Measurements	
2.6.1 References	
2.7 Measurement Uncertainty	
3 Test Equipment	
4 Test Summary	
5 Test Results	
5.1 Occupied Bandwidth: (FCC Part §2.1049)	
5.2 RF Power Output: (FCC Part §2.1046)	
5.3 Radiated Spurious Emissions: (FCC Part §15.205 & §15.209)	
5.3.1 Test Procedure	
List of Tables	
Table 1: Device Summary	
Table 2: Expanded Uncertainty List	9
Table 3. Test Equipment List	10
Table 4. Test Summary Table	11
Table 5: Occupied Bandwidth Results	12
Table 6: Data Channel RF Power Output	12
Table 7: Spectrum Analyzer Settings	
Table 8: Radiated Emission Test Data < 1GHz	14
Table 9: Radiated Emission Test Data Band edge	14
Table 10: Radiated Emission Test Data > 1GHz	15

1 Introduction

1.1 Reason for Class 2 Permissive Change

This class 2 permissive change is being generated in order to add the ANT-2.4-WRT-UFL antenna for use with this module.

1.2 Compliance Statement

The B&B Electronics Airborne WAN Module remains in compliance with the limits for a modular Direct Sequence Spread Spectrum device under FCC Part 15.247 (10/2010).

1.3 Test Scope

Tests for radiated emissions and power verification (at antenna terminal) were performed. All measurements were performed in accordance with FCC Public Notice FCC97-114, Guidance on Measurements for Direct Sequence Spread Spectrum Systems & KDB558074: "Measurement of Digital Transmission Systems operating under Section 15.247." The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

Contract Information

Customer: B&B Electronics

707 Dayton Road

Ottawa, IL, 61350

Quotation Number: 66889

1.4 Test Dates

Testing was performed on the following date(s): 8/29/12

1.5 Test and Support Personnel

Washington Laboratories, LTD Steven Dovell

Client Representative Javan Sheneman

1.6 Abbreviations

A	Ampere
ac	alternating current
AM	Amplitude Modulation
Amps	Amperes
b/s	bits per second
BW	BandWidth
CE	Conducted Emission
cm	centimeter
CW	Continuous Wave
dB	deci B el
dc	direct current
EMI	Electromagnetic Interference
EUT	Equipment Under Test
FM	Frequency Modulation
G	g iga - prefix for 10 ⁹ multiplier
Hz	Hertz
IF	Intermediate Frequency
k	k ilo - prefix for 10 ³ multiplier
LISN	Line Impedance Stabilization Network
M	M ega - prefix for 10 ⁶ multiplier
m	m eter
μ	m icro - prefix for 10 ⁻⁶ multiplier
NB	Narrowband
QP	Quasi-Peak
RE	Radiated Emissions
RF	Radio Frequency
rms	root-mean-square
SN	Serial Number
S/A	Spectrum Analyzer
V	Volt

2 Equipment Under Test

2.1 EUT Identification & Description

The Airborne WLAN Module is an industrialized 802.11b/g radio module for integration into an OEM's electronics.

Table 1: Device Summary

ITEM	DESCRIPTION
Manufacturer:	B&B Electronics
FCC ID:	F4AWLNG551
IC:	3913A-WLNG551
Model:	Airborne WLAN Module (Model Number: 930-8090-01C-G)
FCC Rule Parts:	§15.247
Industry Canada:	RSS210
Frequency Range:	2412 – 2462MHz
Maximum Output Power:	19.1 dBm (81.3mW) Peak
Modulation:	802.11b-DSSS, 802.11g- OFDM
Occupied Bandwidth:	802.11b-13.11MHz, 802.11g- 16.67MHz
Maximum Spurious TX:	140.8uV/m @3m – 264.6MHz
Maximum Spurious RX:	127.6uV/m @3m -1320.7MHz
Emission Designator:	13M1G1D, 16M7G1D
Keying:	Automatic
Type of Information:	Data
Number of Channels:	11
Antenna Connector	CN1 & CN2 antenna ports, U.FL connectors
Antenna Type	See Below- Highest Gain 5.5dBi
Power Output Level	Fixed
Interface Connector:	CN3 connector 36 pins, Hirose type DF12B
Power Source & Voltage:	3.3Vdc nominal, 3.0-3.6Vdc min-max.

2.2 Antenna Listings

The antenna listed below is proposed by the manufacturer for use with this device.

Name/Description	Gain	Man/Model Number	Part Number
2.4 GHz 0dBi U.FL/MHF Wireless LAN Antenna	0dBi	Antenna Factor	ANT-2.4-WRT-UFL
		ANT-2.4-WRT-UFL	

2.3 Test Configuration

The Airborne WLAN Module was configured as a standalone unit. 3.6VDC power was applied to the module from the support motherboard (via a 120VDC to 5VDC adaptor) that held the RF WLAN module. Onboard regulators on the module reduce the voltage to 3.3VDC

2.4 Testing Algorithm

The Airborne WLAN Module was programmed with command line entries via a support laptop Tera term communications program to transmit continuously at one of three channels, 2412MHz, 2437MHz, and 2462MHz. Worst case emission levels are provided in the test results data.

Worst case emission levels are provided in the test results data.

2.5 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ACLASS under Certificate AT-1448 as an independent FCC test laboratory.

2.6 Measurements

2.6.1 References

FCC OET 996369 D01 Module Certification Guide v01r03 Dated 7/12/2011

FCC OET 558074 D01 DTS Meas Guidance v01 Dated 1/18/2012

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

2.7 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

where u_c = standard uncertainty a, b, c,.. = individual uncertainty elements div_a, _b, _c = the individual uncertainty element divisor based on the probability distribution divisor = 1.732 for rectangular distribution divisor = 2 for normal distribution divisor = 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

where U = expanded uncertainty k = coverage factor $k \leq 2 \text{ for } 95\% \text{ coverage (ANSI/NCSL Z540-2 Annex G)}$ $u_c = \text{standard uncertainty}$

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is <u>not</u> used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 2 below.

Table 2: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	2.63 dB
Radiated Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	4.55 dB

3 Test Equipment

Table 3 shows a list of the test equipment used for measurements along with the calibration information.

Table 3. Test Equipment List

Test Name:	Conducted Emissions Voltage	Test Date:	8/29/30
Asset #	Manufacturer/Model	Description	Cal. Due
605	AGILENT HP - N1911A	POWER METER	4/30/2014
000606	AGILENT HP - N1921A	POWER SENSOR	4/30/2014
HNS H- D61476	HP - 8563E	ANALYZER SPECTRUM	03/31/2013

Test Name:-	Radiated Emissions	Test Date:	08/29/2012
Asset #	Manufacturer/Model	Description	Cal. Due
HNS H- D61476	HP - 8563E	ANALYZER SPECTRUM	03/31/2013
69	HP - 85650A	ADAPTER QP	6/27/2013
71	HP - 85685A	PRESELECTOR RF	6/27/2013
73	HP - 8568B	ANALYZER SPECTRUM	6/27/2013
282	ITC - 21X-3A1	WAVEGUIDE 6.8-15GHZ	5/29/2014
281	ITC - 21A-3A1	WAVEGUIDE 4.51-10.0GHZ	5/29/2014
337	WLL - 1.2-5GHZ	FILTER BAND PASS	4/19/2014
627	AGILENT - 8449B	AMPLIFIER 1-26GHZ	5/24/2013
644	SUNOL SCIENCES CORPORATION - JB1 925-833- 9936	BICONALOG ANTENNA	1/12/2013
425	ARA - DRG-118/A	ANTENNA DRG 1-18GHZ	9/7/2013

4 Test Summary

The Table Below shows the results of testing for compliance with a DSSS Transmitter in accordance with FCC Part 15.247 and RSS210 issue 8. Full results are shown in section 5.

Table 4. Test Summary Table

FCC Rule Part	Industry Canada Rule Part	Description	Result
15.247 (a)(2)	A8.2 (a)	6dB Bandwidth	Pass
15.247 (b)(3)	A8.4 (4)	Transmit Output Power	Pass
15.205	RSS-GEN issue 3,	General Field Strength	Pass
15.209	7.2.2	Limits (Restricted Bands	
		Limits)	

5 Test Results

5.1 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer. The method used is in accordance with FCC OET 558074 D01 DTS Meas Guidance v01 section 5.1.1.

For DSSS Transmitter, FCC Part 15.247 requires the maximum 6 dB bandwidth be greater or equal to 500kHz.

This test as performed in order to determine the proper Power Measurement Technique.

At full modulation, the occupied bandwidth was measured as shown:

Table 5 provides a summary of the Occupied Bandwidth Results.

Table 5: Occupied Bandwidth Results

Frequency	Bandwidth	Limit	Pass/Fail
2437MHz	16.9MHz	≥500kHz	Pass

5.2 RF Power Output: (FCC Part §2.1046)

To measure the output power the radio was transmitting on 2437MHz. The module is provided with a U.FL/MHF compatible connector. The antenna removed and replaced by a short (<10cm) temporary SMA connector port. The output from the transmitter was connected to an attenuator and then to the input of a wideband power meter. Both antenna ports were tested by switching the software command to select either antenna 1 or antenna 2. The power meter offset was adjusted to compensate for the attenuator in the system. This is performed in accordance with FCC procedures (Note the FCC has allowed the use of power meters for this measurement with corrected draft OET procedure 558074 DTS Meas Guidance DR01 and Test Methods of C63.10:2009).

The final result was compared to the previous grant listing for this device to ensure that the output was within ± 1 (without exceeding the rule part limit of ± 30 dBm).

The unit was within the acceptable tolerance for this permissive change.

Table 6: Data Channel RF Power Output

Channel and/or Frequency	Peak	Peak Measured	Present	Present
	Measured	Level	Grant	Grant
	Level	(Watts)	Level	Level
	(dBm)		(dBm)	(Watts)
2437MHz (ant Port 1)	19.1	0.0813	0.0813	0.0813
2437MHz (ant Port 2)	19.1	0.0813	19.1	0.0813

5.3 Radiated Spurious Emissions: (FCC Part §15.205 & §15.209)

The EUT must comply with the requirements for radiated spurious emissions that fall within the restricted bands. These emissions must meet the limits specified in §15.209 and §15.35(b) for peak measurements.

5.3.1 Test Procedure

The EUT was fitted with the new antenna then was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2003. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The unit was pre-scanned in 3 orthogonal positions with full testing performed in the worst case position.

The emissions were measured using the following resolution bandwidths:

Frequency RangeResolution BandwidthVideo Bandwidth30MHz-1000 MHz120kHz>100 kHz>1000 MHz1 MHz10 Hz (Avg.), 1MHz (Peak)

Table 7: Spectrum Analyzer Settings

Worst case emissions are presented.

The unit was tested in 3 orthogonal positions with the worst case data presented.

Testing was performed in the 802.11b 11Mbps mode.

Table 8: Radiated Emission Test Data < 1GHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)	Comments
72.84	V	180.00	1.00	4.40	9.4	4.9	100.0	-26.2	
111.64	V	100.00	1.40	12.50	15.2	24.2	150.0	-15.8	
132.28	V	175.00	1.24	5.00	14.8	9.8	150.0	-23.7	
150.07	V	0.00	1.00	4.40	14.1	8.4	150.0	-25.1	
264.56	V	190.00	1.00	21.30	16.2	74.7	200.0	-8.6	
330.70	V	90.00	1.00	12.40	18.0	33.1	200.0	-15.6	
74.50	Н	270.00	4.00	10.70	9.4	10.1	100.0	-19.9	
108.80	Н	180.00	4.00	23.20	14.4	75.5	150.0	-6.0	
149.87	Н	180.00	2.88	8.00	14.0	12.6	150.0	-21.5	
156.41	Н	185.00	2.47	10.50	14.2	17.2	150.0	-18.8	
264.60	Н	340.00	2.00	26.80	16.2	140.8	200.0	-3.1	
330.71	Н	280.00	1.50	17.50	18.0	59.6	200.0	-10.5	

Table 9: Radiated Emission Test Data Band edge

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)	Comments
2390.00	V	270.00	2.27	42.50	-3.5	88.9	5000.0	-35.0	Peak
2390.00	V	270.00	2.27	32.60	-3.5	28.4	500.0	-24.9	Average
2483.50	V	270.00	2.27	43.60	-2.8	110.2	5000.0	-33.1	Peak
2483.50	V	270.00	2.27	33.80	-2.8	35.7	500.0	-22.9	Average
2390.00	Н	90.00	2.44	45.60	-3.5	127.0	5000.0	-31.9	Peak
2390.00	Н	90.00	2.44	34.50	-3.5	35.4	500.0	-23.0	Average
2483.50	Н	90.00	2.44	47.80	-2.8	178.8	5000.0	-28.9	Peak
2483.50	Н	90.00	2.44	35.60	-2.8	43.9	500.0	-21.1	Average

Table 10: Radiated Emission Test Data > 1GHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)	Comments
1575.80	V	300.00	2.13	65.50	-7.9	761.3	5000.0	-16.3	Peak
1575.80	V	300.00	2.13	46.50	-7.9	85.4	500.0	-15.3	Average
1689.17	V	300.00	2.10	67.50	-7.4	1016.5	5000.0	-13.8	Peak
1689.17	V	300.00	2.10	43.20	-7.4	62.0	500.0	-18.1	Average
4874.00	V	185.00	1.91	42.00	3.8	194.4	5000.0	-28.2	Peak
4874.00	V	0.00	0.00	32.50	3.8	65.1	500.0	-17.7	Average
7311.00	V	95.00	1.71	50.80	10.2	1116.4	5000.0	-13.0	Peak
7311.00	V	0.00	0.00	28.00	10.2	80.9	500.0	-15.8	Average
12185.00	V	165.00	1.48	43.00	19.5	1330.7	5000.0	-11.5	Peak
12185.00	V	165.00	1.48	28.97	19.5	264.6	500.0	-5.5	Average
1323.13	Н	0.00	2.33	45.30	-8.4	70.3	5000.0	-37.0	Peak
1323.13	Н	0.00	2.33	37.20	-8.4	27.7	500.0	-25.1	Average
1575.80	Н	270.00	1.91	49.67	-7.9	123.0	5000.0	-32.2	Peak
1575.80	Н	270.00	1.91	42.33	-7.9	52.8	500.0	-19.5	Average
1689.17	Н	270.00	1.93	54.30	-7.4	222.4	5000.0	-27.0	Peak
1689.17	Н	270.00	1.93	34.70	-7.4	23.3	500.0	-26.6	Average
4874.00	Н	180.00	1.74	45.20	3.8	281.0	5000.0	-25.0	Peak
4874.00	Н	180.00	1.74	31.50	3.8	58.0	500.0	-18.7	Average
7311.00	Н	160.00	1.73	40.20	10.2	329.5	5000.0	-23.6	Peak
7311.00	Н	160.00	1.73	27.20	10.2	73.8	500.0	-16.6	Average
12185.00	Н	190.00	1.46	41.30	19.5	1094.2	5000.0	-13.2	Peak
12185.00	Н	190.00	1.46	28.50	19.5	250.7	500.0	-6.0	Average