ITRON, Inc.

TEST REPORT FOR
Water Endpoint
Model: RIVAW

Tested to The Following Standards:

FCC Part 15 Subpart C
Section: 15.247
(FHSS 902-928 MHz)

Report No.: 98804-13

Date of issue: August 31, 2016

Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 7
FCC Part 15 Subpart C 8
15.247(d) Radiated Emissions \& Band Edge 8
Supplemental Information 46
Measurement Uncertainty 46
Emissions Test Details 46

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 103450

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 98804

August 18,. 2016
August 18-20, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .02

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Bothell	USO081	SL2-IN-E-1145R	$3082 \mathrm{C}-1$	318736	A-0148

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	NP
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	NP
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	NP
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NP

NA = Not Applicable
NP = CKC Laboratories was not contracted to perform test.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Note: Emissions from both configurations was used to determine the emissions limit in accordance with 15.247 (d). Some spurious emissions data $>1 \mathrm{GHz}$ for GFSK mode was taken using configuration 1 . All other data were taken using configuration 2 . Emissions $<1 \mathrm{GHz}$ for configuration 1 are not represented in this report.

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAWR	1

Support Equipment:

Device	Manufacturer	Model \#
None		S/N

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Water Endpoint	Itron, Inc.	RIVAW	1

Support Equipment:

Device	Manufacturer	Model \#
None		

LABORATORIES, INC.

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	$902-928 \mathrm{MHz}$
Number of Hopping Channels:	See supplemental report.
Modulation Types):	OOK, GFSK
Maximum Duty Cycle:	See supplemental report.
Number of TX Chains:	1
Antenna Types) and Gain:	See supplemental report.
Beamforming Type:	None
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery
Firmware / Software used for Test:	CLITool.exe and manufacturer provided scripts

FCC Part 15 Subpart C

15.247(d) Radiated Emissions \& Band Edge

Test Setup/Conditions			
Test Location:	Bothell Lab C3	Test Engineer:	Randal Clark
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$8 / 18 / 2016-8 / 20 / 2016$
Configuration:	1,2		
Environmental Conditions Temperature (으) 27 Relative Humidity (\%):			

See data sheets for test setup and test equipment.

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested by:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

98804 Date: 8/20/2016
Maximized Emissions Time: 02:26:00
Randal Clark
EMITest 5.03.02

Sequence\#: 33

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N
Configuration 2		

Support Equipment:

Device	Manufacturer	Model \#

Test Conditions / Notes:

EUT is a transmitter operating within $902-928 \mathrm{MHz}$. EUT is battery operated, fresh batteries installed. EUT has IO ports with cables attached. Middle port is for remote antenna and must be left open for testing integral antenna. Equipment installed according to manufacturer specifications. Equipment is configured for 10 dBm output power with OOK modulation.
Test procedure: ANSI C63.10 (2013)
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: 903, 910, 915, 926.8 MHz .
No emissions detected within 20 dB of the limit at frequencies $<100 \mathrm{MHz}$. See band edge emissions data for emissions near transmit band.

Emissions $>1 \mathrm{GHz}$ where average measurements are employed utilized averaging only during periods when transmitter was on. Additionally, average measurements applied a duty cycle correction factor in accordance with $15.35(\mathrm{c}) 20 \log \left(12.2 \mathrm{~ms}^{*} 100 \mathrm{~ms}\right)=18.3 \mathrm{db}$ relaxation.

Itron, Inc. WO\#: 98804 Sequence\#: 33 Date: 8/20/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

- Readings

\times QP Readings

* Ambient
- 1 - 15.247 (d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
T2	AN02307	Preamp	8447 D	$2 / 15 / 2016$	$2 / 15 / 2018$
T3	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T4	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T5	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T6	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$
T7	AN01467	Horn Antenna-	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
		ANSI C63.5			
T8	ANP05305	Cable			
T9	ANP06935	Cable	ETSI-50T	$2 / 15 / 2016$	$2 / 15 / 2018$
T10	ANP06540	Cable	$32026-29801-$	$3 / 11 / 2016$	$3 / 11 / 2018$
T11	ANP05360	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T12	ANP05963	Cable	RG214	$12 / 1 / 2014$	$12 / 1 / 2016$
T13	ANDCCF	Duty Cycle		$2 / 15 / 2016$	$2 / 15 / 2018$
		Correction Factor		$7 / 18 / 2016$	$7 / 18 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\begin{aligned} & 65460.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	63.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	+0.0	50.0	54.0 Mid1 channel	${ }^{-4.0}$	Horiz
$\wedge 5460.000 \mathrm{M}$	63.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	$+0.0$	68.8	54.0 Mid1 channel	$+14.8$	Horiz
8 2709.000M	51.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +3.0 \\ & +0.0 \end{aligned}$	$+0.0$	49.8	54.0 Low channel	-4.2	Horiz
92745.000 M	50.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +3.0 \\ & +0.0 \end{aligned}$	+0.0	49.5	$\begin{gathered} 54.0 \\ \text { Mid2 channel } \end{gathered}$	${ }^{-4.5}$	Vert
109150.000 M	38.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} -34.7 \\ +37.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +6.1 \\ & +0.0 \end{aligned}$	$+0.0$	49.4	54.0 Mid2 channel	${ }^{-4.6}$	Vert
119150.000 M	37.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} -34.7 \\ +37.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +6.1 \\ & +0.0 \end{aligned}$	$+0.0$	49.3	54.0 Mid2 channel	$1^{-4.7}$	Horiz
12 2709.000M	50.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +3.0 \\ & +0.0 \end{aligned}$	$+0.0$	49.1	54.0 Low channel	-4.9	Vert
13 2745.000M	50.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +3.0 \\ & +0.0 \end{aligned}$	$+0.0$	49.1	54.0 Mid2 channel	${ }^{-4.9}$	Horiz
14 9100.000M	37.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -34.7 \\ +37.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +6.1 \\ & +0.0 \end{aligned}$	$+0.0$	48.9	54.0 Mid1 channel	$1^{-5.1}$	Vert
15 8341.200M	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} -35.0 \\ +36.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +5.4 \\ & +0.0 \end{aligned}$	$+0.0$	48.9	54.0 High channel	-5.1	Vert
$\begin{aligned} & 165418.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	61.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ -18.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	$+0.0$	48.8	54.0 Low channel	-5.2	Horiz
$\wedge 5418.000 \mathrm{M}$	62.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	+0.0	67.4	54.0 Low channel	$+13.4$	Horiz

$31 \quad 3707.200 \mathrm{M}$	39.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -34.1 \\ +30.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +3.8 \\ & +0.0 \end{aligned}$	+0.0	41.0	54.0 High channe	$\overline{-13.0}$	Horiz
$\begin{aligned} & 324575.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	54.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	$+0.0$	40.8	54.0 Mid2 channe	-13.2	Horiz
$\wedge 4575.000 \mathrm{M}$	55.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	+0.0	59.6	54.0 Mid2 channe	$+5.6$	Horiz
$\begin{aligned} & 344634.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	54.2	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +4.3 \\ & +0.0 \end{aligned}$	+0.0	40.6	54.0 High channe	-13.4	Horiz
$\wedge 4634.000 \mathrm{M}$	54.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +4.3 \\ & +0.0 \end{aligned}$	$+0.0$	59.3	54.0 High channe	$+5.3$	Horiz
$\begin{aligned} & 364515.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	54.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	$+0.0$	40.3	54.0 Low channel	-13.7	
$\wedge 4515.000 \mathrm{M}$	54.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	$+0.0$	59.0	54.0 Low channel	$+5.0$	Horiz
$\begin{aligned} & 385460.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	53.3	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.6 \\ -18.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	+0.0	40.3	54.0 Mid1 channe	-13.7	Vert
^ 5460.000 M	53.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	+0.0	59.0	54.0 Mid1 channe	$+5.0$	Vert
$\begin{aligned} & 408190.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.2	$\begin{gathered} +0.0 \\ +0.0 \\ +0.7 \\ -18.3 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +5.3 \\ & +0.0 \end{aligned}$	+0.0	40.1	54.0 Mid1 channe	$\overline{-13.9}$	Horiz
^ 8190.000M	49.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +5.3 \\ & +0.0 \end{aligned}$	+0.0	58.6	54.0 Mid1 channe	$+4.6$	Horiz
$\begin{aligned} & 424550.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	53.7	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.2 \\ & +0.0 \end{aligned}$	+0.0	39.7	54.0 Mid1 channe	-14.3	Horiz
$\wedge 4550.000 \mathrm{M}$	54.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.2 \\ & +0.0 \end{aligned}$	+0.0	58.4	$\overline{54.0}$ Mid1 channe	$\overline{+4.4}$	Horiz

44 3612.000M	38.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} -34.2 \\ +29.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.6 \\ & +0.0 \end{aligned}$	+0.0	39.6	54.0 Low channel	$\overline{-14.4}$	Horiz
$\begin{aligned} & 457320.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.1	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.6 \\ +36.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.7 \\ & +0.0 \end{aligned}$	+0.0	39.1	54.0 Mid2 channel	-14.9	Horiz
^ 7320.000M	49.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.6 \\ +36.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.7 \\ & +0.0 \end{aligned}$	+0.0	57.9	54.0 Mid2 channe	$+3.9$	Horiz
$\begin{aligned} & 477280.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.1	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} \hline-34.6 \\ +36.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.6 \\ & +0.0 \end{aligned}$	+0.0	38.9	54.0 Mid1 channel	-15.1	Horiz
$\wedge 7280.000 \mathrm{M}$	49.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.6 \\ +36.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.6 \\ & +0.0 \end{aligned}$	$+0.0$	57.6	54.0 Mid1 channe	$+3.6$	Horiz
$\begin{aligned} & 497414.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -34.7 \\ +36.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +4.8 \\ & +0.0 \end{aligned}$	+0.0	38.9	54.0 High channel	-15.1	Horiz
$\wedge 7414.400 \mathrm{M}$	49.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -34.7 \\ +36.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +4.8 \\ & +0.0 \end{aligned}$	$+0.0$	57.7	54.0 High channel	$+3.7$	Horiz
$51 \quad 136.350 \mathrm{M}$	35.6	$\begin{array}{r} +0.0 \\ +12.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.6 \\ +6.1 \\ +0.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	+0.0	28.1	43.5	-15.4	Horiz
$\begin{aligned} & 525418.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	$+0.0$	38.0	54.0 Low channel	-16.0	Vert
$\wedge 5418.000 \mathrm{M}$	52.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	$+0.0$	58.2	54.0 Low channel	$+4.2$	Vert
$\begin{aligned} & 548235.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.7 \\ -18.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +5.3 \\ & +0.0 \end{aligned}$	$+0.0$		54.0 Mid2 channel	-16.9	Horiz
^ 8235.000M	46.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +5.3 \\ & +0.0 \end{aligned}$	$+0.0$	55.7	54.0 Mid2 channe	$+1.7$	Horiz

$\begin{aligned} & 56 \text { 4634.000M } \\ & \text { Ave } \end{aligned}$	50.5	$\begin{gathered} +0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +4.3 \\ & +0.0 \end{aligned}$		36.9	54.0 High channel	-17.1	Vert
$\wedge 4634.000 \mathrm{M}$	50.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +4.3 \\ & +0.0 \end{aligned}$	+0.0	55.6	54.0 High channel	$+1.6$	Vert
$\begin{aligned} & 58 \text { 4575.000M } \\ & \text { Ave } \end{aligned}$	49.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	+0.0	35.9	$\begin{gathered} 54.0 \\ \text { Mid } 2 \text { channel } \end{gathered}$	-18.1	Vert
$\wedge 4575.000 \mathrm{M}$	50.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	$+0.0$	54.5	54.0 Mid2 channel	$+0.5$	Vert
$\begin{aligned} & 60 \text { 8341.200M } \\ & \text { Ave } \end{aligned}$	44.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.7 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} \hline-35.0 \\ +36.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +5.4 \\ & +0.0 \end{aligned}$	$+0.0$	35.8	54.0 High channel	-18.2	Horiz
${ }^{\wedge} 8341.200 \mathrm{M}$	45.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} \hline-35.0 \\ +36.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +5.4 \\ & +0.0 \end{aligned}$	+0.0	54.4	54.0 High channel	$+0.4$	Horiz
$\begin{aligned} & 627414.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.8	$\begin{gathered} +0.0 \\ +0.0 \\ +0.6 \\ -18.3 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} \hline-34.7 \\ +36.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +4.8 \\ & +0.0 \end{aligned}$	$+0.0$	34.2	54.0 High channel	-19.8	Vert
$\wedge 7414.400 \mathrm{M}$	43.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -34.7 \\ +36.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +4.8 \\ & +0.0 \end{aligned}$	$+0.0$	52.0	54.0 High channel	-2.0	Vert
$\begin{aligned} & 64 \text { 4550.000M } \\ & \text { Ave } \end{aligned}$	47.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.2 \\ & +0.0 \end{aligned}$	$+0.0$	33.6	54.0 Mid1 channel	-20.4	Vert
$\wedge 4550.000 \mathrm{M}$	48.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.2 \\ & +0.0 \end{aligned}$	$+0.0$	53.2	54.0 Mid1 channel	-0.8	Vert
$\begin{aligned} & 664515.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	$+0.0$	33.5	54.0 Low channel	-20.5	Vert
$\wedge 4515.000 \mathrm{M}$	49.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.2 \\ & +0.0 \end{aligned}$	+0.0	53.8	54.0 Low channel	-0.2	Vert

$\begin{aligned} & 682780.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.4 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.0 \\ & +0.0 \end{aligned}$		32.9	54.0 High channel	$\overline{-21.1}$	
$\wedge 2780.400 \mathrm{M}$	52.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.0 \\ & +0.0 \end{aligned}$	+0.0	50.9	54.0 High channel	-3.1	Vert
$\begin{aligned} & 708127.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	41.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.7 \\ -18.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +5.3 \\ & +0.0 \end{aligned}$	$+0.0$	32.8	54.0 Low channel	-21.2	Vert
^ 8127.000M	42.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +5.3 \\ & +0.0 \end{aligned}$	$+0.0$	52.1	54.0 Low channel	-1.9	Vert
^ 8127.000M	37.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +5.3 \\ & +0.0 \end{aligned}$	+0.0	46.5	54.0 Low channel	-7.5	Vert
$73 \quad 173.190 \mathrm{M}$	31.2	$\begin{aligned} & \hline+0.0 \\ & +9.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-27.4 \\ +6.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	+0.0	21.7	43.5	-21.8	Horiz
745490.000 M	63.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.1 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	+0.0	68.7	91.3 Mid2 channe	$\overline{-22.6}$	Horiz
$75 \quad 5560.800 \mathrm{M}$	61.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +33.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	$+0.0$		91.3 High channel	-24.2	Horiz
76 6405.000M	53.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.2 \\ +34.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.7 \\ & +0.0 \end{aligned}$	+0.0	60.3	91.3 Mid2 channe	-31.0	Horiz
77 6487.600M	52.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.2 \\ +34.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.6 \\ & +0.0 \end{aligned}$	+0.0	59.7	91.3 High channel	-31.6	Horiz
$78 \quad 6370.000 \mathrm{M}$	52.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +34.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.7 \\ & +0.0 \end{aligned}$	+0.0	59.7	91.3 Mid1 channe	-31.6	Horiz
796321.000 M	51.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +34.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.7 \\ & +0.0 \end{aligned}$	$+0.0$	59.2	91.3 Low channel	-32.1	Horiz
$80 \quad 7224.000 \mathrm{M}$	49.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.5 \\ +35.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.6 \\ & +0.0 \end{aligned}$	+0.0	57.8	91.3 Low channel	-33.5	Horiz

815490.000 M	51.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	+0.0	57.3	$91.3-34.0$ Mid2 channel	Vert
825560.800 M	50.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.1 \\ +33.4 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.5 \\ & +0.0 \end{aligned}$	+0.0	56.2	91.3 High channel	Vert
83 6487.600M	43.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.2 \\ +34.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.6 \\ & +0.0 \end{aligned}$	+0.0	50.4	91.3 -40.9 High channel	Vert
84 6405.000M	43.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +34.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.7 \\ & +0.0 \end{aligned}$	+0.0	50.3	91.3 -41.0 Mid2 channel	Vert
857224.000 M	42.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -34.5 \\ +35.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +4.6 \\ & +0.0 \end{aligned}$	$+0.0$	50.3	91.3 -41.0 Low channel	Vert
866321.000 M	42.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +34.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +4.7 \\ & +0.0 \end{aligned}$	+0.0	49.7	91.3 -41.6 Low channel	Vert
87 6370.000M	42.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -34.2 \\ +34.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +4.7 \\ & +0.0 \end{aligned}$	+0.0	49.5	$91.3-41.8$ Mid1 channel	Vert
88 9268.000M	37.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} -34.8 \\ +37.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +6.2 \\ & +0.0 \end{aligned}$	$+0.0$		91.3 High channel	Horiz
89 9268.000M	36.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} \hline-34.8 \\ +37.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +6.2 \\ & +0.0 \end{aligned}$	+0.0	48.1	91.3 High channel	Vert
$90 \quad 1853.600 \mathrm{M}$	50.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +27.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +2.5 \\ & +0.0 \end{aligned}$	$+0.0$	46.4	91.3 -44.9 High channel	Vert
91 1853.600M	49.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -35.1 \\ +27.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +2.5 \\ & +0.0 \end{aligned}$	+0.0	44.8	$91.3 \quad-46.5$ High channel	Horiz
921830.000 M	48.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -35.1 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +2.5 \\ & +0.0 \end{aligned}$	+0.0	43.9	$91.3 \quad-47.4$ Mid2 channel	Vert
931820.000 M	47.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -35.1 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +2.5 \\ & +0.0 \end{aligned}$	+0.0	43.2	91.3 Mid1 channel	Vert

Page 17 of 47

94	1806.000M	46.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +26.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +2.5 \\ & +0.0 \end{aligned}$	+0.0	41.6	$\begin{gathered} 91.3 \\ \text { Low channel } \end{gathered}$		Vert
95	1830.000M	45.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -35.1 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +2.5 \\ & +0.0 \end{aligned}$	+0.0	41.3	$\begin{gathered} 91.3 \\ \text { Mid2 channel } \end{gathered}$	-50.0	Horiz
96	1806.000M	45.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -35.1 \\ +26.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +2.5 \\ & +0.0 \end{aligned}$	+0.0	40.9	$\begin{gathered} 91.3 \\ \text { Low channel } \end{gathered}$	-50.4	Horiz
97	1820.000M	43.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.3 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +2.5 \\ & +0.0 \end{aligned}$	$+0.0$	39.3	91.3 Mid1 channel	-52.0	Horiz
98	187.870M	44.6	$\begin{array}{r} +0.0 \\ +9.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{gathered} \hline-27.3 \\ +6.1 \\ +0.2 \end{gathered}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	+0.0	35.3	91.3	-56.0	Horiz
99	103.600M	35.9	$\begin{array}{r} +0.0 \\ +10.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{gathered} \hline-27.7 \\ +6.1 \\ +0.1 \end{gathered}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$+0.0$	26.8	91.3	-64.5	Horiz
100	187.410M	32.1	$\begin{array}{r} +0.0 \\ +9.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{gathered} -27.3 \\ +6.1 \\ +0.2 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	+0.0	22.8	91.3	-68.5	Vert

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification: 15.247(d) / 15.209 Radiated Spurious Emissions
Work Order \#: 98804 Date: 8/20/2016

Test Type: Maximized Emissions
Time: 02:08:16
Tested by: Randal Clark
Sequence\#: 30
Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N
Configuration 2		

Support Equipment:

Device	Manufacturer	Model \#

Test Conditions / Notes:
EUT is a transmitter operating within $902-928 \mathrm{MHz}$. EUT is battery operated, fresh batteries installed. EUT has IO ports with cables attached. Middle port is for remote antenna and must be left open for testing integral antenna. Equipment installed according to manufacturer specifications.
Equipment is configured for maximum output power with OOK modulation.
Test procedure: ANSI C63.10 (2013)
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: 903, 910, 915, 926.8 MHz.
No emissions detected within 20 dB of the limit at frequencies $<100 \mathrm{MHz}$. See band edge emissions data for emissions near transmit band.

Temperature: $27^{\circ} \mathrm{C}$
Relative Humidity: 34\%

Itron, Inc. WO\#: 98804 Sequence\#: 30 Date: 8/20/2016 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert


```
- Readings
\(\times\) QP Readings
* Ambient
- 1 - 15.247 (d) / 15.209 Radiated Spurious Emissions
```

O Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T3	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T4	AN03170	High Pass Filter	HM1155-11SS	12/17/2015	12/17/2017
T5	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T6	ANP05505	Attenuator	NAT-6	3/31/2016	3/31/2018
	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T7	AN01467	Horn AntennaANSI C63.5 Calibration	3115	8/12/2015	8/12/2017
T8	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T9	ANP06935	Cable	$\begin{aligned} & 32026-29801- \\ & 29801-18 \end{aligned}$	3/11/2016	3/11/2018
T10	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T11	ANP05360	Cable	RG214	12/1/2014	12/1/2016
T12	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
	ANP05503	Attenuator	766-10	6/18/2015	6/18/2017
	ANP05660	Attenuator	766-3	6/15/2015	6/15/2017
	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

9 2745.000M	45.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.0 \\ & +0.0 \end{aligned}$	+0.0	43.9	$54.0 \quad-10.1$ Mid2 channel	Horiz
$10 \quad 2780.400 \mathrm{M}$	44.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.0 \\ & +0.0 \end{aligned}$	$+0.0$	43.8	54.0 High channel	Horiz
11 2780.400M	44.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +28.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	43.6	54.0 High channel	Vert
$\begin{gathered} 12 \quad 114.387 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	40.6	$\begin{array}{r} +0.0 \\ +11.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -27.7 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	+0.0	32.5	$43.5-11.0$	Horiz
$\wedge 114.370 \mathrm{M}$	45.7	$\begin{array}{r} +0.0 \\ +11.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -27.7 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	+0.0	37.6	$43.5 \quad-5.9$	Horiz
142730.000 M	44.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +3.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	42.9	$54.0 \quad-11.1$ Mid1 channel	Horiz
$\begin{aligned} & 15 \quad 113.193 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	40.1	$\begin{array}{r} +0.0 \\ +11.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -27.7 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	+0.0	31.9	$43.5-11.6$	Horiz
$\wedge 113.210 \mathrm{M}$	45.7	$\begin{array}{r} +0.0 \\ +11.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -27.7 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	$+0.0$	37.5	$43.5-6.0$	Horiz
17 4575.000M	37.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	42.2	$54.0 \quad-11.8$ Mid2 channel	Horiz
184515.000 M	37.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +4.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	42.2	54.0 -11.8 Low channel	Horiz
194550.000 M	37.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +4.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	42.1	$54.0 \quad-11.9$ Mid1 channel	Horiz
$20 \quad 2745.000 \mathrm{M}$	43.0	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +28.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +3.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	41.8	$54.0 \quad-12.2$ Mid2 channel	Vert
213640.000 M	40.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +29.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.7 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	41.7	$54.0 \quad-12.3$ Mid1 channel	Horiz
223660.000 M	40.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +29.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +3.7 \\ & +0.0 \end{aligned}$	$+0.0$	41.6	$54.0 \quad-12.4$ Mid2 channel	Horiz
23 2730.000M	42.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +3.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	41.1	54.0 Mid1 channel	Vert
242709.000 M	42.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +3.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	40.8	Low channel	Vert
253707.200 M	39.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +30.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +3.8 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	40.8	54.0 High channel	Horiz

264634.000 M	35.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +4.3 \\ & +0.0 \end{aligned}$	+0.0	40.2	54.0 High channel	-13.8	Horiz
27 3612.000M	39.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} -34.2 \\ +29.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +3.6 \\ & +0.0 \end{aligned}$	+0.0	40.1	54.0 Low channel		Horiz
283707.200 M	37.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.1 \\ +30.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +3.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	39.2	54.0 High channel	-14.8	Vert
$\begin{aligned} & 29 \quad 130.160 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	34.7	$\begin{array}{r} +0.0 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -27.6 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$+0.0$	27.2	43.5	-16.3	Horiz
$\wedge 130.160 \mathrm{M}$	40.7	$\begin{array}{r} +0.0 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline-27.6 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	$+0.0$	33.2	43.5	-10.3	Horiz
$\begin{aligned} & 31 \quad 172.997 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	34.7	$\begin{aligned} & \hline+0.0 \\ & +9.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.4 \\ +6.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$+0.0$	25.2	43.5	-18.3	Horiz
^ 172.996M	51.6	$\begin{aligned} & \hline+0.0 \\ & +9.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.4 \\ +6.1 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$+0.0$	42.1	43.5	-1.4	Horiz
$33 \quad 113.937 \mathrm{M}$	32.7	$\begin{array}{r} +0.0 \\ +11.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline-27.7 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	+0.0	24.6	43.5	-18.9	Vert
$\begin{aligned} & 34 \begin{array}{l} 1040.000 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	29.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} -37.4 \\ +24.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+15.8 \\ +1.9 \\ +0.0 \\ \hline \end{array}$	$+0.0$	34.5	54.0	-19.5	Vert
$\wedge 1040.000 \mathrm{M}$	50.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} -37.4 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +15.8 \\ +1.9 \\ +0.0 \\ \hline \end{array}$	+0.0	55.2	54.0	+1.2	Vert
$\begin{aligned} & 36 \text { 1040.000M } \\ & \text { Ave } \end{aligned}$	29.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -37.4 \\ +24.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+15.8 \\ +1.9 \\ +0.0 \\ \hline \end{array}$	+0.0	34.4	54.0	-19.6	Horiz
$\wedge 1040.000 \mathrm{M}$	47.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -37.4 \\ +24.2 \\ +0.0 \end{array}$	$\begin{array}{r} +15.8 \\ +1.9 \\ +0.0 \\ \hline \end{array}$	+0.0	52.8	54.0	-1.2	Horiz
381820.000 M	54.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -35.1 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	49.5	106.7 Mid1 channe	-57.2	Horiz
391853.600 M	52.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -35.1 \\ +27.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	48.0	106.7 High channel	-58.7	Horiz
$40 \quad 9268.000 \mathrm{M}$	36.5	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.8 \\ +37.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +6.2 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	47.8	106.7 High channel	-58.9	Vert
41 9268.000M	36.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.8 \\ +37.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +6.2 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$		106.7 High channel	-59.2	Horiz
$42 \quad 1806.000 \mathrm{M}$	50.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -35.1 \\ +26.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	45.6	106.7 Low channel	-61.1	Horiz

43	1830.000 M	50.0	+0.0	+0.0	-35.1	+0.4	+0.0	45.5	106.7	-61.2	Horiz
			+0.0	+0.0	+26.9	+2.5			Mid2 channel		
44	1820.000 M	49.3	+0.0	+0.0	-35.1	+0.4	+0.0	44.8	106.7	-61.9	Vert
			+0.0	+0.0	+26.9	+2.5			Mid1 channel		
			+0.3	+0.5	+0.0	+0.0					
45	$1830.000 M$	48.8	+0.0	+0.0	-35.1	+0.4	+0.0	44.3	106.7	-62.4	Vert
			+0.0	+0.0	+26.9	+2.5			Mid2 channel		
			+0.3	+0.5	+0.0	+0.0					
46	$1853.600 M$	48.0	+0.0	+0.0	-35.1	+0.3	+0.0	43.5	106.7	-63.2	Vert
			+0.0	+0.0	+27.0	+2.5			High channel		
			+0.3	+0.5	+0.0	+0.0					

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification: 15.247(d) / 15.209 Radiated Spurious Emissions
Work Order \#: 98804 Date: 8/20/2016

Test Type: Maximized Emissions
Time: 02:16:20
Tested by:
Randal Clark
Sequence\#: 31
Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N
Configuration 2		

Support Equipment:

Device	Manufacturer	Model \#

Test Conditions / Notes:
EUT is a transmitter operating within $902-928 \mathrm{MHz}$. EUT is battery operated, fresh batteries installed. EUT has IO ports with cables attached. Middle port is for remote antenna and must be left open for testing integral antenna. Equipment installed according to manufacturer specifications.
Equipment is configured for maximum output power with GFSK modulation.
Test procedure: ANSI C63.10 (2013)
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: 902.4, 910, 915.2, 927.6 MHz.
No emissions detected within 20 dB of the limit at frequencies $<100 \mathrm{MHz}$. See band edge emissions data for emissions near transmit band.

Temperature: $27^{\circ} \mathrm{C}$
Rel Humidity: 34\%
Data taken using configuration 1 as noted below is representative for configuration 2 as determined during testing. All other data is taken using only configuration 2.

Itron. Inc. WO\#: 98804 Sequence\#: 31 Date: 8/20/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

[^0]O Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
T2	AN02307	Preamp	8447 D	$2 / 15 / 2016$	$2 / 15 / 2018$
T3	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T4	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T5	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T6	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$
T7	AN01467	Horn Antenna- ANSI C63.5 	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
Talibration					
T9	ANP06935	Cable	$32026-29801-$	$3 / 11 / 2016$	$3 / 11 / 2018$
T10	ANP05305	Cable	$29801-18$	ETSI-50T	$2 / 15 / 2016$
T11	ANP05360	Cable	Heliax	$10 / 29 / 2015$	$2 / 15 / 2018$
T12	ANP05963	Cable	RG214	$12 / 1 / 2014$	$12 / 29 / 2017$
	ANP05503	Attenuator	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
	ANP05660	Attenuator	$766-10$	$6 / 18 / 2015$	$6 / 18 / 2017$
	ANP06219	Attenuator	$766-3$	$6 / 15 / 2015$	$6 / 15 / 2017$
		$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$	

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~T} 12 \\ \mathrm{~dB} \\ \hline \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 113.966 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	49.4	$\begin{array}{r} +0.0 \\ +11.6 \\ +0.0 \end{array}$	$\begin{array}{r} -27.7 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	+0.0	41.3	43.5	-2.2	Vert
$\wedge 113.940 \mathrm{M}$	52.4	$\begin{array}{r} +0.0 \\ +11.6 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.7 \\ +6.1 \\ +0.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	+0.0	44.3	43.5	+0.8	Vert
	48.3	$\begin{array}{r} +0.0 \\ +11.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} -27.6 \\ +6.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	+0.0	40.4	43.5	-3.1	Vert
$\wedge 115.940 \mathrm{M}$	51.3	$\begin{array}{r} \hline+0.0 \\ +11.7 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.6 \\ +6.1 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	+0.0	43.4	43.5	-0.1	Vert
$\begin{aligned} & 5 \underset{\mathrm{QP}}{111.968 \mathrm{M}} \\ & \end{aligned}$	48.0	$\begin{array}{r} +0.0 \\ +11.4 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.7 \\ +6.1 \\ +0.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	+0.0	39.7	43.5	-3.8	Vert
$\wedge 111.940 \mathrm{M}$	50.8	$\begin{array}{r} +0.0 \\ +11.4 \\ +0.0 \end{array}$	$\begin{array}{r} \hline-27.7 \\ +6.1 \\ +0.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	+0.0	42.5	43.5	-1.0	Vert
7 9100.000M	38.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -34.7 \\ +37.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.7 \\ & +0.0 \end{aligned}$	+0.0	50.0	$\overline{54.0}$ Mid1 chan Config 1	-4.0	Horiz
8 9152.010M	38.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} -34.7 \\ +37.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.7 \\ & +0.0 \end{aligned}$	$+0.0$	50.0	54.0 Mid2 chan	${ }^{-4.0}$	Vert

Page 27 of 47

43	5414.400M	40.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	45.8	$\quad 54.0$ Low channel - Config 1	Vert
44	169.430M	44.4	$\begin{aligned} & \hline+0.0 \\ & +9.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-27.4 \\ +6.1 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	+0.0	35.2	$43.5-8.3$	Vert
45	8236.800M	36.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +5.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -35.1 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	+0.0	45.6	54.0 -8.4 Mid2 channel	Horiz
46	2707.200M	46.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	45.3	$\quad 54.0 \quad-8.7$ Low channel - Config 1	Vert
47	7420.800M	36.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} -34.7 \\ +36.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.6 \\ & +0.0 \end{aligned}$	+0.0	45.3	54.0 -8.7 High channel	Horiz
48	3640.000M	44.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.2 \\ +29.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	45.1	$\quad 54.0 \quad-8.9$ Mid1 channel - Config 1	Horiz
49	4576.000M	40.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.7	54.0 -9.3 $M i d 2$ channel	Horiz
50	5460.000M	39.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.6	$\quad 54.0 \quad-9.4$ Mid1 channel - Config 1	Horiz
51	4576.010M	39.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.5 \\ & +0.0 \end{aligned}$	+0.0	44.3	54.0 -9.7 $M i d 2$ channel	Vert
52	4550.000M	39.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.1 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.5 \\ & +0.0 \end{aligned}$	+0.0	44.2	$\quad 54.0 \quad-9.8$ Mid1 channel - Config 1	Vert
53	7280.000M	36.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.6 \\ +36.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	44.1	$54.0 \quad-9.9$ Mid1 channel - Config 1	Vert
54	2745.610M	45.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	43.8	$54.0 \quad-10.2$ Mid2 channel	Vert
55	4638.000M	39.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.9 \\ \hline \end{array}$	$\begin{array}{r} -34.1 \\ +32.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	43.7	54.0 $\quad-10.3$ High channel	Vert
56	2730.000M	44.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.5 \\ +28.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	43.7	$\quad 54.0 \quad-10.3$ Mid1 channel - Config 1	Vert
57	5414.400M	38.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.2 \\ +33.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	43.5	$\quad 54.0 \quad-10.5$ Low channel - Config 1	Horiz
58	3660.800M	41.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +29.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.5 \\ & +0.0 \end{aligned}$	+0.0	42.8	54.0 -11.2 Mid2 channel	Horiz
	$\begin{aligned} & \text { 1073.300M } \\ & \text { Ave } \end{aligned}$	30.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-37.2 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +8.6 \\ & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	28.7	54.0 -25.3 Config 1	Vert

\wedge	1073.300M	59.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-37.2 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+8.6 \\ & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	57.1	54.0 +3.1 Config 1	Vert
61	1804.800M	62.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} -35.1 \\ +26.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	57.4	$108.7{ }^{10}{ }^{-51.3}$ Low channel - Config 1	Horiz
62	1804.800M	61.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +26.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \end{aligned}$	$+0.0$	56.6	108.7 -52.1 Config 1	Vert
63	1855.200M	58.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +27.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	53.8	108.7 High channel	Horiz
64	1830.400M	58.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +26.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	53.5	$108.7 \quad-55.2$ Mid2 channel	Horiz
65	193.300M	60.3	$\begin{aligned} & \hline+0.0 \\ & +9.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.3 \\ +6.2 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$+0.0$	51.2	108.7 -57.5	Vert
66	1820.000M	55.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	51.1	$108.7 \quad-57.6$ Mid1 channel - Config 1	Horiz
67	1855.200M	54.1	$\begin{array}{r} +0.0 \\ +0.0 \\ +2.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} -35.1 \\ +27.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	49.7	108.7 High channel	Vert
68	1830.410M	53.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	49.3	$108.7 \quad-59.4$ Mid2 channel	Vert
69	6370.000 M	40.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.2 \\ +34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	48.0	$108.7{ }^{-60.7}$ Mid1 channel - Config 1	Horiz
70	9276.000M	36.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.8 \\ +37.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	47.4	$108.7{ }^{-61.3}$ High channel	Vert
71	6406.400M	39.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +34.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	46.8	$108.7 \quad-61.9$ Mid2 channel	Horiz
72	1820.000M	51.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +26.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	46.6	$108.7{ }^{-62.1}$ Mid1 channel - Config 1	Vert
73	6316.800M	38.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +34.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	46.5	$108.7 \quad-62.2$ Low channel - Config 1	Horiz
74	9276.000M	35.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & \hline \end{aligned}$	$\begin{array}{r} -34.8 \\ +37.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	46.3	$108.7{ }^{-62.4}$ High channel	Horiz
75	5491.200 M	40.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -34.1 \\ +33.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	46.1	$108.7 \quad-62.6$ Mid2 channel	Horiz
76	5491.210 M	40.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.0$	45.5	$108.7 \quad-63.2$ Mid2 channel	Vert

77	7219.200M	37.5	+0.0	+0.0	-34.5	+0.3	$+0.0$	45.4	$\begin{array}{ll} \hline 108.7 & -63.3 \\ \text { Low channel - } \\ \text { Config 1 } \\ \hline \end{array}$	Horiz
			+0.0	+0.0	+35.7	+0.6				
			+4.6	+1.2	+0.0	+0.0				
78	6493.200M	38.4	+0.0	+0.0	-34.2	+0.3	+0.0	45.3	108.7 -63.4	Vert
			+0.0	+0.0	+34.4	+0.6			High channel	
			+4.6	+1.2	+0.0	+0.0				
79	6370.000M	37.8	+0.0	+0.0	-34.2	+0.3	+0.0	45.2	108.7 -63.5	Vert
			+0.0	+0.0	+34.7	+0.6			Mid1 channel -	
			+4.7	+1.3	+0.0	+0.0			Config 1	
80	6406.410M	37.5	+0.0	+0.0	-34.2	+0.3	$+0.0$	44.7	108.7 -64.0	Vert
			+0.0	$+0.0$	+34.6	+0.6			Mid2 channel	
			+4.7	+1.2	+0.0	+0.0				
81	7219.200M	36.8	+0.0	+0.0	-34.5	+0.3	+0.0	44.7	108.7 -64.0	Vert
			+0.0	+0.0	+35.7	+0.6			Low channel -	
			+4.6	+1.2	+0.0	+0.0			Config 1	
82	6493.200M	37.5	+0.0	+0.0	-34.2	+0.3	+0.0	44.4	108.7 -64.3	Horiz
			+0.0	+0.0	+34.4	+0.6			High channel	
			+4.6	+1.2	+0.0	+0.0				
83	5565.600M	38.1	+0.0	+0.0	-34.1	+0.3	$+0.0$	43.8	108.7 -64.9	Horiz
			$+0.0$	$+0.0$	+33.4	+0.6			High channel	
			+4.5	+1.0	+0.0	+0.0				
84	6316.800M	35.9	+0.0	+0.0	-34.2	+0.4	$+0.0$	43.5	108.7 -65.2	Vert
			$+0.0$	$+0.0$	+34.8	+0.6			Low channel -	
			+4.7	+1.3	+0.0	+0.0			Config 1	

LABORATORIES, INC.

Band Edge Summary					
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathrm{m} @ 3 \mathrm{~m})$	Limit $(\mathrm{dBuV} / \mathrm{m}$ @3m)	Results
614	OOK 10dBm	Integral	35.8	<46	Pass
902	OOK 10dBm	Integral	78.9	<91.3	Pass
928	OOK 10dBm	Integral	75.2	<91.3	Pass
960	OOK 10dBm	Integral	42.1	<54	Pass
614	OOK 27dBm	Integral	35.2	<46	Pass
902	OOK 27dBm	Integral	95.0	<106.7	Pass
928	OOK 27dBm	Integral	95.1	<106.7	Pass
960	OOK 27dBm	Integral	53.7	<54	Pass
614	GFSK 27dBm	Integral	42.0	<46	Pass
901.42	GFSK 27dBm	Integral	85.2	<108.7	Pass
928.64	GFSK 27dBm	Integral	86.0	<108.7	Pass
960	GFSK 27dBm	Integral	47.0	<54	Pass

Test Setup / Conditions

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested by:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

98804 Date: 8/20/2016
Maximized Emissions Time: 02:26:00
Randal Clark
EMITest 5.03.02

Sequence\#: 37

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N
Configuration 2		

Support Equipment:

Device Manufacturer Model \# S/N

Test Conditions / Notes:

EUT is a transmitter operating within $902-928 \mathrm{MHz}$. EUT is battery operated, fresh batteries installed. EUT has IO ports with cables attached. Middle port is for remote antenna and must be left open for testing integral antenna. Equipment installed according to manufacturer specifications. Equipment is configured for 10 dBm output power with OOK modulation. Worst case emissions reported, including effects from hopping.
Test procedure: ANSI C63.10 (2013)

Frequency range investigated: $614-960 \mathrm{MHz}$
Transmitter Frequency: 903, 910, 915, 926.8 MHz.
Temperature: $27^{\circ} \mathrm{C}$
Relative Humidity: 34\%

Itron, Inc. WO\#: 98804 Sequence\#\#: 37 Date: 8/20/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
\times QP Readings

* Ambient

1-15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
T1	AN02307	Preamp	8447 D	$2 / 15 / 2016$	$2 / 15 / 2018$
	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T2	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T3	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$
	AN01467	Horn Antenna-	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
		ANSI C63.5			
	Calibration			$2 / 15 / 2018$	
	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$3 / 11 / 2018$
T4	ANP06935	Cable	$32026-29801-$	$3 / 11 / 2016$	
T5	ANP05360	Cable	$29801-18$		$10 / 29 / 2017$
T6	ANP05963	Cable	Heliax	$10 / 29 / 2015$	$12 / 1 / 2016$
	ANDCCF	Duty Cycle	RG214	$12 / 1 / 2014$	$2 / 15 / 2018$
		Correction Factor		$2 / 15 / 2016$	$7 / 18 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	T3 dB	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	614.000 M	32.9	$\begin{array}{r} \hline-28.1 \\ +1.6 \end{array}$	$\begin{array}{r} \hline+20.8 \\ +2.1 \end{array}$	+6.2	$+0.3$	+0.0	35.8	46.0	-10.2	Vert
2	960.000 M	33.1	$\begin{array}{r} \hline-27.1 \\ +2.1 \end{array}$	$\begin{array}{r} +24.8 \\ +2.5 \end{array}$	+6.3	+0.4	+0.0	42.1	54.0	-11.9	Vert
3	902.000 M	43.9	$\begin{aligned} & +0.0 \\ & +2.0 \end{aligned}$	$\begin{array}{r} \hline+24.1 \\ +2.4 \end{array}$	+6.2	+0.3	+0.0	78.9	91.3	-12.4	Vert
4	928.000 M	39.7	$\begin{aligned} & \hline+0.0 \\ & +2.1 \end{aligned}$	$\begin{array}{r} \hline+24.4 \\ +2.4 \end{array}$	+6.2	+0.4	+0.0	75.2	91.3	-16.1	Vert

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification: 15.247(d) / 15.209 Radiated Spurious Emissions
Work Order \#: 98804 Date: 8/20/2016

Test Type: Maximized Emissions
Time: 02:08:16
Tested by: Randal Clark
Sequence\#: 38
Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N
Configuration 2		

Support Equipment:

Device	Manufacturer	Model \#

Test Conditions / Notes:
EUT is a transmitter operating within $902-928 \mathrm{MHz}$. EUT is battery operated, fresh batteries installed. EUT has IO ports with cables attached. Middle port is for remote antenna and must be left open for testing integral antenna. Equipment installed according to manufacturer specifications.
Equipment is configured for maximum output power with OOK modulation. Worst case emissions reported, including effects from hopping.

Test procedure: ANSI C63.10 (2013)
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: 903, 910, 915, 926.8 MHz.
No emissions detected within 20 dB of the limit at frequencies $<100 \mathrm{MHz}$. See band edge emissions data for emissions near transmit band.

Temperature: $27^{\circ} \mathrm{C}$
Relative Humidity: 34\%

Itron, Inc. WO\#: 98804 Sequence\#\#: 38 Date: 8/20/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
\times QP Readings

- Ambient

1-15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
T2	AN02307	Preamp	8447 D	$2 / 15 / 2016$	$2 / 15 / 2018$
	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T3	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T4	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$
	AN01467	Horn Antenna-	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
		ANSI C63.5			
	Calibration			$2 / 15 / 2018$	
	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$3 / 11 / 2018$
T5	ANP06935	Cable	$32026-29801-$	$3 / 11 / 2016$	
T6	ANP06540	Cable	$29801-18$		$10 / 29 / 2017$
T7	ANP05963	Cable	Cable	RG214	$12 / 1 / 2014$
	ANP05503	Attenuator	RG-214	$2 / 15 / 2016$	$2 / 15 / 2016$
	ANP05660	Attenuator	$766-10$	$6 / 18 / 2015$	$6 / 18 / 2017$
	ANP06219	Attenuator	$768-10$	$6 / 15 / 2015$	$6 / 15 / 2017$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification: 15.247(d) / 15.209 Radiated Spurious Emissions
Work Order \#: 98804 Date: 8/20/2016

Test Type: Maximized Emissions
Time: 02:16:20
Tested by: Randal Clark
Sequence\#: 39
Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N
Configuration 2		

Support Equipment:

Device	Manufacturer	Model \#

Test Conditions / Notes:

EUT is a transmitter operating within $902-928 \mathrm{MHz}$. EUT is battery operated, fresh batteries installed. EUT has IO ports with cables attached. Middle port is for remote antenna and must be left open for testing integral antenna. Equipment installed according to manufacturer specifications.
Equipment is configured for maximum output power with GFSK modulation. Worst case emissions reported, including effects from hopping.

Test procedure: ANSI C63.10 (2013)
Frequency range investigated: $614-960 \mathrm{MHz}$
Transmitter Frequency: 902.4, 910, 915.2, 927.6 MHz.

Temperature: $27^{\circ} \mathrm{C}$
Relative Humidity: 34\%

Itron, Inc. WO\#: 98804 Sequence\#\#: 39 Date: 8/20/2016 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
\times QP Readings

- Ambient

1-15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03 .02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
	AN02307	Preamp	8447 D	$2 / 15 / 2016$	$2 / 15 / 2018$
	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T2	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T3	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$
	AN01467	Horn Antenna-	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
		ANSI C63.5			
	Calibration			$3 / 11 / 2018$	
	ANP06935	Cable	$32026-29801-$	$3 / 11 / 2016$	$2 / 15 / 2018$
T4	ANP05305	Cable	$29801-18$		$10 / 29 / 2017$
T5	ANP05360	Cable	ETSI-50T	$2 / 15 / 2016$	$12 / 1 / 2016$
T6	ANP05963	Cable	RG214	$12 / 29 / 2015$	$2 / 15 / 2018$
	ANP05503	Attenuator	RG-214	$2 / 15 / 2016$	$6 / 18 / 2017$
	ANP05660	Attenuator	$766-10$	$6 / 18 / 2015$	$6 / 15 / 2017$
	ANP06219	Attenuator	$766-3$	$6 / 15 / 2015$	$4 / 12 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Band Edge Plots

Upper Band Edge: OOK Modulation, 10dBm output power. Peak detector. Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB
RES BW: 120.0 kHz VID BW: 1.2 MHz SWP: 20.0 msec
Marker: $928.0 \mathrm{MHz} 39.6727 \mathrm{~dB} \mu \mathrm{~V}$

15.247(d)/15.209 Radiated Spurious Emissions
$-1 \mathrm{M}_{\text {rosing }}$
LABORATORIES, INC.

LABORATORIES, INC.

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QP Readings
 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

