Itron, Inc.

REVISED TEST REPORT TO 105540-2
 Water Endpoint
 Models: RIVAWA \& RIVAWRA

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.247
(FHSS 902-928MHz)

Report No.: 105540-2A

Date of issue: July 16, 2021

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.01

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results5
Modifications During Testing5
Conditions During Testing 5
Equipment Under Test 6
General Product Information
FCC Part 15 Subpart C 15
15.247(a) Transmitter Characteristics 15
15.247(a)(1) 20 dB Bandwidth 15
15.247(b)(2) Output Power 18
15.247(d) Radiated Emissions \& Band Edge 23
Supplemental Information 77
Measurement Uncertainty 77
Emissions Test Details 77

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Iron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 239227

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Terri Rayle
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 105540

June 3, 2021
June 3 and 7, 2021

Revision History

Original: Testing of the Water Endpoint, Models: RIVAWA \& RIVAWRA to FCC Part 15 Subpart C Sections) 15.247 (FHSS 902-928MHz.
Revision A: To add clarification for the antenna gain measurement to the General Product Table.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
Canyon Park
22116 23rd Drive S.E., Suite A
Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .19

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	$3082 B$	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	PASS
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	PASS
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	NA1
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	PASS
15.207	AC Conducted Emissions	NA	NA2

NA = Not Applicable
NA1 = Not applicable because EUT has an integral antenna. Temporary antenna port provided for Occupied Bandwidth and Power measurements only.
NA2 = Not applicable because the EUT is battery powered.
NP = CKC Laboratories is not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing
This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EXT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1 (Conducted Unit)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	tron, Inc.	RIVAWA	105540-cond

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA

Configuration 2 (Remote 4 Battery)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWRA	105540-RMT4

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA

Configuration 3 (Remote 2 Battery)

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWRA	105540-RMT2

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA

Configuration 4 (Pit 2 Port, 4 Battery)

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	tron, Inc.	RIVAWA	105540-PIT42

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA

Configuration 5 (Pit 2 Port, 2 Battery)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWA	105540-PIT22

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA

Configuration 6 (Pit 3 Port, Internal Antenna, 4 Battery)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWA	105540-PIT43

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA

Configuration 7 (Pit 3 Port, Internal Antenna, 2 Battery)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	tron, Inc.	RIVAWA	105540-PIT23

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA

Configuration 8 (Pit 3 Port, Plastic Lid Antenna, 4 Battery)

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWA	105540-PIT43

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA
Antenna	Itron, Inc.	CFG-0900-003	12194430

Configuration 9 (Pit 3 Port, Plastic Lid Antenna, 2 Battery)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWA	105540-PIT23

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA
Antenna	Itron, Inc.	CFG-0900-003	12194430

Configuration 10 (Pit 3 Port, Metal Lid Antenna, 4 Battery)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWA	105540-PIT43

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA
Antenna	Itron, Inc.	CFG-0900-003	12194430
Ground Plane	Itron, Inc.	4 ft	NA

Configuration 11 (Pit 3 Port, Metal Lid Antenna, 2 Battery)
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWA	105540-PIT23
Support Equipment:			
Device	Manufacturer	Model \#	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	L25296-002	NA
USB to Serial Adapter	Itron, Inc.	RIVAWA-cable	NA
Antenna	Itron, Inc.	CFG-0900-003	12194430
Ground Plane	Itron, Inc.	4ft	NA

General Product Information:

EUT Photo(s)

Support Equipment Photo(s)

External Antenna

Ground Plane

Laptop \& USB Hub

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Test Setup Block Diagram
(External Antenna on Plastic Lid Configurations)

Test Setup Block Diagram
(External Antenna on Metal Lid Configurations)

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions			
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$6 / 3 / 2021$
Configuration:	1	EUT has temporary antenna connector attached. EUT directly connected to spectrum analyzer through appropriate cables and attenuators. EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx.	
Test Setup:			

Environmental Conditions			
Temperature (ㅇ)	24	Relative Humidity (\%):	46

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02673	Spectrum Analyzer	Agilent	E4446A	$2 / 3 / 2021$	$2 / 3 / 2023$	
P07745	Attenuator	Pasternack	PE7004-6	$2 / 11 / 2021$	$2 / 11 / 2023$	
P06011	Cable	Andrew	Heliax	$8 / 7 / 2020$	$8 / 7 / 2022$	

15.247(a)(1) 20 dB Bandwidth

Test Data Summary						
Frequency $(\mathbf{M H z})$	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $(\mathbf{k H z})$	Results	
902.3	1	GFSK 100kbps	124.166	≤ 500	Pass	
915.2	1	GFSK 100kbps	124.354	≤ 500	Pass	
926.9	1	GFSK 100kbps	125.275	≤ 500	Pass	

LABORATORIES, INC.

Plots)

Low Channel

Middle Channel

High Channel

Test Setup Photo(s)

15.247(b)(2) Output Power

Test Data Summary - Voltage Variations

This equipment is battery powered. Power output tests were performed using a fresh battery.

Test Data Summary - RF Conducted Measurement
Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels }(\min 25)\end{array}\right.$

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type / Gain (dBi)	Measured $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Results
902.3	GFSK 100kbps	Integral (5.2dBi), External (2.5dBi)	27.9	≤ 30	Pass
915.2	GFSK 100kbps	Integral $(5.2 \mathrm{dBi})$, External $(2.5 \mathrm{dBi})$	28.0	≤ 30	Pass
926.9	GFSK 100kbps	Integral $(5.2 \mathrm{dBi})$, External (2.5dBi)	28.1	≤ 30	Pass

Plots

LABORATORIES, INC.

Middle Channel

High Channel

LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification: Work Order \#: Test Type: Tested By:
Software:

Itron, Inc.
15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

105540
Conducted Emissions
Michael Atkinson
EMIT est 5.03.19

Date: 6/3/2021
Time: 17:33:05
Sequence\#: 4
Battery

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
EUT has temporary antenna connector attached. EUT directly connected to spectrum analyzer through appropriate cables and attenuators. EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. EUT has a fresh battery installed.

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Relative Humidity: 46%
Test Method: ANSI C63.10 (2013)

Itron, Inc. WO\#: 105540 Sequence\#: 4 Date: 6/3/2021
15.247(b) Power Output ($902-928 \mathrm{MHz}$ FHSS >50 Channels) Test Lead: Battery RF Port

Test Equipment:

ID	Asset	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$2 / 3 / 2021$	$2 / 3 / 2023$
T1	ANP07745	Attenuator	PE7004-6	$2 / 11 / 2021$	$2 / 11 / 2023$
T2	ANP06011	Cable	Heliax	$8 / 7 / 2020$	$8 / 7 / 2022$

Measu	ement Data	Reading listed by margin.					Test Lead: RF Port				
\#	Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	926.892M	128.8	+5.8	$+0.5$			+0.0	135.1	137.0	-1.9	RF Po
2	915.220M	128.7	+5.8	+0.5			+0.0	135.0	137.0	-2.0	RF Po
3	902.274M	128.6	+5.8	$+0.5$			+0.0	134.9	137.0	-2.1	RF Po

Test Setup Photo(s)

LABORATORIES, INC.

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

105334 Date: 6/7/2021
Radiated Scan Time: 18:07:58
Michael Atkinson Sequence\#: 1
EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2 and 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2 and 3		S/N

Test Conditions / Notes:
Frequency Range: 9 kHz to 10 GHz
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. 4 battery and 2 battery versions of EUT investigated, worst case reported. Horizontal and vertical antenna polarities investigated above $30 \mathrm{MHz}, 3$ orthogonal axes investigated below 30 MHz , worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%
Test Method: ANSI C63.10 (2013)

Itron. Inc. WO\#: 105334 Sequence\#: 1 Date: 6/7/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

—— Readings
\times QP Readings
$\times \quad$ Ambient
$1-15.247(\mathrm{~d}) / 15.209$ Radiated Spurious Emissions

O Peak Readings
* Average Readings
Software Version: $5 \cdot 03.19$

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T5	ANP05275	Attenuator	1W	$3 / 26 / 2020$	$3 / 26 / 2022$
T6	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T7	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$
T8	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T9	ANP07505	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			Horn Antenna-	3115	
T10	AN01467	ANSI C63.5		$7 / 5 / 2019$	$7 / 5 / 2021$
		Calibration			
T11	AN03170	High Pass Filter	HM1155-11SS	$10 / 23 / 2019$	$10 / 23 / 2021$
T12	ANP06515	Cable	Heliax	$7 / 1 / 2020$	$7 / 1 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \hline \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \hline \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~T} 12 \\ \mathrm{~dB} \\ \hline \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 993.200 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	16.1	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	51.2	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-2.8	Vert
$\wedge 993.200 \mathrm{M}$	17.0	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.1	$\begin{gathered} 54.0 \\ 915.2 \end{gathered}$	-1.9	Vert
$\begin{aligned} & 3 \quad 980.315 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	16.2	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	51.1	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-2.9	Vert
$\wedge 980.400 \mathrm{M}$	19.5	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	54.4	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	+0.4	Vert
$\begin{aligned} & 5 \quad 978.800 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	15.9	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.8	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-3.2	Vert
$\wedge 978.800 \mathrm{M}$	17.0	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.9	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-2.1	Vert
$\begin{aligned} & 7 \text { 7415.200M } \\ & \text { Ave } \end{aligned}$	40.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.5 \\ +0.0 \\ +37.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.9 \\ +5.3 \\ \hline \end{array}$	$+0.0$	50.8	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-3.2	Horiz
$\wedge 7415.200 \mathrm{M}$	41.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.5 \\ +0.0 \\ +37.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.9 \\ +5.3 \\ \hline \end{array}$	+0.0	51.9	$\begin{array}{r} \hline 54.0 \\ 926.9 \end{array}$	-2.1	Horiz
98120.645 M	40.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.3 \\ +0.0 \\ +37.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \\ +5.3 \end{array}$	+0.0	50.0	$\begin{array}{r} \hline 54.0 \\ 902.3 \end{array}$	-4.0	Horiz
$\begin{gathered} 10 \quad 967.200 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	15.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	50.0	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-4.0	Vert
$\wedge 967.200 \mathrm{M}$	19.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.4 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	54.0	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	+0.0	Vert
123660.930 M	47.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \end{array}$	+0.0	49.2	$\begin{gathered} 54.0 \\ 915.2 \end{gathered}$	-4.8	Horiz
$\begin{gathered} 13978.907 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	14.3	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.2	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-4.8	Vert
14 2707.010M	49.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	+0.0	48.2	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-5.8	Vert
15 4511.555M	43.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.7 \\ \hline \end{array}$	+0.0	46.7	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-7.3	Horiz

33	828.800M	23.6	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	56.1	$\begin{array}{r} 107.0 \\ 915.2 \end{array}$	-50.9	Vert
34	941.200M	21.5	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	55.7	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-51.3	Vert
35	928.400M	21.5	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +23.8 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	55.5	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-51.5	Vert
36	889.200M	22.1	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	55.3	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-51.7	Vert
37	901.000M	21.8	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.4 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	55.1	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-51.9	Vert
38	811.200M	22.6	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	54.9	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-52.1	Vert
39	952.800M	20.2	$\begin{aligned} & \hline+0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	54.6	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-52.4	Vert
40	954.200M	19.7	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	54.1	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-52.9	Vert
41	9268.985M	42.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.5 \\ +0.0 \\ +37.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.2 \\ +5.7 \end{array}$	$+0.0$	54.0	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-53.0	Horiz
42	875.000M	20.7	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	53.7	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-53.3	Vert
43	876.400M	19.8	$\begin{aligned} & \hline+0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	52.8	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-54.2	Vert
44	824.400M	20.0	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.4	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-54.6	Vert
45	850.400M	19.2	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	52.0	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-55.0	Vert
46	849.000M	17.9	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	50.7	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-56.3	Vert
47	823.000M	18.1	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	50.5	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-56.5	Vert
48	1830.400M	55.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	+0.0	50.2	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-56.8	Horiz
49	7218.285M	39.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.1 \\ +0.0 \\ +36.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.9 \\ +5.1 \\ \hline \end{array}$	$+0.0$	48.4	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-58.6	Horiz

50	6488.300M	39.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.2 \\ +0.0 \\ +34.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.0 \\ +5.4 \end{array}$	$+0.0$	47.9	$\begin{aligned} & 107.0 \\ & 26.9 \end{aligned}$	-59.1	Horiz
51	2125.000M	48.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.6 \\ +0.0 \\ +27.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.5 \\ +2.6 \\ \hline \end{array}$	$+0.0$	46.0	107.0	-61.0	Horiz
52	6316.035M	38.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.0 \\ +0.0 \\ +34.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.0 \\ +5.1 \\ \hline \end{array}$	$+0.0$	45.7	$\begin{aligned} & 107.0 \\ & 02.3 \end{aligned}$	-61.3	Horiz
53	1853.880M	48.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ \hline-34.7 \\ +2.4 \end{array}$	$+0.0$		$\begin{aligned} & 107.0 \\ & 26.9 \end{aligned}$	-62.8	Horiz
54	796.920M	11.5	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	43.7	107.0	-63.3	Vert
55	107.500k	34.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +9.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-80.0	-36.5	27.0	-63.5	Para
56	509.710M	14.9	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +18.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	42.1	107.0	-64.9	Vert
57	212.490 M	23.1	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.2 \\ +10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	41.1	107.0	-65.9	Horiz
58	215.570 M	20.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.2 \\ +10.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	38.6	107.0	-68.4	Vert
59	216.340M	18.8	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.2 \\ +10.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	37.1	107.0	-69.9	Vert
60	72.350 M	20.1	$\begin{aligned} & +0.0 \\ & +6.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +6.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	33.6	107.0	-73.4	Vert
61	95.450 M	15.3	$\begin{aligned} & +0.0 \\ & +6.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +9.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	32.2	107.0	-74.8	Horiz
62	21.039 M	35.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +7.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-40.0	2.6	107.0	-104.4	Groun
63	2.131 M	32.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +9.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-40.0	2.1	107.0	-104.9	Para
64	21.213 M	29.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +7.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-40.0	-3.5	107.0	-110.5	Para
65	21.213 M	26.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +7.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-40.0	-6.6	107.0	-113.6	Perp
66	27.593 M	26.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +5.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-40.0	-7.8	107.0	-114.8	Para

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4, 5, 6, and 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 4, 5, 6, and 7		S/N

Test Conditions / Notes:

Frequency Range: 9 kHz to 10 GHz
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. Pit unit internal antenna investigated, 4 battery and 2 battery versions of EUT investigated, 2 and 3 port version of EUT investigated, worst case reported. Horizontal and vertical antenna polarities investigated above $30 \mathrm{MHz}, 3$ orthogonal axes investigated below 30 MHz , worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%
Test Method: ANSI C63.10 (2013)

Itron. Inc. WO\#: 105334 Sequence\#: 2 Date: 6/7/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

—— Readings
\times QP Readings
$\times \quad$ Ambient
$1-15.247(\mathrm{~d}) / 15.209$ Radiated Spurious Emissions

O Peak Readings
* Average Readings
Software Version: $5 \cdot 03.19$

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T5	ANP05275	Attenuator	1W	$3 / 26 / 2020$	$3 / 26 / 2022$
T6	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T7	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$
T8	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T9	ANP07505	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			Horn Antenna-	3115	
T10	AN01467	ANSI C63.5		$7 / 5 / 2019$	$7 / 5 / 2021$
		Calibration			
T11	AN03170	High Pass Filter	HM1155-11SS	$10 / 23 / 2019$	$10 / 23 / 2021$
T12	ANP06515	Cable	Heliax	$7 / 1 / 2020$	$7 / 1 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \hline \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \hline \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~T} 12 \\ \mathrm{~dB} \\ \hline \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 967.200 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	16.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	51.0	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-3.0	Vert
$\wedge 967.200 \mathrm{M}$	18.1	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.7	$\begin{gathered} 54.0 \\ 915.2 \end{gathered}$	-1.3	Vert
$3 \quad 978.800 \mathrm{M}$	16.0	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	50.9	$\begin{gathered} \hline 54.0 \\ 926.9 \end{gathered}$	-3.1	Vert
$\begin{aligned} & 4993.200 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	15.5	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	50.6	$\begin{array}{r} \hline 54.0 \\ 915.2 \end{array}$	-3.4	Vert
$\wedge 993.200 \mathrm{M}$	18.0	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	53.1	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-0.9	Vert
$\begin{aligned} & 6 \begin{array}{l} 980.301 \mathrm{M} \\ \mathrm{QP} \end{array} \end{aligned}$	15.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.3	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-3.7	Vert
$\wedge 980.300 \mathrm{M}$	20.1	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	55.0	$\begin{gathered} \hline 54.0 \\ 902.3 \end{gathered}$	+1.0	Vert
8 8120.705M	40.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.3 \\ +0.0 \\ +37.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \\ +5.3 \\ \hline \end{array}$	+0.0	50.3	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-3.7	Horiz
9 9023.005M	37.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.4 \\ +0.0 \\ +37.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +5.9 \end{array}$	+0.0	48.3	$\begin{array}{r} \hline 54.0 \\ 902.3 \end{array}$	-5.7	Horiz
$\begin{gathered} 10 \quad 978.907 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	13.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	48.3	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-5.7	Vert
119152.155 M	36.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.5 \\ +0.0 \\ +37.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.4 \\ +5.8 \\ \hline \end{array}$	+0.0	47.9	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-6.1	Horiz
$12 \quad 8120.720 \mathrm{M}$	38.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.3 \\ +0.0 \\ +37.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \\ +5.3 \end{array}$	+0.0	47.8	$\begin{array}{r} \hline 54.0 \\ 902.3 \end{array}$	-6.2	Vert
13 3660.900M	45.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \\ \hline \end{array}$	+0.0	47.3	$\begin{gathered} 54.0 \\ 915.2 \end{gathered}$	-6.7	Horiz
14 4576.000M	42.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.8 \\ \hline \end{array}$	+0.0	46.5	$\begin{gathered} 54.0 \\ 915.2 \end{gathered}$	-7.5	Horiz
15 7415.205M	36.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.5 \\ +0.0 \\ +37.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.9 \\ +5.3 \\ \hline \end{array}$	+0.0	46.3	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-7.7	Horiz

	1171.000M Ave	30.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.9 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.2 \\ +1.8 \\ \hline \end{array}$	+0.0	23.2	54.0	-30.8	Vert
34	1804.600M	65.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.3 \end{array}$	+0.0	60.6	$\begin{aligned} & 107.0 \\ & 902.3 \end{aligned}$	-46.4	Vert
35	1830.400M	64.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	$+0.0$	59.2	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-47.8	Horiz
36	1804.535M	64.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.3 \end{array}$	+0.0	59.0	$\begin{aligned} & 107.0 \\ & 902.3 \end{aligned}$	-48.0	Horiz
37	1853.850M	63.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	+0.0	58.5	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-48.5	Horiz
38	928.400M	23.3	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +23.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	57.3	$\begin{aligned} & 107.0 \\ & 902.3 \end{aligned}$	-49.7	Vert
39	954.400M	22.1	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	56.5	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-50.5	Vert
40	941.200M	22.2	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	56.4	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-50.6	Vert
41	798.100M	24.0	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	56.2	107.0	-50.8	Vert
42	850.200M	23.2	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	56.0	$\begin{aligned} & 107.0 \\ & 902.3 \end{aligned}$	-51.0	Vert
43	900.800M	22.5	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	55.8	$\begin{gathered} 107.0 \\ 926.9 \end{gathered}$	-51.2	Vert
44	876.200M	22.6	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	55.6	$\begin{gathered} 107.0 \\ 902.3 \end{gathered}$	-51.4	Vert
45	889.200M	22.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	55.6	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-51.4	Vert
46	837.200M	22.8	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	55.4	$\begin{gathered} 107.0 \\ 915.2 \end{gathered}$	-51.6	Vert
47	863.200M	22.3	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	55.2	$\begin{aligned} & 107.0 \\ & 915.2 \end{aligned}$	-51.8	Vert
48	824.400M	22.7	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +22.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	55.1	$\begin{aligned} & 107.0 \\ & 902.3 \end{aligned}$	-51.9	Vert
49	849.000M	22.3	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	55.1	$\begin{aligned} & 107.0 \\ & 926.9 \end{aligned}$	-51.9	Vert

50	811.200 M	22.1	+0.0	+0.3	+1.4	+1.9	+0.0	54.4	107.0	-52.6	Vert	
			+6.1	+22.6	+0.0	+0.0			915.2			
51	953.000 M	19.6	+0.0	+0.0	+0.0	+0.0						
			+6.1	+24.2	+0.0	+0.2	+0.0	54.0	107.0	-53.0	Vert	
			+0.0	+0.0	+0.0	+0.0			926.9			
52	874.800 M	20.3	+0.0	+0.3	+1.4	+2.0	+0.0	53.3	107.0	-53.7	Vert	
			+6.1	+23.2	+0.0	+0.0			926.9			
53	822.800 M	20.5	+0.0	+0.3	+1.4	+1.9	+0.0	52.9	107.0	-54.1	Vert	
			+6.1	+22.7	+0.0	+0.0			926.9			
54				+0.0	+0.0	+0.0	+0.0					
						+0.0	+1.5	+0.0	+0.0	+0.0	52.1	107.0

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
105334
Date: 6/7/2021
Test Type:
Radiated Scan
Time: 18:54:52
Tested By:
Michael Atkinson
Sequence\#: 3
Software:
EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 8 and 9		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 8 and 9		S/N

Test Conditions / Notes:

Frequency Range: 9 kHz to 10 GHz
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. Pit unit with plastic lid configuration investigated (external antenna without antenna ground plane), 4 battery and 2 battery versions of EUT investigated, worst case reported. Horizontal and vertical antenna polarities investigated above $30 \mathrm{MHz}, 3$ orthogonal axes investigated below 30 MHz , worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%
Test Method: ANSI C63.10 (2013)

Itron. Inc. WO\#: 105334 Sequence\#: 3 Date: 6/7/2021 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

—— Readings
\times QP Readings
$\times \quad$ Ambient
$1-15.247(\mathrm{~d}) / 15.209$ Radiated Spurious Emissions

O Peak Readings
* Average Readings
Software Version: 5.03:19

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T1	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T2	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T3	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T4	ANP05275	Attenuator	1W	$3 / 26 / 2020$	$3 / 26 / 2022$
T5	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T6	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	ANP07505	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			Horn Antenna-	3115	
T9	AN01467	ANSI C63.5		$7 / 5 / 2019$	$7 / 5 / 2021$
		Calibration			
T10	AN03170	High Pass Filter	HM1155-11SS	$10 / 23 / 2019$	$10 / 23 / 2021$
T11	ANP06515	Cable	Heliax	$7 / 1 / 2020$	$7 / 1 / 2022$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \text { T7 } \\ \text { T11 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \\ \mathrm{~dB} \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
1	3609.305M	48.6	$\begin{array}{r} +0.8 \\ +0.0 \\ +30.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{gathered} +0.0 \\ -33.8 \\ +3.4 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	50.1	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-3.9	Vert
2	978.200M	14.6	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	$+0.0$	49.5	$\begin{array}{r} \hline 54.0 \\ 926.9 \end{array}$	-4.5	Vert
3	3660.655M	47.0	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	48.8	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-5.2	Vert
4	8120.765M	38.8	$\begin{array}{r} +1.3 \\ +0.0 \\ +37.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -35.1 \\ +5.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	48.6	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-5.4	Horiz
5	3660.755M	46.3	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	48.1	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-5.9	Horiz
6	2745.515M	49.3	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	47.9	$\begin{array}{r} \hline 54.0 \\ 915.2 \end{array}$	-6.1	Horiz
	$\begin{aligned} & \text { 967.206M } \\ & \text { QP } \end{aligned}$	12.8	$\begin{array}{r} +0.4 \\ +24.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	+0.0	47.4	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-6.6	Vert
\wedge	967.200M	14.5	$\begin{array}{r} +0.4 \\ +24.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	+0.0	49.1	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-4.9	Vert
9	4511.565M	42.5	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$+0.0$	46.2	$\begin{aligned} & \hline 54.0 \\ & 902.3 \end{aligned}$	-7.8	Horiz
10	9023.065M	34.5	$\begin{array}{r} +1.4 \\ +0.0 \\ +37.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +5.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	45.6	$\begin{aligned} & \hline 54.0 \\ & 902.3 \end{aligned}$	-8.4	Horiz
	$\begin{aligned} & \text { 978.890M } \\ & \text { QP } \end{aligned}$	10.5	$\begin{array}{r} +0.4 \\ +24.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	$+0.0$	45.4	$\begin{aligned} & \hline 54.0 \\ & 926.9 \end{aligned}$	-8.6	Vert
12	4511.605M	41.4	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	45.1	$\begin{array}{r} 54.0 \\ 902.3 \end{array}$	-8.9	Vert
	$\begin{aligned} & \text { 2780.715M } \\ & \text { Ave } \end{aligned}$	45.9	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$+0.0$	44.6	$\begin{array}{r} \hline 54.0 \\ 926.9 \end{array}$	-9.4	Vert
\wedge	2780.790M	56.8	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$+0.0$	55.5	$\begin{array}{r} \hline 54.0 \\ 926.9 \end{array}$	+1.5	Vert
15	3609.325M	43.0	$\begin{array}{r} +0.8 \\ +0.0 \\ +30.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	44.5	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-9.5	Horiz

$\begin{aligned} & 163707.724 \mathrm{M} \\ & \text { Ave } \end{aligned}$	41.0	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	43.0	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-11.0	Horiz
^ 3707.742M	52.7	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0		$\begin{array}{r} \hline 54.0 \\ 926.9 \end{array}$	+0.7	Horiz
$\begin{aligned} & 182707.025 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.1	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0		$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-12.4	Horiz
$\wedge 2707.025 \mathrm{M}$	54.7	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	53.2	$\begin{array}{r} 54.0 \\ 902.3 \end{array}$	-0.8	Horiz
$\begin{aligned} & 202706.930 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.0	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	41.5	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-12.5	Vert
$\wedge 2706.930 \mathrm{M}$	54.6	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	53.1	$\begin{array}{r} 54.0 \\ 902.3 \end{array}$	-0.9	Vert
22 4575.855M	36.4	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	40.3	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-13.7	Vert
23 1853.760M	79.1	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	74.5	$\begin{gathered} \hline 103.0 \\ 926.9 \end{gathered}$	-28.5	Vert
24 1830.445M	78.6	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	73.8	$\begin{aligned} & 103.0 \\ & 915.2 \end{aligned}$	-29.2	Horiz
$25 \quad 1804.630 \mathrm{M}$	78.6	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	73.6	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-29.4	Vert
$\begin{aligned} & 26 \text { 1216.000M } \\ & \text { Ave } \end{aligned}$	29.8	$\begin{array}{r} +0.4 \\ +0.0 \\ +25.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.0 \\ +1.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	22.4	54.0	-31.6	Vert
27 1804.600M	75.3	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	70.3	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-32.7	Horiz
$28 \quad 928.200 \mathrm{M}$	18.9	$\begin{array}{r} +0.4 \\ +23.8 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	+0.0		$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-50.1	Vert
$29 \quad 952.800 \mathrm{M}$	18.4	$\begin{array}{r} +0.4 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$			$\begin{gathered} 103.0 \\ 926.9 \end{gathered}$	-50.2	Vert
$30 \quad 941.200 \mathrm{M}$	17.4	$\begin{array}{r} +0.4 \\ +24.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	$+0.0$	51.6	$\begin{gathered} 103.0 \\ 915.2 \end{gathered}$	-51.4	Vert
$31 \quad 954.200 \mathrm{M}$	17.0	$\begin{array}{r} +0.4 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	$+0.0$	51.4	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-51.6	Vert
32 6316.165M	35.5	$\begin{array}{r} +1.0 \\ +0.0 \\ +34.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.0 \\ +5.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	43.0	$\begin{aligned} & 103.0 \\ & 902.3 \end{aligned}$	-60.0	Horiz

33	220.190M	23.1	$\begin{array}{r} +0.2 \\ +10.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	+0.0	41.7	103.0	-61.3	Horiz
34	216.340M	22.0	+0.2	+0.7	+0.9	+6.1	+0.0	40.3	103.0	-62.7	Horiz
			+10.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
35	1270.000M	46.8	+0.4	+0.0	+0.0	+0.0	$+0.0$	39.5	103.0	-63.5	Vert
			+0.0	+0.0	-35.8	+0.2					
			+25.2	+0.8	+1.9						
36	80.050M	23.8	+0.1	+0.4	+0.5	+6.0	+0.0	38.0	103.0	-65.0	Vert
			+7.2	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
37	72.350M	23.7	+0.1	+0.4	+0.5	+6.0	+0.0	37.2	103.0	-65.8	Vert
			+6.5	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
38	60.030M	24.4	+0.1	+0.4	+0.4	+6.0	+0.0	36.9	103.0	-66.1	Vert
			+5.6	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
39	1657.000M	42.8	+0.5	+0.0	+0.0	+0.0	+0.0	36.8	103.0	-66.2	Vert
			+0.0	+0.0	-34.9	+0.3					
			+25.4	+0.5	+2.2						
40	40.780M	17.0	+0.1	+0.3	+0.3	+6.0	+0.0	36.2	103.0	-66.8	Vert
			+12.5	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
41	212.490 M	18.2	+0.2	+0.7	+0.9	+6.1	+0.0	36.2	103.0	-66.8	Vert
			+10.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
42	97.760M	16.9	+0.1	+0.5	+0.6	+6.0	$+0.0$	34.2	103.0	-68.8	Vert
			+10.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
43	61.570M	18.6	+0.1	+0.4	+0.5	+6.0	+0.0	31.3	103.0	-71.7	Horiz
			+5.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
44	1.415M	37.0	+0.0	+0.1	+0.0	+0.0	-40.0	6.7	103.0	-96.3	Para
			+0.0	+9.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						
45	27.124M	21.3	+0.1	+0.3	+0.0	+0.0	-40.0	-12.8	103.0	-115.8	Para
			+0.0	+5.5	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
105334
Date: 6/7/2021
Test Type: Radiated Scan
Tested By: Michael Atkinson
Time: 19:09:40

Software:
EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 10 and 11		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 10 and 11		S/N

Test Conditions / Notes:

Frequency Range: 9 kHz to 10 GHz
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. Pit unit with metal lid configuration investigated (external antenna with ground plane), 4 battery and 2 battery versions of EUT investigated, worst case reported. Horizontal and vertical antenna polarities investigated above $30 \mathrm{MHz}, 3$ orthogonal axes investigated below 30 MHz , worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%
Test Method: ANSI C63.10 (2013)

Itron, Inc. WO\#: 105334 Sequence\#: 4 Date: 6/7/2021 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

—— Readings
\times QP Readings
$\times \quad$ Ambient
$1-15.247(\mathrm{~d}) / 15.209$ Radiated Spurious Emissions
O Peak Readings

* Average Readings
Software Version: $5 \cdot 03.19$

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T5	ANP05275	Attenuator	1W	$3 / 26 / 2020$	$3 / 26 / 2022$
T6	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T7	AN00052	Loop Antenna	6502	$5 / 4 / 2020$	$5 / 4 / 2022$
T8	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T9	ANP07505	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			Horn Antenna-	3115	
T10	AN01467	ANSI C63.5		$7 / 5 / 2019$	$7 / 5 / 2021$
		Calibration			
T11	AN03170	High Pass Filter	HM1155-11SS	$10 / 23 / 2019$	$10 / 23 / 2021$
T12	ANP06515	Cable	Heliax	$7 / 1 / 2020$	$7 / 1 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \hline \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \hline \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~T} 12 \\ \mathrm{~dB} \\ \hline \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
1 2745.735M	52.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	+0.0	50.6	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-3.4	Horiz
2 7415.135M	40.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.5 \\ +0.0 \\ +37.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.9 \\ +5.3 \end{array}$	+0.0	50.5	$\begin{array}{r} 54.0 \\ 926.9 \end{array}$	-3.5	Vert
3 4511.600M	46.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.7 \\ \hline \end{array}$	+0.0	50.4	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-3.6	Horiz
4 2745.575M	51.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \end{array}$	+0.0	50.3	$\begin{array}{r} \hline 54.0 \\ 915.2 \end{array}$	-3.7	Vert
53660.775 M	48.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \\ \hline \end{array}$	+0.0	50.3	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-3.7	Vert
6 9023.100M	39.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.4 \\ +0.0 \\ +37.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +5.9 \end{array}$	+0.0	50.2	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-3.8	Horiz
7 9022.820M	37.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.4 \\ +0.0 \\ +37.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +5.9 \\ \hline \end{array}$	+0.0	48.6	$\begin{gathered} \hline 54.0 \\ 902.3 \end{gathered}$	-5.4	Vert
8 3660.890M	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \\ \hline \end{array}$	+0.0	47.6	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-6.4	Horiz
$\begin{aligned} & 92706.970 \mathrm{M} \\ & \text { Ave } \end{aligned}$	44.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	47.5	$\begin{array}{r} \hline 54.0 \\ 902.3 \end{array}$	-6.5	Horiz
$\wedge 2706.970 \mathrm{M}$	54.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	+0.0	52.6	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-1.4	Horiz
11 4634.495M	43.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +32.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.8 \\ \hline \end{array}$	+0.0	47.2	$\begin{array}{r} 54.0 \\ 926.9 \end{array}$	-6.8	Horiz
$\begin{aligned} & 123707.600 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.5 \end{array}$	+0.0	46.7	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-7.3	Vert
$\wedge 3707.565 \mathrm{M}$	55.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	56.8	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	+2.8	Vert
14 8342.035M	36.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.7 \\ +0.0 \\ +37.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.9 \\ +5.3 \\ \hline \end{array}$	+0.0	46.4	$\begin{gathered} 54.0 \\ 926.9 \end{gathered}$	-7.6	Vert
15 4575.975M	42.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.8 \\ \hline \end{array}$	+0.0	46.4	$\begin{gathered} 54.0 \\ 915.2 \end{gathered}$	-7.6	Vert

164511.630 M	42.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.7 \end{array}$	+0.0	46.1	$\begin{aligned} & \hline 54.0 \\ & 902.3 \end{aligned}$	-7.9	Vert
$\begin{aligned} & 173707.675 \mathrm{M} \\ & \text { Ave } \end{aligned}$	42.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	46.1	$\begin{array}{r} 54.0 \\ 926.9 \end{array}$	-7.9	Horiz
$\wedge 3707.675 \mathrm{M}$	51.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +30.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.5 \end{array}$	+0.0	53.3	$\begin{aligned} & 54.0 \\ & 926.9 \end{aligned}$	-0.7	Horiz
19 4576.090M	42.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +31.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.8 \end{array}$	$+0.0$	46.0	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-8.0	Horiz
$\begin{aligned} & 20 \quad 2780.775 \mathrm{M} \\ & \text { Ave } \end{aligned}$	42.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	45.8	$\begin{aligned} & 54.0 \\ & 926.9 \end{aligned}$	-8.2	Horiz
$\wedge 2780.775 \mathrm{M}$	53.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$+0.0$	52.4	$\begin{aligned} & 54.0 \\ & 926.9 \end{aligned}$	-1.6	Horiz
$\begin{aligned} & 229152.065 \mathrm{M} \\ & \text { Ave } \end{aligned}$	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.8	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-9.2	Vert
$\wedge 9152.065 \mathrm{M}$	39.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.5 \\ +0.0 \\ +37.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.4 \\ +5.8 \\ \hline \end{array}$	+0.0	51.2	$\begin{array}{r} 54.0 \\ 915.2 \end{array}$	-2.8	Vert
24 3609.140M	44.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	44.8	$\begin{aligned} & \hline 54.0 \\ & 902.3 \end{aligned}$	-9.2	Horiz
$\begin{aligned} & 25 \text { 2780.700M } \\ & \text { Ave } \end{aligned}$	45.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$+0.0$		$\begin{array}{r} 54.0 \\ 926.9 \end{array}$	-9.9	Vert
$\wedge 2780.710 \mathrm{M}$	55.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	+0.0	54.1	$\begin{array}{r} 54.0 \\ 926.9 \end{array}$	+0.1	Vert
$\begin{aligned} & 27 \text { 3609.330M } \\ & \text { Ave } \end{aligned}$	40.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$+0.0$		$\begin{array}{r} \hline 54.0 \\ 902.3 \end{array}$	-9.9	Vert
$\wedge 3609.330 \mathrm{M}$	49.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +30.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.8 \\ +3.4 \end{array}$	$+0.0$	51.4	$\begin{aligned} & 54.0 \\ & 902.3 \end{aligned}$	-2.6	Vert
$\begin{aligned} & 29 \text { 2706.940M } \\ & \text { Ave } \end{aligned}$	45.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \end{array}$	$+0.0$	43.5	$\begin{aligned} & \hline 54.0 \\ & 902.3 \end{aligned}$	-10.5	Vert
$\wedge 2706.940 \mathrm{M}$	55.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +2.9 \end{array}$	+0.0		$\begin{aligned} & \hline 54.0 \\ & 902.3 \end{aligned}$	-0.2	Vert
$\wedge 2706.920 \mathrm{M}$	51.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.7 \\ +0.0 \\ +28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -34.1 \\ +2.9 \\ \hline \end{array}$	$+0.0$	49.9	$\begin{gathered} 54.0 \\ 902.3 \end{gathered}$	-4.1	Vert
324634.465 M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +32.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \\ +3.8 \\ \hline \end{array}$	$+0.0$	39.5	$\begin{aligned} & 54.0 \\ & 926.9 \end{aligned}$	-14.5	Vert

33	1830.360M	79.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	+0.0	74.4	$\begin{gathered} 103.0 \\ 915.2 \end{gathered}$	-28.6	Vert
34	1830.365M	78.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \end{array}$	+0.0	73.7	$\begin{gathered} \hline 103.0 \\ 915.2 \end{gathered}$	-29.3	Horiz
35	1853.890M	78.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	$+0.0$	73.5	$\begin{gathered} 103.0 \\ 926.9 \end{gathered}$	-29.5	Horiz
36	1853.810M	77.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.4 \\ \hline \end{array}$	+0.0	73.2	$\begin{gathered} 103.0 \\ 926.9 \end{gathered}$	-29.8	Vert
37	1804.690M	76.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.3 \\ \hline \end{array}$	+0.0	71.2	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-31.8	Vert
38	1804.670M	76.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +26.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \\ +2.3 \\ \hline \end{array}$	+0.0	71.1	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-31.9	Horiz
39	928.200M	18.4	$\begin{aligned} & \hline+0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +23.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	52.4	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-50.6	Vert
40	900.800M	16.4	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.7	$\begin{gathered} \hline 103.0 \\ 926.9 \end{gathered}$	-53.3	Vert
41	876.400M	16.5	$\begin{aligned} & \hline+0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.5	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-53.5	Vert
42	889.200M	16.3	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +23.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.5	$\begin{aligned} & 103.0 \\ & 915.2 \end{aligned}$	-53.5	Vert
43	941.200M	14.4	$\begin{aligned} & \hline+0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	48.6	$\begin{gathered} 103.0 \\ 915.2 \end{gathered}$	-54.4	Vert
44	951.200M	13.5	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +24.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	47.9	$\begin{gathered} 103.0 \\ 926.9 \end{gathered}$	-55.1	Vert
45	6488.265M	36.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.2 \\ +0.0 \\ +34.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.0 \\ +5.4 \\ \hline \end{array}$	+0.0	44.4	$\begin{gathered} \hline 103.0 \\ 926.9 \end{gathered}$	-58.6	Vert
46	7218.530M	34.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.1 \\ +0.0 \\ +36.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.9 \\ +5.1 \\ \hline \end{array}$	$+0.0$	43.3	$\begin{gathered} 103.0 \\ 902.3 \end{gathered}$	-59.7	Vert
47	509.710M	15.9	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +18.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	43.1	103.0	-59.9	Vert
48	219.420M	24.2	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.2 \\ +10.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	42.7	103.0	-60.3	Horiz
49	6316.200M	34.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +1.0 \\ +0.0 \\ +34.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.0 \\ +5.1 \\ \hline \end{array}$	$+0.0$	41.7	$\begin{aligned} & 103.0 \\ & 902.3 \end{aligned}$	-61.3	Horiz

50	77.740M	26.0	$\begin{aligned} & +0.0 \\ & +6.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +7.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	40.0	103.0	-63.0	Vert
51	218.650M	21.3	$\begin{aligned} & +0.0 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.2 \\ +10.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	39.7	103.0	-63.3	Vert
52	69.270M	26.0	$\begin{aligned} & +0.0 \\ & +6.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	39.3	103.0	-63.7	Vert
53	147.810M	18.1	$\begin{aligned} & +0.0 \\ & +6.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.2 \\ +11.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	37.0	103.0	-66.0	Vert
54	40.010M	16.0	$\begin{aligned} & +0.0 \\ & +6.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.1 \\ +12.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	35.6	103.0	-67.4	Vert
55	1.415M	37.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +9.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-40.0	7.6	103.0	-95.4	Perp
56	1.444M	33.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +9.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	3.3	103.0	-99.7	Para
57	6.906M	21.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +9.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-9.6	103.0	-112.6	Para
58	27.792M	22.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +5.2 \\ & +0.0 \\ & +0 . \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-11.6	103.0	-114.6	Groun
59	13.674M	16.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.2 \\ +9.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	-40.0	-14.5	103.0	-117.5	Perp
60	27.211M	17.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +5.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	-40.0	-17.0	103.0	-120.0	Para

Band Edge

Band Edge Summary

Operating Mode: Single Channel (Low and High)

Frequency (MHz)	Modulation	Ant. Type / Configuration	Field Strength (dBuV/m @3m)	Limit (dBuV/m@3m)	Results
614	100kbps GFSK	Internal Antenna - Remote	37.5	<46	Pass
902	100kbps GFSK	Internal Antenna - Remote	75.5	<107	Pass
928	100kbps GFSK	Internal Antenna - Remote	57.2	< 107	Pass
960	100kbps GFSK	Internal Antenna - Remote	42.8	<54	Pass
614	100kbps GFSK	Internal Antenna - Pit	37.5	<46	Pass
902	100kbps GFSK	Internal Antenna - Pit	75.3	<107	Pass
928	100kbps GFSK	Internal Antenna - Pit	57.0	< 107	Pass
960	100kbps GFSK	Internal Antenna - Pit	42.8	<54	Pass
614	100kbps GFSK	External Antenna - Pit on Plastic Lid	37.6	<46	Pass
902	100kbps GFSK	External Antenna - Pit on Plastic Lid	71.4	<103	Pass
928	100kbps GFSK	External Antenna - Pit on Plastic Lid	56.6	< 103	Pass
960	100kbps GFSK	External Antenna - Pit on Plastic Lid	42.8	<54	Pass
614	100kbps GFSK	External Antenna - Pit on Metal Lid	37.5	<46	Pass
902	100kbps GFSK	External Antenna - Pit on Metal Lid	73.3	<103	Pass
928	100kbps GFSK	External Antenna - Pit on Metal Lid	56.6	< 103	Pass
960	100kbps GFSK	External Antenna - Pit on Metal Lid	42.8	<54	Pass

Band Edge Summary

Operating Mode: Hopping

Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m@3m)	Results
614	100kbps GFSK Hopping	Internal Antenna - Remote	37.6	<46	Pass
902	100kbps GFSK Hopping	Internal Antenna - Remote	70.8	<107	Pass
928	100kbps GFSK Hopping	Internal Antenna - Remote	58.8	< 107	Pass
960	100kbps GFSK Hopping	Internal Antenna - Remote	43.0	<54	Pass
614	100kbps GFSK	Internal Antenna - Pit	37.5	<46	Pass
902	100kbps GFSK	Internal Antenna - Pit	77.7	<107	Pass
928	100kbps GFSK	Internal Antenna - Pit	60.8	< 107	Pass
960	100kbps GFSK	Internal Antenna - Pit	42.9	<54	Pass
614	100kbps GFSK	External Antenna - Pit on Plastic Lid	37.6	<46	Pass
902	100kbps GFSK	External Antenna - Pit on Plastic Lid	71.7	<103	Pass
928	100kbps GFSK	External Antenna - Pit on Plastic Lid	56.9	< 103	Pass
960	100kbps GFSK	External Antenna - Pit on Plastic Lid	42.7	<54	Pass
614	100kbps GFSK	External Antenna - Pit on Metal Lid	37.5	<46	Pass
902	100kbps GFSK	External Antenna - Pit on Metal Lid	68.2	<103	Pass
928	100kbps GFSK	External Antenna - Pit on Metal Lid	54.6	< 103	Pass
960	100kbps GFSK	External Antenna - Pit on Metal Lid	42.8	<54	Pass

Configurations 2 and 3 Band Edge Plots

LABORATORIES, INC.

Configurations 4, 5, 6, and 7 Band Edge Plots

LABORATORIES, INC.

Configurations 8 and 9 Band Edge Plots

1 Mesting the Future
LABORATORIES, INC.

1 Mesting the Future
LABORATORIES, INC.

Configurations 10 and 11 Band Edge Plots

1 Mesting the Future
LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

105540 Date: 6/3/2021
Radiated Scan
Michael Atkinson
EMITest 5.03.19
Time: 20:30:25
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2 and 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2 and 3		S/N

Test Conditions / Notes:

Frequency: Band Edge
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. 4 battery and 2 battery versions of EUT investigated, worst case reported. Horizontal and vertical antenna polarities investigated, worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%
Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T5	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T6	ANP05275	Attenuator	1W	$3 / 26 / 2020$	$3 / 26 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

105540
Date: 6/3/2021
Radiated Scan

Software:
Michael Atkinson
Time: 21:45:58
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4, 5, 6, and 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 4, 5, 6, and 7		S/N

Test Conditions / Notes:
Frequency: Band Edge
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. Pit unit internal antenna investigated, 4 battery and 2 battery versions of EUT investigated, 2 and 3 port version of EUT investigated, worst case reported. Horizontal and vertical antenna polarities investigated, worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%
Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
T5	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T6	ANP05275	Attenuator	AW	$3 / 26 / 2020$	$3 / 26 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification:
Work Order \#:
Test Type:
Tested By: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

105540 Date: 6/3/2021
Radiated Scan
Michael Atkinson
Time: 21:25:38
Sequence\#: 3
Software:
EMITest 5.03.19
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 8 and 9		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 8 and 9		S/N

Test Conditions / Notes:

Frequency: Band Edge
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. Pit unit with plastic lid configuration investigated (external antenna without antenna ground plane), 4 battery and 2 battery versions of EUT investigated, worst case reported. Horizontal and vertical antenna polarities, worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%

Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
TS	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T6	ANP05275	Attenuator	AW	$3 / 26 / 2020$	$3 / 26 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • 1-800-500-4EMC (4362)
Customer:
Specification: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
Test Type:
Tested By:
105540
Date: 6/3/2021
Radiated Scan

Software:
Michael Atkinson
Time: 21:06:12
Sequence\#: 4
EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 10 and 11		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 10 and 11		S/N

Test Conditions / Notes:

Frequency: Band Edge
Setup: EUT is connected to support laptop via serial to USB adapter, the laptop is running Command Line Interface Tool software to turn on Tx. Pit unit with metal lid configuration investigated (external antenna with antenna ground plane), 4 battery and 2 battery versions of EUT investigated, worst case reported. Horizontal and vertical antenna polarities investigated, worst case reported. Fresh battery installed.

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$
Relative Humidity: 40% to 45%
Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	$3 / 12 / 2020$	$3 / 12 / 2022$
T2	ANP06540	Cable	Heliax	$8 / 23 / 2019$	$8 / 23 / 2021$
T3	ANP05305	Cable	ETSI-50T	$9 / 6 / 2019$	$9 / 6 / 2021$
T4	ANP05360	Cable	RG214	$2 / 3 / 2020$	$2 / 3 / 2022$
TS	AN01995	Biconilog Antenna	CBL6111C	$4 / 14 / 2020$	$4 / 14 / 2022$
T6	ANP05275	Attenuator	AW	$3 / 26 / 2020$	$3 / 26 / 2022$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

Test Setup Photo(s)

Configurations 2 and 3

Below 1GHz

Above 1 GHz

Configurations 4 and 5

Below 1GHz

Above 1GHz

Configurations 6 and 7

Below 1GHz

Above 1GHz

Configurations 8 and 9

Below 1GHz

Above 1GHz

Configurations 10 and 11

Below 1GHz

Above 1GHz

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

