

TESTS and DIAGRAMS

Statement of Attestation

TRANSMITTER POWER MEASURED IN dbm

	Fundamental	+/- 25 kHz	1 Harmonic	2 Harmonic	3 Harmonic	4 Harmonic	5 Harmonic
118.000	+33	-01	-54	-41	-59	-55	-73
119.000	+33	-13	53	-41	-58	-56	-72
120.000	+33	-15	-52	-41	-58	-56	-72
121.000	+33	-15	-52	-43	-58	-57	-71
122.000	+33	15	-51	-44	-57	-58	-70
123.000	+33	-08	-52	-44	-57	-59	-69
124.000	+33	05	51	-45	-57	-61	-68
125.000	+33	-00	-41	-46	57	-65	-67
126.000	+33	-02	52	-46	-57	-65	-67
127.000	+33	-15	-53	-46	-57	-61	-68
128.000	+33	-15	53	-46	-57	-61	-68
129.000	+33	+02	-54	-47	-57	-58	-69
130.000	+33	+02	-51	-48	-57	57	-70
131.000	+33	05	-52	-48	-58	-61	-73
132.000	+33	-08	-51	-48	-58	64	74
133.000	+31	15	50	-49	-58	-66	-74
134.000	+31	-13	-52	-49	-60	68	-77
135.000	+31	-15	-51	-50	-61	-69	-76
136.000	+31	-15	53	-51	-61	-70	-76
136.975	+31	-15	-54	51	-60	-72	-80

Transmitter Modulation Characteristics

[Required by Section 2.987(d) and 87.73(a)]

Modulation of the transmitter in normal use resulted in modulation peaks of at least 70% and did not exceed 100%

Transmitter modulation characteristics of audio frequencies from 100hz to 5000hz were measured as follows per section 2.987(a).

Hz	% Modulation
100	50
300	60
500	75
800	80
1000	85
1200	85
1400	85
1600	85
1800	85
2000	85
2200	85
2400	85
2600	85
2800	85
3000	85
3500	75
4000	65
4500	60
5000	50

TEMPERATURE MEASUREMENT TESTS

The unit was tested in a temperature controlled test chamber. The temperature was lowered to -20 degrees centigrade and raised to +55 degrees centigrade. Measurement of transmit frequency at each 10 degree multiple. The frequency did not vary more than .001% over the temperature range. Transmit power and receive sensitivity remained unchanged from -20 degrees centigrade to +55 degrees centigrade.

At temperatures under 25 degrees centigrade, the unit remained off at all times except during brief times when transmit and receive test were made. This assured that the components were chilled to the maximum.

At temperatures over 25 degrees centigrade, the unit was left on at all times. This assured that the components were heated to the maximum.

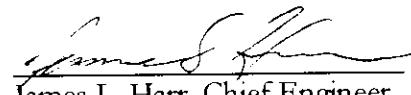
VARIATIONS OF AMBIENT TEMPERATURE AND PRIMARY SUPPLY VOLTAGE

[Refer to Section 2.995 (a) (2)(d)(1)]

Raising the primary voltage from 12v to 15.8v increased the transmitter power from a nominal 2.5 watts to 5 watts. Frequency variation was less than .001%. Refer to Section 2.995(a)(2)(d)(1).

FREQUENCY STABILITY TEST

[Refer to Section 2.995 (a) (2)(d)(I)]


Variations of frequency versus change in temperature measurements are as follows per section 2.995:

Degrees Celsius	Frequency MHz
-20	121.5005
-10	121.5004
0	121.5004
+10	121.5000
+20	121.5000
+30	121.5000
+40	121.4999
+50	121.4998
+55	121.4995

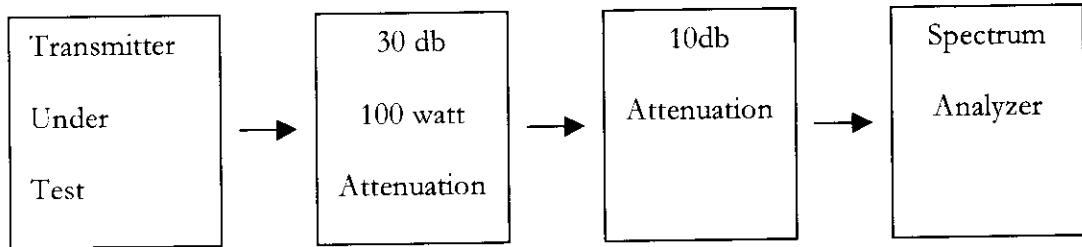
Maximum frequency deviation is .001%.

Statement of Compliance

This equipment has been tested in accordance with the requirements contained in the appropriate commission regulations. To the best of my knowledge, these test were performed using measurement procedures consistent with industry or Commissions standards and demonstrate that the equipment complies with the appropriate standards. Each unit manufactured, imported or marketed, as defined in the Commission's regulations, will conform to the sample(s) tested within the variations that can be expected due to quantity production and testing on a statistical basis. I further certify that the necessary measurements were made by the engineering department of Val Avionics, Ltd. Located at 3280 25th street SE in Salem, Oregon.

James L. Harr, Chief Engineer

TESTS and DIAGRAMS


Statement of Attestation

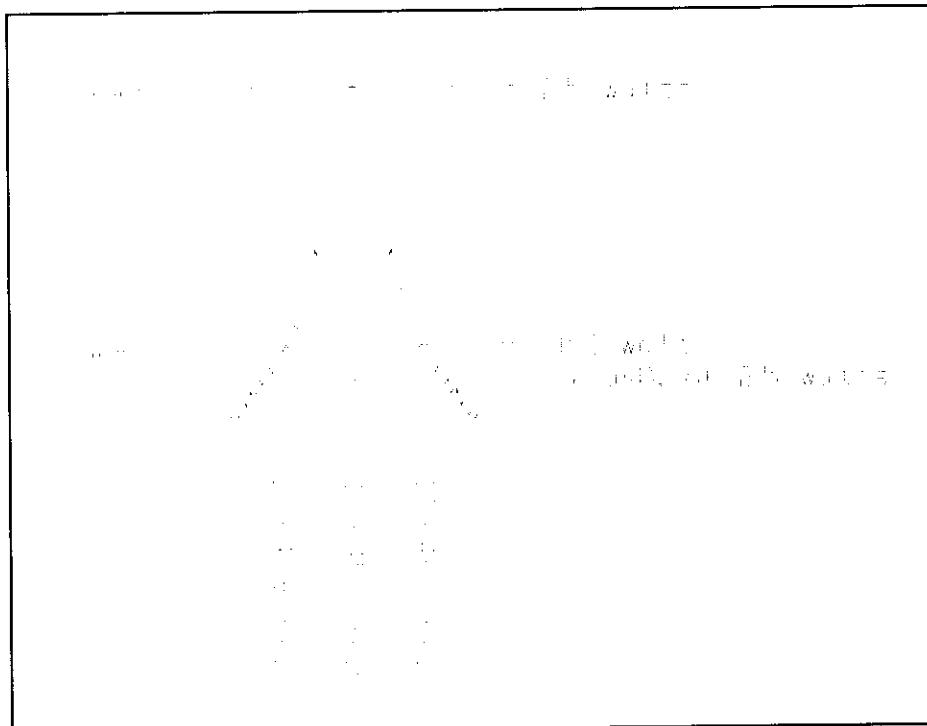
Transmitter Spectrum Measurement of Fundamentals and Harmonics

[Refer to Sections 2.985 and 2.991]

The transmitter was connected to the spectrum analyzer through a 100 watt 30db 50 ohm pad and a 10db 50 ohm. The transmitter was keyed at 1 MHz intervals from 118.000 MHz to 136.975 MHz. The transmitter was modulated with a 2500 Hz tone sufficient to produce 85% modulation.

All measurements were made in dbm references. The fundamentals were measured first and then plus and minus 25Khz. Harmonics up to the 5th harmonics were made and recorded. Harmonics up to the 10th harmonics were explored and found to exceed the requirements by more than 20db.

TRANSMITTER POWER MEASURED IN dbm*[Refer to Sections 2.985 and 2.991]*


	Fundamental	+/- 25 kHz	1 Harmonic	2 Harmonic	3 Harmonic	4 Harmonic	5 Harmonic
118.000	+33	-01	-54	-41	-59	-55	-73
119.000	+33	-13	-53	-41	-58	-56	-72
120.000	+33	-15	-52	-41	-58	-56	-72
121.000	+33	-15	-52	-43	-58	-57	-71
122.000	+33	-15	-51	-44	-57	-58	-70
123.000	+33	-08	-52	-44	-57	-59	-69
124.000	+33	-05	-51	-45	-57	-61	-68
125.000	+33	-00	-41	-46	-57	-65	-67
126.000	+33	+02	-52	-46	-57	-65	-67
127.000	+33	-15	-53	-46	-57	-61	-68
128.000	+33	-15	-53	-46	-57	-61	-68
129.000	+33	+02	-54	-47	-57	-58	-69
130.000	+33	+02	-51	-48	-57	-57	-70
131.000	+33	-05	-52	-48	-58	-61	-73
132.000	+33	-08	-51	-48	-58	-64	-74
133.000	+31	-15	-50	-49	-58	-66	-74
134.000	+31	-13	-52	-49	-60	-68	-77
135.000	+31	-15	-51	-50	-61	-69	-76
136.000	+31	-15	-53	-51	-61	-70	-76
136.975	+31	-15	-54	-51	-60	-72	-80

AWOS 760 VHF Transmitter Occupied Bandwidth

Measurements

[Refer to section 2.989]

25 Khz spectrum monitored with carrier modulated at 85% with 2500 Hz

900427.dwg

This test was made at 118.000 Mhz, 123.450 Mhz, 130.000 Mhz, and 136.975 Mhz with similar test results. All of which exceed the requirements of .5% of Section 2.989 of Commission's rules.

Transmitter Modulation Characteristics

[Required by Section 2.987 (d) and 87.73(a)]

Modulation of the transmitter in normal use resulted in modulation peaks of at least 70% and did not exceed 100%

Transmitter modulation characteristics of audio frequencies from 100hz to 5000hz were measured as follows per section 2.987(a).

Hz	% Modulation
100	50
300	60
500	75
800	80
1000	85
1200	85
1400	85
1600	85
1800	85
2000	85
2200	85
2400	85
2600	85
2800	85
3000	85
3500	75
4000	65
4500	60
5000	50

FIELD STRENGTH OF SPURIOUS RADIATION

[Refer to Section 2.993]

The unit was set up on a revolving stand and operated under Normal standby conditions three (3) meters from the receiving dipole antennas which were constructed as illustrated in Drawing number 900428. The antenna was then connected to a spectrum analyzer and an analysis of the frequencies from 20 MHz to 1000 MHz was made.

As indicated in table 6.1 no spurious radiations were found which exceeded radiation measurement requirements.

BALUM CONSTRUCTION FOR FIELD STRENGTH MEASURE DIPOLE ANTENNAS

1936年 甲種紙幣 下半葉
中華人民國三十五年

Digitized by srujanika@gmail.com

Frequency Range Mhz	Length C Inches	Length D Inches	Constructed Dipole Length
25-65	34.3	43.3	25'
65-180	14.2	16.25	8'
180-400	6.125	7.5	3'
400-1000	2.7	3.0	1.5'

The constructed dipoles were made of one inch PVC Pipe with the dipole wire taped to them. The wires were then cut to the proper length for each frequency tested.

Field Strength of Spurious Radiation

Table 6.1

Frequency Mhz	Spectrum Explored	Radiated Harmonic dbm
20	+/- 5Mhz	<-100
25	+/- 5Mhz	<-100
30	+/- 5Mhz	-90.6
35	+/- 5Mhz	-95.6
40	+/- 5Mhz	-95.6
45	+/- 5Mhz	-92.6
50	+/- 5Mhz	<-100
55	+/- 5Mhz	<-100
60	+/- 5Mhz	<-100
65	+/- 5Mhz	<-100
70	+/- 5Mhz	<-100
75	+/- 5Mhz	<-100
80	+/- 5Mhz	<-100
90	+/- 10Mhz	<-100
100	+/- 10Mhz	<-100
110	+/- 10Mhz	<-100
120	+/- 10Mhz	<-100
130	+/- 10Mhz	-91.6
140	+/- 10Mhz	<-100
150	+/- 10Mhz	-98.6
160	+/- 10Mhz	<-100
170	+/- 10Mhz	<-100
180	+/- 10Mhz	<-100
190	+/- 10Mhz	<-100
200	+/- 50Mhz	<-100
225	+/- 50Mhz	<-100
250	+/- 50Mhz	-96.1
275	+/- 50Mhz	-93.1
300	+/- 50Mhz	-91.1
350	+/- 50Mhz	<-100
400	+/- 50Mhz	-97.1
450	+/- 50Mhz	-95.1
500	+/- 50Mhz	<-100
550	+/- 50Mhz	<-100
600	+/- 50Mhz	<-100
650	+/- 50Mhz	<-100
700	+/- 50Mhz	-95.1
750	+/- 50Mhz	<-100
800	+/- 50Mhz	<-100
850	+/- 50Mhz	<-100
900	+/- 50Mhz	<-100
1000	+/- 50Mhz	<-100

FREQUENCY STABILITY TEST

[Refer to Section 2.995 (a) (2)]

The unit was tested in a temperature controlled test chamber. The temperature was lowered to -30 degrees centigrade and raised to +60 degrees centigrade. Measurement of transmit frequency at each 10 degree multiple. The frequency did not vary more than .001% over the temperature range.

At temperatures under 25 degrees centigrade, the unit remained off at all times except during brief times when transmit and receive test were made. This assured that the components were chilled to the maximum.

At temperatures over 25 degrees centigrade, the unit was left on at all times. This assured that the components were heated to the maximum.

Variations of frequency versus change in temperature measurements are as follows per section 2.995:

Degrees Celsius	Frequency MHz
-30	121.5005
-20	121.5005
-10	121.5004
0	121.5004
+10	121.5000
+20	121.5000
+30	121.5000
+40	121.4999
+50	121.4998
+55	121.4995
+60	121.4995

Maximum frequency deviation is .001%.

VARIATIONS OF PRIMARY SUPPLY VOLTAGE

[Refer to Section 2.995 (d)(1)]

The primary voltage was varied from 10.2v to 13.8v and the transmit frequency was monitored. The transmit frequency did not vary more .001%.

Revision History

Revision History				
Revision	Date	Section	Change Description	Action
1	08/24/98	Chapter 6	Added Text and Diagrams	Remove & Replace
		Page 28	Added text to first paragraph	
		Page 29	Added reference sections to table	
		Page 30	Added Transmitter Occupied Bandwidth Measurements	
		Page 32	Added Field Strength of Spurious Radiation	
		Page 33	Added Table 6.1	
		Page 34	Added Frequency Stability Test to include ranges of -30 to +60	
		Page 35	Corrected Text from 12v to 15.8v to 10.2v to 13.8v	
1	08/24/98	Chapter 1	Added Text General Information	
		Page 1	Added Text	Remove & Replace
		Page 2	Added Information to Specifications	Remove & Replace
		Page 3	Added Text to Installation	Remove & Replace
		Page 6	Added Pin Assignment Diagram	Add

Statement of Compliance

This equipment has been tested in accordance with the requirements contained in the appropriate commission regulations. To the best of my knowledge, these test were performed using measurement procedures consistent with industry or Commissions standards and demonstrate that the equipment complies with the appropriate standards. Each unit manufactured, imported or marketed, as defined in the Commission's regulations, will conform to the sample(s) tested within the variations that can be expected due to quantity production and testing on a statistical basis. I further certify that the necessary measurements were made by the engineering department of Val Avionics, Ltd. Located at 3280 25th street SE in Salem, Oregon.

James L. Harr, Chief Engineer

VAL AVIONICS LIMITED
3280 25th Street SE - P O Box 13025 – Salem, OR
97309
(503) 370-9429 – 1-800-255-1511 - FAX (503) 370-
9885
Email: info@valavionics.com – www.valavionics.com

F2

August 24, 1998

FAA, Spectrum Engineering Division
800 Independence Avenue SW
Washington, DC 20591

Reference: Code of Federal Regulations Title 47
Telecommunication,
Section 87.147(d)

Subject: Notification of filing Type Acceptance
Application to FCC.

Gentleperson,

I hereby submit notification of Type Acceptance
Application for our AWOS 760 VHF transmitter made
with the FCC in accordance with Code of Federal
Regulations, Title 47, Section 87.147(d).

This pending application was filed under FCC ID:
EZNS5PRAWOS760

The “AWOS 760” communication transmitter is a
device specifically designed for installation as a
component part for existing Automated Weather
Observing Systems (AWOS); and to conform to FAA
Advisory Circular 150/5220-16B.

The “AWOS 760” VHF transmitter relative data is
shown listed below:

Manufacturers_Model_Number

Part Number	803000
Frequency Range	118.000 to 136.975 MHz
Channel Spacing	25 kHz
Frequency Stability	.001%
Spurious Emissions	Greater than 80 dB down from carrier
Modulation	Adjustable (70 to 90% Typical)
Temperature Range	-30 to +60 Degrees Celsius
Transmit Power	2.5 watts
Antenna Characteristics	50 Ohm, Vhf, Broadband Type
Emission Type	6K00A3E

Duty Cycle	100%
Design	All Solid State, Printed Circuit Board & Point to Point Wiring
Mounting	Rigid Mounting, No Shock Mounting Required
Physical Dimensions	Width: 6.00 inches (15.24 cm) Height: 1.9 inches (4.83 cm) Length: 11.0 inches (27.94 cm)
Weight	5.0 Lbs. (2.27kg)
Voltage	12.0 Vdc
Current	Standby 200 mA Transmit 1.5A

VAL AVIONICS LIMITED
3280 25th Street SE - P O Box 13025
- Salem, OR 97309
(503) 370-9429 - 1-800-255-1511 -
FAX (503) 370-9885
Email: info@valavionics.com -
www.valavionics.com

F2

F3

August 27, 1998

Federal Communication Commission
OET [oetech@fccsun07w.fcc.gov]
Attention: Mr. Bill Inglis

Re: FCC ID:
EZM5PRAWOS760 [Correspondence
ID: 2882]
731 Confirmation Number:
EA90045

Subject: Your email of Friday,
August 21, 1998.

To show compliance with Sections
2.983 through 2.995, we submit the
following:

SECTION		
2.983	Application for Type Acceptance	Change 2 to 2.5 to correct typographical error
2.985	RF Power Output	Refer to Chapter 6, page 28 and 29
2.987	Modulation Characteristics	Refer to Chapter 6, page 31
2.989	Occupied Bandwidth	Refer to Chapter 6, page 30
2.991	Spurious Emissions at Antenna Terminals	Refer to Chapter 6, page 28 and 29
2.993	Field Strength of Spurious Radiation	Refer to Chapter 6, page 32 and 33
2.995	Frequency Stability	Refer to Chapter 6, page 34 and 35

The AWOS 760 is a 760-channel communication transmitter designed to provide one way communication within the frequency range of 118.000 MHz to 136.975 MHz in 25 kHz increments.

The AWOS 760-communication transmitter was designed to conform to FAA Advisory Circular 150/5220-16B for use as a ground based VHF transmitter for Automated Weather Observing Systems (AWOS).

The AWOS 760 communication transmitter has Federal Communications Commission (FCC) type acceptance filed under FCC ID: EZN5PRCOM760

The AWOS 760 consists of two major sections: Main Board and Transmitter Board.

Specifications

Physical Dimensions: Width: 6.00 inches (15.24 cm)

Height: 1.9 inches (4.83 cm)

Length: 11.0 inches (27.94 cm)

Weight: 5.0 Lbs. (2.27 kg)

Voltage: 12.0 Vdc

Current: Standby 200 mA; Transmit 1.5 A

Frequency Range: 118.000 to 136.975 MHz

Channel Spacing: 25 kHz

Frequency Stability: .001%

Spurious Emissions: Greater Than 80 dB down from carrier

Modulation: Adjustable (70 to 90% Typical)

Temperature Range: -30 to +60 Degrees Celsius

Transmit Power: 2.5 watts

Emission: 6K00A3E

Duty Cycle: 100%

Design: All Solid State. Printed Circuit Board & Point to Point Wiring.

Mounting: Rigid Mounting, No Shock Mounting

Required.

FCC ID: EZN5PRAWOS760

Unit Part Number: 803000

Operation

CONTROLS:

ON/OFF SWITCH turns on and off the main power to the unit.

INDICATOR LIGHT Illuminates when the unit is powered up.

DB-9 CONNECTOR connections for power, ground, mic audio, and transmit key are made at this connector..

ANTENNA JACK connects to a broad band VHF 50 Ohm loaded antenna

FREQUENCY CALIBRATION capacitor C427 can be adjusted to center the output frequency.

MODULATION ADJUST potentiometer R423 can be adjusted to vary the modulation level.

POWER ADJUST potentiometer R419 can be adjusted to vary the output power.

DIPSWITHCES M0-M4 selects the whole MHz frequency (see table, Chapter 5)

DIPSWITCHES K2-K5 selects the tenth MHz frequency (see table, Chapter 5)

DIPSWITCHES K0-K1 selects the 25 kHz spacing (see table, Chapter 5)

Installation

This section contains suggestions and factors to consider before installing the AWOS 760 transmitter. Close adherence to these suggestions will assure more satisfactory performance from the equipment.

Unpack the equipment and inspect each item for evidence of damage incurred during shipment. If a damage claim must be filed, save the shipping container and all packing materials to substantiate your claim. The claim should be filed with the Transportation Company as soon as possible. The shipping container and packing material should be saved in any case in the event that storage or reshipment of the equipment is necessary. The AWOS 760 installation will conform to standards designated by the customer, installing agency, and existing conditions as to the unit location and type of installation. The installing agency will supply and fabricate all external cables for interface to their system as appropriate. VAL Avionics, Ltd will supply the connectors required.

The most important contribution to improved reliability of this equipment is to limit the maximum operating temperature. While modern designs consume less total energy, the heat dissipated per unit volume (Watts/cubic inch) remains much the same due to contemporary high density packaging techniques. While each individual unit may or may not require forced air cooling, the combined heat generated by several various units within a typical AWOS cabinet assembly can significantly degrade the reliability of the AWOS 760 transmitter if provisions for adequate cooling are not incorporated in the particular installation.

NOTE: The AWOS 760 vhf transmitter must be mounted in the AWOS system cabinet in a lengthwise vertical position, cooling fins facing out, parallel into the convective airflow provided by an air intake vent at the bottom of the cabinet and air exhaust vent on the upper side designed into the AWOS cabinet.

**FAILURE TO PROVIDE THIS TYPE OF
INSTALLATION ENVIRONMENT WILL VOID
MANUFACTURERS WARRANTY!**

Before the AWOS 760 transmitter can be operated, the

customer must obtain a Radio Station License from the Federal Communications Commission (FCC). This license can be obtained by filing the appropriate form obtained from the local FCC Field Office.

NOTE: THE VHF TRANSMITTER IN THE AWOS 760 IS GUARANTEED TO MEET FEDERAL COMMUNICATIONS COMMISSION ACCEPTANCE OVER THE OPERATING TEMPERATURE RANGE ONLY WHEN A VAL AVIONICS LIMITED CRYSTAL IS USED IN THE STABILIZED MASTER OSCILLATOR. USE OF OTHER THAN A VAL AVIONICS LIMITED CRYSTAL IS CONSIDERED AN UNAUTHORIZED MODIFICATION AND MAY VOID THE WARRANTY.

The pin assignment and function for P401/J401 are as follows:

PIN_TERMINAL

1	12.0 VDC UNIT POWER INPUT
2	TRANSMITTER KEY
3	NO CONNECTION (FOR FUTURE USE)
4	NO CONNECTION (FOR FUTURE USE)
5	TRANSMITTER AUDIO INPUT
6	NO CONNECTION (FOR FUTURE USE)
7	NO CONNECTION (FOR FUTURE USE)
8	NO CONNECTION (FOR FUTURE USE)
9	UNIT GROUND

Chapter	F2	F3	F4	F5	F6	F7	F8
6TESTS and DIAGRAMS Statement of Attestation							

Transmitter
Spectrum
Measuremen
t of
Fundamental
s and
Harmonics
[Refer to
Sections
2.985 and
2.991]

The
transmitter
was
connected to
the spectrum
analyzer
through a
100 watt
30db 50 ohm
pad and a
10db 50
ohm. The
transmitter
was keyed at
1 MHz
intervals
from
118.000
MHz to
136.975
MHz. The
transmitter
was
modulated
with a 2500
Hz tone
sufficient to
produce 85%
modulation.

All
measuremen
ts were made
in dbm
references.

The fundamental s were measured first and then plus and minus 25Khz.

Harmonics up to the 5th harmonics were made and recorded.

Harmonics up to the 10th harmonics were explored and found to exceed the requirements by more than 20db.

Transmitter

Under

Test
30 db

100 watt

Attenuation
10db

Attenuation
Spectrum

Analyzer

TRANSMIT
TER
POWER
MEASURE
D IN dbm

[Refer to
Sections
2.985 and
2.991]

F1

118.000	+33	-01	-54	-41	-59	-55	-73
119.000	+33	-13	-53	-41	-58	-56	-72
120.000	+33	-15	-52	-41	-58	-56	-72
121.000	+33	-15	-52	-43	-58	-57	-71
122.000	+33	-15	-51	-44	-57	-58	-70
123.000	+33	-08	-52	-44	-57	-59	-69
124.000	+33	-05	-51	-45	-57	-61	-68
125.000	+33	-00	-41	-46	-57	-65	-67
126.000	+33	+02	-52	-46	-57	-65	-67
127.000	+33	-15	-53	-46	-57	-61	-68
128.000	+33	-15	-53	-46	-57	-61	-68
129.000	+33	+02	-54	-47	-57	-58	-69
130.000	+33	+02	-51	-48	-57	-57	-70
131.000	+33	-05	-52	-48	-58	-61	-73
132.000	+33	-08	-51	-48	-58	-64	-74
133.000	+31	-15	-50	-49	-58	-66	-74
134.000	+31	-13	-52	-49	-60	-68	-77
135.000	+31	-15	-51	-50	-61	-69	-76
136.000	+31	-15	-53	-51	-61	-70	-76
136.975	+31	-15	-54	-51	-60	-72	-80

F2

F3

F4

F5

F6

F7

F8

AWOS 760
VHF
Transmitter
Occupied
Bandwidth
Measuremen
ts
[Refer to
section
2.989]

25 KHz
spectrum
monitored
with carrier
modulated at
85% with
2500 Hz

900427.dwg
This test was
made at
118.000
Mhz,
123.450
Mhz,
130.000

Mhz, and
136.975
Mhz with
similar test
results. All
of which
exceed the
requirements
of .5% of
Section
2.989 of
Commission
's
rules. Transm
itter
Modulation
Characteristi
cs
[Required by
Section
2.987 (d)
and
87.73(a)]

Modulation
of the
transmitter
in normal
use resulted
in
modulation
peaks of at
least 70%
and did not
exceed 100%

Transmitter
modulation
characteristi
cs of audio
frequencies
from 100hz
to 5000hz
were
measured as
follows per
section
2.987(a).

Hz	
100	50
300	60
500	75
800	80

1000	85						
1200	85						
1400	85						
1600	85						
1800	85						
2000	85						
2200	85						
2400	85						
2600	85						
2800	85						
3000	85						
3500	75						
4000	65						
4500	60						
5000	50						
FIELD STRENGTH	F2	F3	F4	F5	F6	F7	F8
OF SPURIOUS RADIATIO N							
[Refer to Section 2.993]							
The unit was set up on a revolving stand and operated under Normal standby conditions three (3) meters from the receiving dipole antennas which were constructed as illustrated in Drawing number 900428.							
The antenna was then connected to a spectrum analyzer and an analysis of the frequencies from 20 MHz to 1000							

MHz was made. As indicated in table 6.1 no spurious radiations were found which exceeded radiation measurement requirements.

BALUM
CONSTRUC
TION FOR
FIELD
STRENGTH
MEASURE
DIPOLE
ANTENNA
S

Frequency_
Range_Mhz

25-65	34.3	43.3	25'				
65-180	14.2	16.25	8'				
180-400	6.125	7.5	3'				
400-1000	2.7	3.0	1.5'				
	F2	F3	F4	F5	F6	F7	F8

The constructed dipoles were made of one inch PVC Pipe with the dipole wire taped to them. The wires were then cut to the proper length for each frequency tested.

Field Strength of Spurious Radiation

Table 6.1

Frequency_

Mhz							
20	+/- 5Mhz	<-100					
25	+/- 5Mhz	<-100					
30	+/- 5Mhz	-90.6					
35	+/- 5Mhz	-95.6					
40	+/- 5Mhz	-95.6					
45	+/- 5Mhz	-92.6					
50	+/- 5Mhz	<-100					
55	+/- 5Mhz	<-100					
60	+/- 5Mhz	<-100					
65	+/- 5Mhz	<-100					
70	+/- 5Mhz	<-100					
75	+/- 5Mhz	<-100					
80	+/- 5Mhz	<-100					
90	+/- 10Mhz	<-100					
100	+/- 10Mhz	<-100					
110	+/- 10Mhz	<-100					
120	+/- 10Mhz	<-100					
130	+/- 10Mhz	-91.6					
140	+/- 10Mhz	<-100					
150	+/- 10Mhz	-98.6					
160	+/- 10Mhz	<-100					
170	+/- 10Mhz	<-100					
180	+/- 10Mhz	<-100					
190	+/- 10Mhz	<-100					
200	+/- 50Mhz	<-100					
225	+/- 50Mhz	<-100					
250	+/- 50Mhz	-96.1					
275	+/- 50Mhz	-93.1					
300	+/- 50Mhz	-91.1					
350	+/- 50Mhz	<-100					
400	+/- 50Mhz	-97.1					
450	+/- 50Mhz	-95.1					
500	+/- 50Mhz	<-100					
550	+/- 50Mhz	<-100					
600	+/- 50Mhz	<-100					
650	+/- 50Mhz	<-100					
700	+/- 50Mhz	-95.1					
750	+/- 50Mhz	<-100					
800	+/- 50Mhz	<-100					
850	+/- 50Mhz	<-100					
900	+/- 50Mhz	<-100					
1000	+/- 50Mhz	<-100					
FREQUENC	F2	F3	F4	F5	F6	F7	F8

Y

STABILITY

TEST

[Refer to
Section
2.995 (a)
(2)]

The unit was
tested in a

temperature
controlled
test
chamber.

The
temperature
was lowered
to -30
degrees
centigrade
and raised to
+60 degrees
centigrade.

Measuremen
t of transmit
frequency at
each 10
degree
multiple.

The
frequency
did not vary
more than
.001% over
the
temperature
range.

At
temperatures
under 25
degrees
centigrade,
the unit
remained off
at all times
except
during brief
times when
transmit and
receive test
were made.

This assured
that the
components
were chilled
to the
maximum.

At
temperatures
over 25
degrees
centigrade,
the unit was
left on at all

times. This assured that the components were heated to the maximum.

Variations of frequency versus change in temperature measurements are as follows per section 2.995 :

Degrees_Ce

I_{sus}

-30	121.5005
-20	121.5005
-10	121.5004
0	121.5004
+10	121.5000
+20	121.5000
+30	121.5000
+40	121.4999
+50	121.4998
+55	121.4995
+60	121.4995

F2 F3 F4 F5 F6 F7 F8

Maximum frequency deviation is .001%.

VARIATIONS OF PRIMARY SUPPLY VOLTAGE
[Refer to Section 2.995 (d)(1)]

The primary voltage was varied from

10.2v to
13.8v and
the transmit
frequency
was
monitored.
The transmit
frequency
did not vary
more .001%.

Statement of Compliance

This
equipment
has been
tested in
accordance
with the
requirements
contained in
the
appropriate
commission
regulations.
To the best
of my
knowledge,
these test
were
performed
using
measuremen
t procedures
consistent
with industry
or
Commission
s standards
and
demonstrate
that the
equipment
complies
with the
appropriate
standards.
Each unit
manufacture
d, imported
or marketed,

as defined in
the
Commission
's
regulations,
will conform
to the
sample(s)
tested within
the
variations
that can be
expected due
to quantity
production
and testing
on a
statistical
basis. I
further
certify that
the necessary
measuremen
ts were made
by the
engineering
department
of Val
Avionics,
Ltd. Located
at 3280 25th
street SE in
Salem,
Oregon.

James L.
Harr, Chief
Engineer

Revision
History

F1

F1

F2

F3

Page 28

F4

Added text
to first
paragraph

F5

F6

F7

F8

Page 29

Added
reference
sections to
table

Page 30

Added
Transmitter
Occupied
Bandwidth
Measuremen
ts

Page 32

Added Field
Strength of
Spurious
Radiation

Page 33

Added
Table 6.1

Page 34

Added
Frequency
Stability Test
to include
ranges of -
30 to +60

Page 35

Corrected
Text from
12v to 15.8v
to 10.2v to
13.8v

1

08/24/98

Chapter 1

Added Text
General
Information

Remove &
Replace

Page 1

Added Text

Page 2

Added Information

Remove &

to
Specification

Replace

Page 3

Added Text

Remove &

to

Replace

Installation

Page 6

Added Pin

Add

Assignment

Diagram

VAL AVIONICS LIMITED

3280 25th Street SE - P O Box 13025 – Salem, OR 97309
(503) 370-9429 – 1-800-255-1511 - FAX (503) 370-9885
Email: info@valavionics.com – www.valavionics.com

August 27, 1998

Federal Communication Commission
OET [oetech@fccsun07w.fcc.gov]
Attention: Mr. Bill Inglis

Re: FCC ID: EZN5PRAWOS760 [Correspondence ID: 2882]
731 Confirmation Number: EA90045

Subject: Your email of Friday, August 21, 1998.

To show compliance with Sections 2.983 through 2.995, we submit the following:

SECTION	TITLE	COMMENTS
2.983	Application for Type Acceptance	Change 2 to 2.5 to correct typographical error
2.985	RF Power Output	Refer to Chapter 6, page 28 and 29
2.987	Modulation Characteristics	Refer to Chapter 6, page 31
2.989	Occupied Bandwidth	Refer to Chapter 6, page 30
2.991	Spurious Emissions at Antenna Terminals	Refer to Chapter 6, page 28 and 29
2.993	Field Strength of Spurious Radiation	Refer to Chapter 6, page 32 and 33
2.995	Frequency Stability	Refer to Chapter 6, page 34 and 35

Please remove and replace Chapter 6 Test and Diagrams with Chapter 6 Test and Diagrams, Revision 1. All changes and revisions regarding Testing and compliance were made in this chapter. See Revision History Page 37.

Please remove and replace Chapter 1 General Information with Chapter 1 General Information, Revision 1. Additional information was added to the Specifications and Installation sections. See Revision History Page 37.

It was further stated in your correspondence, that we indicated the transmitter can be operated at a reduced power and that no mention of testing at the lower power levels were made.

The AWOS 760 has been designed as a component part of an **Automated Weather Observation System**. The design characteristics are such to comply with FAA Advisory Circular 150/5220-16B. As a result the AWOS 760 has been designed and tested with a 2.5 watt output. The only adjustment of the output power is provided by potentiometer R419 which allows for final fine-tuning of the transmit power across the spectrum of operation. The full range of adjustment is approximately +/- 1 watt. At no time is it intended to operate the AWOS 760 outside of the appropriate tolerance for the output power of 2.5 watts.

After careful review of the material submitted with our application 731 [Confirmation Number: EA90045] we cannot find any reference pertaining to the operation of the AWOS 760 with a transmit power output of greater than or less than 2.5 watts. Also, it is noted that all testing has been performed with the tolerance of this power level.

We have submitted a letter to FAA pursuant to Section 87.147(d) of the Rules. A courtesy copy of the letter dated and mailed on August 24, 1998 is shown as an attachment.

Sincerely,

Jim Harr, Chief Engineer

VAL AVIONICS, LTD.

3280 25th Street SE – P O Box 130250 – Salem, OR 97309
(503) 370-9429 – FAX (503) 370-9885 – Email: info@valavionics.com

August 27, 1998

Federal Communication Commission
Equipment Approval Service
P O Box 358315
Pittsburgh, PA 15251-5315

Re: FCC ID: EZN5PRAWOS760 [Correspondence ID:2882]
731 Confirmation Number: EA90045

Subject: Your email of Friday, August 21, 1998.

To show compliance with Sections 2.983 through 2.995, we submit the following:

SECTION	TITLE	COMMENTS
2.983	Application for Type Acceptance	Change 2 to 2.5 to correct typographical error
2.985	RF Power Output	Refer to Chapter 6, page 28 and 29
2.987	Modulation Characteristics	Refer to Chapter 6, page 31
2.989	Occupied Bandwidth	Refer to Chapter 6, page 30
2.991	Spurious Emissions at Antenna Terminals	Refer to Chapter 6, page 28 and 29
2.993	Field Strength of Spurious Radiation	Refer to Chapter 6, page 32 and 33
2.995	Frequency Stability	Refer to Chapter 6, page 34 and 35

Please remove and replace Chapter 6 Test and Diagrams with Chapter 6 Test and Diagrams, Revision 1. All changes and revisions regarding Testing and compliance were made in this chapter. See Revision History Page 37.

Please remove and replace Chapter 1 General Information with Chapter 1 General Information, Revision 1. Additional information was added to the Specifications and Installation sections. See Revision History Page 37.

It was further stated in your correspondence, that we indicated the transmitter can be operated at a reduced power and that no mention of testing at the lower power levels were made.

The AWOS 760 has been designed as a component part of an **Automated Weather Observation System**. The design characteristics are such to comply with FAA Advisory Circular 150/5220-16B. As a result the AWOS 760 has been designed and tested with a 2.5 watt output. The only adjustment of the output power is provided by potentiometer R419 which allows for final fine tuning of the transmit power across the spectrum of operation. The full range of adjustment is approximately +/- 1 watt. At no time is it intended to operate the AWOS 760 outside of the appropriate tolerance for the output power of 2.5 watts.

After careful review of the material submitted with our application 731 [Confirmation Number: EA90045] we cannot find any reference pertaining to the operation of the AWOS 760 with a transmit power output of greater than or less than 2.5 watts. Also, it is noted that all testing has been performed with the tolerance of this power level.

We have submitted a letter to FAA pursuant to Section 87.147(d) of the Rules. A courtesy copy of the letter dated and mailed on August 24, 1998 is shown as an attachment.

Sincerely,

Jim Harr, Chief Engineer

Revision History

Revision	Date	Chapter	Change Description	Action
1	08/24/98	Chapter 6	Added Text and Diagrams	Remove & Replace
		Page 28	Added text to first paragraph	
		Page 29	Added reference sections to table	
		Page 30	Added Transmitter Occupied Bandwidth Measurements	
		Page 32	Added Field Strength of Spurious Radiation	
		Page 33	Added Table 6.1	
		Page 34	Added Frequency Stability Test to include ranges of -30 to +60	
		Page 35	Corrected Text from 12v to 15.8v to 10.2v to 13.8v	
1	08/24/98	Chapter 1	Added Text General Information	
		Page 1	Added Text	Remove & Replace
		Page 2	Added Information to Specifications	Remove & Replace
		Page 3	Added Text to Installation	Remove & Replace
		Page 6	Added Pin Assignment Diagram	Add

VAL AVIONICS LIMITED

3280 25th Street SE - P O Box 13025 – Salem, OR 97309
(503) 370-9429 – 1-800-255-1511 - FAX (503) 370-9885
Email: info@valavionics.com – www.valavionics.com

August 24, 1998

FAA, Spectrum Engineering Division
800 Independence Avenue SW
Washington, DC 20591

Reference: Code of Federal Regulations Title 47 Telecommunication,
Section 87.147(d)

Subject: Notification of filing Type Acceptance Application to FCC.

Gentleperson,

I hereby submit notification of Type Acceptance Application for our AWOS 760 VHF transmitter made with the FCC in accordance with Code of Federal Regulations, Title 47, Section 87.147(d).

This pending application was filed under FCC ID: EZN5PRAWOS760

The “AWOS 760” communication transmitter is a device specifically designed for installation as a component part for existing Automated Weather Observing Systems (AWOS); and to conform to FAA Advisory Circular 150/5220-16B.

The "AWOS 760" VHF transmitter relative data is shown listed below:

Manufacturers Model Number	AWOS 760
Part Number	803000
Frequency Range	118.000 to 136.975 MHz
Channel Spacing	25 kHz
Frequency Stability	.001%
Spurious Emissions	Greater than 80 dB down from carrier
Modulation	Adjustable (70 to 90% Typical)
Temperature Range	-30 to +60 Degrees Celsius
Transmit Power	2.5 watts
Antenna Characteristics	50 Ohm, Vhf, Broadband Type
Emission Type	6K00A3E
Duty Cycle	100%
Design	All Solid State, Printed Circuit Board & Point to Point Wiring
Mounting	Rigid Mounting, No Shock Mounting Required
Physical Dimensions	Width: 6.00 inches (15.24 cm) Height: 1.9 inches (4.83 cm) Length: 11.0 inches (27.94 cm)
Weight	5.0 Lbs. (2.27kg)
Voltage	12.0 Vdc
Current	Standby 200 mA Transmit 1.5A

Sincerely,

Robie A. Furlong, President

Copy to: FCC

The "AWOS 760" VHF transmitter relative data is shown listed below:

Manufacturers Model Number	AWOS 760
Part Number	803000
Frequency Range	118.000 to 136.975 MHz
Channel Spacing	25 kHz
Frequency Stability	.001%
Spurious Emissions	Greater than 80 dB down from carrier
Modulation	Adjustable (70 to 90% Typical)
Temperature Range	-30 to +60 Degrees Celsius
Transmit Power	2.5 watts
Antenna Characteristics	50 Ohm, Vhf, Broadband Type
Emission Type	6K00A3E
Duty Cycle	100%
Design	All Solid State, Printed Circuit Board & Point to Point Wiring
Mounting	Rigid Mounting, No Shock Mounting Required
Physical Dimensions	Width: 6.00 inches (15.24 cm) Height: 1.9 inches (4.83 cm) Length: 11.0 inches (27.94 cm)
Weight	5.0 Lbs. (2.27kg)
Voltage	12.0 Vdc
Current	Standby 200 mA Transmit 1.5A

Sincerely,

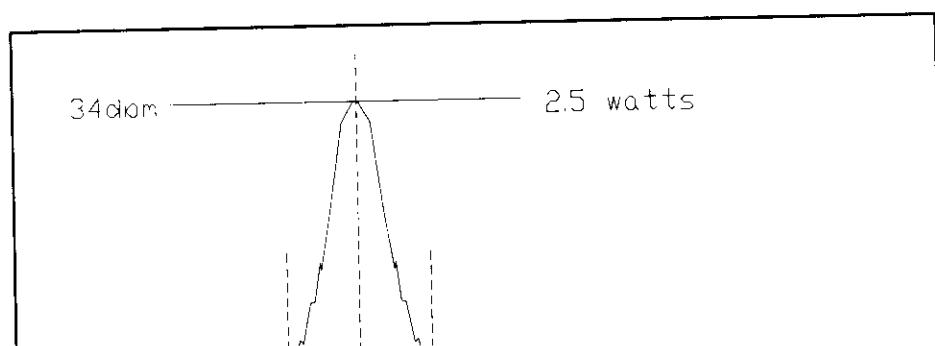
Robie A. Furlong, President

Copy to: FCC

AWOS 760 TRANSMITTER

INTENTIONALLY LEFT

BLANK


AWOS 760 TRANSMITTER

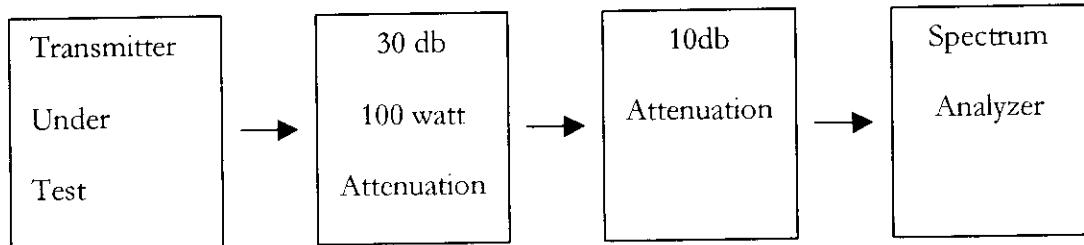
AWOS 760 VHF Transmitter Occupied Bandwidth

Measurements

[Refer to section 2.989]

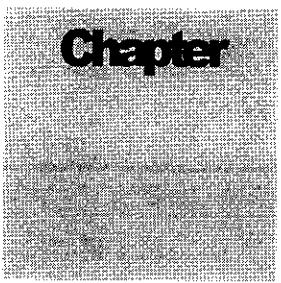
25 KHz spectrum monitored with carrier modulated at 85% with 2500 Hz

TESTS and DIAGRAMS


Statement of Attestation

Transmitter Spectrum Measurement of Fundamentals and Harmonics

[Refer to Sections 2.985 and 2.991]

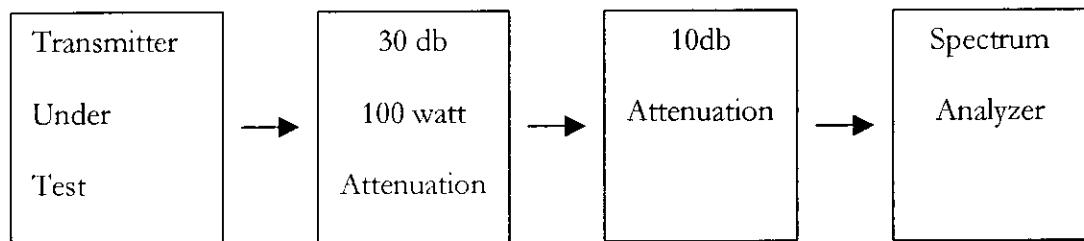

The transmitter was connected to the spectrum analyzer through a 100 watt 30db 50 ohm pad and a 10db 50 ohm. The transmitter was keyed at 1 MHz intervals from 118.000 MHz to 136.975 MHz. The transmitter was modulated with a 2500 Hz tone sufficient to produce 85% modulation.

All measurements were made in dbm references. The fundamentals were measured first and then plus and minus 25Khz. Harmonics up to the 5th harmonics were made and recorded. Harmonics up to the 10th harmonics were explored and found to exceed the requirements by more than 20db.

TRANSMITTER POWER MEASURED IN dbm*[Refer to Sections 2.985 and 2.991]*

	Fundamental	+/- 25 kHz	1 Harmonic	2 Harmonic	3 Harmonic	4 Harmonic	5 Harmonic
118.000	+33	-01	-54	-41	-59	-55	-73
119.000	+33	-13	-53	-41	-58	-56	-72
120.000	+33	-15	52	-41	-58	-56	-72
121.000	+33	-15	-52	-43	-58	-57	-71
122.000	+33	-15	-51	-44	-57	-58	-70
123.000	+33	-08	-52	-44	-57	-59	-69
124.000	+33	-05	-51	-45	-57	-61	-68
125.000	+33	-00	-41	-46	-57	-65	-67
126.000	+33	+02	-52	-46	-57	-65	-67
127.000	+33	-15	-53	-46	-57	-61	-68
128.000	+33	-15	-53	-46	-57	-61	-68
129.000	+33	+02	-54	-47	-57	-58	-69
130.000	+33	+02	-51	-48	-57	-57	-70
131.000	+33	-05	-52	-48	-58	-61	-73
132.000	+33	-08	-51	48	-58	-64	-74
133.000	+31	-15	-50	-49	-58	-66	-74
134.000	+31	13	-52	-49	-60	-68	77
135.000	+31	-15	51	50	-61	-69	-76
136.000	+31	-15	-53	51	-61	-70	-76
136.975	+31	-15	-54	-51	-60	-72	-80

TESTS and DIAGRAMS


Statement of Attestation

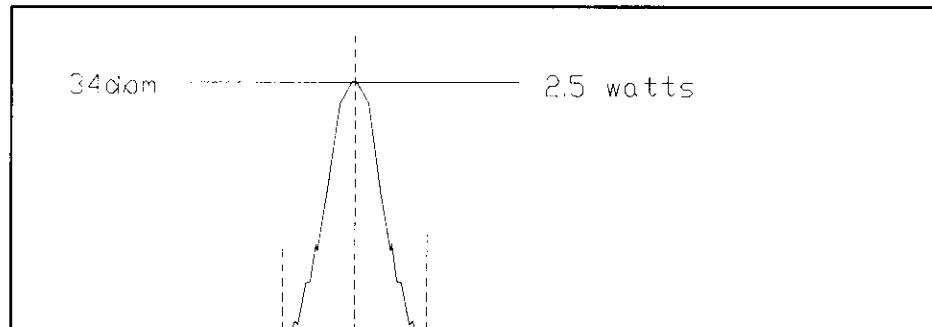
Transmitter Spectrum Measurement of Fundamentals and Harmonics

[Refer to Sections 2.985 and 2.991]

The transmitter was connected to the spectrum analyzer through a 100 watt 30db 50 ohm pad and a 10db 50 ohm. The transmitter was keyed at 1 MHz intervals from 118.000 MHz to 136.975 MHz. The transmitter was modulated with a 2500 Hz tone sufficient to produce 85% modulation.

All measurements were made in dbm references. The fundamentals were measured first and then plus and minus 25Khz. Harmonics up to the 5th harmonics were made and recorded. Harmonics up to the 10th harmonics were explored and found to exceed the requirements by more than 20db.

TRANSMITTER POWER MEASURED IN dbm


[Refer to Sections 2.985 and 2.991]

	Fundamental	+/- 25 kHz	1 Harmonic	2 Harmonic	3 Harmonic	4 Harmonic	5 Harmonic
118.000	+33	-01	-54	-41	-59	-55	-73
119.000	+33	13	-53	-41	-58	-56	-72
120.000	+33	-15	-52	-41	-58	-56	-72
121.000	+33	-15	-52	-43	-58	-57	-71
122.000	+33	15	-51	-44	-57	-58	-70
123.000	+33	-08	-52	-44	-57	-59	-69
124.000	+33	-05	-51	-45	-57	-61	-68
125.000	+33	-00	41	-46	-57	-65	-67
126.000	+33	+02	-52	-46	-57	-65	-67
127.000	+33	-15	-53	-46	-57	-61	-68
128.000	+33	-15	53	-46	-57	-61	-68
129.000	+33	+02	54	-47	-57	-58	-69
130.000	+33	+02	-51	48	-57	-57	-70
131.000	+33	-05	-52	-48	-58	-61	-73
132.000	+33	-08	-51	-48	-58	-64	-74
133.000	+31	-15	-50	-49	58	-66	74
134.000	+31	-13	-52	-49	-60	-68	-77
135.000	+31	-15	-51	-50	-61	-69	-76
136.000	+31	15	-53	-51	-61	-70	76
136.975	+31	-15	-54	-51	-60	72	-80

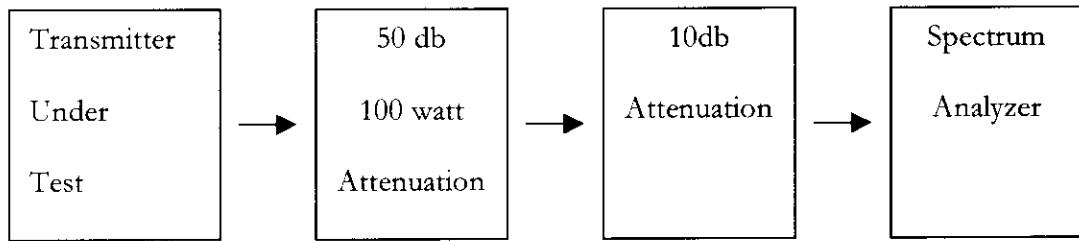
AWOS 760 VHF Transmitter Occupied Bandwidth Measurements

[Refer to section 2.989]

25 KHz spectrum monitored with carrier modulated at 85% with 2500 Hz

Statement of Attestation

TESTS and DIAGRAMS


Chappler

Transmitter Spectrum Measurement of Fundamentals and Harmonics

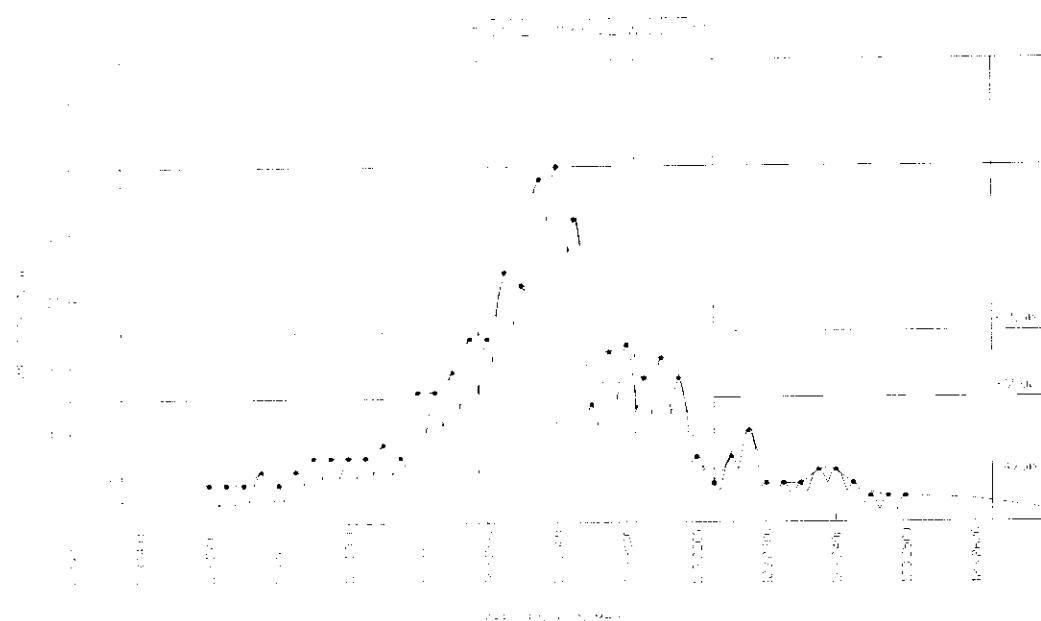
[Refer to Sections 2.985 and 2.991]

The transmitter was connected to the spectrum analyzer through a 100 watt 50db 50 ohm pad and a 10db 50 ohm. The transmitter was keyed at 1 MHz intervals from 118.000 MHz to 136.975 MHz. The transmitter was modulated with a 2500 Hz tone sufficient to produce 85% modulation.

All measurements were made in dbm references. The fundamentals and harmonics were measured. Harmonics up to the 5th harmonics were made and recorded. Harmonics up to the 10th harmonics were explored and found to exceed the requirements by more than 20db. (See Table 6.2)

TRANSMITTER POWER MEASURED IN dbm*[Refer to Section 2.991]**(Table 6.2)*

Fundamental 1 Harmonic 2 Harmonic 3 Harmonic 4 Harmonic 5 Harmonic


118.000	34	-18	*	*	-30	-22
119.000	34	-20	*	*	-26	-20
120.000	34	-20	*	*	-28	-24
121.000	34	-18	*	*	-18	-16
122.000	34	-20	*	*	-28	-16
123.000	34	-16	*	*	-16	-24
124.000	34	-16	*	*	-24	-22
125.000	34	-16	-32	*	-18	-24
126.000	34	-14	-32	*	-20	-22
127.000	34	-16	-32	*	-20	-30
128.000	34	-16	-32	*	-22	*
129.000	34	-16	-30	*	-24	*
130.000	34	-16	-32	*	-26	*
131.000	34	-16	-30	*	-25	*
132.000	34	-16	-30	*	-22	*
133.000	34	-16	-30	*	-20	*
134.000	34	-16	-30	*	-20	*
135.000	34	-18	-28	*	-20	*
136.000	34	-18	-30	*	-20	*
136.975	34	-18	*	*	-18	*

*Emissions attenuated greater than 67db.

AWOS 760 VHF Transmitter Occupied Bandwidth Measurements

[Refer to section 2.989]

25 KHz spectrum monitored with carrier modulated at 85% with 2500 Hz

900427.dwg

This test was made at 118.000 Mhz, 123.450 Mhz, 130.000 Mhz, and 136.975 Mhz with similar test results. All of which exceed the requirements of Section 2.989 and Section 87.139 of Commission's rules. (See Table 6.3 for reference data)

OCCUPIED BANDWIDTH [*Table 6.3*]

Frequency Mhz	Amp db	Frequency Mhz	Amp db	Frequency Mhz	Amp db
123.130000	-60	123.158125	-60	123.186250	-60
123.130625	-60	123.158750	-60	123.186875	-60
123.131250	-60	123.159375	-60	123.187500	-26
123.131875	-60	123.160000	-56	123.188125	-60
123.132500	-60	123.160625	-60	123.188750	-60
123.133125	-60	123.161250	-59	123.189375	-58
123.133750	-60	123.161875	-60	123.190000	-26
123.134375	-60	123.162500	-54	123.190625	-60
123.135000	-60	123.163125	-60	123.191250	-60
123.135625	-60	123.163750	-59	123.191875	-56
123.136250	-60	123.164375	-60	123.192500	-16
123.136875	-60	123.165000	-52	123.193125	-58
123.137500	-60	123.165625	-59	123.193750	-60
123.138125	-60	123.166250	-55	123.194375	-58
123.138750	-60	123.166875	-59	123.195000	-18
123.139375	-60	123.167500	-52	123.195625	-58
123.140000	-60	123.168125	-60	123.196250	-59
123.140625	-60	123.168750	-56	123.196875	-38
123.141250	-60	123.169375	-59	123.197500	-2
123.141875	-60	123.170000	-52	123.198125	-40
123.142500	-60	123.170625	-59	123.198750	-59
123.143125	-60	123.171250	-59	123.199375	-36
123.143750	-60	123.171875	-59	123.200000	0
123.144375	-60	123.172500	-52	123.200625	-38
123.145000	-60	123.173125	-59	123.201250	-58
123.145625	-60	123.173750	-59	123.201875	-52
123.146250	-60	123.174375	-59	123.202500	-8
123.146875	-60	123.175000	-42	123.203125	-56
123.147500	-60	123.175625	-59	123.203750	-60
123.148125	-60	123.176250	-58	123.204375	-60
123.148750	-60	123.176875	-60	123.205000	-36
123.149375	-60	123.177500	-52	123.205625	-60
123.150000	-56	123.178125	-58	123.206250	-60
123.150625	-60	123.178750	-60	123.206875	-60
123.151250	-60	123.179375	-60	123.207500	-28
123.151875	-60	123.180000	-42	123.208125	-60
123.152500	-56	123.180625	-60	123.208750	-60
123.153125	-60	123.181250	-58	123.209375	-60
123.153750	-60	123.181875	-58	123.210000	-27
123.154375	-60	123.182500	-42	123.210625	-60
123.155000	-56	123.183125	-60	123.211250	-60
123.155625	-60	123.183750	-60	123.211875	-60
123.156250	-60	123.184375	-60	123.2128500	-32
123.156875	-60	123.185000	-31	123.213125	-60
123.157500	-54	123.185625	-60	123.213750	-60

OCCUPIED BANDWIDTH [Table 6.3]

Frequency Mhz	Amp db	Frequency Mhz	Amp db
123.214375	-60	123.242500	-56
123.215000	-29	123.243125	-60
123.215625	-60	123.243750	-60
123.216250	-60	123.244375	-60
123.216875	-60	123.245000	-58
123.217500	-32	123.245625	-60
123.218125	-60	123.246250	-60
123.218750	-60	123.246875	-60
123.219375	-60	123.247500	-58
123.220000	-52	123.248125	-60
123.220625	-59	123.248750	-60
123.221250	-60	123.249375	-60
123.221875	-60	123.250000	-58
123.222500	-56	123.250625	-60
123.223125	-60	123.251250	-60
123.223750	-60	123.251785	-60
123.224375	-58	123.252500	-60
123.225000	-52	123.253125	-60
123.225625	-60	123.253750	-60
123.226250	-60	123.254375	-60
123.226875	-60	123.255000	-60
123.227500	-40	123.255625	-60
123.228125	-60	123.256250	-60
123.228750	-60	123.256875	-60
123.229375	-60	123.257500	-60
123.230000	-56	123.258125	-60
123.230625	-59	123.258750	-60
123.231250	-59	123.259375	-60
123.231875	-59	123.260000	-60
123.232500	-56	123.260625	-60
123.233125	-60	123.261250	-60
123.233750	-60	123.261875	-60
123.234375	-60	123.262500	-60
123.235000	-56	123.263125	-60
123.235625	-60	123.263750	-60
123.236250	-59	123.264375	-60
123.236875	-59	123.265000	-60
123.237500	-54	123.265625	-60
123.238125	-59	123.266250	-60
123.238750	-59	123.266875	-60
123.239375	-60	123.267500	-60
123.240000	-54	123.236812	-60
123.240625	-60	123.268750	-60
123.241250	-60	123.269375	-60
123.241875	-60	123.270000	-60

Transmitter Modulation Characteristics

[Required by Section 2.987(d) and 87.73(a)]

Modulation of the transmitter in normal use resulted in modulation peaks of at least 70% and did not exceed 100%.

Transmitter modulation characteristics of audio frequencies from 100hz to 5000hz were measured as follows per section 2.987(a).

Hz	% Modulation
100	50
300	60
500	75
800	80
1000	85
1200	85
1400	85
1600	85
1800	85
2000	85
2200	85
2400	85
2600	85
2800	85
3000	85
3500	75
4000	65
4500	60
5000	50

FIELD STRENGTH OF SPURIOUS RADIATION*[Refer to Section 2.993]*

The unit was set up on a revolving stand and operated under Normal standby conditions three (3) meters from the receiving dipole antennas which were constructed as illustrated in Drawing number 900428. The antenna was then connected to a spectrum analyzer and an analysis of the frequencies from 20 MHz to 1000 MHz was made.

As indicated in table 6.1 no spurious radiations were found which exceeded radiation measurement requirements.

**BALUM CONSTRUCTION FOR FIELD STRENGTH MEASURE
DIPOLE ANTENNAS**

Frequency Range Mhz	Length C Inches	Length D Inches	Constructed Dipole Length
25-65	34.3	43.3	25'
65-180	14.2	16.25	8'
180-400	6.125	7.5	3'
400-1000	2.7	3.0	1.5'

The constructed dipoles were made of one inch PVC Pipe with the dipole wire taped to them. The wires were then cut to the proper length for each frequency tested.

Field Strength of Spurious Radiation

Table 6.1

Frequency Mhz	Spectrum Explored	Radiated Harmonic dbm
20	+/- 5Mhz	<-100
25	+/- 5Mhz	<-100
30	+/- 5Mhz	-90.6
35	+/- 5Mhz	-95.6
40	+/- 5Mhz	-95.6
45	+/- 5Mhz	-92.6
50	+/- 5Mhz	<-100
55	+/- 5Mhz	<-100
60	+/- 5Mhz	<-100
65	+/- 5Mhz	<-100
70	+/- 5Mhz	<-100
75	+/- 5Mhz	<-100
80	+/- 5Mhz	<-100
90	+/- 10Mhz	<-100
100	+/- 10Mhz	<-100
110	+/- 10Mhz	<-100
120	+/- 10Mhz	<-100
130	+/- 10Mhz	-91.6
140	+/- 10Mhz	<-100
150	+/- 10Mhz	-98.6
160	+/- 10Mhz	<-100
170	+/- 10Mhz	<-100
180	+/- 10Mhz	<-100
190	+/- 10Mhz	<-100
200	+/- 50Mhz	<-100
225	+/- 50Mhz	<-100
250	+/- 50Mhz	-96.1
275	+/- 50Mhz	-93.1
300	+/- 50Mhz	-91.1
350	+/- 50Mhz	<-100
400	+/- 50Mhz	-97.1
450	+/- 50Mhz	-95.1
500	+/- 50Mhz	<-100
550	+/- 50Mhz	<-100
600	+/- 50Mhz	<-100
650	+/- 50Mhz	<-100
700	+/- 50Mhz	-95.1
750	+/- 50Mhz	<-100
800	+/- 50Mhz	<-100
850	+/- 50Mhz	<-100
900	+/- 50Mhz	<-100
1000	+/- 50Mhz	<-100

FREQUENCY STABILITY TEST

[Refer to Section 2.995 (a) (2)]

The unit was tested in a temperature controlled test chamber. The temperature was lowered to -30 degrees centigrade and raised to +60 degrees centigrade. Measurement of transmit frequency at each 10 degree multiple. The frequency did not vary more than .001% over the temperature range.

At temperatures under 25 degrees centigrade, the unit remained off at all times except during brief times when transmit and receive test were made. This assured that the components were chilled to the maximum.

At temperatures over 25 degrees centigrade, the unit was left on at all times. This assured that the components were heated to the maximum.

Variations of frequency versus change in temperature measurements are as follows per section 2.995:

Degrees Celsius	Frequency MHz
-30	121.5005
-20	121.5005
-10	121.5004
0	121.5004
+10	121.5000
+20	121.5000
+30	121.5000
+40	121.4999
+50	121.4998
+55	121.4995
+60	121.4995

Maximum frequency deviation is .001%.

VARIATIONS OF PRIMARY SUPPLY VOLTAGE

[Refer to Section 2.995 (d)(1)]

The primary voltage was varied from 10.2v to 13.8v and the transmit frequency was monitored. The transmit frequency did not vary more .001%.

Statement of Compliance

This equipment has been tested in accordance with the requirements contained in the appropriate commission regulations. To the best of my knowledge, these test were performed using measurement procedures consistent with industry or Commissions standards and demonstrate that the equipment complies with the appropriate standards. Each unit manufactured, imported or marketed, as defined in the Commission's regulations, will conform to the sample(s) tested within the variations that can be expected due to quantity production and testing on a statistical basis. I further certify that the necessary measurements were made by the engineering department of Val Avionics, Ltd. Located at 3280 25th street SE in Salem, Oregon.

James L. Harr, Chief Engineer

Revision History

Revision History					
Revision	Effective Date	Chapter	Page	Change Description	Action
1	08/24/98	Chapter 6	Added Text and Diagrams	Remove & Replace	
		Page 28	Added text to first paragraph		
		Page 29	Added reference sections to table		
		Page 30	Added Transmitter Occupied Bandwidth Measurements		
		Page 32	Added Field Strength of Spurious Radiation		
		Page 33	Added Table 6.1		
		Page 34	Added Frequency Stability Test to include ranges of -30 to +60		
		Page 35	Corrected Text from 12v to 15.8v to 10.2v to 13.8v		
1	08/24/98	Chapter 1	Added Text General Information		
		Page 1	Added Text	Remove & Replace	
		Page 2	Added Information to Specifications	Remove & Replace	
		Page 3	Added Text to Installation	Remove & Replace	
		Page 6	Added Pin Assignment Diagram	Add	
1	A	10/01/98	Chapter 6	Re test for Sections 2.901 & 2.909	Remove & Replace
			Page 28	Added Text to reflect new test results.	
			Page 29	Added new test results to Table 6.2.	
			Page 30	Added new diagram to reflect new test results	
			Page 31	Added Table 6.3	