

MEASUREMENT AND TECHNICAL REPORT

DIRECTED ELECTRONICS INCORPORATED 1 Viper Way Vista, CA 92083

DATE: 03 November 2004

This Report Concerns:	Original Grant: X		Class II Change:
Equipment Type:	471A Motion Acti	vated Transmitter	r
Deferred grant requested per 47 0.457(d)(1)(ii)?	CFR [Yes: Defer until:	No: X
Company Name agrees to notify Commission by: of the intended date of announc date.		N/A duct so that the o	grant can be issued on that
Transition Rules Request per 15	.37? Yes:	No: X*	
(*) FCC Part 15, Paragraph(s) 15.2	231(a), 15.231(b),	and 15.231(c)	
Report Prepared b	y:	TÜV AMERICA, 10040 Mesa Rin San Diego, CA 9 Phone: 858 678 Fax: 858 546	n Road 92121-2912 1400

TABLE OF CONTENTS

		Pages
1.0	GENERAL INFORMATION	3
	1.1 Product Description	3
	1.2 Related Submittal Grant	3
	1.3 Tested System Details	3
	1.4 Test Methodology	3
	1.5 Test Facility	3
2.0	SYSTEM TEST CONFIGURATION	4
	2.1 Justification	4
	2.2 EUT Exercise Software	4
	2.3 Special Accessories	4
	2.4 Equipment Modifications	4
	2.5 Configuration of Test System	4
3.0	DEACTIVATION EQUIPMENT/DATA	
	FIELD STRENGTH OF EMISSIONS, DUTY CYCLE EQUIPM	ENT/DATA
	EMISSION BANDWIDTH EQUIPMENT/DATA	5 – 13
4.0	ATTESTATION STATEMENT	14

1.0 GENERAL INFORMATION

1.1 Product Description

471A Motion Activated Transmitter

1.2 Related Submittal Grant

None

1.3 Tested System Details

The FCC ID's for all equipment, plus descriptions of all cables used in the tested system are:

None

1.4 Test Methodology

Purpose of Test: To demonstrate compliance with the following tests.

TEST	FCC CFR 47#	PASS/FAIL
Deactivation	15.231(a)	Pass
Field Strength of Emissions, Duty Cycle	15.231(b)	Pass
Emission Bandwidth	15.231(c)	Pass

Testing was performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8-M1983.

1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV AMERICA, INC 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 858 678 1400 Fax: 858 546 0364

The Test Site Data and performance comply with ANSI C63.4 and are registered with the FCC, 7435 Oakland Mills Road, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

2.0 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was initially tested for FCC emissions in the following configuration:

See Test Setup Photos Exhibit

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4 Equipment Modifications

None

2.5 Configuration of Test System

See Test Setup Photos Exhibit

3.0 Test Conditions: DEACTIVATION: FCC Part 15.231(a)

FIELD STRENGTH OF EMISSIONS, DUTY CYCLE: FCC Part 15.231(b)

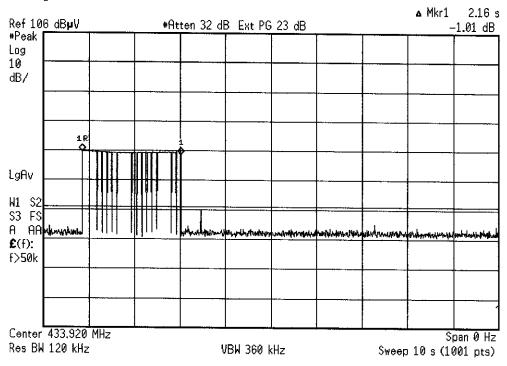
EMISSIONS BANDWIDTH: FCC Part 15.231(c)

The following measurements were performed at the San Diego Testing Facility:

□ - Test not applicable

- - Roof (Small Open Area Test Site)
- - SR-3, Shielded Room, 12' x 20' x 8', Metal Chamber

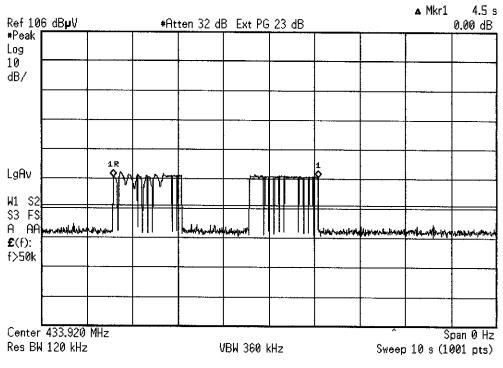
Test Equipment Used:


Model No.	Prop. No.	Description	Manufacturer	Serial No.	Date Cal'ed
3115	251	Double Ridge Guide Antenna	EMCO	2495	01/04
E4440A	6814	Spectrum Analyzer	Agilent	MY42510441	08/04
87405A	6501	Pre-amplifier	Hewlett Packard	3207A00276	VBU*
CBL6111	6521	Bilog Antenna	Chase Electronics	1013	VBU*
3146	6670	Log Periodic Antenna	EMCO	1063	07/04
3115	6679	Double Ridge Guide Antenna	EMCO		VBU*
8566B	744	Spectrum Analyzer	Hewlett Packard		01/04
	6786	Preamplifier	Miteq		VBU*

Remarks: One year calibration cycle for all test equipment and sites. (*) Verified Before Use.

FCC Part 15.231(a): Deactivation (Manual Push-Button Mode)

* Agilent 19:31:43 Oct 26, 2004

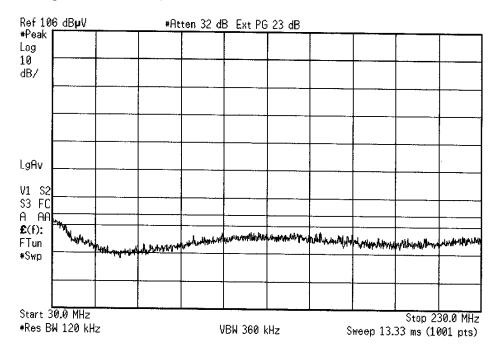


No activity noted after deactivation.

FCC Part 15.231(a): Deactivation (Manual Push-Button Mode)

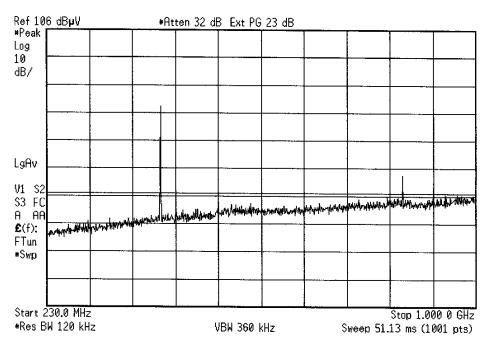
* Agilent 19:34:33 Oct 26, 2004

No activity noted after deactivation.

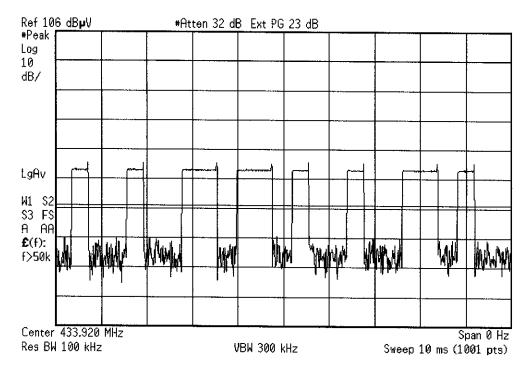

									Notes						1	ambient	ambient	ambient	ambient	ambient							in the first							:			
									Antenna Height	٠	-		-	-	-								Ī				Ī							Ť	T	1	1
							10000	CZBIAC.V	EUT Rotati	ion	135	ğ	267	266	566								1		1	†	T	T					7	1	1	†	1
FCC Part 15 para 15.231(b)	હ								MARGIN (dB) pk av			- 1	Ì			_[-18.5										-						Ť	
t 15 par	3 Meters	Raof	N/A	244	251					$\overline{}$			-24.8		_	-			_	-33.5																	
CC Par	=	úi	ند	ćń.	è:	() () () () () () () () () () () () () (Loss		SPEC LIMIT (dBuV/m) pk av	L		-	-	-4	\rightarrow	-	-	-∔	_	<u>%</u>									<u> </u>								
ш	TEST DIST:	TEST SITE:	BICONICAL:	106:	OTHER:	S(Duty	selector		SPEC (dBr		100.8	80.8	74.0	80.8	80.8	80.8	8.08	80.8 1	74.0	74.0																	
SPEC:	<u> </u>	11	BIC			above 1GHz: RBW & VBW 1 MHz for PK, AVG = PK - 20LOG(Duty Cycle) below 1GHz: RBW & VBW 100 kHz for PK, AVG = PK - 20LOG(Duty Cycle)	CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss		MAX LEVEL (dBuV/m) pk av	ļ	_	_	┙	_	\perp	_	31.3	32.3	¥.	35.5																	7
_					ļ	4\G=	npliffer (84.4	2	49.2	62.8	39.8	30.0	36.3	ر در	39.7	40.5																T	
Jim Owen		Ē			i	tz tor PK; A	ss - Prean	L	CF (dB/m)		16.4	22.7	-11.1	-7.9	-5.2	5.5	-2.0	ر زخ	95	0.3																	
ά		ransmit				W 1 M	able Lo		HORIZ (dBuv) pk DCav		63.0	37.1	55.3	64.4	38.7	2.5	33.3	250	34.2	34.2						Ì	T							1		T	
TESTER	S	vated T	tinuous	904	%95	N & VB	ctor + C		HORIZ		0.8 8	42.1	60.3	69.4	43.7	8.80	38.3) (8)	39.7	39.2		1		Ì	1	T	T						1	T	1	†	1
53	Electron	tion Acti	ing Con	October 27, 2004	<u>=</u>	TZ RB	enna Fa				44.8	29.7	55.2	65.7	40.0	0.40	33.3	25.0	33.6	35.2	7	1		\dagger	1	\dagger					1	1	+	1	\dagger	†	1
SC40494	Directed	471A Motion Activated Transmitter	Transmitt	Octob	Duty Cycle=	above 1c below 1G	CF = Ante		VERT. (dBuv) pk DCav		49.8	7.7	209	70.7	45.0	39.0	200	38.0	38.6	40.2				\dagger	\dagger	†					1			+		\dagger	1
REPORT No: SC404945	CUSTOMER: Directed Electronics	EUT:	EUT MODE: Transmitting Continuous	DATE:	NOTES:				FREQ (MHz)		433.920	867.840	1301.760	1735.680	2169.600	026.5.002	3037.440	3471.350	3905.280	4339.200																	

Pre-scans (pages 9 and 10)

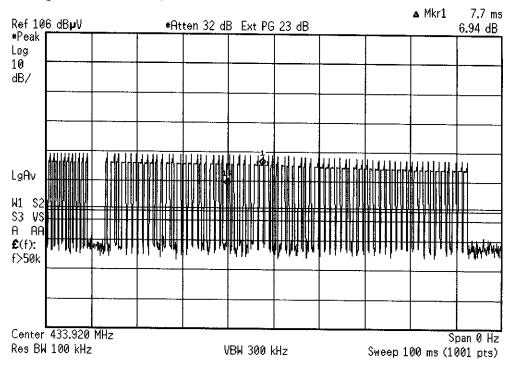
FCC Part 15.231(b): Field Strength of Emissions


Agilent 19:23:59 Oct 26, 2004

FCC Part 15.231(b): Field Strength of Emissions

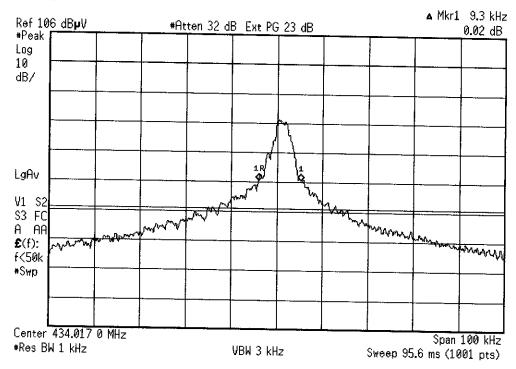

* Agilent 19:25:42 Oct 26, 2004

FCC Part 15.231(b): Duty Cycle


* Agilent 19:38:42 Oct 26, 2004

FCC Part 15.231(b): Duty Cycle

🕸 Agilent 19:46:31 Oct 26, 2004



54% Duty Cycle -5,03 dB

FCC Part 15.231(c): Emission Bandwidth

寨 Agilent 19:55:12 Oct 26, 2004

4.0 ATTESTATION STATEMENT

GENERAL REMARKS:

SUMMARY:

All tests were performed per CFR 47, Part(s) 15.231(a), 15.231(b), and 15.231(c)

■ - Performed

The Equipment Under Test

■ - Fulfills the requirements of CFR 47, Part(s) 15.231(a), 15.231(b), and 15.231(c)

Testing Start Date: 26 October 2004

Testing End Date: 27 October 2004

- TÜV AMERICA, INC. -

Responsible Engineer:

Jim Owen

(EMC Manager)