FCC/IC RF Test Report

Report No.: RF-N150-2407-241

For

Transceiver

Brand Name : VOXX

Model Number : A6214T

FCC ID : EZS6214T

IC : 1513A-6214T

Date of Receipt: September 26, 2024

Date of Report : October 24, 2024

Prepared for

Voxx Electronics Corporation (FCC)

2365 Pontiac Road, Auburn Hills, Michigan, 48326, United States

Voxx Electronics (IC)

2365 Pontiac Road Auburn Hills MI 48326 USA(excluding The states of Alaska)

Prepared by

Central Research Technology Co.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

This report shall not be reproduced, except in full, without written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. The test result in this report is based on the information provided by manufacturer and applies only to the sample tested.

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

TEL.: 886-2-25872719 FAX.: 886-2-25850364 Page: 1/36

Verification of Compliance

Equipment under Test: Transceiver

Model No. : A6214T

FCC ID : EZS6214T

IC : 1513A-6214T

Applicant: FCC: Voxx Electronics Corporation

IC: Voxx Electronics

Address : FCC: 2365 Pontiac Road, Auburn Hills, Michigan, 48326, United

States

IC: 2365 Pontiac Road Auburn Hills MI 48326 USA(excluding The

Report No.: RF-N150-2407-241

states of Alaska)

Applicable Standards: 47 CFR part 15, Subpart C

ANSI C63.10:2020

RSS-210 Issue 11

RSS-Gen Issue 5+A2

Date of Testing: September 27 ~ 30, 2024

Deviation: The method, configuration and arrangement of the tests are

following the requirement of customer and the applicable

standards cited above.

Condition of Test Sample : Mass Production

Voxx

We, **Central Research Technology Co.**, hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

(Cathy Chen/ Technical Manager)

APPROVED BY : , DATE : 2024.10.24

(Sam Chien /Authorized Signatory)

TEL.: 886-2-25872719 FAX.: 886-2-25850364 Page : 2/36

Contents

1	General Description	5
1.1	General Description of EUT	5
1.2	Applied standards	6
1.3	Test result	11
1.4	The Support Units	12
1.5	Layout of Setup	12
1.6	Test Instruments	13
1.7	Test Capability	15
1.8	Measurement Uncertainty	17
2	Technical requirements	18
2.1	Applied standard	18
2.2	Measurement Procedure	18
2.3	Test configuration	18
2.4	Test Data	19
3	Field strength of the fundamental emissions	20
3.1	Applied standard	20
3.2	Measurement Procedure	
3.3	Test configuration	
3.4	Test Data	22
4	Radiated Emission	24
4.1	Applied standard	24
4.2	Measurement Procedure	
4.3	Test configuration	26
4.4	Test Data	28
5	Bandwidth of momentary signals	34
5.1	Applied Standard	34
5.2	Measurement Procedure	34
5.3	Test Configuration	34
5.4	Test Data	35
6	Antenna Requirement	36
6.1	Applied Standard	36
6.2	Atenna type	36
	ment 1 – Photographs of the Test Configuration ment 2 –External Photographs of EUT	

FCC/IC Test Report

Attachment 3 –Internal Photographs of EUT

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

TEL.: 886-2-25872719 FAX.: 886-2-25850364 Report No.: RF-N150-2407-241

1 General Description

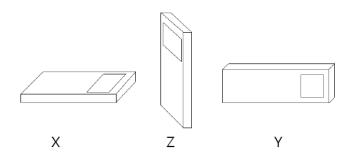
1.1 General Description of EUT

Equipment under Test : Transceiver

Model No. : A6214T : A6214T

Test Power in : 5Vdc

Channel Numbers : 1


Frequency Range : 433.92 MHz

Modular Function : ASK

Antenna Spec : Helical antenna , -2.98dBi

According to the preliminary test for X,Y and Z axis, it was found X axis is worse. It was taken as the representative condition for test and its data are recorded in the present document.

Report No.: RF-N150-2407-241

EUT Test step:

- 1. EUT connect with control baord.
- 2. Turn on power.
- 3. EUT transmit signal.

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

1.2 Applied standards

(1) Technical requirements

According to FCC 15.231(a) and RSS-210 A1.2, (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition (5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

Report No.: RF-N150-2407-241

(2) Field strengths

According to FCC 15.231(b) and RSS-210 A.1.3, the field strength of emissions from intentional radiators operated under this section shall not exceed the following: (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in § 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

with the provisions of § 15.205 shall be demonstrated using the measurement instrumentation specified in that section.(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

Report No.: RF-N150-2407-241

Fundamental frequency	Field strength of	Field strength of spurious
(MHz)	fundamental	emissions
	(microvolts/meter)	(microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	1,250 to 3,750*	125 to 375
174-260**	3,750	375
260-470**	3,750 to 12,500*	375 to 1,250*
Above 470	12,500	1,250

^{*} Linear interpolation with frequency, f, in MHz:

(3) Bandwidth of momentary signals

According to FCC 15.231(c) and RSS-210 A1.4, the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier..

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

^{*} For 130-174 MHz: Field Strength (μ V/m) = (56.81818 x f)-6136.3636

^{*} For 260-470 MHz: Field Strength (μ V/m) = (41.6667 x f)-7083.3333

^{**} Frequency bands 225-328.6 MHz and 335.4-399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

(4) Radiated emission measurements

According to FCC 15.209 and RSS-Gen 8.9, the general requirement of field strength of radiated emissions from intentional radiator at a distance of 3 meters shall not exceed the below table.

Report No.: RF-N150-2407-241

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Magnetic field strength (µA/m)
0.009-0.490	300	2400/F(kHz)	6.37/F(kHz)
0.490-1.705	30	24000/F(kHz)	63.7/F(kHz)
1.705-30.0	3	30	0.08

Note

- 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.
- 2. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels using the free space impedance of 377 Ohms, The correction factor is 51.5 dB. For example, the measurement at frequency 9 kHz limit is 2400/9=48.5 dBuV/m, which is equivalent to 48.5 51.5 = -3 dBuA/m, which has the same limit to RSS-Gen.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
above 960	3	500	54.0

(5) Antenna Requirement

According to FCC 15.203 and RSS-Gen 6.8, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

(6) Restricted Band

FCC 15.205

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36- 13.41			_

Report No.: RF-N150-2407-241

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	12.57675 - 12.57725	322 - 335.4	4.5 - 5.15
0.495 - 0.505	13.36 - 13.41	399.9 - 410	5.35 - 5.46
2.1735 - 2.1905	16.42 - 16.423	608 - 614	7.25 - 7.75
3.020 - 3.026	16.69475 - 16.69525	960 - 1427	8.025 - 8.5
4.125 - 4.128	16.80425 - 16.80475	1435 - 1626.5	9.0 - 9.2
4.17725 - 4.17775	25.5 - 25.67	1645.5 - 1646.5	9.3 - 9.5
4.20725 - 4.20775	37.5 - 38.25	1660 - 1710	10.6 - 12.7
5.677 - 5.683	73 - 74.6	1718.8 - 1722.2	13.25 - 13.4
6.215 - 6.218	74.8 - 75.2	2200 - 2300	14.47 - 14.5
6.26775 - 6.26825	108 - 138	2310 - 2390	15.35 - 16.2
6.31175 - 6.31225	149.9 - 150.05	2483.5 - 2500	17.7 - 21.4
8.291 - 8.294	156.52475 - 156.52525	2655 - 2900	22.01 - 23.12
8.362 - 8.366	156.7 - 156.9	3260 - 3267	23.6 - 24.0
8.37625 - 8.38675	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
8.41425 - 8.41475	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.29 - 12.293	240 - 285	3500 - 4400	Above 38.6
12.51975 - 12.52025			

Report No.: RF-N150-2407-241

TEL.: 886-2-25872719 FAX.: 886-2-25850364 Page : 10/36

^{*} Certain frequency bands listed in table and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Test Item	FCC/RSS standard section	Report section	Test result
Technical requirements	FCC 15.231(a) RSS-210 A1.2	2	PASS
Field strength of the fundamental emissions	FCC 15.231(b) RSS-210 A1.3	3	PASS
Radiated emission measurements	FCC 15.209 RSS-Gen 8.10	4	PASS
Bandwidth of momentary signals	15.231(c) RSS-210 A1.4	5	PASS
AC line conducted emission	15.107 RSS-Gen 8.8	N/A	N/A (Battery)
Antenna requirement	FCC 15.203 RSS-Gen	6	PASS

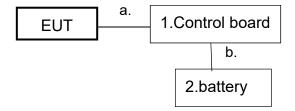
Report No.: RF-N150-2407-241

Page : 11/36

According to ANSI C63.10, determining compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Page : 12/36


1.4 The Support Units

No.	Unit	Model No.	Trade Name	Power Code	Supported by lab.
1.	Control Board	RDQ07	N/A	-	-
2.	Battery	NP7-12	YUASA	-	√

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
a.	cable	2.0 m	-	-	-	-	
b.	DC power line	0.2 m	-	-	-	V	

1.5 Layout of Setup

1.6 Test Instruments

Conducted Test

Test Site and	Manufacturer	Model No.	Last	Calibration
Equipment	Wallulacturer	/Serial No.	Calibration Date	Due Date
Spectrum Alayzer	R&S	FSV40/ 101609	2023/10/18	2024/10/17
Test room	N/A	TR13	NCR	NCR

Report No.: RF-N150-2407-241

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Radiated Emission Test (Below 1GHz)

Test Site and	Manufacturer	Model No.	Last	Calibration
Equipment	Manufacturer	/Serial No.	Calibration Date	Due Date
EMI Receiver	R&S	ESCS30/ 836858/020	2023/11/6	2024/11/5
Spectrum Alayzer	Agilent	E4407B/ MY45106795	2024/6/28	2025/6/27
Antenna	EMCO	6502/ 00020558	2024/9/9	2025/9/8
Antenna	SCHWARZBECK & Mini-Circuits	VULB 9168 & BW-N5W5+/ VULB 9168-668 & 003	2024/6/11	2025/6/10
Pre-amplifer	Mini-circuit	ZKL-1R5+/ 004	2024/6/3	2024/12/2
RF cable	JYEBAO	0214/ C0080-4 + C0080-1 + C0080- 2+RSU(CRC- 011/11)+C0080-3	2024/6/3	2025/6/2
Test software	Audix	e3/ V6.20110303a2	NCR	NCR
Semi-anechoic chamber	ETS. LINDGREN	TR11/ 906-A	2024/5/27	2025/5/26

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.
- 3. The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.

Page : 13/36

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Page : 14/36

Radiated Emission Test (Above 1 GHz)

Test Site and	Manufacturer	Model No.	Last	Calibration	
Equipment	Manufacturer	/Serial No.	Calibration Date	Due Date	
Antonno	EMCO	3117/	2022/44/27	0004/44/00	
Antenna	EMCO	0082847	2023/11/27	2024/11/26	
		TTA1800-30-HG-			
Pre-amplifer	MITEQ	N-M/	2024/5/3	2025/5/2	
		1904295			
DEschla	Suhner	Sucoflex 106P /	2023/10/5	2024/10/4	
RFcable	Suillei	C0091	2020/10/0	202 17 107 1	
DEschla	JMCA	MWX241/B/	2024/4/15	2025/4/14	
RFcable	JIVICA	C0103~C0104	2024/4/10	2023/4/14	
MXA singal	Kana Olamba	N9020A/	2024/7/0	2025/7/0	
analyzer	KeySight	MY54420147	2024/7/9	2025/7/8	
T t ft	Accelia	e3/	NOD	NOD	
Test software	Audix	V9 20150907c	NCR	NCR	
Semi-anechoic	ETS.	TD4/47607 D	2023/12/9	2024/12/8	
chamber	LINDGREN	TR1/ 17627-B	2020/12/3	2027/12/0	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.
- The calibration date of the chamber TR1 listed above is the date of site VSWR measurement.

1.7 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16 series and ANSI C63.4:2014 amended as per ANSI 63.4a:2017.

Report No.: RF-N150-2407-241

Page : 15/36

Test Room	Type of Test Room	Descriptions			
TR1	3m fully-anechoic chamber	For the radiated emission measurement (above 1GHz)			
TR11	For the radiated emission measurement				
TR13	Test Site	For the RF conducted emission measurement.			
TR5	Shielding Room	For the conducted emission measurement.			
TR20	Shielding Room	For the conducted emission measurement.			

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Page : 16/36

Test Laboratory Competence Information

Central Research Technology Co. has been accredited / filed / authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark	
	USA	NVLAP	200575-0	ISO/IEC 17025	
	USA	FCC	TW1104, TW0019	ISO/IEC 17025	
	R.O.C.	TAF	0905	ISO/IEC 17025	
	(Taiwan)	IAF	0905	150/IEC 17025	
Accreditation			SL2-IN-E-0033,		
Certificate	R.O.C.		SL2-IS-E-0033,		
	(Taiwan)	BSMI	SL2-R1/R2-E-0033,	ISO/IEC 17025	
			SL2-A1-E-0033,		
			SL2-L1-E-0033		
	Canada	ISED	TW0905	ISO/IEC 17025	
Sito Filing			R-11527,C-11609,T-11441,	Toot facility list 9	
Site Filing	Japan	VCCI	G-10010,C-20010, G-10614,	Test facility list &	
Document			T-20009	NSA Data	
Authorization	0	TI N /	LIA 50005407	100/150 47005	
Certificate	Germany	TUV	UA 50235497	ISO/IEC 17025	

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

1.8 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Report No.: RF-N150-2407-241

Test Item	Measurement Uncertainty				
Radiated Emission: (9kHz~30MHz)	Horizontal 3.12dB;Vertical 3.14dB				
Radiated Emission: (30MHz~1000MHz)	Horizontal 4.60dB;Vertical 6.12dB				
Radiated Emission: (1GHz~6GHz)	Horizontal 4.70dB; Vertical 4.56dB				
	NSLK-8128-RC	2.92 dB			
Line Conducted Emission	ENV 4200	2.92 dB			
	ESH2-Z5	2.94 dB			

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

TEL.: 886-2-25872719 FAX.: 886-2-25850364 Page : 17/36

2 Technical requirements

Result: Pass

2.1 Applied standard

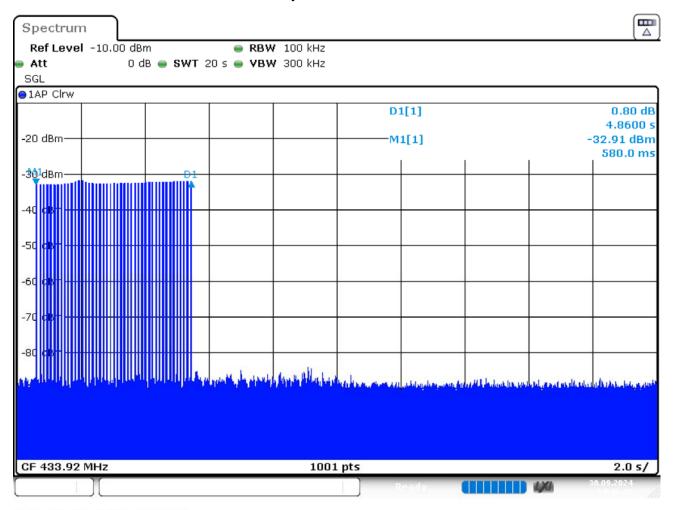
A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Report No.: RF-N150-2407-241

2.2 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. Follow ANSI-C63.10 and RSS-Gen.Setting Spetrum analyzer and measurement.
- c. Measure the released time and compare with the required limit.

2.3 Test configuration


CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

TEL.: 886-2-25872719 FAX.: 886-2-25850364 Page : 18/36

2.4 Test Data

Test Mode : Normal Mode Tester : Cathy
Ambient Temperature : 25°C Relative Humidity : 71%

After a transmitter activated automatically, the transmitter cease transmission is 4.86 s < 5 s.

Date: 30.SEP.2024 14:40:16

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

3 Field strength of the fundamental emissions

Result: Pass

3.1 Applied standard

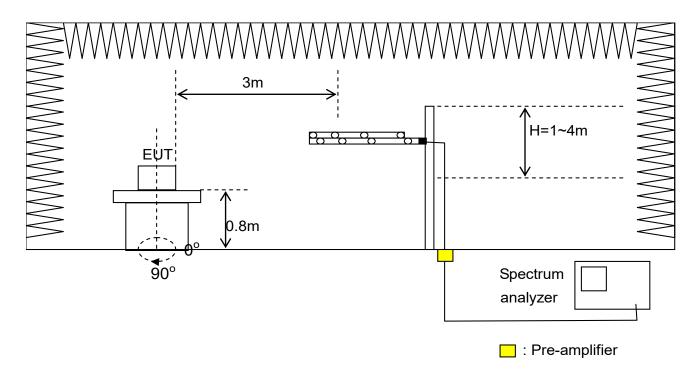
Fundamental frequency (MHz)	Field strength of fundamental	Field strength of spurious emissions
, ,	(microvolts/meter)	(microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	1,250 to 3,750*	125 to 375
174-260**	3,750	375
260-470**	3,750 to 12,500*	375 to 1,250*
Above 470	12,500	1,250

Report No.: RF-N150-2407-241

3.2 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. Follow ANSI-C63.10 and RSS-Gen. Setting Spetrum analyzer and measurement.
- c. Spectrum Analyzer setting: RBW=120 kHz.
- d. Measurement the Field strength of the fundamental emissions and compare with the required limit.

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

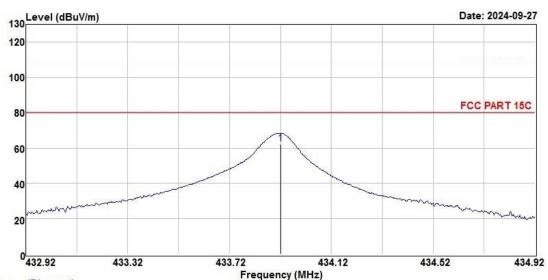

^{*} Linear interpolation with frequency, f, in MHz:

^{*} For 130-174 MHz: Field Strength (μ V/m) = (56.81818 x f)-6136.3636

^{*} For 260-470 MHz: Field Strength (μ V/m) = (41.6667 x f)-7083.3333

^{**} Frequency bands 225-328.6 MHz and 335.4-399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

3.3 Test configuration


Report No.: RF-N150-2407-241

Page : 22/36

3.4 Test Data

Test Mode : Continuous Transmitting

Polarization : Horizontal Tester : Wilson
Ambient Temperature : 23°C Relative Humidity : 55%

Trace: (Discrete)

Site : TR11 9*6*6 chamber

Condition : FCC PART 15C 3m VULB_9168-668 HORIZONTAL

Power : DC 5V

Operator : Wilson T23 H55 P1014

Read Limit Over A/Pos T/Pos

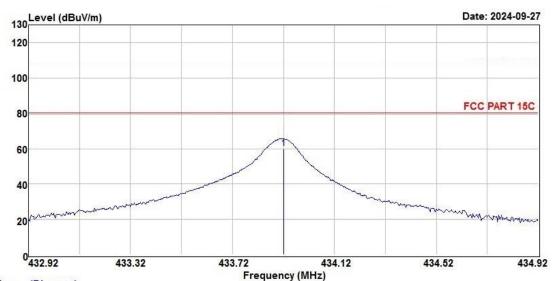
Freq Level Level Factor Line Limit Pol/Phase Remark

MHz dBuV/m dBuV dB/m dBuV/m dB cm deg

1 433.920 64.36 80.69 -16.33 80.80 -16.44 200 315 HORIZONTAL QP

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. QP = Quasi-Peak


CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Page : 23/36

Test Mode : Continuous Transmitting

Polarization : Vertical Tester : Wilson

Ambient Temperature: 23°C Relative Humidity: 55%

Trace: (Discrete)

Site : TR11 9*6*6 chamber

Condition : FCC PART 15C 3m VULB_9168-668 VERTICAL

Power : DC 5V

Operator : Wilson T23 H55 P1014

Read Limit Over A/Pos T/Pos

Freq Level Level Factor Line Limit Pol/Phase Remark

MHz dBuV/m dBuV dB/m dBuV/m dB cm deg

1 433.920 60.66 76.99 -16.33 80.80 -20.14 100 273 VERTICAL QP

Note:

1. Level (dBuV/m) = Read level + Factor.

- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. QP = Quasi-Peak

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

4 Radiated Emission

Result: Pass

4.1 Applied standard

Radiated emissions shall comply with the field strength limits shown as below table.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Magnetic field strength (μΑ/m)
0.009-0.490	300	2400/F(kHz)	6.37/F(kHz)
0.490-1.705	30	24000/F(kHz)	63.7/F(kHz)
1.705-30.0	3	30	0.08

Report No.: RF-N150-2407-241

Page: 24/36

Note

- 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.
- 2. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels using the free space impedance of 377 Ohms, The correction factor is 51.5 dB. For example, the measurement at frequency 9 kHz limit is 48.5 dBuV/m, which is equivalent to 48.5 51.5 = -3 dBuA/m, which has the same limit to RSS-Gen.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
above 960	3	500	54.0

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

FCC/IC Test Report

4.2 **Measurement Procedure**

a. The EUT was set up per the test configuration figured in the next section of this chapter to

Report No.: RF-N150-2407-241

simulate the typical usage per the user's manual.

b. A software provided by client enabled the EUT to transmit and receive data at operating

frequency.(if necessary)

c. If the EUT is tabletop equipment, it should be placed on a wooden table with a height of 0.8

meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-

standing equipment, it should be placed on a non-conducted support with a height of 12

millimeters above the reference ground plane in the semi-anechoic chamber.

d. The EUT is set 3m away from the interference receiving antenna.

e. Rapidly sweep the signal in the test frequency range by using the spectrum through the

Maximum-peak detector.

f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters

above the reference ground plane continuously to determine at least six frequencies associated

with higher emission levels and record them.

g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT

and positioning the receiving antenna height to determine the maximum level.

h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per

CISPR 16-1 to find out the maximum level occurred. Receiver Setting is 9 kHz - 150kHz:

RBW=200 Hz, 150kHz - 30 MHz: RBW=9 kHz, 30 MHz- 1 GHz: RBW=120 kHz.

i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or

Average to find out the maximum level occurred, if any. Spectrum Alayzer Setting is

Peak:RBW=1 MHz, VBW=3 MHz; Average: RBW=1 MHz, VBW=3 kHz.

i. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving

antenna and compare the maximum level with the required limit.

k. Change the receiving antenna to another polarization to measure radiated emission by following

step e. to j. again.

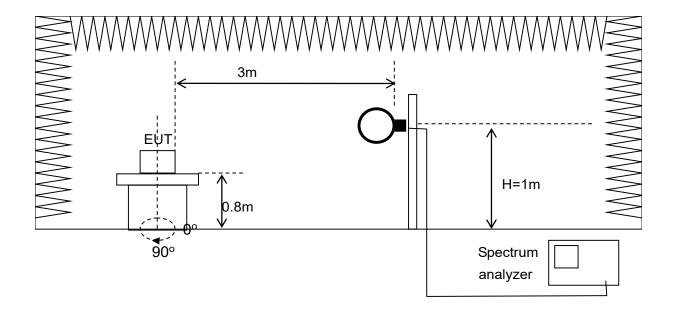
I. If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit

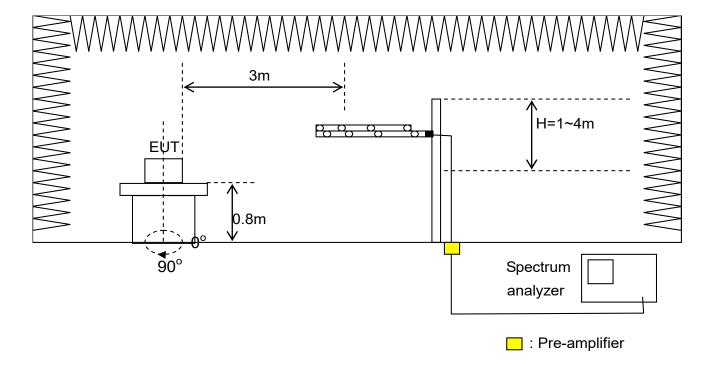
specified, then the emission values presented will be the peak value only. Otherwise, accurate

Q.P. value will be measured and presented.

m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit

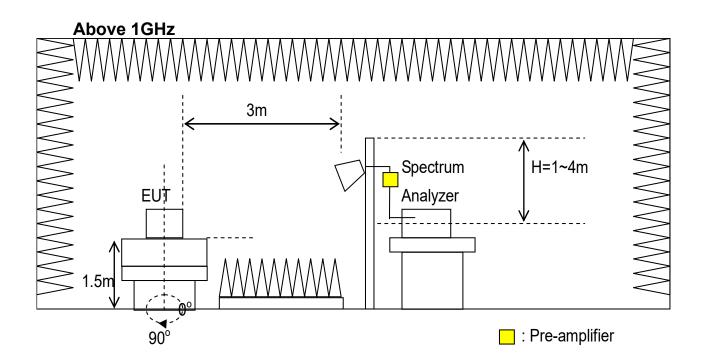
specified, then the emission values presented will be the peak value only. Otherwise, accurate


Page: 25/36


A.V. value will be measured and presented.

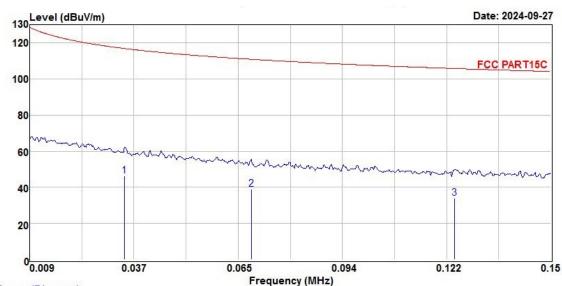
FAX.: 886-2-25850364

Test configuration 4.3


Below 1GHz

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Page : 27/36


4.4 Test Data

Radiated Emission Measurement below 1000MHz

Test Mode : Continuous Transmitting

Test Range : 9 kHz ~ 150 kHz

Polarization : Parallel Tester : Wilson
Ambient Temperature : 23°C Relative Humidity : 55%

Report No.: RF-N150-2407-241

Trace: (Discrete)

Site : TR11 9*6*6 chamber

Condition : FCC PART15C 3m EMCO6502LOOP

Power : DC 5V

Operator : Wilson T23 H55 P1014

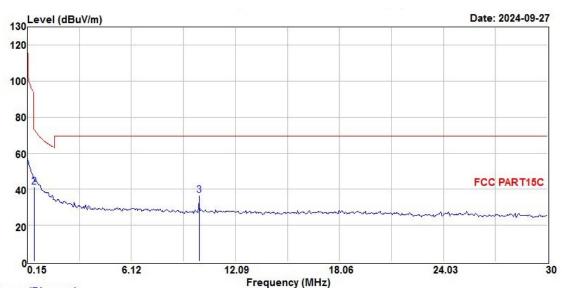
	Freq	Level	Read Level			Over Limit	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg	<u> </u>	(A)
1	0.035	46.18	32.80	13.38	116.81	-70.63	100	188		Average
2	0.069	39.10	27.40	11.70	110.84	-71.74	100	130		Average
3	0.124	34.11	22.70	11.41	105.74	-71.63	100	81		Average

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. QK. is abbreviation of Quasi-Peak
- 5. The receive antenna is setup at parallel, ground-parallel and perpendicular. The report just record the worst data of antenna orientation.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan


Page : 29/36

Test Mode : Continuous Transmitting

Test Range : 150 kHz ~30 MHz

Polarization : Parallel Tester : Wilson

Ambient Temperature: 23°C Relative Humidity: 55%

Trace: (Discrete)

Site : TR11 9*6*6 chamber

Condition : FCC PART15C 3m EMCO6502LOOP VERTICAL

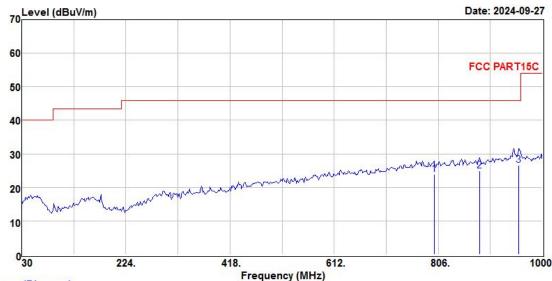
Power : DC 5V

Operator : Wilson T23 H55 P1014

	Freq	Level	Read Level			Over Limit	A/Pos	T/Pos	Pol/Phase	Remark
<u>×</u>	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg		
1	0.150	51.87	40.36	11.51	104.08	-52.21	100	93		Average
2	0.538	41.47	30.05	11.42	72.99	-31.52	100	160		QP
3	10.001	36.54	24.67	11.87	69.50	-32.96	100	232		QP

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. QK. is abbreviation of Quasi-Peak
- 5. The receive antenna is setup at parallel, ground-parallel and perpendicular. The report just record the worst data of antenna orientation.


CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Test Mode : Continuous Transmitting

Test Range : 30 MHz ~1 GHz

Polarization : Horizontal Tester : Wilson

Ambient Temperature : 23°C Relative Humidity : 55%

Trace: (Discrete)

Site : TR11 9*6*6 chamber

Condition : FCC PART15C 3m VULB_9168-668 HORIZONTAL

Power : DC 5V

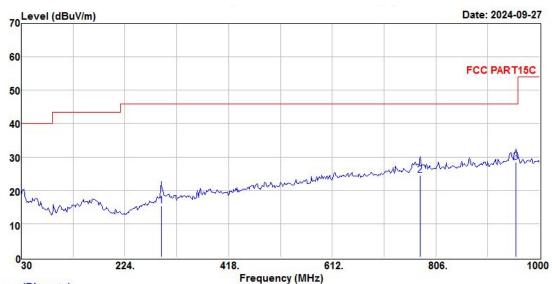
Operator : Wilson T23 H55 P1014

Freq	Level	Read Level			Over Limit	A/Pos	T/Pos	Pol/Phase	Remark	
MHZ	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg	S	*	=
798.240	23.82	33.44	-9.62	46.00	-22.18	261	281	HORIZONTAL	QP	
883.600	24.96	33.87	-8.91	46.00	-21.04	214	135	HORIZONTAL	QP	
956.350	26.68	34.67	-7.99	46.00	-19.32	167	167	HORIZONTAL	QP	

Note:

1 2 3

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. QP = Quasi-Peak


CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Page : 31/36

Test Mode : Continuous Transmitting

: 30 MHz ~1GHz **Test Range**

Polarization : Vertical **Tester** : Wilson Ambient Temperature: 23°C **Relative Humidity**: 55%

Trace: (Discrete)

Site TR11 9*6*6 chamber

: FCC PART15C 3m VULB_9168-668 VERTICAL Condition

: DC 5 V Power

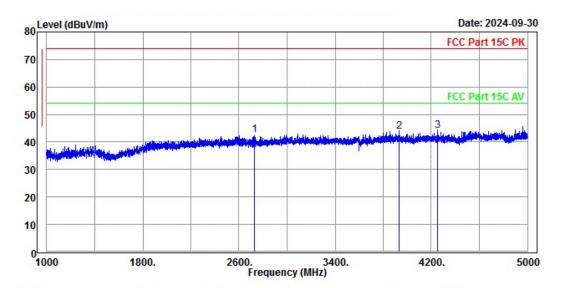
: Wilson T23 H55 P1014 Operator

	Freq	Level				Limit	A/PUS	1/205	Pol/Phase	Remark	
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg	8 <u></u>		
1	291.810	15.32	35.54	-20.22	46.00	-30.68	100	227	VERTICAL	QP	
2	776.900	24.43	34.22	-9.79	46.00	-21.57	100	188	VERTICAL	QP	
3	956.100	28.53	36.52	-7.99	46.00	-17.47	101	140	VERTICAL	QP	

Over A/Dos T/Dos

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level - Limit line
- QP = Quasi-Peak


CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Radiated Emission Measurement above 1000MHz

Test Mode : Continuous Transmitting

Test Range : 1 GHz ~ 5 GHz

Polarization : Horizontal Tester : Jeffry
Ambient Temperature : 24°C Relative Humidity : 55%

Report No.: RF-N150-2407-241

Page: 32/36

Condition : FCC Part 15C PK 3m EMCO_3117_82847 HORIZONTAL

POWER : DC 5V

OPERATOR : JEFFRY T:24 H:55 P:1010

Freq	Level	Read Level				APos	TPos	Pol/Phase	Remark	
MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg			_
2726.401	42.60	58.29	-15.69	74.00	-31.40	144	191	HORIZONTAL	Peak	
3932.931	43.64	58.32	-14.68	74.00	-30.36	144	337	HORIZONTAL	Peak	
4249.536	44.18	58.49	-14.31	74.00	-29.82	187	240	${\tt HORIZONTAL}$	Peak	

Note:

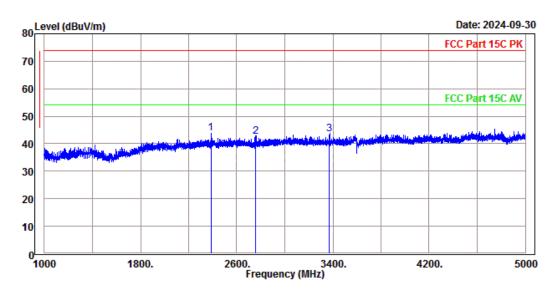
1

2

3

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. Peak level meets average limit, so average value doesn't need be recorded.

CENTRAL RESEARCH TECHNOLOGY CO.
11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan


Report No.: RF-N150-2407-241

Page : 33/36

Test Mode : Continuous Transmitting

Test Range : 1 GHz ~ 5 GHz

Polarization : Vertical Tester : Jeffry
Ambient Temperature : 24°C Relative Humidity : 55%

Condition : FCC Part 15C PK 3m EMCO_3117_82847 VERTICAL

POWER : DC 5V

OPERATOR : JEFFRY T:24 H:55 P:1010

	Freq	Level	Read Level			Over Limit	APos	TPos	Pol/Phase	Remark
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB		deg		
23	86.945	43.31	58.92	-15.61	74.00	-30.69	124	223	VERTICAL	Peak
27	58.566	43.12	58.61	-15.49	74.00	-30.88	153	119	VERTICAL	Peak
33	72.023	43.50	58.52	-15.02	74.00	-30.50	126	0	VERTICAL	Peak

Note:

1 2 3

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. Peak level meets average limit, so average value doesn't need be recorded.

CENTRAL RESEARCH TECHNOLOGY CO.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Report No.: RF-N150-2407-241

5 Bandwidth of momentary signals

Result: Pass

5.1 Applied Standard

The occupied bandwidth of momentarily operated devices shall be less than or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the occupied bandwidth shall be less than or equal to 0.5% of the centre frequency.

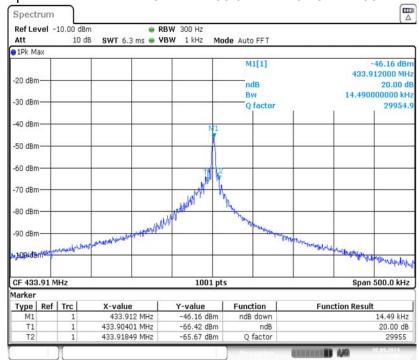
5.2 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual
- b. Follow ANSI-C63.10 and RSS-Gen.Setting Spetrum analyzer and measurement.
- c. Record the 20 dB bandwidth for FCC, 99% bandwidth for RSS, and compare with the required limit.

5.3 Test Configuration

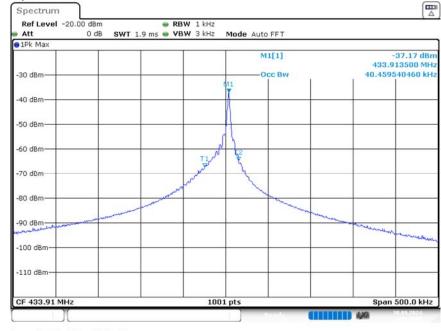
CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

5.4 Test Data


Test Model : Continuous Transmitter

Tester : Cathy

Ambient Temperature : 25°C Relative Humidity : 71%


Report No.: RF-N150-2407-241

20 dB occupied bandwidth = 14.5 kHz < 433.92 MHz* 0.25%= 1.08 MHz

Date: 30.SEP.2024 14:34:58

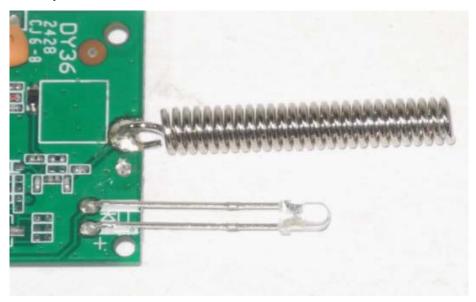
99% occupied bandwidth = 40.5 kHz < 433.92 MHz* 0.25%= 1.08 MHz

Date: 30.SEP.2024 14:38:59

CENTRAL RESEARCH TECHNOLOGY CO. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

Page : 36/36

6 Antenna Requirement


Result: Pass

6.1 Applied Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.2 Atenna type

This is permanently attached antenna.

~ End of Report ~