

ADDENDUM TO FC02-080B

FOR THE

CABLE MODEM GATEWAY, SBG 1000 P5

FCC PART 15 SUBPART C SECTIONS 15.207, 15.209 AND 15.247 AND SUBPART B SECTIONS 15.107 AND 15.109 CLASS B

COMPLIANCE

DATE OF ISSUE: FEBRUARY 3, 2002

PREPARED FOR:

Motorola BCS 6450 Sequence Drive San Diego, CA 92121

PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

P.O. No.: 4109242 W.O. No.: 79346 Date of test: August 7-21, November 15 and December 5, 2002

Report No.: FC02-080C

This report contains a total of 104 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 104 Report No: FC02-080C

TABLE OF CONTENTS

Administrative Information	.4
Summary of Results	.5
Conditions for Compliance	.5
Approvals	.5
Equipment Under Test (EUT) Description	.6
15.31(e) Voltage Variation	.6
15.31(m) Number Of Channels	.6
15.33(a) Frequency Ranges Tested	.6
15.203 Antenna Requirements	.6
15.205 Restricted Bands	.7
Mode Of Operation	.7
Eut Operating Frequency	.7
Antenna Gain	.7
Equipment Under Test	.8
Peripheral Devices	.8
Report of Measurements	.10
15.247(a)(2) 6 dB Bandwidth Plots – Direct Sequence	.10
15.247(b)(1) Peak Output (EIRP)	.13
15.247(b)(1) Peak Output (Conducted)	.13
15.247(b)(1) Peak Output	.14
Table 1: 15.247(c) Antenna Terminal Six Highest Radiated Emission Levels	.15
Table 2: 15.247(c) OATS Six Highest Radiated Emission Levels: 9 kHz - 30 MHz	.16
Table 3: 15.247(c) OATS Six Highest Radiated Emission Levels: 30-1000 MHz	.17
Table 4: 15.247(c) OATS Six Highest Radiated Emission Levels: 1-25 GHz	.18
15.247(c) Bandedge Plots – Direct Sequence	. 19
Table 5: 15.247(c) OATS Six Highest Radiated Emission Levels: 30-1000 MHz	.21
15.247(c) Bandedge Plots – Direct Sequence	.22
15.247(d) Power Spectral Density	.24
Table 6: 15.107/15.207 Six Highest Conducted Emission Levels	.27
Table 7: 15.109 Six Highest Radiated Emission Levels	.28
Table 8: 15.209 Six Highest Radiated Emission Levels	.29
2.1093 MPE Calculations	.30
Temperature And Humidity During Testing	.31
Measurement Uncertainty	.31
EUT Setup	.31
Correction Factors	.31
Table A: Sample Calculations	.31
Test Instrumentation and Analyzer Settings	.32
Spectrum Analyzer Detector Functions	.32
Peak	.32
Quasi-Peak	.32
A	
Average	.32

EUT Testing	33
Mains Conducted Emissions	33
Antenna Conducted Emissions	33
Radiated Emissions	33
Transmitter Characteristics	34
15.247(a)(2) Bandwidth – Direct Sequence	34
15.247(b) Peak Output Power	34
15.247(d) Peak Power Spectral Density	34
Appendix A: Test Setup Photographs	35
Equipment Test Setup Diagram - November Testing	36
Photograph Showing Voltage Variations and Peak Output	37
Photograph Showing Occupied Bandwidth	38
Photograph Showing Direct Connect Testing	39
Photograph Showing Oats Testing	40
Photograph Showing Oats Testing	41
Photograph Showing Oats Testing	42
Photograph Showing Oats Testing	43
Photograph Showing Power Spectral Density	44
Photograph Showing Mains Conducted Emissions	45
Photograph Showing Mains Conducted Emissions	46
Appendix B: Test Equipment List	47
Appendix C: Measurement Data Sheets	51

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies: A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia). **CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:** FCC (USA); VCCI (Japan); and Industry Canada.

CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies: ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST:	August 7-21, November 15 and December 5, 2002
DATE OF RECEIPT:	August 7, 2002
PURPOSE OF TEST:	To demonstrate the compliance of the Cable Modem Gateway, SBG 1000 P5, with the requirements for FCC Part 15 Subpart C Sections 15.207 and 15.247 and Subpart B Sections 15.107 and 15.109 Class B devices. The purpose of Addendum A is to revise the outpower on pages 6, 13 and 25. Addendum B adds 15.209, 15.247(b) and 15.247(c) testing with a new antenna. Addendum C is to revise the MPE Calculations.
TEST METHOD:	ANSI C63.4 (1992)
MANUFACTURER:	Motorola BCS 6450 Sequence Drive San Diego, CA 92121
REPRESENTATIVE:	Daniel Exum
TEST LOCATION:	CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92621

Page 4 of 104 Report No: FC02-080C

SUMMARY OF RESULTS

As received, the Motorola BCS Cable Modem Gateway, SBG 1000 P5 was found to be fully compliant with the following standards and specifications:

United States

- FCC Part 15 Subpart B Sections 15.107 and 15.109 Class B
- ▶ FCC Part 15 Subpart C Sections 15.207, 15.209 and 15.247
- > ANSI C63.4 (1992) method

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

QUALITY ASSURANCE:

Steve -7 Bel

Steve Behm, Director of Engineering Services

Joyce Walker, Quality Assurance Administrative Manager

70 A

Septimiu Apahidean, EMC/Lab Manager

TEST PERSONNEL:

Stuart Yamamoto, EMC Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The Cable Modem Gateway tested by CKC Laboratories was representative of a production unit.

15.31(e) Voltage Variations

Equipment setup: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The active antenna port is connected to the Agilent E4440A spectrum analyzer.

	Power at	Power at	Power at
	Nominal	85% Nominal	115% Nominal
	Voltage	Voltage	Voltage
	(dBm)	(dBm)	(dBm)
Channel 1	15.04	15.04	15.04
Channel 6	14.56	14.56	14.56
Channel 11	14.16	14.16	14.16

Testing performed at antenna terminal

15.31(m) Number Of Channels

This device operates on 11 channel.

15.33(a) Frequency Ranges Tested

15.109/15.247 Radiated Emissions: 9 kHz – 25 GHz 15.207/15.107 Conducted Emissions: 450 kHz – 30 MHz

FCC SECTION 15.35:			
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	450 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	25 GHz	1 MHz

15.203 Antenna Requirements

The antenna is removable but has a unique connector; therefore the EUT complies with Section 15.203 of the FCC rules.

15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

Mode Of Operation

The EUT was configured by the manufacturer to operate in a continuous transmit mode for testing purposes. The EUT is normally in continuous mode with CW signal.

Eut Operating Frequency

The EUT was operating at 2412-2462 MHz. The Eut is a direct sequencing device operating in the 2400 – 2483.5 MHz band.

Antenna Gain

The antenna gain specification of the new remote antenna (model CAF94333) supplied with the antenna by Motorola is +5.0 dBi.

EQUIPMENT UNDER TEST

Cable Modem Gateway

Manuf:	Motorola BCS
Model:	SBG 1000 P5
Serial:	00080ED2F1E0
FCC ID:	pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

C6U Converter

Manuf:	General Instruments
Model:	C6U
Serial:	J5M7000101358
FCC ID:	DoC

<u>Hub</u>

Manuf:	Bay Networks
Model:	DS104
Serial:	DS14H08355155
FCC ID:	DoC

Computer

Manuf:	Dolch
Model:	L-PAC 585
Serial:	DCS2016538
FCC ID:	DoC

Mouse

Manuf:	Gateway
Model:	MOSXK
Serial:	NA
FCC ID:	DoC

Computer
Manuf:

Manuf:	Toshiba
Model:	PA1215UV
Serial:	04694236
FCC ID:	DoC

Thermal Printer

Manuf:	SII
Model:	DPU-414
Serial:	1033083A
FCC ID:	DoC

Keyboard

Dell
SK-1000RS
M940111179
DoC

Computer

Manuf:	Gateway
Model:	G6-366C
Serial:	0013168086
FCC ID:	DoC

<u>Monitor</u>

Manuf:	NEC
Model:	JC-1538VMA
Serial:	5900265EA
FCC ID:	DoC

Parallel Printer

Manuf:	Epson
Model:	P156A
Serial:	CMR1545596
FCC ID:	DoC

Head End

Manuf:	Cisco
Model:	uBR-MC11C
Serial:	CN1ISS0AA
FCC ID:	DoC

REPORT OF MEASUREMENTS

15.247(a)(2) 6 dB BANDWIDTH PLOTS – Direct Sequence CHANNEL 1

Page 10 of 104 Report No: FC02-080C

6 dB BANDWIDTH - CHANNEL 6

6 dB BANDWIDTH - CHANNEL 11

15.247(b)(1) Peak Output (EIRP)

Equipment Setup: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The active antenna port is connected to the Agilent E4440A Spectrum analyzer.

	Frequency (GHz)	Spectrum analyzer Measurement (dBm)	BW Correction Factor (dB)	Corrected Reading (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result Pass/Fail
Channel 1	2.412	13.66	1.38	15.04	2.5	17.54	30	Pass
Channel 6	2.437	13.18	1.38	14.56	2.5	17.06	30	Pass
Channel 11	2.462	12.78	1.38	14.16	2.5	16.6	30	Pass

15.247(b)(1) Peak Output (Conducted)

Equipment Setup: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The active antenna port is connected to the Agilent E4440A spectrum analyzer.

	Frequency (GHz)	Spectrum analyzer Measurement (dBm)	BW Correction Factor (dB)	Corrected Reading (dBm)	Limit (dBm)	Result Pass/Fail
Channel 1	2.412	13.66	1.38	15.04	30	Pass
Channel 6	2.437	13.18	1.38	14.56	30	Pass
Channel 11	2.462	12.78	1.38	14.16	30	Pass

Note: BW corr = 10*10Log (Emission BW/measurement BW) BW Corr = 10 *10Log(11/8) = 1.38 dB

15.247(b)(1) Peak Output

Equipment setup: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The active antenna port is connected to the Agilent E4440A Spectrum analyzer. Testing November 15, 2002 with new antenna.

		Spectrum	BW					
		Analyzer	Correction	Corrected	Antenna		EIRP	
	Frequency	Measurement	Factor	Reading	Gain	EIRP	Limit	Result
	(GHz)	(dBm)	(dB)	(dBm)	(dBi)	(dBm)	(dBm)	Pass/Fail
Channel 1	2.412	13.66	1.38	15.04	5	20.04	30	Pass
Channel 6	2.437	13.18	1.38	14.56	5	19.56	30	Pass
Channel 11	2.462	12.78	1.38	14.16	5	19.16	30	Pass

The following tables report the six highest worst case levels recorded during the tests performed on the Cable Modem Gateway, SBG 1000 P5. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix B.

Table 1: 15.247(c) Antenna Terminal Six Highest Radiated Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	dB	<u>ON FACT</u> dB	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
626.352	57.9	0.0				57.9	89.6	-31.7	V-6
651.390	56.7	0.0				56.7	88.7	-32.0	V-11
1607.968	58.9	0.0				58.9	89.8	-30.9	V-1
1624.634	58.5	0.0				58.5	89.6	-31.1	V-6
1641.304	59.8	0.0				59.8	88.7	-28.9	V-11
7386.036	56.5	0.0				56.5	88.7	-32.2	V-11

Test Method: Spec Limit: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.247(c) NOTES:

COMMENTS: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channels 1, 6 and 11. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data represents all emissions seen from 9 kHz to 25 GHz. Antenna terminal conducted emissions test (-20dBc limit).

V = Vertical Polarization 1 = Channel 1 6 = Channel 6 11 = Channel 11

Table 2. 15.247(c) OA 15 Six Highest Raulated Emission Levels. 7 KHz - 50 MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	<u>ON FACT</u> Cable dB	CORS 15.31 dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
0.076	72.6	10.5		0.2	-80.0	3.3	30.0	-26.7	N-6
0.077	72.3	10.5		0.2	-80.0	3.0	29.9	-26.9	N-11
0.079	72.4	10.5		0.2	-80.0	3.1	29.6	-26.5	N-1
0.137	64.8	10.1		0.2	-80.0	-4.9	24.8	-29.7	N-11
0.138	65.4	10.1		0.2	-80.0	-4.3	24.8	-29.1	N-1
0.138	64.5	10.1		0.2	-80.0	-5.2	24.8	-30.0	N-6

Table 2: 15.247(c) OATS Six Highest Rad	liated Emission Levels: 9 kHz - 30 MHz
---	--

Test Method:ANSI C63.4 (1992)NOTES:NOTES:Spec Limit:FCC Part 15 Subpart C Section 15.247(c)ITest Distance:3 MetersI

N = No Polarization 1 = Channel 1 6 = Channel 611 = Channel 11

COMMENTS: Channel 1: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channels 1,6 and 11. Temperature: 23°C, Humidity: 53%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 0.009 to 30.0 MHz.

Table 3: 15.247(c) OATS Six Highest Radiated Emission Levels: 30-1000 MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
37.534	47.5	15.4	-28.4	1.2		35.7	40.0	-4.3	HQ-1
48.047	52.2	11.5	-28.3	1.3		36.7	40.0	-3.3	VQ-1
48.076	52.9	11.5	-28.3	1.3		37.4	40.0	-2.6	VQ-6
48.101	53.1	11.5	-28.3	1.3		37.6	40.0	-2.4	VQ-11
82.531	55.6	7.4	-28.2	1.7		36.5	40.0	-3.5	HQ-1
640.062	44.4	20.5	-27.9	5.5		42.5	46.0	-3.5	HQ-6

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.247(c) 3 Meters NOTES:

H = Horizontal Polarization
V = Vertical Polarization
D = Dipole Reading
1 = Channel 1
6 = Channel 6
11 = Channel 11

COMMENTS: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channels 1, 6 and 11. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 30.0 to 1000.0 MHz.

Table 4: 15.247(c) OATS Six Highest Radiated Emission Levels: 1-25 GHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
1605.707	56.0	24.9	-38.6	5.2		47.5	54.0	-6.5	V-1
1844.400	56.3	25.9	-38.4	3.8		47.6	54.0	-6.4	V-6
1882.180	58.1	26.0	-38.3	3.8		49.6	54.0	-4.4	VA-11
7310.691	40.5	35.9	-37.8	13.0		51.6	54.0	-2.4	VA-6
7310.802	38.3	35.9	-37.8	13.0		49.4	54.0	-4.6	HA-6
7385.929	38.0	36.0	-37.9	13.0		49.1	54.0	-4.9	HA-11

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.247(c) 3 Meters NOTES:

H = Horizontal Polarization
V = Vertical Polarization
A = Average Reading
1 = Channel 1
6 = Channel 6
11 = Channel 11

COMMENTS: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channels 1, 6 and 11. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1.0 to 25.0 GHz.

15.247(c) BANDEDGE PLOTS – DIRECT SEQUENCE

CHANNEL 1

BANDEDGE PLOT - CHANNEL 11

Table 5: 15.247(c) OATS Six Highest Radiated Emission Levels: 30-1000 MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	Amp dB	<u>ON FACT</u> Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
63.989	57.0	8.1	-28.4	1.5		38.2	40.0	-1.8	VQ
106.755	55.8	13.4	-28.4	2.0		42.8	43.5	-0.7	VQ
111.376	53.5	14.3	-28.4	2.0		41.4	43.5	-2.1	VQ
111.621	53.4	14.3	-28.4	2.0		41.3	43.5	-2.2	VQ
112.226	53.1	14.4	-28.3	2.1		41.3	43.5	-2.2	VQ
511.982	47.4	19.9	-28.1	4.8		44.0	46.0	-2.0	VQ

Test Method:ANSI C63.4 (1992)Spec Limit:FCC Part 15 Subpart C Section 15.247Test Distance:3 Meters

NOTES:

Q = Quasi Peak ReadingV = Vertical Polarization

COMMENTS: The EUT is a cable modem (32MB SDRAM). The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with unshielded cat. 5 cables. Connected to the parallel port of the EUT is a thermal printer. One of the HPNA ports has an unshielded terminated cable connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 22C, Humidity: 42%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 30.0 to 1000.0 MHz. Testing November 15, 2002 with new antenna.

15.247(c) BANDEDGE PLOTS – DIRECT SEQUENCE

CHANNEL 1

Notes: Testing November 15, 2002 with new antenna.

CHANNEL 11

Notes: Testing November 15, 2002 with new antenna.

15.247(d) POWER SPECTRAL DENSITY - CHANNEL 1

POWER SPECTRAL DENSITY - CHANNEL 6

POWER SPECTRAL DENSITY - CHANNEL 11

Table 6: 15.107/15.207 Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	dB	ON FACT dB	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
1.206643	38.0	0.0				38.0	48.0	-10.0	В
3.314586	39.3	0.0				39.3	48.0	-8.7	В
3.314586	38.8	0.0				38.8	48.0	-9.2	W
4.044224	36.3	0.0				36.3	48.0	-11.7	В
25.209390	36.7	0.0				36.7	48.0	-11.3	W
25.218400	36.2	0.0				36.2	48.0	-11.8	В

Test Method: Spec Limit:

ANSI C63.4 (1992) FCC Part 15 Subpart B Section 15.107/Subpart NOTES:

B = Black LeadW = White Lead

C Section 15.207 Class B

COMMENTS: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 25°C, Humidity: 50%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz.

Table 7: 15.109 Six Highest Radiated Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	CORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
46.844	49.1	12.0	-28.3	1.3		34.1	40.0	-5.9	VQ
48.065	52.1	11.5	-28.3	1.3		36.6	40.0	-3.4	VQ
82.547	53.5	7.4	-28.2	1.7		34.4	40.0	-5.6	HQ
330.057	44.1	20.2	-28.2	3.7		39.8	46.0	-6.2	Н
390.013	48.4	16.1	-28.3	4.0		40.2	46.0	-5.8	HQ
640.054	44.2	20.5	-27.9	5.5		42.3	46.0	-3.7	HQ

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart B Section 15.109 Class B 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. Temperature: 24°C, Humidity: 53%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz.

Table 8: 15.209 Six Highest Radiated Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
1608.005	47.7	35.8	-37.9	4.5		50.1	54.0	-3.9	HA
1641.412	50.2	36.0	-37.9	4.6		52.9	54.0	-1.1	HA
1882.261	38.0	47.4	-38.5	4.9		51.8	54.0	-2.2	VA
7235.819	39.5	38.6	-35.9	10.5		52.7	54.0	-1.3	VA
7239.588	36.8	35.5	-35.9	10.5		46.9	54.0	-7.1	HA
7310.990	36.8	35.7	-35.9	10.4		47.0	54.0	-7.0	VA

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.209 3 Meters NOTES:

H = Horizontal Polarization V = Vertical Polarization A = Average Reading

COMMENTS: The EUT is a cable modem (32MB SDRAM). The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with unshielded cat. 5 cables. Connected to the parallel port of the EUT is a thermal printer. One of the HPNA ports has an unshielded terminated cable connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1 and Channel 11. Temperature: 22C, Humidity: 42%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1 GHz to 12.9 GHz.

2.1093 MPE Calculations

Maximum Permissible Exposure Calculations

Calculations prepared for: Motorola BCS 6450 Sequence Drive San Diego, Ca 92121 Calculations prepared by: Stuart Yamamoto 110 N. Olinda Place Brea, Ca 9283

Model Number: SBG 1000 P5 FCC Identification:

Fundamental Operating Frequency:2412 MHz to 2462 MHzMaximum Rated Output Power:0.032 Watts (15.05 dBm)Measured Maximum Output Power:0.0195 Watts (12.9 dBm)(Antenna terminal, 2412 MHz)

MPE limit in accordance with FCC part 1.1311, table 1 EIRP = Maximum Rated Output Power (dBm) + Antenna Gain (dBi) EIRP = 15.05 dBm + 5.0 dBi = 20.05 dBm (101.15 mWatt)

Limit for Maximum permissible exposure: (B) Limit for General population/uncontrolled Exposure: For the frequency range of 1500-100,000 MHz, *the MPE is 1 (mW/cm²)*

EIRP	Distance	Power Density	Limit	Result
(mW)	(cm)	(mW/cm2)	(mW/cm2)	
101.15	20	0.0201	1.0000	PASS

Power Density $(mW/cm^2) = \frac{EIRP}{4*pi*d^2}$

EIRP is given in mW Distance (d) is given in centimeters

Under normal operating conditions, the antenna is designed to maintain a separation distance of 20 cm from all persons. As shown in the MPE results above, this device passes the limits specified in 1.1311 at a distance of 20 cm and at the rated output power of 0.032 Watts (32 mW). For the measured output power at the antenna terminal of 0.0195 Watts (19.5 mW), the EUT satisfies the requirement in the 1500 to 100,000 MHz frequency range.

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

MEASUREMENT UNCERTAINTY

Measurement uncertainty associated with data in this report is a \pm 2.94dB for radiated and \pm 1.56dB for conducted emissions.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected. The interval between different pieces of equipment was approximately 10 centimeters. All excessive interconnecting cable was bundled in 30-40 centimeter lengths.

The radiated and conducted emissions data of the Cable Modem Gateway, SBG 1000 P5, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TA	TABLE A: SAMPLE CALCULATIONS							
	Meter reading	(dBµV)						
+	Antenna Factor	(dB)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	$(dB\mu V/m)$						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the Cable Modem Gateway, SBG 1000 P5. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. The horn antenna was used for frequencies above 1000 MHz. All antennas were located at a distance of 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

Antenna Conducted Emissions

For measuring the signal strength on the RF output port of the EUT, the spectrum analyzer was connected directly to the EUT. The sweep time of the analyzer was adjusted so that the spectrum analyzer readings were always in a calibrated range. All readings within 20 dB of the limit were recorded.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the host PC was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 88 MHz was scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. The frequency range of 100 to 300 MHz was then scanned in the same manner using the biconical antenna and the peaks recorded. Lastly, a scan of the FM band from 88 to 110 MHz was made, using a reduced resolution bandwidth and frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 to 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 to 1000 MHz was again scanned. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

TRANSMITTER CHARACTERISTICS

15.247(a)(2) Bandwidth Measurements (Direct Sequence)

The fundamental frequency was kept within the permitted band 2400-2483.5. The minimum 6dB bandwidth shall be at least 500 kHz. Refer to the occupied bandwidth plots.

15.247(b) Peak Output Power

Frequency Band of Transmitter: 2400-2483.5

The RF conducted test was measured using a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. The resolution bandwidth was adjusted to greater than the 6 dB bandwidth of the emissions.

- **15.247(b)(1)** The maximum peak output power for all direct sequences, shall not exceed 1 watt.
- **15.247(b)(3)** If the transmitting antenna of directional gain greater than 6 dBi was used, except as shown in sections 15.247(b)(3)(i), (ii) & (iii), the peak output power shall be reduced below the stated values in paragraphs (b)(1) of section 15.247, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247(d) Peak Power Spectral Density

The peak power spectral density conducted from the EUT to the antenna was not greater than 8 dm in any 3 kHz band during any time interval of continuous transmission.

APPENDIX A

TEST SETUP PHOTOGRAPHS

Page 35 of 104 Report No: FC02-080C

EQUIPMENT TEST SETUP DIAGRAM - NOVEMBER TESTING

PHOTOGRAPH SHOWING VOLTAGE VARIATIONS AND PEAK OUTPUT

Voltage Variations and Peak Output

PHOTOGRAPH SHOWING OCCUPIED BANDWIDTH

Occupied Bandwidth

PHOTOGRAPH SHOWING DIRECT CONNECT TESTING

Direct Connect Testing

Oats - Front View

Oats - Back View

Oats - Front View

Notes: Testing November 15, 2002 with new antenna.

Oats – Back View

Notes: Testing November 15, 2002 with new antenna.

PHOTOGRAPH SHOWING POWER SPECTRAL DENSITY

Power Spectral Density

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Back View

APPENDIX B

TEST EQUIPMENT LIST

<u>15.31(e)</u>						
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Power Meter	02082	HP	435B	2445A11881	82101	82102
Power Sensor	02083	HP	8482A	2349A09782	52902	52903
SMA Cable	1337	Goretex	3825510-76	244922	82401	82402
Programmable Power Source	01695/ 01696	Pacific Power	345AMX / UPC32	250 / 245	62102	062103

15.247(a)(2)

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	92801	92802
QP Adapter	01437	HP	85650A	3303A01884	92801	92802
SMA Cable	1337	Goretex	3825510-76	244922	82401	82402
10dB Attenuator		Weinschel	93459		8602	8603
10dB Attenuator		Weinschel	93459		8602	8603

15.247(b)(1)

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Power Meter	02082	HP	435B	2445A11881	82101	82102
Power Sensor	02083	HP	8482A	2349A09782	52902	52903
SMA Cable	1337	Goretex	3825510-76	244922	82401	82402

15 2470	(\mathbf{a})
13.44/	C)

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	92801	92802
QP Adapter	01437	HP	85650A	3303A01884	92801	92802
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	32902	32903
Bicon Antenna	306	AH	SAS200/540	220	92401	92402
Log Periodic	331	AH	SAS 00/516	330	92401	92402
Antenna Dra amp	00200	UD	9447D	1027 4025 49	00501	00502
Pre-amp	00309	HP	8447D	1937A02348	90301	90302
Antenna cable	NA	NA	RG214	Cable#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	70802	70803
1-18 GHz Horn	0849	EMCO	3115	6246	91201	91202
Antenna						
Microwave Pre-amp	00786	HP	83017A	3123A00281	91201	91202
¹ /4" Heliax Coaxial	NA	Andrew	FSJ-50A-4	Cable#7	71502	71503
Cable				(6 ft)		
¹ /4" Heliax Coaxial	NA	Andrew	LDF1-50	Cable#18 (70	91101	91102
Cable				ft)		
SMA Cable	2212	Beldon	9273	NA	101701	101702
SMA Cable	1337	Goretex	3825510-76	244922	82401	82402
Loop Antenna	00314	EMCO	6502	2014	72302	72303
3.5 GHz High Pass	02117	HP	84300-	3643A00027	62502	62503
Filter			80038			
8.2 GHz High Pass	02118	HP	84300-		62502	62503
Filter			80039			
18-26.5 GHz Horn	01413	HP	84125-	942126-003	71102	71103
Antenna			80008			
10dB Attenuator		Weinschel	93459		8602	8603
10dB Attenuator		Weinschel	93459		8602	8603

<u>15.247(d)</u>

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	92801	92802
QP Adapter	01437	HP	85650A	3303A01884	92801	92802
SMA Cable	1337	Goretex	3825510-76	244922	82401	82402
10dB Attenuator		Weinschel	93459		8602	8603
10dB Attenuator		Weinschel	93459		8602	8603

15.107/15.207

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
LISN	02128	EMCO	3816/2NM	9809-1090	032002	032003
LISN	00847	EMCO	3816/2NM	1104	101501	101502

<u>15.109</u>

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032902	032903
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic	331	AH	SAS 00/516	330	092401	092402
Antenna						
Pre-amp	00309	HP	8447D	1937A02548	090501	090502
Antenna cable	NA	NA	RG214	Cable#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	070802	070803
1-18 GHz Horn	0849	EMCO	3115	6246	091201	091202
Antenna						
Microwave Pre-amp	00786	HP	83017A	3123A00281	091201	091202
¹ /4" Heliax Coaxial	NA	Andrew	FSJ-50A-4	Cable#7	071502	071503
Cable				(6 ft)		
¹ ⁄4" Heliax Coaxial	NA	Andrew	LDF1-50	Cable#18 (70	091101	091102
Cable				ft)		
SMA Cable	2212	Beldon	9273	NA	101701	101702
SMA Cable	1337	Goretex	3825510-76	244922	82401	82402
3.5 GHz High Pass	02117	HP	84300-	3643A00027	62502	62503
Filter			80038			
8.2 GHz High Pass	02118	HP	84300-		62502	62503
Filter			80039			
18-26.5 GHz Horn	01413	HP	84125-	942126-003	71102	71103
Antenna			80008			
10dB Attenuator		Weinschel	93459		8602	8603
10dB Attenuator		Weinschel	93459		8602	8603

<u>2.1093</u>

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Power Meter	02082	HP	435B	2445A11881	82101	82102
Power Sensor	02083	HP	8482A	2349A09782	52902	52903
SMA Cable	1337	Goretex	3825510-76	244922	82401	82402

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092702	092703
QP Adapter	01437	HP	85650A	3303A01884	092702	092703
Bicon Antenna	306	AH	SAS200/540	220	092302	092303
Log Periodic	300	AH	SAS 00/516	331	092302	092303
Antenna						
Pre-amp	00309	HP	8447D	1937A02548	082302	082303
Antenna cable	NA	NA	RG214	Cable#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	070802	070803
Horn Antenna	0849	EMCO	3115	6246	091002	091003
Microwave Pre-amp	00786	HP	83017A	3123A00281	091102	091103
Heliax Coaxial	NA	Andrew	LDF-50	Cable#20	091102	091103
Cable				(48 ft)		
12' SMA Cable	01337	W.L.Gore	NA	244922	121801	121802
3.5 GHz High Pass	02117	HP	84300-	3643A00027	62502	62503
Filter			80038			
10dB Attenuator	NA	Weinschel	1B	AJ9096	8602	8603
20dB Attenuator	NA	HP	85053-	01432	8602	8603
			60001			

Radiated Emissions equipment list for testing November 15, 2002

Equipment list for testing performed on December 5, 2002

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092702	092703
QP Adapter	01437	HP	85650A	3303A01884	092702	092703
Horn Antenna	0849	EMCO	3115	6246	091002	091003
Heliax Coaxial	NA	Andrew	LDF-50	Cable#20	091102	091103
Cable				(48 ft)		

APPENDIX C

MEASUREMENT DATA SHEETS

Page 51 of 104 Report No: FC02-080C

Customer:	Motorola BCS		
Specification:	FCC 15.247(c) Emissions (-20dBc limit)		
Work Order #:	79346	Date:	08/08/2002
Test Type:	Maximized emission	Time:	16:06:00
Equipment:	Cable Modem	Sequence#:	5
Manufacturer:	Motorola BCS	Tested By:	Stuart Yamamoto
Model:	SBG 1000 P5		
S/N:	00080ED2F1E0		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa Voltage to EUT is 120 Vac 60Hz. Data represents all emissions seen from 9 kHz to 25 GHz. Antenna terminal conducted emissions test (-20dBc limit).

Measu	irement Data:	R	eading	listed by m	nargin.		Te	st Distance	e: None		
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1607.968M	58.9					+0.0	58.9	89.8	-30.9	Vert
2	7236.300M	56.4					+0.0	56.4	89.8	-33.4	Vert
3	4826.520M	53.4					+0.0	53.4	89.8	-36.4	Vert

Customer:	Motorola BCS		
Specification:	FCC 15.247(c) Emissions (-20dBc limit)		
Work Order #:	79346	Date:	08/16/2002
Test Type:	Maximized emission	Time:	13:57:22
Equipment:	Cable Modem	Sequence#:	13
Manufacturer:	Motorola BCS	Tested By:	Stuart Yamamoto
Model:	SBG 1000 P5		
S/N·	00080ED2E1E0		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

<i>A</i> anufacturer	Model #	S/N
General Instruments	C6U	J5M7000101358
Bay Networks	DS104	DS14H08355155
loshiba	PA1215UV	04694236
Dolch	L-PAC 585	DCS2016538
SII	DPU-414	1033083A
Sateway	MOSXK	
Dell	SK-1000RS	M940111179
JEC	JC-1538VMA	5900265EA
Sateway	G6-366C	0013168086
Epson	P156A	CMR1545596
Cisco	uBR-MC11C	CN1ISS0AA
	Aanufacturer General Instruments Bay Networks Toshiba Dolch II Gateway Dell IEC Gateway Epson Eisco	ManufacturerModel #General InstrumentsC6UBay NetworksDS104SoshibaPA1215UVDolchL-PAC 585IIDPU-414GatewayMOSXKDellSK-1000RSUECJC-1538VMAGatewayG6-366COpsonP156ADiscouBR-MC11C

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 6. Temperature: 25°C, Humidity: 50%, Pressure: 100kPa Voltage to EUT is 120 Vac 60Hz. Data represents all emissions seen from 9 kHz to 25 GHz. Antenna terminal conducted emissions test (-20dBc limit).

Measu	rement Data:	Re	Reading listed by margin.			Test Distance: None					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1624.634M	58.5					+0.0	58.5	89.6	-31.1	Vert
2	626.352M	57.9					+0.0	57.9	89.6	-31.7	Vert
3	1845.774M	53.0					+0.0	53.0	89.6	-36.6	Vert
4	4873.642M	50.4					+0.0	50.4	89.6	-39.2	Vert

5 3249 248M	/0.0	± 0.0	10 0	89.6	_30.7	Vert
J J2+7.2+0141	77.7	10.0	77.7	07.0	-57.1	VCIT
C 7211 400M	40.0	.00	40.0	00.0	41 C	X7
6 /311.499M	48.0	+0.0	48.0	89.6	-41.6	vert
7 22 4 (2) (17.0	0.0	17.0	00.6	10.0	T 7 .
7 22.463M	4/.3	+0.0	47.3	89.6	-42.3	Vert
8 10 986M	45.2	+0.0	45.2	89.6	-44 4	Vert
0 1000000	10.12	10.0	10.2	07.0		

Customer:	Motorola BCS		
Specification:	FCC 15.247(c) Emissions (-20dBc limit)		
Work Order #:	79346	Date:	08/16/2002
Test Type:	Maximized emission	Time:	11:01:16
Equipment:	Cable Modem	Sequence#:	12
Manufacturer:	Motorola BCS	Tested By:	Stuart Yamamoto
Model:	SBG 1000 P5		
S/N:	00080ED2F1E0		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

<i>A</i> anufacturer	Model #	S/N
General Instruments	C6U	J5M7000101358
Bay Networks	DS104	DS14H08355155
loshiba	PA1215UV	04694236
Dolch	L-PAC 585	DCS2016538
SII	DPU-414	1033083A
Sateway	MOSXK	
Dell	SK-1000RS	M940111179
JEC	JC-1538VMA	5900265EA
Sateway	G6-366C	0013168086
Epson	P156A	CMR1545596
Cisco	uBR-MC11C	CN1ISS0AA
	Aanufacturer General Instruments Bay Networks Toshiba Dolch II Gateway Dell IEC Gateway Epson Eisco	ManufacturerModel #General InstrumentsC6UBay NetworksDS104SoshibaPA1215UVDolchL-PAC 585IIDPU-414GatewayMOSXKDellSK-1000RSUECJC-1538VMAGatewayG6-366COpsonP156ADiscouBR-MC11C

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 11. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa Voltage to EUT is 120 Vac 60Hz. Data represents all emissions seen from 9 kHz to 25 GHz. Antenna terminal conducted emissions test (-20dBc limit).

Measu	rement Data:	Re	Reading listed by margin.		Test Distance: None						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1641.304M	59.8					+0.0	59.8	88.7	-28.9	Vert
2	651.390M	56.7					+0.0	56.7	88.7	-32.0	Vert
3	7386.036M	56.5					+0.0	56.5	88.7	-32.2	Vert
4	4924.058M	54.1					+0.0	54.1	88.7	-34.6	Vert

5 1881.280M	50.3	+0.0	50.3	88.7	-38.4	Vert
6 48.137M	46.6	+0.0	46.6	88.7	-42.1	Vert
7 3282.608M	46.3	+0.0	46.3	88.7	-42.4	Vert
8 11.020M	44.2	+0.0	44.2	88.7	-44.5	Vert

Customer: Specification:	Motorola BCS FCC 15.247(c)								
Work Order #:	79346	Date:	08/15/2002						
Test Type:	Maximized emission	Time:	14:41:27						
Equipment:	Cable Modem	Sequence#:	3						
Manufacturer:	Motorola BCS	Tested By:	Stuart Yamamoto						
Model:	SBG 1000 P5								
S/N:	00080ED2F1E0								
Equipment Unde	Equipment Under Test (* = EUT):								
Function	Manufacturer	Model #	S/N						
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0						

Support Devices:

Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 23°C, Humidity: 53%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 0.009 to 30.0 MHz.

T1=6502 Active Loop Antenna	T2=Cable #10 070803
T3=Cable #15 120602	T4=15.31 40dB/Dec Correction

<i>Measurement Data:</i> Reading listed by margin.			Test Distance: 3 Meters								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	79.476k	72.4	+10.5	+0.1	+0.1	-80.0	+0.0	3.1	29.6	-26.5	None
2	137.590k	65.4	+10.1	+0.1	+0.1	-80.0	+0.0	-4.3	24.8	-29.1	None

3	199.780k	59.4	+9.9	+0.1	+0.1	-80.0	+0.0	-10.5	21.6	-32.1	None
4	259.590k	54.1	+10.0	+0.1	+0.1	-80.0	+0.0	-15.7	19.3	-35.0	None
5	317.620k	51.7	+10.1	+0.1	+0.1	-80.0	+0.0	-18.0	17.6	-35.6	None
 6	377.040k	46.0	+10.0	+0.1	+0.1	-80.0	+0.0	-23.8	16.1	-39.9	None

Customer:	Motorola BCS
Specification:	FCC 15.247(c)
Work Order #:	79346
Test Type:	Maximized emission
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/15/2002 Time: 14:35:55 Sequence#: 9 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support D	evices:
-----------	---------

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 6. Temperature: 23°C, Humidity: 52%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 0.009 to 30.0 MHz.

T1=6502 Active Loop Antenna	T2=Cable #10 070803
T3=Cable #15 120602	T4=15.31 40dB/Dec Correction

<i>Measurement Data:</i> Reading listed by margin.			argin.	Test Distance: 3 Meters							
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	76.223k	72.6	+10.5	+0.1	+0.1	-80.0	+0.0	3.3	30.0	-26.7	None
2	137.970k	64.5	+10.1	+0.1	+0.1	-80.0	+0.0	-5.2	24.8	-30.0	None
3	196.904k	59.3	+9.9	+0.1	+0.1	-80.0	+0.0	-10.6	21.7	-32.3	None

4	258.810k	54.8	+10.0	+0.1	+0.1	-80.0	+0.0	-15.0	19.3	-34.3	None
5	320.270k	51.9	+10.1	+0.1	+0.1	-80.0	+0.0	-17.8	17.5	-35.3	None
6	378.300k	46.0	+10.0	+0.1	+0.1	-80.0	+0.0	-23.8	16.0	-39.8	None

Customer:	Motorola BCS
Specification:	FCC 15.247(c)
Work Order #:	79346
Test Type:	Maximized emission
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/15/2002 Time: 14:24:57 Sequence#: 8 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 11. Temperature: 23°C, Humidity: 52%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 0.009 to 30.0 MHz.

T1=6502 Active Loop Antenna	T2=Cable #10 070803
T3=Cable #15 120602	T4=15.31 40dB/Dec Correction

Measurement Data:		Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	76.820k	72.3	+10.5	+0.1	+0.1	-80.0	+0.0	3.0	29.9	-26.9	None
2	137.250k	64.8	+10.1	+0.1	+0.1	-80.0	+0.0	-4.9	24.8	-29.7	None
3	196.220k	58.8	+9.9	+0.1	+0.1	-80.0	+0.0	-11.1	21.7	-32.8	None

4	260.870k	54.3	+10.0	+0.1	+0.1	-80.0	+0.0	-15.5	19.3	-34.8	None
5	318.980k	50.9	+10.1	+0.1	+0.1	-80.0	+0.0	-18.8	17.5	-36.3	None
6	375.948k	45.7	+10.0	+0.1	+0.1	-80.0	+0.0	-24.1	16.1	-40.2	None

Customer:	Motorola BCS
Specification:	FCC 15.247(c)
Work Order #:	79346
Test Type:	Maximized emission
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/07/2002 Time: 14:05:32 Sequence#: 1 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Derices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 30.0 to 1000.0 MHz.

Transducer Legend:	
T1=Bicon 092401	T2=Log 331 092401
T3=Preamp 8447D 090501	T4=Cable #10 070803
T5=Cable #15 120602	

Measu	rement Data:	Re	eading lis	sted by margin. Test Distance: 3 Meters							
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	48.047M	52.2	+11.5	+0.0	-28.3	+0.1	+0.0	36.7	40.0	-3.3	Vert
	QP		+1.2								
^	48.056M	52.7	+11.5	+0.0	-28.3	+0.1	+0.0	37.2	40.0	-2.8	Vert
			+1.2								

CKC -M Tosting the Future

3	82.531M	55.6	+7.4	+0.0	-28.2	+0.1	+0.0	36.5	40.0	-3.5	Horiz
	<u>QP</u> 82.538M	57.0	+1.6		28.2	+0.1		38.8	40.0	1.2	Horiz
	62.336W	51.9	+7.4	+0.0	-20.2	+0.1	+0.0	30.0	40.0	-1.2	HOLIZ
5	37.534M	47.5	+15.4	+0.0	-28.4	+0.1	+0.0	35.7	40.0	-4.3	Horiz
Ū	QP	1710	+1.1			1011	1010	0011			110112
^	37.514M	48.3	+15.4	+0.0	-28.4	+0.1	+0.0	36.5	40.0	-3.5	Horiz
			+1.1								
7	640.046M	43.2	+0.0	+20.5	-27.9	+0.4	+0.0	41.3	46.0	-4.7	Horiz
	QP		+5.1								
^	640.056M	44.1	+0.0	+20.5	-27.9	+0.4	+0.0	42.2	46.0	-3.8	Horiz
0	27.01214	46.0	+5.1	.0.0	20.4	.0.1	.0.0	25.1	40.0	4.0	V
9	37.013M	46.9	+15.4	+0.0	-28.4	+0.1	+0.0	35.1	40.0	-4.9	vert
^	<u>Qr</u> 37.094M	18.6	+1.1	+0.0	-28.4	<u>⊥0 1</u>	+0.0	36.9	40.0	-3.1	Vert
	57.074141	+0.0	+1.1	10.0	-20.4	10.1	10.0	50.7	+0.0	-5.1	ven
11	200.559M	46.8	+16.8	+0.0	-28.4	+0.2	+0.0	38.0	43.5	-5.5	Vert
	QP		+2.6								
^	200.551M	47.8	+16.8	+0.0	-28.4	+0.2	+0.0	39.0	43.5	-4.5	Vert
			+2.6								
13	768.063M	39.7	+0.0	+21.9	-27.8	+0.4	+0.0	39.8	46.0	-6.2	Vert
			+5.6								
14	320.031M	43.4	+0.0	+20.9	-28.3	+0.3	+0.0	39.7	46.0	-6.3	Horiz
15	C40.071N	41 C	+3.4	120.5	27.0	+0.4		20.7	46.0	(2	Vart
15	040.071M	41.0	+0.0 +5.1	+20.3	-27.9	+0.4	+0.0	39.7	40.0	-0.5	ven
^	640.067M	43.4	+0.0	+20.5	-27.9	+0.4	+0.0	41.5	46.0	-4 5	Vert
	010.007.01	13.1	+5.1	120.5	27.9	10.1	10.0	11.5	10.0		vent
17	390.034M	47.8	+0.0	+16.1	-28.3	+0.3	+0.0	39.6	46.0	-6.4	Vert
	QP		+3.7								
^	390.028M	48.3	+0.0	+16.1	-28.3	+0.3	+0.0	40.1	46.0	-5.9	Vert
			+3.7								
19	390.039M	47.6	+0.0	+16.1	-28.3	+0.3	+0.0	39.4	46.0	-6.6	Horiz
20	112 5501	40.0	+3.7		20.4	10.2		267	12 5	6.9	Vart
20	112.550M	49.0	+14.0 ± 1.0	+0.0	-28.4	+0.2	+0.0	30.7	43.5	-0.8	vert
21	256 028M	45.7	+1.9 +18.4	+0.0	-28.2	+0.3	+0.0	39.1	46.0	-69	Horiz
21	250.02014	-5.7	+2.9	10.0	20.2	10.5	10.0	57.1	+0.0	0.7	HOLL
22	46.743M	48.1	+12.0	+0.0	-28.3	+0.1	+0.0	33.1	40.0	-6.9	Vert
	QP		+1.2								
^	46.758M	51.9	+12.0	+0.0	-28.3	+0.1	+0.0	36.9	40.0	-3.1	Vert
			+1.2								
24	77.805M	52.8	+6.8	+0.0	-28.3	+0.1	+0.0	33.0	40.0	-7.0	Horiz
			+1.6								
25	76.296M	52.7	+6.8	+0.0	-28.3	+0.1	+0.0	32.9	40.0	-7.1	Horiz
26	768 07014	20.0	+1.0	121.0	070	+0.4		38.0	16.0	71	Uoriz
20	OP	30.0	+0.0 +5.6	+21.9	-21.0	+0.4	+0.0	30.9	40.0	-/.1	HOLIZ
^	768.084M	40.2	+0.0	+21.9	-27 8	+0.4	+0.0	40.3	46.0	-5.7	Horiz
	, 55,55 1141	10.2	+5.6	1.7	27.0	10.1	10.0	10.5	10.0	5.7	110112
L											

CKC M Testing the Future

28	350.043M	44.5	+0.0 +3.5	+18.7	-28.2	+0.3	+0.0	38.8	46.0	-7.2	Horiz
^	350.045M	46.7	+0.0 +3.5	+18.7	-28.2	+0.3	+0.0	41.0	46.0	-5.0	Horiz
30	300.047M	40.9	+0.0 +3.3	+22.5	-28.3	+0.3	+0.0	38.7	46.0	-7.3	Horiz
31	350.070M	44.3	+0.0 +3.5	+18.7	-28.2	+0.3	+0.0	38.6	46.0	-7.4	Vert
32	96.102M	51.9	+10.6 +1.7	+0.0	-28.3	+0.1	+0.0	36.0	43.5	-7.5	Vert
33	800.063M QP	38.4	$^{+0.0}_{+5.7}$	+21.5	-27.6	+0.5	+0.0	38.5	46.0	-7.5	Horiz
^	800.063M	40.1	$^{+0.0}_{+5.7}$	+21.5	-27.6	+0.5	+0.0	40.2	46.0	-5.8	Horiz
35	464.154M	46.1	$^{+0.0}_{+4.1}$	+16.4	-28.6	+0.4	+0.0	38.4	46.0	-7.6	Horiz
36	200.531M	44.7	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	35.9	43.5	-7.6	Horiz
37	70.805M	52.1	+6.9 +1.5	+0.0	-28.6	+0.1	+0.0	32.0	40.0	-8.0	Vert
38	400.067M QP	46.7	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	38.0	46.0	-8.0	Horiz
^	400.062M	49.7	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	41.0	46.0	-5.0	Horiz
40	320.042M	41.7	+0.0 +3.4	+20.9	-28.3	+0.3	+0.0	38.0	46.0	-8.0	Vert
41	331.858M	42.4	+0.0 +3.4	+20.0	-28.2	+0.3	+0.0	37.9	46.0	-8.1	Horiz
42	550.075M	43.4	+0.0 +4.6	+17.9	-28.6	+0.4	+0.0	37.7	46.0	-8.3	Vert
43	329.370M	42.0	+0.0 +3.4	+20.2	-28.2	+0.3	+0.0	37.7	46.0	-8.3	Horiz
44	512.035M	44.1	+0.0 +4.4	+17.2	-28.5	+0.4	+0.0	37.6	46.0	-8.4	Vert
45	100.032M	49.9	+11.5 +1.8	+0.0	-28.4	+0.1	+0.0	34.9	43.5	-8.6	Horiz
46	800.068M	37.2	+0.0 +5.7	+21.5	-27.6	+0.5	+0.0	37.3	46.0	-8.7	Vert
47	665.313M	38.2	+0.0 +5.1	+21.4	-27.9	+0.4	+0.0	37.2	46.0	-8.8	Vert
48	449.200M	45.3	$^{+0.0}_{+4.0}$	+16.2	-28.7	+0.4	+0.0	37.2	46.0	-8.8	Vert
49	760.288M	37.1	+0.0 +5.5	+22.0	-27.8	+0.4	+0.0	37.2	46.0	-8.8	Horiz
50	61.281M QP	50.4	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	31.1	40.0	-8.9	Vert
^	61.268M	54.6	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	35.3	40.0	-4.7	Vert

CKC MTosting the Future

52	600.031M	41.0	+0.0	+18.9	-28.1	+0.4	+0.0	37.1	46.0	-8.9	Horiz
	QP		+4.9								
^	600.054M	44.4	$^{+0.0}_{+4.9}$	+18.9	-28.1	+0.4	+0.0	40.5	46.0	-5.5	Horiz
54	600.039M	40.8	$^{+0.0}_{+4.9}$	+18.9	-28.1	+0.4	+0.0	36.9	46.0	-9.1	Vert
55	61.600M	50.2	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	30.9	40.0	-9.1	Horiz
56	500.055M	43.6	+0.0 +4.4	+16.9	-28.5	+0.4	+0.0	36.8	46.0	-9.2	Horiz
57	80.907M	50.2	+7.0	+0.0	-28.2	+0.1	+0.0	30.7	40.0	-9.3	Vert
58	449.174M	44.7	+0.0 +4.0	+16.2	-28.7	+0.4	+0.0	36.6	46.0	-9.4	Horiz
59	200.074M	42.9	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	34.1	43.5	-9.4	Horiz
60	358.015M	42.5	+0.0 +3.6	+18.2	-28.2	+0.3	+0.0	36.4	46.0	-9.6	Horiz
61	358.022M	42.5	+0.0 +3.6	+18.2	-28.2	+0.3	+0.0	36.4	46.0	-9.6	Horiz
62	315.068M	39.4	+0.0 +3.4	+21.3	-28.3	+0.3	+0.0	36.1	46.0	-9.9	Vert
63	105.026M	47.6	+12.5 +1.8	+0.0	-28.4	+0.1	+0.0	33.6	43.5	-9.9	Vert
64	200.077M	42.3	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	33.5	43.5	-10.0	Vert
65	331.858M	40.1	+0.0 +3.4	+20.0	-28.2	+0.3	+0.0	35.6	46.0	-10.4	Vert
66	400.046M	44.3	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	35.6	46.0	-10.4	Vert
67	402.842M	44.2	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	35.5	46.0	-10.5	Vert
68	512.076M	41.9	+0.0 +4.5	+17.2	-28.5	+0.4	+0.0	35.5	46.0	-10.5	Horiz
69	450.070M	43.6	$^{+0.0}_{+4.0}$	+16.2	-28.7	+0.4	+0.0	35.5	46.0	-10.5	Horiz
70	272.114M	40.3	+19.8 +3.1	+0.0	-28.3	+0.3	+0.0	35.2	46.0	-10.8	Horiz
71	99.998M	47.7	+11.5 +1.8	+0.0	-28.4	+0.1	+0.0	32.7	43.5	-10.8	Vert
72	105.027M	46.3	+12.5 +1.8	+0.0	-28.4	+0.1	+0.0	32.3	43.5	-11.2	Horiz
73	500.039M	41.5	$^{+0.0}_{+4.4}$	+16.9	-28.5	+0.4	+0.0	34.7	46.0	-11.3	Vert
74	597.750M	38.5	$^{+0.0}_{+4.9}$	+18.9	-28.1	+0.4	+0.0	34.6	46.0	-11.4	Horiz
75	665.279M	35.5	+0.0 +5.1	+21.4	-27.9	+0.4	+0.0	34.5	46.0	-11.5	Horiz
76	463.967M	42.1	+0.0 +4.1	+16.4	-28.6	+0.4	+0.0	34.4	46.0	-11.6	Vert

77	329.392M	38.6	+0.0	+20.2	-28.2	+0.3	+0.0	34.3	46.0	-11.7	Vert
			+3.4								
78	528.670M	40.3	+0.0	+17.5	-28.6	+0.4	+0.0	34.1	46.0	-11.9	Horiz
			+4.5								
79	384.059M	41.8	+0.0	+16.5	-28.3	+0.3	+0.0	34.0	46.0	-12.0	Vert
			+3.7								
80	384.055M	41.6	+0.0	+16.5	-28.3	+0.3	+0.0	33.8	46.0	-12.2	Horiz
			+3.7								
81	357.973M	36.6	+0.0	+18.2	-28.2	+0.3	+0.0	30.5	46.0	-15.5	Vert
			+3.6								

Specification:FCC 15.247(c)Work Order #:79346Test Type:Maximized emEquipment:Cable ModemManufacturer:Motorola BCSModel:SBG 1000 P5	ission
Model: SBG 1000 P5	
S/N: 00080ED2F1E0)

Date: 08/15/2002 Time: 11:26:28 Sequence#: 6 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Derices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 6. Temperature: 23°C, Humidity: 54%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 30.0 to 1000.0 MHz.

Transducer Legend:	
T1=Bicon 092401	T2=Log 331 092401
T3=Preamp 8447D 090501	T4=Cable #10 070803
T5=Cable #15 120602	

Measu	rement Data:	Re	Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5									
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant	
1	48.076M	52.9	+11.5	+0.0	-28.3	+0.1	+0.0	37.4	40.0	-2.6	Vert	
	QP		+1.2									
۸	48.084M	54.1	+11.5	+0.0	-28.3	+0.1	+0.0	38.6	40.0	-1.4	Vert	
			+1.2									

CKC MTosting the Future

3	640.062M QP	44.4	$^{+0.0}_{+5.1}$	+20.5	-27.9	+0.4	+0.0	42.5	46.0	-3.5	Horiz
٨	640.078M	44.5	$^{+0.0}_{+5.1}$	+20.5	-27.9	+0.4	+0.0	42.6	46.0	-3.4	Horiz
5	96.000M OP	54.5	+10.6 +1.7	+0.0	-28.3	+0.1	+0.0	38.6	43.5	-4.9	Vert
٨	95.999M	54.7	+10.6 +1.7	+0.0	-28.3	+0.1	+0.0	38.8	43.5	-4.7	Vert
7	37.011M QP	46.6	+15.5 +1.1	+0.0	-28.4	+0.1	+0.0	34.9	40.0	-5.1	Vert
^	37.017M	46.7	+15.5 +1.1	+0.0	-28.4	+0.1	+0.0	35.0	40.0	-5.0	Vert
9	80.088M QP	54.6	+6.8 +1.6	+0.0	-28.2	+0.1	+0.0	34.9	40.0	-5.1	Vert
^	80.080M	56.6	+6.8 +1.6	+0.0	-28.2	+0.1	+0.0	36.9	40.0	-3.1	Vert
11	37.442M QP	45.8	+15.4 +1.1	+0.0	-28.4	+0.1	+0.0	34.0	40.0	-6.0	Horiz
^	37.447M	49.7	$^{+15.4}_{+1.1}$	+0.0	-28.4	+0.1	+0.0	37.9	40.0	-2.1	Horiz
13	768.096M	39.8	+0.0 +5.6	+21.9	-27.8	+0.4	+0.0	39.9	46.0	-6.1	Horiz
14	300.077M	42.0	+0.0 +3.3	+22.5	-28.3	+0.3	+0.0	39.8	46.0	-6.2	Horiz
15	640.111M	41.6	$^{+0.0}_{+5.1}$	+20.5	-27.9	+0.4	+0.0	39.7	46.0	-6.3	Vert
16	350.097M	45.4	+0.0 +3.5	+18.7	-28.2	+0.3	+0.0	39.7	46.0	-6.3	Vert
17	112.580M	49.5	+14.0 +1.9	+0.0	-28.4	+0.2	+0.0	37.2	43.5	-6.3	Vert
18	256.070M	46.1	+18.4 +3.0	+0.0	-28.2	+0.3	+0.0	39.6	46.0	-6.4	Horiz
19	600.059M QP	43.4	+0.0 +4.9	+18.9	-28.1	+0.4	+0.0	39.5	46.0	-6.5	Horiz
^	600.078M	46.3	$^{+0.0}_{+4.9}$	+18.9	-28.1	+0.4	+0.0	42.4	46.0	-3.6	Horiz
21	400.078M QP	48.2	$^{+0.0}_{+3.8}$	+15.5	-28.3	+0.3	+0.0	39.5	46.0	-6.5	Horiz
^	400.082M	50.3	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	41.6	46.0	-4.4	Horiz
23	331.876M	43.9	+0.0 +3.4	+20.0	-28.2	+0.3	+0.0	39.4	46.0	-6.6	Horiz
24	46.804M QP	48.3	+12.0 +1.2	+0.0	-28.3	+0.1	+0.0	33.3	40.0	-6.7	Vert
^	46.804M	52.1	+12.0 +1.2	+0.0	-28.3	+0.1	+0.0	37.1	40.0	-2.9	Vert
26	665.346M	40.1	+0.0 +5.1	+21.4	-27.9	+0.4	+0.0	39.1	46.0	-6.9	Horiz

CKC MTosting the Future

27	62.690M	52.4	+7.8	+0.0	-28.6	+0.1	+0.0	33.1	40.0	-6.9	Vert
	QP		+1.4								
^	62.690M	56.5	+7.8	+0.0	-28.6	+0.1	+0.0	37.2	40.0	-2.8	Vert
			+1.4								
29	760.341M	38.8	+0.0	+22.0	-27.8	+0.4	+0.0	38.9	46.0	-7.1	Horiz
			+5.5								
30	320.071M	42.6	+0.0	+20.9	-28.3	+0.3	+0.0	38.9	46.0	-7.1	Horiz
	QP		+3.4								
^	320.079M	44.2	+0.0	+20.9	-28.3	+0.3	+0.0	40.5	46.0	-5.5	Horiz
			+3.4								
32	768.084M	38.7	+0.0	+21.9	-27.8	+0.4	+0.0	38.8	46.0	-7.2	Vert
			+5.6								
33	350.069M	44.5	+0.0	+18.7	-28.2	+0.3	+0.0	38.8	46.0	-7.2	Horiz
	QP		+3.5								
^	350.065M	46.9	+0.0	+18.7	-28.2	+0.3	+0.0	41.2	46.0	-4.8	Horiz
			+3.5								
35	331.906M	43.2	+0.0	+20.0	-28.2	+0.3	+0.0	38.7	46.0	-7.3	Vert
			+3.4								
36	329.355M	43.0	+0.0	+20.2	-28.2	+0.3	+0.0	38.7	46.0	-7.3	Horiz
			+3.4								
37	80.952M	52.1	+7.0	+0.0	-28.2	+0.1	+0.0	32.6	40.0	-7.4	Vert
	QP		+1.6								
^	80.937M	56.3	+7.0	+0.0	-28.2	+0.1	+0.0	36.8	40.0	-3.2	Vert
			+1.6								
39	320.089M	41.7	+0.0	+20.9	-28.3	+0.3	+0.0	38.0	46.0	-8.0	Vert
			+3.4								
40	665.303M	38.9	+0.0	+21.4	-27.9	+0.4	+0.0	37.9	46.0	-8.1	Vert
	100.0 (2) (+5.1		20.2	0.0	0.0	25.0	16.0	0.1	* *
41	400.063M	46.6	+0.0	+15.5	-28.3	+0.3	+0.0	37.9	46.0	-8.1	Vert
- 10			+3.8		20.2	0.1		21.0	10.0	0.1	
42	77.841M	51.7	+6.8	+0.0	-28.3	+0.1	+0.0	31.9	40.0	-8.1	Horiz
12	510.06016		+1.6	17.0	20.5	0.4	0.0	27.0	16.0		X 7 .
43	512.062M	44.2	+0.0	+17.2	-28.5	+0.4	+0.0	37.8	46.0	-8.2	Vert
4.4	000.06614	27.6	+4.5	01.5	27.6	.0.5	. 0. 0	27.7	16.0	0.2	
44	800.066M	37.6	+0.0	+21.5	-27.6	+0.5	+0.0	37.7	46.0	-8.3	Horiz
	<u>QP</u>	40.1	+5.7	.01.5	07.6	.0.5	. 0. 0	40.0	16.0	5.0	
~	800.095M	40.1	+0.0	+21.5	-27.6	+0.5	+0.0	40.2	46.0	-5.8	Horiz
10	(1 (02))	51.0	+5.7	.0.0	20.6	.0.1	.0.0	21.7	40.0	0.2	II?
46	61.602M	51.0	+7.9	+0.0	-28.6	+0.1	+0.0	31.7	40.0	-8.3	Horiz
47	76 20 (1)	515	+1.3	.0.0	20.2	.0.1	.0.0	21.7	40.0	0.2	II?
47	/6.296M	51.5	+0.8	+0.0	-28.3	+0.1	+0.0	31.7	40.0	-8.3	Horiz
40	200.00/14	12.0	+1.0	.0.0	20.4	.0.2	.0.0	25.0	12 5	0.5	V
48	200.086M	43.8	+16.8	+0.0	-28.4	+0.2	+0.0	35.0	43.5	-8.5	vert
40	900 05 CM	27.0	+2.0	101 5	27.6	.0.5	.0.0	27.2	16.0	07	N. C. and
49	800.056M	51.2	+0.0	+21.3	-27.0	+0.5	+0.0	51.5	40.0	-ð./	vert
50	200 09514	12 0	+3./		20 1	10.2		240	12 5	07	Haria
50	200.085M	43.0	+10.8	+0.0	-28.4	+0.2	+0.0	34.8	43.3	-ð./	rior1Z
51	100 00714	10 5	+2.0		20 1	+0.1		215	12 5	0.0	Horia
51	100.09/M	49.3	+11.5	+0.0	-28.4	+0.1	+0.0	34.3	43.3	-9.0	rior1Z
L			+1.ð								

52	100.098M	49.2	+11.5	+0.0	-28.4	+0.1	+0.0	34.2	43.5	-9.3	Vert
			+1.8								
53	68.569M	50.2	+7.1	+0.0	-28.6	+0.1	+0.0	30.3	40.0	-9.7	Vert
	QP		+1.5								
^	68.569M	54.8	+7.1	+0.0	-28.6	+0.1	+0.0	34.9	40.0	-5.1	Vert
			+1.5								
55	464.831M	43.6	+0.0	+16.4	-28.6	+0.4	+0.0	35.9	46.0	-10.1	Horiz
			+4.1								
56	200.516M	41.7	+16.8	+0.0	-28.4	+0.2	+0.0	32.9	43.5	-10.6	Horiz
			+2.6								

Specification:FCC 15.247(c)Work Order #:79346Test Type:Maximized emEquipment:Cable ModemManufacturer:Motorola BCSModel:SBG 1000 P5	iission
Model: SBG 1000 P5	
S/N: 00080ED2F1E	0

Date: 08/15/2002 Time: 14:03:58 Sequence#: 7 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 11. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 30.0 to 1000.0 MHz.

Transducer Legend:	
T1=Bicon 092401	T2=Log 331 092401
T3=Preamp 8447D 090501	T4=Cable #10 070803
T5=Cable #15 120602	

Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	48.101M	53.1	+11.5	+0.0	-28.3	+0.1	+0.0	37.6	40.0	-2.4	Vert
	QP		+1.2								
^	48.101M	54.6	+11.5	+0.0	-28.3	+0.1	+0.0	39.1	40.0	-0.9	Vert
			+1.2								
3	640.055M OP	43.3	+0.0 +5.1	+20.5	-27.9	+0.4	+0.0	41.4	46.0	-4.6	Horiz
----	----------------	------	-------------------	-------	-------	------	------	------	------	------	-------
^	640.063M	44.3	+0.0 +5.1	+20.5	-27.9	+0.4	+0.0	42.4	46.0	-3.6	Horiz
5	61.308M OP	54.3	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	35.0	40.0	-5.0	Vert
^	61.308M	55.7	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	36.4	40.0	-3.6	Vert
7	37.097M QP	46.4	+15.5 +1.1	+0.0	-28.4	+0.1	+0.0	34.7	40.0	-5.3	Vert
^	37.094M	47.0	+15.5 +1.1	+0.0	-28.4	+0.1	+0.0	35.3	40.0	-4.7	Vert
9	400.080M QP	49.4	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	40.7	46.0	-5.3	Horiz
^	400.078M	51.6	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	42.9	46.0	-3.1	Horiz
11	100.099M	52.5	+11.5 +1.8	+0.0	-28.4	+0.1	+0.0	37.5	43.5	-6.0	Vert
12	350.078M	45.6	$^{+0.0}_{+3.5}$	+18.7	-28.2	+0.3	+0.0	39.9	46.0	-6.1	Horiz
13	350.087M	45.6	+0.0 +3.5	+18.7	-28.2	+0.3	+0.0	39.9	46.0	-6.1	Vert
14	46.766M QP	48.8	$^{+12.0}_{+1.2}$	+0.0	-28.3	+0.1	+0.0	33.8	40.0	-6.2	Vert
^	46.759M	50.9	$^{+12.0}_{+1.2}$	+0.0	-28.3	+0.1	+0.0	35.9	40.0	-4.1	Vert
16	80.904M	53.3	+7.0 +1.6	+0.0	-28.2	+0.1	+0.0	33.8	40.0	-6.2	Vert
17	768.103M	39.6	+0.0 +5.6	+21.9	-27.8	+0.4	+0.0	39.7	46.0	-6.3	Horiz
18	96.000M	53.0	$^{+10.6}_{+1.7}$	+0.0	-28.3	+0.1	+0.0	37.1	43.5	-6.4	Vert
19	768.106M	39.4	$^{+0.0}_{+5.6}$	+21.9	-27.8	+0.4	+0.0	39.5	46.0	-6.5	Vert
20	600.059M QP	43.1	$^{+0.0}_{+4.9}$	+18.9	-28.1	+0.4	+0.0	39.2	46.0	-6.8	Horiz
^	600.054M	46.2	$^{+0.0}_{+4.9}$	+18.9	-28.1	+0.4	+0.0	42.3	46.0	-3.7	Horiz
22	448.793M	47.3	$^{+0.0}_{+4.0}$	+16.2	-28.7	+0.4	+0.0	39.2	46.0	-6.8	Horiz
23	37.497M QP	44.9	+15.4 +1.1	+0.0	-28.4	+0.1	+0.0	33.1	40.0	-6.9	Horiz
^	37.517M	50.1	+15.4 +1.1	+0.0	-28.4	+0.1	+0.0	38.3	40.0	-1.7	Horiz
25	112.561M	48.8	$^{+14.0}_{+1.9}$	+0.0	-28.4	+0.2	+0.0	36.5	43.5	-7.0	Vert
26	320.084M QP	42.7	+0.0 +3.4	+20.9	-28.3	+0.3	+0.0	39.0	46.0	-7.0	Horiz
^	320.093M	44.8	+0.0 +3.4	+20.9	-28.3	+0.3	+0.0	41.1	46.0	-4.9	Horiz

28	800.056M	38.7	$^{+0.0}_{+5.7}$	+21.5	-27.6	+0.5	+0.0	38.8	46.0	-7.2	Horiz
29	760.343M	38.6	+0.0 +5.5	+22.0	-27.8	+0.4	+0.0	38.7	46.0	-7.3	Horiz
30	665.307M	39.7	+0.0 +5.1	+21.4	-27.9	+0.4	+0.0	38.7	46.0	-7.3	Horiz
31	300.100M OP	40.9	+0.0 +3.3	+22.5	-28.3	+0.3	+0.0	38.7	46.0	-7.3	Horiz
^	300.099M	42.8	+0.0 +3.3	+22.5	-28.3	+0.3	+0.0	40.6	46.0	-5.4	Horiz
33	640.099M QP	40.4	+0.0 +5.1	+20.5	-27.9	+0.4	+0.0	38.5	46.0	-7.5	Vert
۸	640.100M	42.5	+0.0 +5.1	+20.5	-27.9	+0.4	+0.0	40.6	46.0	-5.4	Vert
35	600.068M	42.4	+0.0 +4.9	+18.9	-28.1	+0.4	+0.0	38.5	46.0	-7.5	Vert
36	320.071M	42.2	+0.0 +3.4	+20.9	-28.3	+0.3	+0.0	38.5	46.0	-7.5	Vert
37	100.102M QP	50.8	+11.5 +1.8	+0.0	-28.4	+0.1	+0.0	35.8	43.5	-7.7	Horiz
۸	100.106M	53.7	+11.5 +1.8	+0.0	-28.4	+0.1	+0.0	38.7	43.5	-4.8	Horiz
39	331.903M QP	42.8	+0.0 +3.4	+20.0	-28.2	+0.3	+0.0	38.3	46.0	-7.7	Horiz
۸	331.905M	46.1	+0.0 +3.4	+20.0	-28.2	+0.3	+0.0	41.6	46.0	-4.4	Horiz
41	512.059M	44.7	+0.0 +4.5	+17.2	-28.5	+0.4	+0.0	38.3	46.0	-7.7	Vert
42	400.064M	47.0	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	38.3	46.0	-7.7	Vert
43	77.899M	51.9	+6.8 +1.6	+0.0	-28.3	+0.1	+0.0	32.1	40.0	-7.9	Horiz
44	464.396M	45.7	$^{+0.0}_{+4.1}$	+16.4	-28.6	+0.4	+0.0	38.0	46.0	-8.0	Horiz
45	200.080M	44.2	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	35.4	43.5	-8.1	Horiz
46	665.362M	38.7	$^{+0.0}_{+5.1}$	+21.4	-27.9	+0.4	+0.0	37.7	46.0	-8.3	Vert
47	800.062M	37.1	+0.0 +5.7	+21.5	-27.6	+0.5	+0.0	37.2	46.0	-8.8	Vert
48	315.071M	40.5	+0.0 +3.4	+21.3	-28.3	+0.3	+0.0	37.2	46.0	-8.8	Vert
49	200.074M	43.1	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	34.3	43.5	-9.2	Vert
50	448.660M	44.2	$^{+0.0}_{+4.0}$	+16.2	-28.7	+0.4	+0.0	36.1	46.0	-9.9	Vert

51	512.055M	42.1	+0.0	+17.2	-28.5	+0.4	+0.0	35.6	46.0	-10.4	Horiz
			+4.4								
52	70.781M	49.5	+6.9	+0.0	-28.6	+0.1	+0.0	29.4	40.0	-10.6	Vert
	QP		+1.5								
^	70.806M	54.8	+6.9	+0.0	-28.6	+0.1	+0.0	34.7	40.0	-5.3	Vert
			+1.5								
54	105.085M	46.4	+12.5	+0.0	-28.4	+0.1	+0.0	32.4	43.5	-11.1	Vert
			+1.8								

Customer:	Motorola BCS
Specification:	FCC 15.247(c)
Work Order #:	79346
Test Type:	Maximized emission
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/07/2002 Time: 17:23:22 Sequence#: 2 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 25°C, Humidity: 46%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1.0 to 25.0 GHz.

T1=6" SMA cable #2212 101701	T2=Heliax #18 70' 11Sept2001
T3=Horn Antenna sn6246	T4=HP3017A sn3123A00281 11-Sept-01
T5=12' SMA 26 GHz Cable	

Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1605.707M	56.0	+0.2	+3.5	+24.9	-38.6	+0.0	47.5	54.0	-6.5	Vert
			+1.5								
2	2 7236.000M	36.0	+0.3	+8.0	+35.8	-37.7	+0.0	47.2	54.0	-6.8	Vert
	Ave		+4.8								
^	~ 7236.009M	47.0	+0.3	+8.0	+35.8	-37.7	+0.0	58.2	54.0	+4.2	Vert
			+4.8								

CKC -M-

4 7236.408M	35.7	+0.3	+8.0	+35.8	-37.7	+0.0	46.9	54.0	-7.1	Horiz
Ave		+4.8								
^ 7236.408M	46.5	+0.3	+8.0	+35.8	-37.7	+0.0	57.7	54.0	+3.7	Horiz
		+4.8								
6 1504.958M	55.3	+0.2	+3.3	+24.5	-38.9	+0.0	45.9	54.0	-8.1	Horiz
		+1.5								
7 1040.100M	56.1	+0.2	+2.7	+24.0	-40.5	+0.0	43.6	54.0	-10.4	Vert
		+1.1								
8 1811.291M	50.9	+0.2	+3.6	+25.7	-38.5	+0.0	43.5	54.0	-10.5	Horiz
Ave		+1.6								
^ 1811.291M	62.3	+0.2	+3.6	+25.7	-38.5	+0.0	54.9	54.0	+0.9	Horiz
		+1.6								
10_4834.700M	38.3	+0.3	+6.2	+32.8	-37.2	+0.0	43.3	54.0	-10.7	Horiz
		+2.9								
11 1605.760M	53.2	+0.2	+3.5	+24.9	-38.6	+0.0	43.2	54.0	-10.8	Horiz
				,						
12 1745.022M	51.7	+0.2	+3.6	+25.5	-38.6	+0.0	42.4	54.0	-11.6	Horiz
13 1809.600M	46.7	+0.2	+3.6	+25.7	-38.5	+0.0	39.3	54.0	-14.7	Vert
Ave		+1.6								
^ 1809.610M	57.0	+0.2	+3.6	+25.7	-38.5	+0.0	49.6	54.0	-4.4	Vert
		+1.6								
15 1504.958M	47.2	+0.2	+3.3	+24.5	-38.9	+0.0	37.8	54.0	-16.2	Vert
Ave		+1.5								
^ 1504.958M	57.6	+0.2	+3.3	+24.5	-38.9	+0.0	48.2	54.0	-5.8	Vert
		+1.5								
17 4823.974M	32.1	+0.3	+6.2	+32.8	-37.2	+0.0	37.1	54.0	-16.9	Vert
Ave		+2.9								
^ 4823.998M	45.0	+0.3	+6.2	+32.8	-37.2	+0.0	50.0	54.0	-4.0	Vert
		+2.9								
19 1215.895M	49.2	+0.2	+2.9	+24.2	-39.6	+0.0	36.9	54.0	-17.1	Horiz
1, 121010,0111	.,		,		0,10		000	0.110	1,11	110112
20 1000.039M	49.9	+0.2	+2.6	+23.9	-40.7	+0.0	35.9	54.0	-18.1	Horiz
20 1000100000	.,,,,			- 2019	1017		0013	0.110	1011	110112
21 1100.001M	48.9	+0.2	+2.8	+24.0	-40.1	+0.0	35.8	54.0	-18.2	Horiz
	,						22.0	2	10.2	
22 1071.293M	45.8	+0.2	+2.7	+24.0	-40.3	+0.0	33.6	54.0	-20.4	Vert
Ave		+1.2						2		
^ 1071.265M	64.1	+0.2	+2.7	+24.0	-40.3	+0.0	51.9	54.0	-2.1	Vert
10,11200101		+1.2	. 2.,		.0.0			2 110	2.1	
L										

Customer:	Motorola BCS
Specification:	FCC 15.247(c)
Work Order #:	79346
Test Type:	Maximized emission
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/15/2002 Time: 16:42:31 Sequence#: 10 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Derices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 6. Temperature: 23°C, Humidity: 52%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1.0 to 25.0 GHz.

0	
T1=6" SMA cable #2212 101701	T2=Heliax #18 70' 11Sept2001
T3=Horn Antenna sn6246	T4=HP3017A sn3123A00281 11-Sept-01
T5=12' SMA 26 GHz Cable	

Measurement Data:		Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	7310.691M	40.5	+0.0	+8.1	+35.9	-37.8	+0.0	51.6	54.0	-2.4	Vert
	Ave		+4.9								
^	7310.688M	51.1	+0.0	+8.1	+35.9	-37.8	+0.0	62.2	54.0	+8.2	Vert
			+4.9								

3 7310.8	02M 38	8.3 +0.0	+8.1	+35.9	-37.8	+0.0	49.4	54.0	-4.6	Horiz
Ave		+4.9								
^ 7310.8	38M 48	8.9 +0.0	+8.1	+35.9	-37.8	+0.0	60.0	54.0	+6.0	Horiz
		+4.9								
5 1844.4	00M 56	5.3 +0.2	+3.6	+25.9	-38.4	+0.0	47.6	54.0	-6.4	Vert
		+0.0								
6 4873.8	71M 42	2.3 +0.0	+6.3	+32.9	-37.2	+0.0	47.2	54.0	-6.8	Horiz
		+2.9								
7 1647.3	23M 56	6.4 +0.2	+3.5	+25.1	-38.6	+0.0	46.6	54.0	-7.4	Horiz
		+0.0								
8 1647.3	68M 55	5.8 +0.2	+3.5	+25.1	-38.6	+0.0	46.0	54.0	-8.0	Vert
		+0.0								
9 1097.8	25M 59	9.0 +0.2	+2.8	+24.0	-40.1	+0.0	45.9	54.0	-8.1	Vert
		+0.0								
10 1548.7	11M 54	1 +0.2	+3.4	+24.7	-38.8	+0.0	43.6	54.0	-10.4	Vert
Ave		+0.0								
^ 1548.7	03M 62	2.6 +0.2	+3.4	+24.7	-38.8	+0.0	52.1	54.0	-1.9	Vert
		+0.0								
12 1601.6	16M 52	2.6 +0.2	+3.5	+24.9	-38.6	+0.0	42.6	54.0	-11.4	Vert
		+0.0								
13 1489.3	94M 53	8.1 +0.2	+3.3	+24.5	-38.9	+0.0	42.2	54.0	-11.8	Vert
		+0.0								
14 1844.1	72M 47	4.5 +0.0	+3.6	+25.9	-38.4	+0.0	40.2	54.0	-13.8	Horiz
Ave		+1.6								
^ 1844.1	20M 58	8.1 +0.0	+3.6	+25.9	-38.4	+0.0	50.8	54.0	-3.2	Horiz
		+1.6								
16 1065.9	79M 52	2.7 +0.2	+2.7	+24.0	-40.3	+0.0	39.3	54.0	-14.7	Vert
		+0.0								
17 4873.9	51M 33	8.7 +0.0	+6.3	+32.9	-37.2	+0.0	38.6	54.0	-15.4	Vert
Ave		+2.9								
^ 4874.0	18M 46	5.0 +0.0	+6.3	+32.9	-37.2	+0.0	50.9	54.0	-3.1	Vert
		+2.9								
19 1216.0	75M 50	0.1 +0.2	+2.9	+24.2	-39.6	+0.0	37.8	54.0	-16.2	Vert
		+0.0								
20 1040.1	04M 51	.2 +0.2	+2.7	+24.0	-40.5	+0.0	37.6	54.0	-16.4	Vert
		+0.0								
21 1553.2	34M 33	8.5 +0.2	+3.4	+24.7	-38.7	+0.0	23.1	54.0	-31.0	Horiz
Ave		+0.0								
^ 1553.1	82M 61	.5 +0.2	+3.4	+24.7	-38.7	+0.0	51.1	54.0	-2.9	Horiz
		+0.0								

Customer:	Motorola BCS
Specification:	FCC 15.247(c)
Work Order #:	79346
Test Type:	Maximized emission
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/15/2002 Time: 17:34:12 Sequence#: 11 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 11. Temperature: 23°C, Humidity: 52%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1.0 to 25.0 GHz.

T1=6" SMA cable #2212 101701	T2=Heliax #18 70' 11Sept2001
T3=Horn Antenna sn6246	T4=HP3017A sn3123A00281 11-Sept-01
T5=12' SMA 26 GHz Cable	

Meas	surement Data:	R	Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
	1 1882.180M	58.1	+0.2	+3.6	+26.0	-38.3	+0.0	49.6	54.0	-4.4	Vert
	Ave		+0.0								
	^ 1882.172M	68.4	+0.2	+3.6	+26.0	-38.3	+0.0	59.9	54.0	+5.9	Vert
			+0.0								

3 73	85.929M	38.0	+0.0	+8.1	+36.0	-37.9	+0.0	49.1	54.0	-4.9	Horiz
Ave	2		+4.9								
^ 73	85.928M	49.0	+0.0	+8.1	+36.0	-37.9	+0.0	60.1	54.0	+6.1	Horiz
			+4.9								
5 73	85.835M	35.6	+0.0	+8.1	+36.0	-37.9	+0.0	46.7	54.0	-7.3	Vert
Ave	2		+0.0								
^ 73	85.833M	46.9	+0.0	+8.1	+36.0	-37.9	+0.0	58.0	54.0	+4.0	Vert
			+4.9								
7 112	21.396M	59.0	+0.2	+2.8	+24.1	-40.0	+0.0	46.1	54.0	-7.9	Vert
			+0.0								
8 492	23.891M	39.7	+0.0	+6.3	+33.0	-37.2	+0.0	44.6	54.0	-9.4	Horiz
			+2.8								
9 16	88.967M	52.4	+0.2	+3.6	+25.3	-38.6	+0.0	42.9	54.0	-11.1	Horiz
			+0.0								
10 16	88.970M	51.8	+0.2	+3.6	+25.3	-38.6	+0.0	42.3	54.0	-11.7	Vert
Ave	e		+0.0								
^ 16	88.968M	60.1	+0.2	+3.6	+25.3	-38.6	+0.0	50.6	54.0	-3.4	Vert
			+0.0								
12 15	92.304M	51.5	+0.2	+3.5	+24.9	-38.6	+0.0	41.5	54.0	-12.5	Vert
Ave	e		+0.0								
^ 15	92.293M	61.5	+0.2	+3.5	+24.9	-38.6	+0.0	51.5	54.0	-2.5	Vert
			+0.0								
14 18	82.227M	46.5	+0.2	+3.6	+26.0	-38.3	+0.0	38.0	54.0	-16.0	Horiz
Ave	2		+0.0								
^ 18	82.223M	57.9	+0.2	+3.6	+26.0	-38.3	+0.0	49.4	54.0	-4.6	Horiz
			+0.0								
16 492	23.655M	31.8	+0.0	+6.3	+33.0	-37.2	+0.0	36.7	54.0	-17.3	Vert
Ave	2		+2.8								
^ 492	23.643M	44.6	+0.0	+6.3	+33.0	-37.2	+0.0	49.5	54.0	-4.5	Vert
			+2.8								

Customer: Specification: Work Order #: Test Type: Equipment: Manufacturer:	Motorola BCS FCC 15.247(c) 79346 Maximized emission Cable Modem Motorola BCS
Manufacturer:	Motorola BCS
Model:	SBG 1000 P-7
S/N:	00080ED30158

Date: 11/15/2002 Time: 09:55:10 Sequence#: 1 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

1 1				
Function	Manufacturer	Model #	S/N	
Cable Modem*	Motorola BCS	SBG 1000 P-7	00080ED30158	
Antenna	Centurion Wireless	CAF94333		
	Technologies, Inc.			

Support Devices:

Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem (32MB SDRAM). The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with unshielded cat. 5 cables. Connected to the parallel port of the EUT is a thermal printer. One of the HPNA ports has an unshielded terminated cable connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 22°C, Humidity: 42%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 30.0 to 1000.0 MHz.

Transducer Legend:

T1=Bicon 092401
T3=Cable #10 070803
T5=Log antenna, SN331 092303
T7=Preamp 8447D 082302
T9=Cable #15 120602

T2=Preamp 8447D 090501 T4=Cable #15 120602 T6=Bicon SN220 092303 T8=Cable #10 070803

Measurement Data: Reading listed by margin. Test Distance: 3 Meters											
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MIL	dD. V	Т9 410	4D	٩D	٩D	Tabla	dD. V/m	dD. V/m	٩D	Ant
1	MHZ 106 755M	<u>α Βμν</u>						<u>αβμν/m</u> 42.8	<u>α Βμ V/m</u> 42.5		Ant
1	OP	55.8	+0.0	+0.0 ± 13.4	-28.4	+0.0	+0.0	42.0	43.3	-0.7	ven
	QI		+1.9	113.4	-20.4	10.1					
^	106.755M	57.4	+0.0	+0.0	+0.0	+0.0	+0.0	44.4	43.5	+0.9	Vert
		• • • •	+0.0	+13.4	-28.4	+0.1					
			+1.9								
^	106.757M	43.1	+0.0	+0.0	+0.0	+0.0	+0.0	30.1	43.5	-13.4	Vert
			+0.0	+13.4	-28.4	+0.1			Shielded C	Cat. 5	
			+1.9						cables on H	Ethernet	
4	63.989M	57.0	+0.0	+0.0	+0.0	+0.0	+0.0	38.2	40.0	-1.8	Vert
	QP		+0.0	+8.1	-28.4	+0.1					
	(2.055) (<i>co</i> o	+1.4						40.0		**
^	63.977M	60.2	+0.0	+0.0	+0.0	+0.0	+0.0	41.4	40.0	+1.4	Vert
			+0.0	+8.1	-28.4	+0.1					
6	511 09 2 M	17 1	+1.4		+0.0	+0.0		44.0	16.0	2.0	Vort
0	0P	47.4	+0.0	+0.0	+0.0	+0.0	+0.0	44.0	40.0	-2.0	ven
	Qr		+19.9 +4.4	± 0.0	-20.1	+0.4					
^	511 981M	51.4	+0.0	+0.0	+0.0	+0.0	+0.0	48.0	46.0	+2.0	Vert
	0111/01111	2111	+19.9	+0.0	-28.1	+0.4	10.0	10.0	10.0	12.0	vert
			+4.4								
8	111.376M	53.5	+0.0	+0.0	+0.0	+0.0	+0.0	41.4	43.5	-2.1	Vert
	QP		+0.0	+14.3	-28.4	+0.1					
			+1.9								
^	111.373M	55.0	+0.0	+0.0	+0.0	+0.0	+0.0	42.9	43.5	-0.6	Vert
			+0.0	+14.3	-28.4	+0.1					
			+1.9								
^	111.374M	42.0	+0.0	+0.0	+0.0	+0.0	+0.0	29.9	43.5	-13.6	Vert
			+0.0	+14.3	-28.4	+0.1			Shielded C	Cat. 5	
11	576 006M	16.2	+1.9		+0.0	+0.0		12.0	cables on E	2 chernet	Vort
11	0P	40.5	+0.0	+0.0	+0.0	+0.0	+0.0	43.8	40.0	-2.2	ven
	Qr		+20.1 ±4.8	± 0.0	-27.0	+0.4					
^	576 109M	463	+0.0	+0.0	+0.0	+0.0	+0.0	43.8	46.0	-2.2	Vert
	570.109101	10.5	+20.1	+0.0	-27.8	+0.4	10.0	15.0	10.0	2.2	ven
			+4.8		_/.0						
13	111.621M	53.4	+0.0	+0.0	+0.0	+0.0	+0.0	41.3	43.5	-2.2	Vert
	QP		+0.0	+14.3	-28.4	+0.1					
			+1.9								
٨	111.611M	55.2	+0.0	+0.0	+0.0	+0.0	+0.0	43.1	43.5	-0.4	Vert
			+0.0	+14.3	-28.4	+0.1					
			+1.9								

15	112.226M	53.1	+0.0	+0.0	+0.0	+0.0	+0.0	41.3	43.5	-2.2	Vert
	QP		+0.0	+14.4	-28.3	+0.2					
			+1.9								
^	112.219M	55.0	+0.0	+0.0	+0.0	+0.0	+0.0	43.2	43.5	-0.3	Vert
			+0.0	+14.4	-28.3	+0.2					
			+1.9								
17	110.877M	53.4	+0.0	+0.0	+0.0	+0.0	+0.0	41.2	43.5	-2.3	Vert
	QP		+0.0	+14.2	-28.4	+0.1					
			+1.9								
^	110.884M	54.9	+0.0	+0.0	+0.0	+0.0	+0.0	42.7	43.5	-0.8	Vert
			+0.0	+14.2	-28.4	+0.1					
			+1.9								
19	112.833M	52.7	+0.0	+0.0	+0.0	+0.0	+0.0	41.1	43.5	-2.4	Vert
	QP		+0.0	+14.6	-28.3	+0.2					
			+1.9								
~	112.825M	54.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.8	43.5	-0.7	Vert
			+0.0	+14.5	-28.3	+0.2					
	110.02434	10.0	+1.9	.0.0	. 0. 0	. 0. 0	. 0. 0	21.0	12 5	10.5	X <i>T</i> (
~	112.834M	42.6	+0.0	+0.0	+0.0	+0.0	+0.0	31.0	43.5	-12.5	Vert
			+0.0	+14.0	-28.3	+0.2			Shielded C	al. 5 Ithornot	
22	500 09211	47.0	+1.9	+0.0	+0.0	+0.0		12 5		2.5	Vort
22	0P	47.0	+0.0	+0.0	+0.0	+0.0	+0.0	45.5	40.0	-2.3	ven
	Qr		± 19.0	± 0.0	-20.1	+0.4					
^	500.082M	47.1	+0.0	+0.0	+0.0	+0.0	+0.0	13.6	46.0	-2.4	Vert
	500.002101	77.1	+19.8	+0.0	-28.1	+0.0	10.0	+J.0	+0.0	-2.4	ven
			+4.4	10.0	20.1	10.1					
24	105.291M	54.3	+0.0	+0.0	+0.0	+0.0	+0.0	40.9	43.5	-2.6	Vert
	QP		+0.0	+13.1	-28.4	+0.1					
	-		+1.8								
^	105.291M	56.5	+0.0	+0.0	+0.0	+0.0	+0.0	43.1	43.5	-0.4	Vert
			+0.0	+13.1	-28.4	+0.1					
			+1.8								
26	107.305M	53.8	+0.0	+0.0	+0.0	+0.0	+0.0	40.9	43.5	-2.6	Vert
	QP		+0.0	+13.5	-28.4	+0.1					
			+1.9								
^	107.305M	55.0	+0.0	+0.0	+0.0	+0.0	+0.0	42.1	43.5	-1.4	Vert
			+0.0	+13.5	-28.4	+0.1					
			+1.9								
28	108.196M	53.3	+0.0	+0.0	+0.0	+0.0	+0.0	40.6	43.5	-2.9	Vert
	QP		+0.0	+13.7	-28.4	+0.1					
	100 10014		+1.9	0.0	0.0	0.0	0.0	10.5	10.5	1.0	X X .
~	108.188M	55.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	43.5	-1.0	Vert
			+0.0	+13.7	-28.4	+0.1					
^	108 106M	20.0	+1.9					27.1	12 5	16 /	Vort
	100.1901	37.0	$^{+0.0}_{\pm 0.0}$	+0.0 +13.7	-28 /	+0.0	± 0.0	21.1	43.3 Shielded C	-10.4 at 5	ven
			+0.0 +1 Q	±13.7	-20.4	± 0.1			cables on F	ar. J Ethernet	
									Caulos OIL L	ALICINCL	

31	50.022M QP	52.8	+0.0 +0.0	+0.0 +11.2	+0.0 -28.4	+0.0 +0.1	+0.0	36.9	40.0	-3.1	Vert
^	49.992M	54.4	+1.2 +0.0 +0.0 +1.2	+0.0 +11.2	+0.0 -28.4	+0.0 +0.1	+0.0	38.5	40.0	-1.5	Vert
33	299.994M QP	44.6	+1.2 +0.0 +0.0 +3.3	+0.0 +22.9	+0.0 -28.3	+0.0 +0.3	+0.0	42.8	46.0	-3.2	Horiz
^	299.995M	45.3	+0.0 +0.0 +3.3	+0.0 +22.9	+0.0 -28.3	+0.0 +0.3	+0.0	43.5	46.0	-2.5	Horiz
35	108.797M QP	52.9	+0.0 +0.0 +1.9	+0.0 +13.8	+0.0 -28.4	+0.0 +0.1	+0.0	40.3	43.5	-3.2	Vert
^	108.791M	54.6	+0.0 +0.0 +1.9	+0.0 +13.8	+0.0 -28.4	+0.0 +0.1	+0.0	42.0	43.5	-1.5	Vert
37	106.757M QP	52.7	+0.0 +0.0 +1.9	+0.0 +13.4	+0.0 -28.4	+0.0 +0.1	+0.0	39.7	43.5	-3.8	Horiz
^	106.757M	53.6	$^{+0.0}_{+0.0}_{+1.9}$	+0.0 +13.4	+0.0 -28.4	+0.0 +0.1	+0.0	40.6	43.5	-2.9	Horiz
39	400.051M QP	49.1	+0.0 +16.9 +3.8	+0.0 +0.0	+0.0 -28.2	+0.0 +0.3	+0.0	41.9	46.0	-4.1	Vert
^	400.031M	50.8	+0.0 +16.9 +3.8	$^{+0.0}_{+0.0}$	+0.0 -28.2	+0.0 +0.3	+0.0	43.6	46.0	-2.4	Vert
41	299.998M	44.4	+22.2	-28.3	+0.3	+3.3	+0.0	41.9	46.0	-4.1	Vert
42	600.076M	43.9	+0.0 +20.2 +4.9	+0.0 +0.0	+0.0 -27.7	+0.0 +0.4	+0.0	41.7	46.0	-4.3	Horiz
43	350.005M	46.5	+0.0 +19.6 +3.5	+0.0 +0.0	+0.0 -28.3	+0.0 +0.3	+0.0	41.6	46.0	-4.4	Horiz
44	108.505M	51.6	$^{+0.0}_{+0.0}_{+1.9}$	+0.0 +13.8	+0.0 -28.4	+0.0 +0.1	+0.0	39.0	43.5	-4.5	Horiz
45	104.730M	52.3	$^{+0.0}_{+0.0}_{+1.8}$	+0.0 +13.0	+0.0 -28.4	+0.0 +0.1	+0.0	38.8	43.5	-4.7	Horiz
46	62.754M QP	53.8	+0.0 +0.0 +1.4	+0.0 +8.4	+0.0 -28.4	+0.0 +0.1	+0.0	35.3	40.0	-4.7	Vert
^	62.756M	58.3	+0.0 +0.0 +1.4	+0.0 +8.4	+0.0 -28.4	+0.0 +0.1	+0.0	39.8	40.0	-0.2	Vert

48	107.652M	51.6	+0.0	+0.0	+0.0	+0.0	+0.0	38.8	43.5	-4.7	Vert
	OP		+0.0	+13.6	-28.4	+0.1					
			+1.9								
^	107 652M	54.4	+0.0	+0.0	+0.0	+0.0	+0.0	41.6	43 5	-19	Vert
	107.05201	51.1	+0.0	+13.6	-28.4	+0.0	10.0	11.0	15.5	1.7	ven
			±1 0	115.0	20.4	10.1					
50	104 (05)	50.1	+1.9	.0.0	0.0	.0.0		20 (12 5	4.0	Mant
50	104.095M	52.1	+0.0	+0.0	+0.0	+0.0	+0.0	38.0	43.5	-4.9	vert
			+0.0	+13.0	-28.4	+0.1					
			+1.8								
51	114.634M	49.8	+0.0	+0.0	+0.0	+0.0	+0.0	38.5	43.5	-5.0	Vert
			+0.0	+14.9	-28.3	+0.2					
			+1.9								
52	209.958M	46.2	+0.0	+0.0	+0.0	+0.0	+0.0	38.5	43.5	-5.0	Horiz
			+0.0	+17.9	-28.4	+0.2					
			+2.6								
53	37.023M	45.9	+0.0	+0.0	+0.0	+0.0	+0.0	35.0	40.0	-5.0	Vert
			+0.0	+16.4	-28.5	+0.1					
			+1.1								
54	575 994M	433	+0.0	+0.0	+0.0	+0.0	+0.0	40.8	46.0	-5.2	Horiz
	OP		+20.1	+0.0	-27.8	+0.4			1010	0.2	
	X -		+4.8								
^	575 006M	44.1	+0.0					41.6	46.0	4.4	Uoriz
	373.990WI	44.1	+0.0	+0.0	+0.0	+0.0	± 0.0	41.0	40.0	-4.4	TIOUTZ
			+4.9	± 0.0	-27.0	+0.4					
50	200.0001	46.1	+4.0	.0.0	.0.0	.0.0	.0.0	20.0	12 5	5.2	Mart
50	200.000M	40.1	+0.0	+0.0	+0.0	+0.0	+0.0	38.2	43.5	-5.5	vert
			+0.0	+1/./	-20.4	+0.2					
	200.0003.6	10.5	+2.6	0.0			0.0	10 5	16.0		* *
57	299.990M	42.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.7	46.0	-5.3	Vert
			+0.0	+22.9	-28.3	+0.3					
			+3.3								
58	703.977M	40.7	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	46.0	-5.5	Vert
	QP		+21.6	+0.0	-27.4	+0.4					
			+5.2								
^	703.984M	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	41.7	46.0	-4.3	Vert
			+21.6	+0.0	-27.4	+0.4					
			+5.2								
60	319.995M	43.7	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	46.0	-5.5	Horiz
			+21.4	+0.0	-28.3	+0.3					
			+3.4								
61	111 559M	49 9	+0.0	+0.0	+0.0	+0.0	+0.0	37.8	43 5	-57	Horiz
01	OP	17.7	+0.0	+14.3	-28.4	+0.0	10.0	27.0	10.0	0.1	HOLE
	X ¹		+1.9	11.0	20.1	10.1					
^	111 561M	52.0	+0.0	+0.0	+0.0	+0.0	+0.0	30.0	13.5	3.6	Horiz
	111.301101	52.0	+0.0	± 1.0	+0.0 28.4	+0.0	± 0.0	39.9	45.5	-5.0	HOHZ
			+0.0	± 14.5	-20.4	± 0.1					
<i>(</i> 2	400.0103.6	47 4	+1.9		.0.0	.0.0	.0.0	40.2	16.0	<i>E</i> 0	II. '
63	400.010M	47.4	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	46.0	-5.8	Horiz
			+16.9	+0.0	-28.2	+0.3					
ļ			+3.8								
64	46.745M	48.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.2	40.0	-5.8	Vert
			+0.0	+12.4	-28.4	+0.1					
			+1.2								

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
75 639.999M 39.9 +0.0 +0.0 +0.0 +0.0 +0.0 38.7 46.0 -7.3 Vert +20.8 +0.0 -27.5 +0.4 -0.4 -0.4 -0.4 -0.4 +5.1 -76 450.013M 44.2 +0.0 +0.0 +0.0 +0.0 38.7 46.0 -7.3 Horiz
+20.8 +0.0 -27.5 +0.4 +5.1 76 450.013M 44.2 +0.0 +0.0 +0.0 +0.0 +0.0 38.7 46.0 -7.3 Horiz
+5.1 76 450.013M 44.2 +0.0 +0.0 +0.0 +0.0 +0.0 38.7 46.0 -7.3 Horiz
76 450.013M 44.2 +0.0 +0.0 +0.0 +0.0 +0.0 38.7 46.0 -7.3 Horiz
$100430.013111444.2 \pm 0.0 \pm 0$
+18.4 $+0.0$ -26.5 $+0.4$
+4.0
7790.131M $51.7 +0.0 +0.0 +0.0 +0.0 +0.0 30.2 43.5 -7.5 Vert$
+0.0 $+11.1$ -28.4 $+0.1$
+1./
$78 \ 100.031M \ 50.5 \ +0.0 \ +0.0 \ +0.0 \ +0.0 \ +0.0 \ 36.1 \ 43.5 \ -7.4 \ Vert$
+0.0 $+12.1$ -28.4 $+0.1$
+1.8
79 599.996M 40.5 +0.0 +0.0 +0.0 +0.0 +0.0 38.3 46.0 -7.7 Vert
+20.2 $+0.0$ -27.7 $+0.4$
+4.9
80 117.057M 46.7 +0.0 +0.0 +0.0 +0.0 35.8 43.5 -7.7 Vert
+0.0 +15.3 -28.3 +0.2
+1.9
81 768.010M 37.5 +0.0 +0.0 +0.0 +0.0 38.0 46.0 -8.0 Horiz
+22.0 +0.0 -27.5 +0.4

82	116.296M	46.5	+0.0	+0.0	+0.0	+0.0	+0.0	35.5	43.5	-8.0	Vert
			+0.0	+15.2	-28.3	+0.2					
			+1.9								
83	449 986M	43.4	+0.0	+0.0	+0.0	+0.0	+0.0	37.9	46.0	-8.1	Vert
05	1191900101	10.1	+18.4	+0.0	-28.3	+0.0	10.0	5115	10.0	0.1	vert
			+4.0	10.0	20.5	10.1					
8/1	699 988M	38.0	+ 1.0	+0.0	+0.0	+0.0	+0.0	37.8	46.0	-8.2	Horiz
0-	077.700141	50.0	+21.6	+0.0	27.4	+0.0	10.0	57.0	+0.0	-0.2	TIOUTZ
			121.0	10.0	-27.4	10.4					
95	255.004M	127	+0.0		+0.0			27.9	46.0	0 2	Uoria
65	233.994IVI	43.7	+0.0	+0.0	+0.0	+0.0	+0.0	57.8	40.0	-0.2	HOUL
			+0.0	+19.2	-20.3	± 0.5					
96	400.002M	41.1	+2.9		+0.0	+0.0		276	16.0	0.1	Homin
80	499.992M	41.1	+0.0	+0.0	+0.0	+0.0	+0.0	57.0	40.0	-8.4	HOLIZ
			+19.8	+0.0	-28.1	+0.4					
07	550.00434	10.4	+4.4	0.0	0.0	0.0	0.0	27.5	16.0	0.5	X 7 .
87	550.094M	40.4	+0.0	+0.0	+0.0	+0.0	+0.0	37.5	46.0	-8.5	Vert
			+20.0	+0.0	-27.9	+0.4					
	00.01016	7 0 6	+4.6	0.0					10.0	0.5	
88	80.910M	50.6	+0.0	+0.0	+0.0	+0.0	+0.0	31.5	40.0	-8.5	Vert
			+0.0	+/./	-28.5	+0.1					
			+1.6								
89	37.538M	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	30.9	40.0	-9.1	Horiz
			+0.0	+16.3	-28.5	+0.1					
			+1.1								
90	117.655M	45.2	+0.0	+0.0	+0.0	+0.0	+0.0	34.4	43.5	-9.1	Vert
			+0.0	+15.4	-28.3	+0.2					
			+1.9								
91	114.674M	45.6	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	43.5	-9.2	Horiz
			+0.0	+14.9	-28.3	+0.2					
			+1.9								
92	768.007M	36.2	+0.0	+0.0	+0.0	+0.0	+0.0	36.7	46.0	-9.3	Vert
			+22.0	+0.0	-27.5	+0.4					
			+5.6								
93	60.002M	48.3	+0.0	+0.0	+0.0	+0.0	+0.0	30.3	40.0	-9.7	Vert
			+0.0	+9.0	-28.4	+0.1					
			+1.3								
94	61.595M	48.7	+0.0	+0.0	+0.0	+0.0	+0.0	30.3	40.0	-9.7	Horiz
			+0.0	+8.6	-28.4	+0.1					
			+1.3								
95	699.994M	36.4	+0.0	+0.0	+0.0	+0.0	+0.0	36.2	46.0	-9.8	Vert
			+21.6	+0.0	-27.4	+0.4					
			+5.2								
96	511.994M	39.3	+0.0	+0.0	+0.0	+0.0	+0.0	35.9	46.0	-10.1	Horiz
			+19.9	+0.0	-28.1	+0.4					
			+4.4		- / -						
97	799.996M	34.9	+0.0	+0.0	+0.0	+0.0	+0.0	35.8	46.0	-10.2	Vert
			+22.2	+0.0	-27.5	+0.5				- • • - =	
			+5.7								
98	92.406M	47.5	+0.0	+0.0	+0.0	+0.0	+0.0	30.8	43.5	-12.7	Vert
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2		+0.0	+10.0	-28.5	+0.1		20.0			
			+1.7	10.0	20.0	10.1					
L			11./								

Customer: Specification:	Motorola BCS FCC 15.107/15.207
Work Order #:	79346
Test Type:	Conducted Emissions
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/16/2002 Time: 2:54:42 PM Sequence#: 14 Tested By: Stuart Yamamoto 120V 60Hz

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 25°C, Humidity: 50%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz.

Measur	ement Data:	Reading listed by margin.				Test Lead: Black					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	3.315M	39.3					+0.0	39.3	48.0	-8.7	Black
2	1.207M	38.0					+0.0	38.0	48.0	-10.0	Black
3	4.044M	36.3					+0.0	36.3	48.0	-11.7	Black
4	25.218M	36.2					+0.0	36.2	48.0	-11.8	Black
5	3.979M	35.7					+0.0	35.7	48.0	-12.3	Black

6	656.778k	35.6	+0.0	35.6	48.0	-12.4	Black
7	2.655M	35.5	+0.0	35.5	48.0	-12.5	Black
8	4.767M	35.5	+0.0	35.5	48.0	-12.5	Black
9	660.790k	35.4	+0.0	35.4	48.0	-12.6	Black
10	3.911M	35.4	+0.0	35.4	48.0	-12.6	Black
11	4.701M	35.4	+0.0	35.4	48.0	-12.6	Black
12	5.230M	35.4	+0.0	35.4	48.0	-12.6	Black
13	2.922M	35.3	+0.0	35.3	48.0	-12.7	Black
14	3.780M	35.3	+0.0	35.3	48.0	-12.7	Black
15	4.106M	35.3	+0.0	35.3	48.0	-12.7	Black
16	4.177M	35.3	+0.0	35.3	48.0	-12.7	Black
17	4.504M	35.3	+0.0	35.3	48.0	-12.7	Black
18	4.830M	35.3	+0.0	35.3	48.0	-12.7	Black
19	4.570M	35.2	+0.0	35.2	48.0	-12.8	Black
20	3.512M	35.1	+0.0	35.1	48.0	-12.9	Black
21	2.988M	34.9	+0.0	34.9	48.0	-13.1	Black
22	4.894M	34.9	+0.0	34.9	48.0	-13.1	Black
23	3.842M	34.8	+0.0	34.8	48.0	-13.2	Black
24	5.029M	34.8	+0.0	34.8	48.0	-13.2	Black
25	5.161M	34.8	+0.0	34.8	48.0	-13.2	Black
26	4.374M	34.7	+0.0	34.7	48.0	-13.3	Black
27	4.438M	34.7	+0.0	34.7	48.0	-13.3	Black
28	5.095M	34.7	+0.0	34.7	48.0	-13.3	Black
29	4.636M	34.6	+0.0	34.6	48.0	-13.4	Black
30	5.625M	34.6	+0.0	34.6	48.0	-13.4	Black

CKC Laboratories, Inc. Date: 08/16/2002 Time: 2:54:42 PM Motorola BCS VVO#: 79346 FCC 15:207 Test Lead: Black 120V 60Hz Sequence#: 14 MOTOROLA BCS, SBG 1000 P5

Customer:	Motorola BCS
Specification:	FCC 15.107/15.207
Work Order #:	79346
Test Type:	Conducted Emissions
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Manufacturer:	Motorola BCS
Model:	SBG 1000 P5
S/N:	00080ED2F1E0

Date: 08/16/2002 Time: 2:59:05 PM Sequence#: 15 Tested By: Stuart Yamamoto 120V 60Hz

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086
Parallel Printer	Epson	P156A	CMR1545596
Head End	Cisco	uBR-MC11C	CN1ISS0AA

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 25°C, Humidity: 50%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz.

Measur	ement Data:	Re	Reading listed by margin.				Test Lead: White				
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	3.315M	38.8					+0.0	38.8	48.0	-9.2	White
2	25.209M	36.7					+0.0	36.7	48.0	-11.3	White
3	659.185k	36.1					+0.0	36.1	48.0	-11.9	White
4	1.207M	35.9					+0.0	35.9	48.0	-12.1	White
5	656.778k	35.7					+0.0	35.7	48.0	-12.3	White

6	4.044M	35.1	+	-0.0	35.1	48.0	-12.9	White
7	3.975M	34.2	+	-0.0	34.2	48.0	-13.8	White
8	7.274M	33.7	+	-0.0	33.7	48.0	-14.3	White
9	2.920M	33.5	+	-0.0	33.5	48.0	-14.5	White
10	3.052M	33.5	+	-0.0	33.5	48.0	-14.5	White
11	4.108M	33.5	+	-0.0	33.5	48.0	-14.5	White
12	4.177M	33.3	+	-0.0	33.3	48.0	-14.7	White
13	4.374M	33.3	+	-0.0	33.3	48.0	-14.7	White
14	7.208M	33.2	+	-0.0	33.2	48.0	-14.8	White
15	7.340M	33.2	+	-0.0	33.2	48.0	-14.8	White
16	4.307M	33.1	+	-0.0	33.1	48.0	-14.9	White
17	6.877M	33.0	+	-0.0	33.0	48.0	-15.0	White
18	6.940M	33.0	+	-0.0	33.0	48.0	-15.0	White
19	7.009M	33.0	+	-0.0	33.0	48.0	-15.0	White
20	3.379M	32.9	+	-0.0	32.9	48.0	-15.1	White
21	4.243M	32.9	+	-0.0	32.9	48.0	-15.1	White
22	7.399M	32.9	+	-0.0	32.9	48.0	-15.1	White
23	7.597M	32.9	+	-0.0	32.9	48.0	-15.1	White
24	4.695M	32.8	+	-0.0	32.8	48.0	-15.2	White
25	3.909M	32.7	+	-0.0	32.7	48.0	-15.3	White
26	6.678M	32.7	+	-0.0	32.7	48.0	-15.3	White
27	7.078M	32.7	+	-0.0	32.7	48.0	-15.3	White
28	7.142M	32.7	+	-0.0	32.7	48.0	-15.3	White
29	7.465M	32.6	+	-0.0	32.6	48.0	-15.4	White
30	7.531M	32.6	ł	-0.0	32.6	48.0	-15.4	White

CKC Laboratories, Inc. Date: 08/16/2002 Time: 2:59:05 PM Motorola BCS WO#: 79346 FCC 15:207 Test Lead: White 120V 60Hz Sequence#: 15 MOTOROLA BCS, SBG 1000 P5

Test Location:	CKC Laboratories, Inc.	•110 N. Olinda Place •	Brea, CA 9282	23 • (714) 993-6112
Customer:	Motorola BCS			
Specification:	FCC 15.109 Class B			
Work Order #:	79346		Date:	08/08/2002
Test Type:	Maximized emission		Time:	14:04:01
Equipment:	Cable Modem		Sequence#:	4
Manufacturer:	Motorola BCS		Tested By:	Stuart Yamamoto
Model:	SBG 1000 P5			
S/N:	00080ED2F1E0			

Equipment Under Test (* = EUT):

<u>-1</u>	_==_).		
Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P5	00080ED2F1E0

Manufacturer	Model #	S/N
General Instruments	C6U	J5M7000101358
Bay Networks	DS104	DS14H08355155
Toshiba	PA1215UV	04694236
Dolch	L-PAC 585	DCS2016538
SII	DPU-414	1033083A
Gateway	MOSXK	
Dell	SK-1000RS	M940111179
NEC	JC-1538VMA	5900265EA
Gateway	G6-366C	0013168086
Epson	P156A	CMR1545596
Cisco	uBR-MC11C	CN1ISS0AA
	Manufacturer General Instruments Bay Networks Toshiba Dolch SII Gateway Dell NEC Gateway Epson Cisco	ManufacturerModel #General InstrumentsC6UBay NetworksDS104ToshibaPA1215UVDolchL-PAC 585SIIDPU-414GatewayMOSXKDellSK-1000RSNECJC-1538VMAGatewayG6-366CEpsonP156ACiscouBR-MC11C

Test Conditions / Notes:

The EUT is a cable modem. The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with shielded cables. Connected to the parallel port of the EUT is a thermal printer. The HPNA ports have unshielded terminated cables connected. The "F" connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. Temperature: 24°C, Humidity: 53%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz.

Transducer Legend:

T1=Bicon 092401
T3=Preamp 8447D 090501
T5=Cable #15 120602

T2=Log 331 092401 T4=Cable #10 070803

Measu	rement Data:	Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	48.065M	52.1	+11.5	+0.0	-28.3	+0.1	+0.0	36.6	40.0	-3.4	Vert
	QP		+1.2								
^	48.069M	55.3	+11.5	+0.0	-28.3	+0.1	+0.0	39.8	40.0	-0.2	Vert
			+1.2								
3	640.054M	44.2	+0.0	+20.5	-27.9	+0.4	+0.0	42.3	46.0	-3.7	Horiz
	QP		+5.1								
^	640.064M	45.5	+0.0	+20.5	-27.9	+0.4	+0.0	43.6	46.0	-2.4	Horiz
			+5.1								

5	82.547M	53.5	+7.4	+0.0	-28.2	+0.1	+0.0	34.4	40.0	-5.6	Horiz
^	<u>QP</u> 82.584M	57.0	+1.0 +7.4	+0.0	28.2	+0.1	+0.0	37.0	40.0	2.1	Horiz
	02.304111	57.0	+1.6	10.0	-20.2	10.1	10.0	51.7	40.0	-2.1	HOHZ
7	390.013M	48.4	+0.0	+16.1	-28.3	+0.3	+0.0	40.2	46.0	-5.8	Horiz
	QP		+3.7								
^	390.017M	49.0	+0.0	+16.1	-28.3	+0.3	+0.0	40.8	46.0	-5.2	Horiz
	46.04434	40.1	+3.7	0.0	20.2	0.1	0.0	24.1	40.0		¥.7 .
9	46.844M	49.1	+12.0	+0.0	-28.3	+0.1	+0.0	34.1	40.0	-5.9	Vert
٨	<u>46 857M</u>	51.9	+1.2 +11.9	+0.0	-28.3	+0.1	+0.0	36.8	40.0	-3.2	Vert
	10.027101	51.9	+1.2	10.0	20.5	10.1	10.0	50.0	10.0	5.2	ven
11	768.046M	39.7	+0.0	+21.9	-27.8	+0.4	+0.0	39.8	46.0	-6.2	Vert
	QP		+5.6								
۸	768.053M	40.7	+0.0	+21.9	-27.8	+0.4	+0.0	40.8	46.0	-5.2	Vert
12	220.05714	4.4.1	+5.6	. 20. 2	20.2	.0.2	.0.0	20.0	16.0	()	11
13	330.057M	44.1	+0.0 +3.4	+20.2	-28.2	+0.3	+0.0	39.8	46.0	-6.2	Horiz
14	640.051M	41.6	+3.4	+20.5	-27.9	+0.4	+0.0	39.7	46.0	-63	Vert
	QP	11.0	+5.1	120.5	21.9	10.1	10.0	57.1	10.0	0.5	vert
٨	640.077M	43.3	+0.0	+20.5	-27.9	+0.4	+0.0	41.4	46.0	-4.6	Vert
			+5.1								
16	390.010M	47.9	+0.0	+16.1	-28.3	+0.3	+0.0	39.7	46.0	-6.3	Vert
17	760.00714	20.6	+3.7	. 21.0	27.0	.0.4	.0.0	20.7	16.0	()	II?
1/	708.087M	39.0	+0.0	+21.9	-27.8	+0.4	+0.0	39.7	40.0	-0.3	Horiz
٨	768.077M	40.1	+0.0	+21.9	-27.8	+0.4	+0.0	40.2	46.0	-5.8	Horiz
			+5.6	,							
19	77.895M	53.2	+6.8	+0.0	-28.3	+0.1	+0.0	33.4	40.0	-6.6	Horiz
			+1.6								
20	600.066M	43.0	+0.0	+18.9	-28.1	+0.4	+0.0	39.1	46.0	-6.9	Horiz
21	221 979M	12.6	+4.9	120.0	<u> </u>	+0.2		20.1	16.0	6.0	Uoriz
21	551.070IVI	45.0	+0.0 +3.4	+20.0	-20.2	+0.5	+0.0	39.1	40.0	-0.9	HOUL
22	112.552M	48.8	+14.0	+0.0	-28.4	+0.2	+0.0	36.5	43.5	-7.0	Vert
	QP		+1.9								
٨	112.549M	50.1	+14.0	+0.0	-28.4	+0.2	+0.0	37.8	43.5	-5.7	Vert
			+1.9		• • •						
24	350.056M	44.6	+0.0	+18.7	-28.2	+0.3	+0.0	38.9	46.0	-7.1	Horiz
٨	<u>QP</u> 350.068M	46.2	+3.3	±18.7	_28.2	+0.3	+0.0	40.5	46.0	-5.5	Horiz
	550.000141	40.2	+3.5	10.7	-20.2	10.5	10.0	- 0.5	+0.0	-5.5	HOLL
26	320.090M	42.6	+0.0	+20.9	-28.3	+0.3	+0.0	38.9	46.0	-7.1	Horiz
	QP		+3.4								
۸	320.055M	43.7	+0.0	+20.9	-28.3	+0.3	+0.0	40.0	46.0	-6.0	Horiz
	100000		+3.4		26.2		0.0	26.1	10 -		
28	176.264M	44.6	+17.4	+0.0	-28.2	+0.2	+0.0	36.4	43.5	-7.1	Horiz
^	<u>vr</u> 176.262M	46.2	+2.4 +17 4	+0.0	-28.2	+0.2	+0.0	38.0	43.5	-5 5	Horiz
	170.202111	40.2	+2.4	10.0	20.2	10.2	10.0	50.0	тэ.э	5.5	TIOUT
L											

30	37.411M	44.7	+15.4	+0.0	-28.4	+0.1	+0.0	32.9	40.0	-7.1	Vert
	QP		+1.1								
^	37.411M	46.9	$^{+15.4}_{+1.1}$	+0.0	-28.4	+0.1	+0.0	35.1	40.0	-4.9	Vert
32	70.802M	53.0	+6.9 +1.5	+0.0	-28.6	+0.1	+0.0	32.9	40.0	-7.1	Vert
33	350.093M	44.5	+0.0 +3.5	+18.7	-28.2	+0.3	+0.0	38.8	46.0	-7.2	Vert
34	704.906M	38.6	+0.0 +5.2	+22.6	-28.0	+0.4	+0.0	38.8	46.0	-7.2	Horiz
35	300.071M	41.0	+0.0 +3.3	+22.5	-28.3	+0.3	+0.0	38.8	46.0	-7.2	Horiz
36	400.060M	47.4	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	38.7	46.0	-7.3	Horiz
^	400.068M	49.2	+0.0 +3.8	+15.5	-28.3	+0.3	+0.0	40.5	46.0	-5.5	Horiz
38	800.050M	38.5	+0.0 +5.7	+21.5	-27.6	+0.5	+0.0	38.6	46.0	-7.4	Horiz
39	112.567M	48.4	+14.0 +1.9	+0.0	-28.4	+0.2	+0.0	36.1	43.5	-7.4	Horiz
40	76.277M	52.1	+6.8	+0.0	-28.3	+0.1	+0.0	32.3	40.0	-7.7	Horiz
41	665.304M	39.1	+0.0 +5.1	+21.4	-27.9	+0.4	+0.0	38.1	46.0	-7.9	Horiz
42	449.191M	46.2	+0.0 +4.0	+16.2	-28.7	+0.4	+0.0	38.1	46.0	-7.9	Horiz
43	760.337M	37.8	+0.0 +5.5	+22.0	-27.8	+0.4	+0.0	37.9	46.0	-8.1	Vert
44	599.988M	41.8	+0.0 +4.9	+18.9	-28.1	+0.4	+0.0	37.9	46.0	-8.1	Vert
45	37.586M OP	43.7	+15.4	+0.0	-28.4	+0.1	+0.0	31.9	40.0	-8.1	Horiz
٨	37.565M	47.2	+15.4	+0.0	-28.4	+0.1	+0.0	35.4	40.0	-4.6	Horiz
47	550.061M	43.5	+0.0 +4.6	+17.9	-28.6	+0.4	+0.0	37.8	46.0	-8.2	Vert
48	80.786M	51.3	+7.0 +1.6	+0.0	-28.2	+0.1	+0.0	31.8	40.0	-8.2	Vert
49	330.042M	42.0	+0.0 +3.4	+20.2	-28.2	+0.3	+0.0	37.7	46.0	-8.3	Vert
50	61.664M	50.9	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	31.6	40.0	-8.4	Horiz
51	464.476M	45.2	+0.0 +4.1	+16.4	-28.6	+0.4	+0.0	37.5	46.0	-8.5	Horiz
52	104.989M	49.0	+12.5 +1.8	+0.0	-28.4	+0.1	+0.0	35.0	43.5	-8.5	Vert
53	320.067M	41.1	+0.0 +3.4	+20.9	-28.3	+0.3	+0.0	37.4	46.0	-8.6	Vert
54	100.088M	49.9	+11.5 +1.8	+0.0	-28.4	+0.1	+0.0	34.9	43.5	-8.6	Horiz

55	760.270M	37.1	+0.0 +5.5	+22.0	-27.8	+0.4	+0.0	37.2	46.0	-8.8	Horiz
56	200.046M	43.5	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	34.7	43.5	-8.8	Horiz
57	500.080M	43.9	+0.0 +4.4	+16.9	-28.5	+0.4	+0.0	37.1	46.0	-8.9	Horiz
58	665.285M	37.6	$^{+0.0}_{+5.1}$	+21.4	-27.9	+0.4	+0.0	36.6	46.0	-9.4	Vert
59	449.235M	44.7	$^{+0.0}_{+4.0}$	+16.2	-28.7	+0.4	+0.0	36.6	46.0	-9.4	Vert
60	105.047M	48.1	+12.5 +1.8	+0.0	-28.4	+0.1	+0.0	34.1	43.5	-9.4	Horiz
61	176.289M	42.2	+17.4 +2.4	+0.0	-28.2	+0.2	+0.0	34.0	43.5	-9.5	Vert
62	500.027M	43.2	$^{+0.0}_{+4.4}$	+16.9	-28.5	+0.4	+0.0	36.4	46.0	-9.6	Vert
63	200.076M	42.7	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	33.9	43.5	-9.6	Vert
64	400.053M	45.0	$^{+0.0}_{+3.8}$	+15.5	-28.3	+0.3	+0.0	36.3	46.0	-9.7	Vert
65	800.052M	36.1	$^{+0.0}_{+5.7}$	+21.5	-27.6	+0.5	+0.0	36.2	46.0	-9.8	Vert
66	512.048M	42.6	$^{+0.0}_{+4.4}$	+17.2	-28.5	+0.4	+0.0	36.1	46.0	-9.9	Vert
67	256.094M	42.6	+18.4 +3.0	+0.0	-28.2	+0.3	+0.0	36.1	46.0	-9.9	Horiz
68	272.122M	40.9	+19.8 +3.1	+0.0	-28.3	+0.3	+0.0	35.8	46.0	-10.2	Horiz
69	512.050M	42.2	$^{+0.0}_{+4.4}$	+17.2	-28.5	+0.4	+0.0	35.7	46.0	-10.3	Horiz
70	65.106M	49.1	+7.5 +1.4	+0.0	-28.6	+0.1	+0.0	29.5	40.0	-10.5	Horiz
71	200.603M	41.7	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	32.9	43.5	-10.6	Horiz
72	100.001M	47.6	+11.5 +1.8	+0.0	-28.4	+0.1	+0.0	32.6	43.5	-10.9	Vert
73	61.294M QP	48.3	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	29.0	40.0	-11.0	Vert
^	61.242M	54.1	+7.9 +1.3	+0.0	-28.6	+0.1	+0.0	34.8	40.0	-5.2	Vert
75	331.834M	39.4	+0.0 +3.4	+20.0	-28.2	+0.3	+0.0	34.9	46.0	-11.1	Vert
76	384.091M	40.8	+0.0 +3.7	+16.5	-28.3	+0.3	+0.0	33.0	46.0	-13.0	Vert
77	200.504M	38.7	+16.8 +2.6	+0.0	-28.4	+0.2	+0.0	29.9	43.5	-13.6	Vert
78	96.095M	45.0	+10.6 +1.7	+0.0	-28.3	+0.1	+0.0	29.1	43.5	-14.4	Vert

Motorola BCS FCC 15.209 79346 Maximized emission Cable Modem Motorola BCS SBG 1000 P-7
SBG 1000 P-7 00080ED30158

Date: 11/15/2002 Time: 14:11:00 Sequence#: 1 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

1 1				
Function	Manufacturer	Model #	S/N	
Cable Modem*	Motorola BCS	SBG 1000 P-7	00080ED30158	
Antenna	Centurion Wireless	CAF94333		
	Technologies, Inc.			

Support Devices:

Function	Manufacturer	Model #	S/N
Head In	Cisco	uBR-MC11C	CN1ISS0AA
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086

Test Conditions / Notes:

The EUT is a cable modem (32MB SDRAM). The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with unshielded cat. 5 cables. Connected to the parallel port of the EUT is a thermal printer. One of the HPNA ports has an unshielded terminated cable connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 1. Temperature: 22°C, Humidity: 42%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1 GHz to 12.1 GHz.

T1=Cable Heliax 48ft	T2=Horn 6246_091003
T3=HP83017A Preamp 091103	T4=20dB Attenuator
T5=10dB Attenuator	T6=3.5GHz High Pass Filter A/N 01416

Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
	1 7235.819M	39.5	+10.5	+35.5	-35.9	+0.0	+0.0	52.7	54.0	-1.3	Vert
	Ave		+0.0	+3.1							
	^ 7235.918M	52.1	+10.5	+35.5	-35.9	+0.0	+0.0	65.3	54.0	+11.3	Vert
			+0.0	+3.1							

3 1608.005M	47.7	+4.5	+25.8	-37.9	+0.0	+0.0	50.1	54.0	-3.9	Horiz
Ave		+10.0	+0.0							
^ 1607.978M	51.5	+4.5	+25.8	-37.9	+0.0	+0.0	53.9	54.0	-0.1	Horiz
		+10.0	+0.0							
5 7239.588M	36.8	+10.5	+35.5	-35.9	+0.0	+0.0	50.0	54.0	-4.0	Horiz
Ave		+0.0	+0.0							
^ 7239.519M	47.7	+10.5	+35.5	-35.9	+0.0	+0.0	60.9	54.0	+6.9	Horiz
		+0.0	+3.1							
7 1600.049M	47.0	+4.5	+25.8	-37.9	+0.0	+0.0	49.4	54.0	-4.6	Vert
		+10.0	+0.0							
8 1505.310M	48.2	+4.4	+25.1	-38.4	+0.0	+0.0	49.3	54.0	-4.7	Vert
		+10.0	+0.0							
9 1807.324M	35.7	+4.8	+27.0	-38.3	+20.0	+0.0	49.2	54.0	-4.8	Vert
Ave		+0.0	+0.0							
^ 1807.350M	44.9	+4.8	+27.0	-38.3	+20.0	+0.0	58.4	54.0	+4.4	Vert
		+0.0	+0.0							
11 1599.978M	46.3	+4.5	+25.8	-37.9	+0.0	+0.0	48.7	54.0	-5.3	Horiz
		+10.0	+0.0							
12 1811.460M	34.9	+4.8	+27.0	-38.3	+20.0	+0.0	48.4	54.0	-5.6	Vert
Ave		+0.0	+0.0							
^ 1811.421M	43.1	+4.8	+27.0	-38.3	+20.0	+0.0	56.6	54.0	+2.6	Vert
		+0.0	+0.0		• • • •					
14 1811.470M	34.2	+4.8	+27.0	-38.3	+20.0	+0.0	47.7	54.0	-6.3	Horiz
Ave		+0.0	+0.0		• • • •					
^ 1811.408M	45.3	+4.8	+27.0	-38.3	+20.0	+0.0	58.8	54.0	+4.8	Horiz
16 1000 10014	24.1	+0.0	+0.0	20.2	20.0	0.0	17.6	54.0	<i>c</i> 1	
16 1809.180M	34.1	+4.8	+27.0	-38.3	+20.0	+0.0	47.6	54.0	-6.4	Horiz
Ave	11.0	+0.0	+0.0	20.2	. 20.0	.0.0	50 1	54.0	. 4.1	II!
A 1809.220M	44.0	+4.8	+27.0	-38.3	+20.0	+0.0	58.1	54.0	+4.1	HOLIZ
19 1024 12214	49.2	+0.0	+0.0	40.7			47.0	54.0	7.0	Vart
18 1024.122M	48.2	+3.9	+25.0	-40.7	+0.0	+0.0	47.0	54.0	-7.0	vert
10 1745 080M	41.6	+10.0	+0.0	20.1	+0.0		11.9	54.0	0.2	Uoriz
19 1/43.069M	41.0	+4.7	+20.0	-30.1	+0.0	+0.0	44.0	54.0	-9.2	HOLIZ
AVC	18.6	+10.0	+0.0	28.1	+0.0		51.8	54.0	2.2	Uoriz
174J.102M	40.0	+4.7 +10.0	± 0.0	-36.1	± 0.0	± 0.0	51.0	54.0	-2.2	TIOTIZ
21 4824 010M	38.0	+10.0	+33.3	38.7	+0.0	+0.0	/3.1	54.0	10.0	Vort
21 4024.010M	56.0	+0.1	+33.3 +2.4	-30.7	± 0.0	+0.0	45.1	54.0	-10.9	VCIT
^ <u>4824 000M</u>	50.5	+8.1	+33.3	-38.7	+0.0	+0.0	55.6	54.0	⊥ 1.6	Vert
4024.000M	50.5	+0.1	+2.4	-30.7	10.0	10.0	55.0	54.0	11.0	ven
23 1608 072M	40.0	+4.5	+25.8	-37.9	+0.0	+0.0	42.4	54.0	-11.6	Vert
Ave	10.0	+10.0	+0.0	51.9	10.0	10.0	.2.1	5 110	11.0	vert
^ 1608.096M	48.2	+4.5	+25.8	-37.9	+0.0	+0.0	50.6	54.0	-34	Vert
1000.090101	10.2	+10.0	+0.0	51.9	10.0	10.0	50.0	5 110	5.1	vert
25 1505.450M	38.6	+4.4	+25.1	-38.4	+0.0	+0.0	39.7	54.0	-14.3	Vert
Ave	2010	+10.0	+0.0	2011			22.1	20	1	
26 4824.086M	33.8	+8.1	+33.3	-38.7	+0.0	+0.0	38.9	54.0	-15.1	Horiz
Ave		+0.0	+2.4							
^ 4824.157M	46.6	+8.1	+33.3	-38.7	+0.0	+0.0	51.7	54.0	-2.3	Horiz
		+0.0	+2.4							
L										

Customer: Specification: Work Order #: Test Type: Equipment:	Motorola BCS FCC 15.209 79346 Maximized emission Cable Modem
Test Type: Equipment:	Maximized emission
Equipment:	Cable Modem
Manufacturer:	Motorola BCS
Model:	SBG 1000 P-7
S/N:	00080ED30158

Date: 11/15/2002 Time: 14:58:13 Sequence#: 3 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

1 1	- / -			
Function	Manufacturer	Model #	S/N	
Cable Modem*	Motorola BCS	SBG 1000 P-7	00080ED30158	
Antenna	Centurion Wireless	CAF94333		
	Technologies, Inc.			

Support Devices:

	Man Cast man		CAI
Function	Manufacturer	Model #	S/N
Head In	Cisco	uBR-MC11C	CN1ISS0AA
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086

Test Conditions / Notes:

The EUT is a cable modem (32MB SDRAM). The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with unshielded cat. 5 cables. Connected to the parallel port of the EUT is a thermal printer. One of the HPNA ports has an unshielded terminated cable connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 6. Temperature: 22°C, Humidity: 42%, Pressure: 100kPa. Voltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1 GHz to 12.9 GHz.

C2=Horn 6246_091003
74=20dB Attenuator
6=3.5GHz High Pass Filter A/N 01416

Measurement Data:		Reading listed by margin.			argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
	1 7310.990M	36.8	+10.4	+35.7	-35.9	+0.0	+0.0	50.0	54.0	-4.0	Vert
	Ave		+0.0	+0.0							
	^ 7310.998M	47.7	+10.4	+35.7	-35.9	+0.0	+0.0	60.9	54.0	+6.9	Vert
			+0.0	+3.0							

3 1624.730M	46.4	+4.6	+25.9	-37.9	+0.0	+0.0	49.0	54.0	-5.0	Horiz
		+10.0	+0.0							
4 7310.614M	35.5	+10.4	+35.7	-35.9	+0.0	+0.0	48.7	54.0	-5.3	Horiz
Ave		+0.0	+0.0							
^ 7310.656M	46.3	+10.4	+35.7	-35.9	+0.0	+0.0	59.5	54.0	+5.5	Horiz
		+0.0	+3.0							
6 1845.237M	34.9	+4.8	+27.2	-38.4	+20.0	+0.0	48.5	54.0	-5.5	Horiz
Ave		+0.0	+0.0							
^ 1845.240M	43.6	+4.8	+27.2	-38.4	+20.0	+0.0	57.2	54.0	+3.2	Horiz
		+0.0	+0.0							
8 1845.879M	34.7	+4.8	+27.2	-38.4	+20.0	+0.0	48.3	54.0	-5.7	Vert
Ave		+0.0	+0.0							
^ 1845.900M	45.5	+4.8	+27.2	-38.4	+20.0	+0.0	59.1	54.0	+5.1	Vert
		+0.0	+0.0							
10 4873.799M	37.5	+8.1	+33.4	-38.5	+0.0	+0.0	43.2	54.0	-10.8	Vert
Ave		+0.0	+2.7							
^ 4873.729M	49.8	+8.1	+33.4	-38.5	+0.0	+0.0	55.5	54.0	+1.5	Vert
		+0.0	+2.7							
12 1624.721M	39.2	+4.6	+25.9	-37.9	+0.0	+0.0	41.8	54.0	-12.2	Vert
Ave		+10.0	+0.0							
^ 1624.720M	47.6	+4.6	+25.9	-37.9	+0.0	+0.0	50.2	54.0	-3.8	Vert
		+10.0	+0.0							
14 4874.107M	35.2	+8.1	+33.4	-38.5	+0.0	+0.0	40.9	54.0	-13.1	Horiz
Ave		+0.0	+0.0							
^ 4874.150M	48.0	+8.1	+33.4	-38.5	+0.0	+0.0	53.7	54.0	-0.3	Horiz
		+0.0	+2.7							

Motorola BCS FCC 15.209 79346 Maximized emission Cable Modem Motorola BCS SBG 1000 P-7
SBG 1000 P-7 00080ED30158

Date: 11/15/2002 Time: 16:26:19 Sequence#: 4 Tested By: Stuart Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Cable Modem*	Motorola BCS	SBG 1000 P-7	00080ED30158
Antenna	Centurion Wireless	CAF94333	
	Technologies, Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Head In	Cisco	uBR-MC11C	CN1ISS0AA
C6U Converter	General Instruments	C6U	J5M7000101358
Hub	Bay Networks	DS104	DS14H08355155
Computer	Toshiba	PA1215UV	04694236
Computer	Dolch	L-PAC 585	DCS2016538
Thermal Printer	SII	DPU-414	1033083A
Mouse	Gateway	MOSXK	
Keyboard	Dell	SK-1000RS	M940111179
Monitor	NEC	JC-1538VMA	5900265EA
Computer	Gateway	G6-366C	0013168086

Test Conditions / Notes:

The EUT is a cable modem (32MB SDRAM). The EUT's USB and one of its ethernet ports is connected to a desktop computer via shielded cable. The other four ethernet ports are connected in loopback with unshielded cat. 5 cables. Connected to the parallel port of the EUT is a thermal printer. One of the HPNA ports has an unshielded terminated cable connected. The F connector port is connected to the remotely located support equipment. The desktop computer and one laptop computer are running hyperterminal and are pinging the ethernet through MS DOS. The Dolch computer is running the TFTPD32 program. The EUT is transmitting on Channel 11. Temperature: 22°C, Humidity: 42%, Pressure: 100kPa. oltage to EUT is 120 Vac 60Hz. Data sheet represents emissions from the frequency range of 1 GHz to 12.9 MHz.

T1=Cable Heliax 48ft	T2=Horn 6246_091003
T3=HP83017A Preamp 091103	T4=20dB Attenuator
T5=10dB Attenuator	T6=3.5GHz High Pass Filter A/N 01416

Meast	<i>easurement Data:</i> Reading listed by margin.				Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	1641.412M	50.2	+4.6	+26.0	-37.9	+0.0	+0.0	52.9	54.0	-1.1	Horiz
	Ave		+10.0	+0.0							
^	1641.354M	54.0	+4.6	+26.0	-37.9	+0.0	+0.0	56.7	54.0	+2.7	Horiz
			+10.0	+0.0							

3 1882.261M	38.0	+4.9	+27.4	-38.5	+20.0	+0.0	51.8	54.0	-2.2	Vert
Ave		+0.0	+0.0							
^ 1882.218M	49.5	+4.9	+27.4	-38.5	+20.0	+0.0	63.3	54.0	+9.3	Vert
		+0.0	+0.0							
5 1641.454M	45.4	+4.6	+26.0	-37.9	+0.0	+0.0	48.1	54.0	-5.9	Vert
Ave		+10.0	+0.0							
^ 1641.403M	50.7	+4.6	+26.0	-37.9	+0.0	+0.0	53.4	54.0	-0.6	Vert
		+10.0	+0.0							
7 7385.757M	34.5	+10.4	+35.9	-36.0	+0.0	+0.0	47.7	54.0	-6.3	Horiz
Ave		+0.0	+2.9							
^ 7385.769M	45.5	+10.4	+35.9	-36.0	+0.0	+0.0	58.7	54.0	+4.7	Horiz
		+0.0	+2.9							
9 7385.679M	34.4	+10.4	+35.9	-36.0	+0.0	+0.0	47.6	54.0	-6.4	Vert
Ave		+0.0	+2.9							
^ 7385.683M	45.7	+10.4	+35.9	-36.0	+0.0	+0.0	58.9	54.0	+4.9	Vert
		+0.0	+2.9							
11 4923.925M	39.2	+8.2	+33.4	-38.3	+0.0	+0.0	45.6	54.0	-8.4	Vert
Ave		+0.0	+3.1							
^ 4923.917M	51.1	+8.2	+33.4	-38.3	+0.0	+0.0	57.5	54.0	+3.5	Vert
		+0.0	+3.1							
13 1882.263M	39.9	+4.9	+27.4	-38.5	+0.0	+0.0	43.7	54.0	-10.3	Horiz
Ave		+10.0	+0.0							
^ 1882.274M	51.3	+4.9	+27.4	-38.5	+0.0	+0.0	55.1	54.0	+1.1	Horiz
		+10.0	+0.0							
15 4923.900M	34.8	+8.2	+33.4	-38.3	+0.0	+0.0	41.2	54.0	-12.8	Horiz
Ave		+0.0	+3.1							
^ 4923.914M	48.8	+8.2	+33.4	-38.3	+0.0	+0.0	55.2	54.0	+1.2	Horiz
		+0.0	+3.1							