Itron, Inc.

TEST REPORT FOR

Field Configuration Tool Model: FCT

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.249

Report No.: 106617-2

Date of issue: April 13, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 56 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	9
15.215(c) Occupied Bandwidth (20dB BW)	9
15.249(a) Field Strength of Fundamental	14
15.249(a) Radiated Emissions and Band Edge	24
15.207 AC Conducted Emissions	48
Supplemental Information	55
Measurement Uncertainty	55
Emissions Test Details	55

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

REPORT PREPARED BY:

ltron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019

Representative: Jay Holcomb Customer Reference Number: 256343

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Darcy Thompson CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 106617

March 16, 2022 March 16 - 21, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.249

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.249(a)	Field Strength of Fundamental	NA	Pass
15.249(a)	Radiated Emissions and Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions		
No modifications were made during testing.		

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:			
Device	Manufacturer	Model #	S/N
Field Configuration Tool	ltron, Inc.	FCT	79BBGGSTHAC

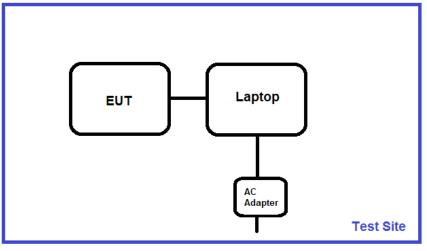
Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	HP	14-dq1033cl	NA
AC Adapter (for Laptop)	HP	TPN-CA14	NA

General Product Information:

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Modulation Type(s):	FSK		
Maximum Duty Cycle:	Assume 100% as worst case		
Antenna Type(s) and Gain:	Trace, estimated 6.8dBi gain		
Antenna Connection Type:	Integral		
Nominal Input Voltage:	5V USB		
Firmware / Software used for	Firmware v8.35		
Test:	CLITool v3.0.0.14		
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer			
assumes full responsibility.			

EUT and Accessory Photo(s)



Support Equipment Photo(s)

Block Diagram of Test Setup(s)

AC Power

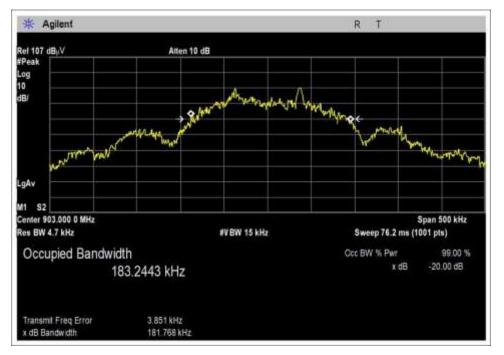
Page 8 of 56 Report No.: 106617-2

FCC Part 15 Subpart C

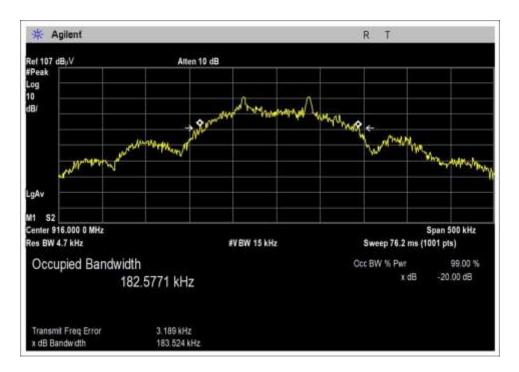
15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions					
Test Location:	Canyon Park Lab C3	Test Engineer:	M. Atkinson		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	3/21/2022		
Configuration:	1				
Test Conditions:	EUT is on foam table.				
	EUT is connected to support laptop.				
EUT is transmitting using test software on support tablet to control EUT.					

Environmental Conditions				
Temperature (^o C)	22	Relative Humidity (%):	42	

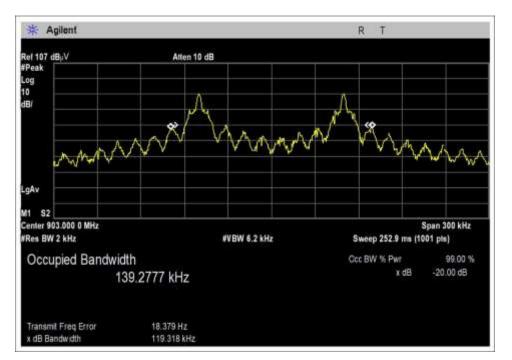

	Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due			
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2021	2/3/2023			
P06540	Cable	Andrews	Heliax	1/17/2022	1/17/2024			
P06515	Cable	Andrews	Heliax	7/1/2020	7/1/2022			
02307	Preamp	HP	8447D	1/6/2022	1/6/2024			
P05360	Cable	Belden	RG214	2/4/2022	2/4/2024			
03628	Biconilog Antenna (factor includes 6dB pad)	ETS	3142E	6/3/2021	6/3/2023			

	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
903	1	150k FSK	181.768	None	NA	
916	1	150k FSK	183.524	None	NA	
926.8	1	150k FSK	179.316	None	NA	
903	1	12.5 FSK	119.318	None	NA	
916	1	12.5 FSK	119.023	None	NA	
926.8	1	12.5 FSK	139.023	None	NA	

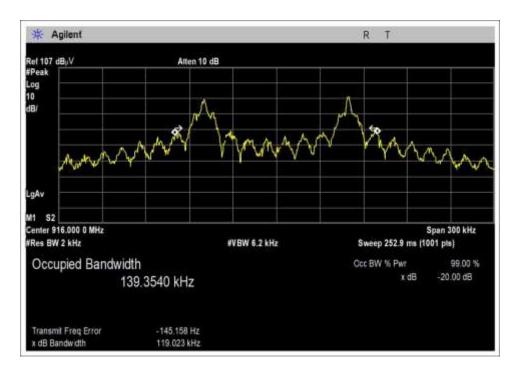


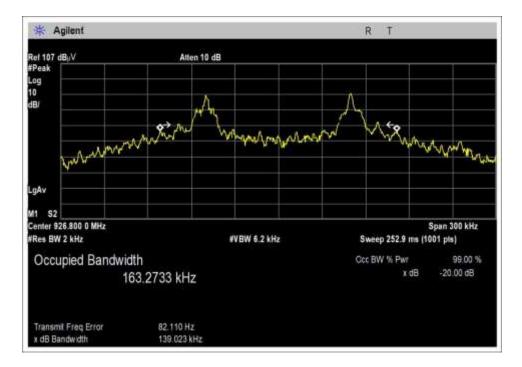
Plot(s)

Low Channel



Middle Channel


High Channel


<u>12.5 FSK</u>

Low Channel

Middle Channel

High Channel

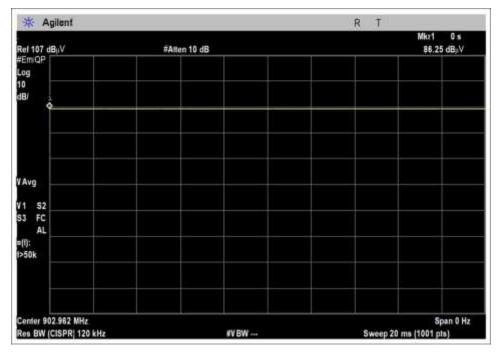
Test Setup Photo(s)

15.249(a) Field Strength of Fundamental

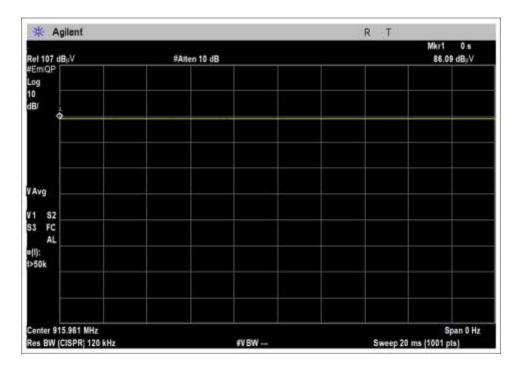
	Test Data Summary - Voltage Variations								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)				
903	150k FSK	92.9	92.9	92.9	0.0				
916	150k FSK	92.9	92.9	92.9	0.0				
926.8	150k FSK	93.3	93.3	93.3	0.0				
903	12.5k FSK	92.8	92.8	92.8	0.0				
916	12.5k FSK	92.9	92.9	92.9	0.0				
926.8	12.5k FSK	93.1	93.1	93.1	0.0				

Test performed using operational mode with the highest output power, representing worst case.

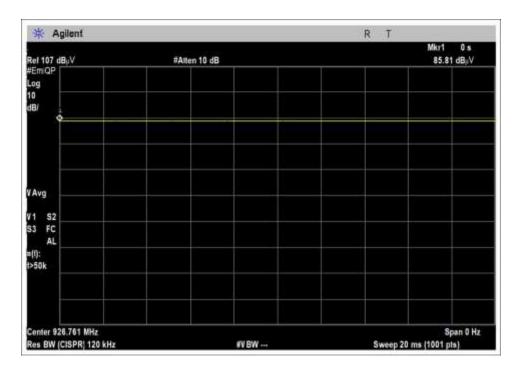
Parameter Definitions:


Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	5V
V _{Minimum} :	4.25V
V _{Maximum} :	5.75V

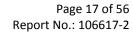

Test Data Summary – Radiated Field Strength Measurement								
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 3m)	Limit (dBuV/m @ 3m)	Results			
903	150k FSK	Trace	92.9	≤94	Pass			
916	150k FSK	Trace	92.9	≤94	Pass			
926.8	150k FSK	Trace	93.3	≤94	Pass			
903	12.5k FSK	Trace	92.8	≤94	Pass			
916	12.5k FSK	Trace	92.9	≤94	Pass			
926.8	12.5k FSK	Trace	93.1	≤94	Pass			

Plot(s) 150k FSK

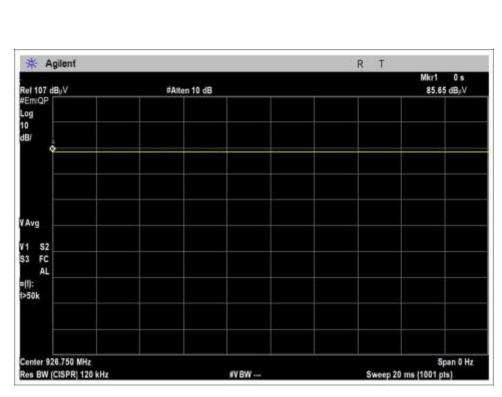


Low Channel

Middle Channel



High Channel


来 Agilent		R	T Mkr1 0 s
tel 107 dB _P V	#Allen 10 dB		86.22 dBµV
EmiQP			
og 0			
B/			
¢			
Avg			
1 52			
3 FC			
AL			
(i): >50k			
JUN			
Center 903.047 MHz Res BW (CISPR) 120 kHz	#V BW		Span 0 Hz eep 20 ms (1001 pts)

<u>12.5 FSK</u>

Low Channel

1.1.1.1.1.1.1.1.1.	10000020020		Mkr1 3.52 ms
el 107 dB _P V EmiQP	 Allen 10 dB		86.00 dB ₂ V
og			
0			
B/	\$ 		
Avg			
1 \$2			
3 FC			
AL			
(i): •50k			
enter 915.947 MHz			Span 0 H

Testing the Future

LABORATORIES, INC.

CKC

Middle Channel

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23	Brd Drive SE, Suite A • Bothell, V	WA. 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.249 Carrier and Spurior	is Emissions (902-928 MHz T	'ransmitter)
Work Order #:	106617	Date:	3/16/2022
Test Type:	Maximized Emissions	Time:	11:26:36
Tested By:	Michael Atkinson	Sequence#:	3
Software:	EMITest 5.03.20	_	

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

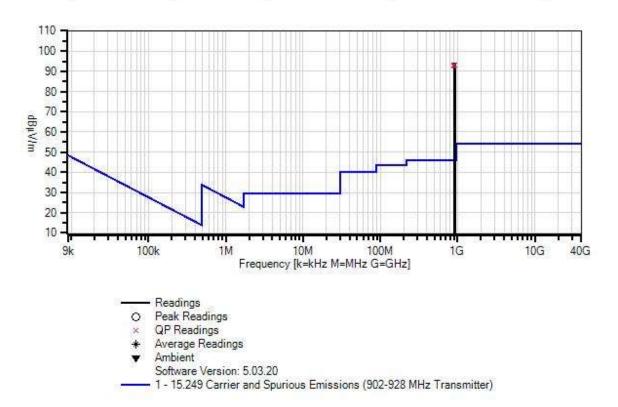
Environmental Conditions: Temperature: 21°C Humidity: 40% Pressure: 102.5kPa

Method: ANSI C63.10 (2013)

Frequency: Fundamental

Setup:

EUT is on foam table.


EUT is connected to support laptop.

EUT is transmitting using test software on support tablet to control EUT.

XYZ axes investigated, horizontal and vertical antenna polarities investigated, worst case reported.

Itron, Inc. WO#: 106617 Sequence#: 3 Date: 3/16/2022 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
Т3	AN02307	Preamp	8447D	1/6/2022	1/6/2024
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measur	rement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	926.761M	85.8	+0.3	+1.6	-27.3	+2.4	+0.0	93.3	94.0	-0.7	Vert
	QP		+30.5						150k		
2	926.750M	85.6	+0.3	+1.6	-27.3	+2.4	+0.0	93.1	94.0	-0.9	Vert
	QP		+30.5						12.5k		
3	915.961M	86.0	+0.3	+1.6	-27.3	+2.4	+0.0	92.9	94.0	-1.1	Vert
	QP		+29.9						150k		
4	902.962M	86.3	+0.3	+1.6	-27.4	+2.4	+0.0	92.9	94.0	-1.1	Vert
	QP		+29.7						150k		
5	915.947M	86.0	+0.3	+1.6	-27.3	+2.4	+0.0	92.9	94.0	-1.1	Vert
	QP		+29.9						12.5k		
6	903.047M	86.2	+0.3	+1.6	-27.4	+2.4	+0.0	92.8	94.0	-1.2	Vert
(QP		+29.7						12.5k		

Test Setup Photo(s)

Below 1GHz

X-Axis

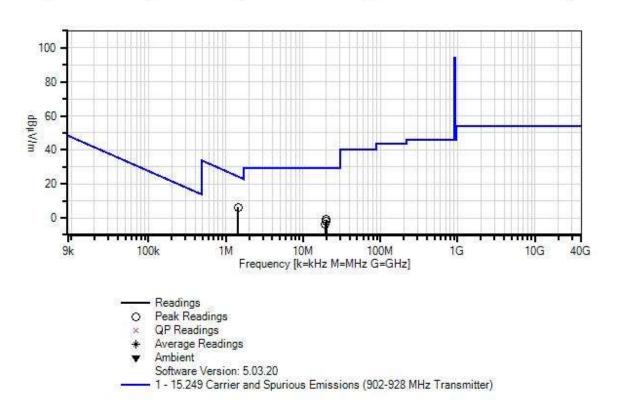
Y-Axis

Z-Axis

Voltage Variations

15.249(a) Radiated Emissions and Band Edge

Test Setup / Conditions / Data


Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC (4362)					
Customer:	Itron, Inc.					
Specification:	15.249 Carrier and Spurious	s Emissions (902-928 MHz T	Transmitter)			
Work Order #:	106617	Date:	3/21/2022			
Test Type:	Maximized Emissions	Time:	16:03:08			
Tested By:	Michael Atkinson	Sequence#:	12			
Software:	EMITest 5.03.20	-				

Equipment Tested:

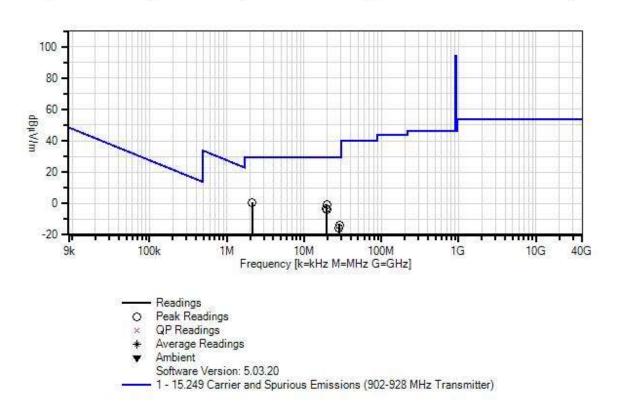
Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / Notes:			
Environmental Conditions:			
Temperature: 22°C			
Humidity: 42%			
Pressure: 102.4kPa			
Method: ANSI C63.10 (201	3)		
Frequency: 9kHz-30MHz			
Modulation: 150k FSK			
Setup:			
EUT is on foam table.			
EUT is connected to suppor	t laptop.		
EUT is transmitting using te	est software on support t	ablet to control EUT.	
XYZ axes investigated, wor	-		
3 orthogonal axes investigat	ted, worst case reported.		

Itron, Inc. WO#: 106617 Sequence#: 12 Date: 3/21/2022 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters GroundPara

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Measur	<i>Measurement Data:</i> Reading listed by margin.						Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	1.435M	36.6	+0.0	+0.1	+0.0	+9.6	-40.0	6.3	24.4	-18.1	Para	
2	19.821M	31.3	+0.0	+0.1	+0.2	+7.4	-40.0	-1.0	29.5	-30.5	Groun	
3	19.589M	30.3	+0.0	+0.1	+0.2	+7.4	-40.0	-2.0	29.5	-31.5	Para	
4	19.444M	28.3	+0.0	+0.1	+0.2	+7.5	-40.0	-3.9	29.5	-33.4	Perp	
5	28.985M	22.4	+0.0	+0.1	+0.3	+4.6	-40.0	-12.6	29.5	-42.1	Groun	


Test Location:	CKC Laboratories • 22116 23r	d Drive SE, Suite A • Bothell,	WA. 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.249 Carrier and Spurious	Emissions (902-928 MHz T	Transmitter)
Work Order #:	106617	Date:	3/21/2022
Test Type:	Maximized Emissions	Time:	16:01:22
Tested By:	Michael Atkinson	Sequence#:	13
Software:	EMITest 5.03.20		

Equipment Tested:

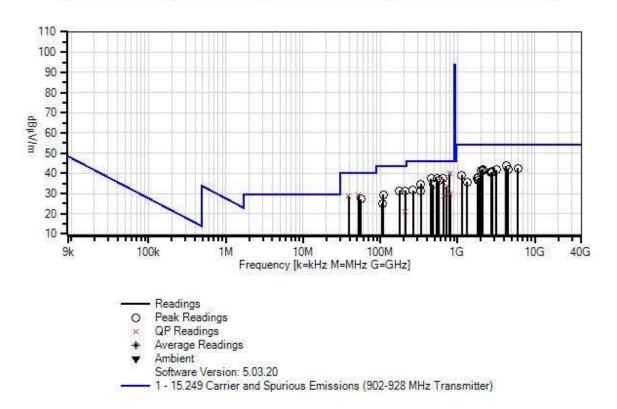
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				•
Device	Manufacturer	Model #	S/N	
Configuration 1	Manufacturer	Iviouel #	5/11	
Test Conditions / Notes:				
Environmental Conditions	:			
Temperature: 22°C				
Humidity: 42%				
Pressure: 102.4kPa				
Method: ANSI C63.10 (20	013)			
Frequency: 9kHz-30MHz				
Modulation: 12.5k FSK				
Setup:				
EUT is on foam table.				
EUT is connected to suppo	ort laptop.			
EUT is transmitting using	test software on support	tablet to control EUT.		
XYZ axes investigated, we	orst case reported.			
3 orthogonal axes investiga	ated, worst case reported	•		

Itron, Inc. WO#: 106617 Sequence#: 13 Date: 3/21/2022 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters GroundPara

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
Т3	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Measur	ement Data:	Re	ted by ma	rgin.		Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2.131M	31.0	+0.1	+0.1	+9.5		-40.0	0.7	29.5	-28.8	Para
2	19.705M	31.6	+0.1	+0.2	+7.4		-40.0	-0.7	29.5	-30.2	Groun
3	19.328M	29.1	+0.1	+0.2	+7.5		-40.0	-3.1	29.5	-32.6	Perp
4	19.589M	28.6	+0.1	+0.2	+7.4		-40.0	-3.7	29.5	-33.2	Para
5	28.608M	21.2	+0.1	+0.3	+4.8		-40.0	-13.6	29.5	-43.1	Groun
6	28.434M	19.3	+0.1	+0.3	+4.9		-40.0	-15.4	29.5	-44.9	Para


Test Location:	CKC Laboratories • 22116 23	rd Drive SE, Suite A • Bothell,	WA. 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.249 Carrier and Spurious	s Emissions (902-928 MHz T	'ransmitter)
Work Order #:	106617	Date:	3/18/2022
Test Type:	Maximized Emissions	Time:	19:05:00
Tested By:	Michael Atkinson	Sequence#:	8
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment	•		
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / No	otes:		
Environmental Cond	itions:		
Temperature: 21°C			
Humidity: 40%			
Pressure: 102.5kPa			
Method: ANSI C63.	10 (2013)		
Frequency: 30MHz t	o 10GHz		
Modulation: 150k FS	SK		
Setup:			
EUT is on foam table	2.		
EUT is connected to			
EUT is transmitting	using test software on support	tablet to control EUT.	
XYZ axes investigate	ed, worst case reported.		
Horizontal and vertic	al antenna polarities investiga	ted, worst case reported.	

Itron, Inc. WO#: 106617 Sequence#: 8 Date: 3/18/2022 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Horiz

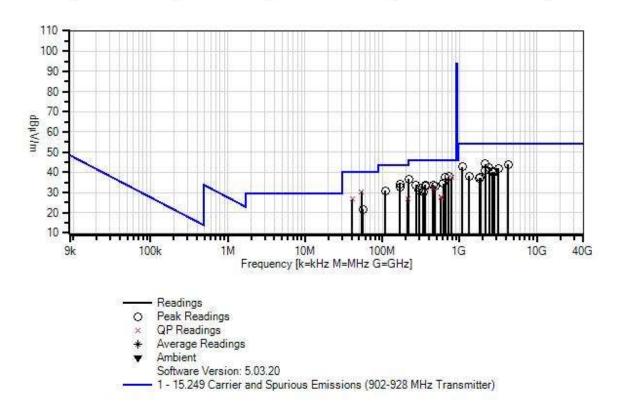
Test	Eaui	pme	nt:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
Т6	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Τ7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
Т8	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т9	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T10	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

#	irement Data:	Rdng	T1	ted by ma T2	T3	T4	Dist	Corr	e: 3 Meters Spec	Margin	Polar
#	Freq	Kung	T5	12 T6	T7	T8	Dist	Coll	spec	Margin	Folai
			T9	T10	1/	10					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBuV/m	dB	Ant
1		34.5	+0.0	+0.3	+1.5	+0.0	+0.0	<u>39.7</u>	46.0	-6.3	Vert
1	QP	54.5	+0.0	+0.0	+0.0	-27.7	10.0	57.1	40.0	0.5	vert
	ζı.		+2.2	+28.9	10.0	27.7					
٨	784.700M	42.9	+0.0	+0.3	+1.5	+0.0	+0.0	48.1	46.0	+2.1	Vert
		,	+0.0	+0.0	+0.0	-27.7					
			+2.2	+28.9							
3	543.100M	35.6	+0.0	+0.2	+1.3	+0.0	+0.0	37.5	46.0	-8.5	Vert
			+0.0	+0.0	+0.0	-28.2					
			+1.7	+26.9							
4	452.900M	39.3	+0.0	+0.2	+1.1	+0.0	+0.0	37.5	46.0	-8.5	Vert
			+0.0	+0.0	+0.0	-27.9					
			+1.5	+23.3							
5	653.700M	34.9	+0.0	+0.3	+1.3	+0.0	+0.0	37.4	46.0	-8.6	Vert
			+0.0	+0.0	+0.0	-28.1					
			+2.0	+27.0							
6	573.200M	35.8	+0.0	+0.2	+1.3	+0.0	+0.0	36.5	46.0	-9.5	Vert
			+0.0	+0.0	+0.0	-28.2					
			+1.8	+25.6							
7	4258.000M	39.9	+0.0	+0.6	+3.5	-33.4	+0.0	43.6	54.0	-10.4	Vert
			+0.5	+32.1	+0.4	+0.0					
			+0.0	+0.0							
8		43.8	+0.0	+0.1	+0.4	+0.0	+0.0	29.3	40.0	-10.7	Vert
	QP		+0.0	+0.0	+0.0	-27.8					
			+0.5	+12.3							
^	52.300M	53.3	+0.0	+0.1	+0.4	+0.0	+0.0	38.8	40.0	-1.2	Vert
			+0.0	+0.0	+0.0	-27.8					
10	222 (00) (20.0	+0.5	+12.3	0.0	0.0	0.0	24.0	16.0	11.0	
10	332.600M	39.9	+0.0	+0.2	+0.9	+0.0	+0.0	34.8	46.0	-11.2	Horiz
			+0.0	+0.0	+0.0	-27.0					
11	38.700M	39.0	+1.2	+19.6	+0.2	+0.0	+0.0	28.7	40.0	-11.3	Vert
11		39.0	$^{+0.0}_{+0.0}$	$^{+0.1}_{+0.0}$	+0.3 +0.0	+0.0 -27.8	+0.0	28.7	40.0	-11.5	vert
	QP				+0.0	-27.8					
^	38.700M	40.2	+0.4	+16.7	+0.2			39.0	40.0	1.0	Vert
	30.700M	49.3	$^{+0.0}_{+0.0}$	$^{+0.1}_{+0.0}$	+0.3 +0.0	+0.0 -27.8	+0.0	39.0	40.0	-1.0	vert
			+0.0 +0.4	+16.7	10.0	-21.0					
13	5995.000M	34.8	+0.4 +0.0	+10.7 +0.8	+4.6	-33.8	+0.0	42.5	54.0	-11.5	Vert
15	5775.000141	54.0	+0.0 +0.7	+0.8 $+34.8$	+4.0 +0.6	+0.0	10.0	т2.Ј	54.0	-11.3	vuit
			+0.7 +0.0	+0.0	10.0	10.0					
14	483.000M	35.6	+0.0	+0.2	+1.2	+0.0	+0.0	34.4	46.0	-11.6	Vert
14	105.000141	55.0	+0.0	+0.2	+0.0	-28.0	10.0	57.7	10.0	11.0	, ort
			+1.6	+23.8	10.0	20.0					

15 4474.000M	38.1	+0.0	+0.6	+3.7	-33.5	+0.0	42.0	54.0	-12.0	Vert
		+0.3	+32.3	+0.5	+0.0					
		+0.0	+0.0							
16 2125.000M	44.5	+0.0	+0.5	+2.6	-34.5	+0.0	41.9	54.0	-12.1	Vert
		+0.2	+28.2	+0.4	+0.0					
		+0.0	+0.0							
17 177.400M	41.4	+0.0	+0.1	+0.7	+0.0	+0.0	31.4	43.5	-12.1	Vert
		+0.0	+0.0	+0.0	-27.4					
		+0.9	+15.7							
18 209.400M	40.3	+0.0	+0.1	+0.7	+0.0	+0.0	31.3	43.5	-12.2	Vert
		+0.0	+0.0	+0.0	-27.2					
		+0.9	+16.5							
19 3187.000M	40.4	+0.0	+0.5	+3.2	-33.9	+0.0	41.7	54.0	-12.3	Vert
		+0.3	+30.9	+0.3	+0.0					
		+0.0	+0.0							
20 723.600M	29.5	+0.0	+0.3	+1.4	+0.0	+0.0	33.6	46.0	-12.4	Vert
QP		+0.0	+0.0	+0.0	-27.9					
		+2.1	+28.2							
^ 723.600M	35.2	+0.0	+0.3	+1.4	+0.0	+0.0	39.3	46.0	-6.7	Vert
		+0.0	+0.0	+0.0	-27.9					
		+2.1	+28.2							
22 1990.000M	44.1	+0.0	+0.4	+2.5	-34.6	+0.0	41.5	54.0	-12.5	Horiz
		+0.3	+28.4	+0.4	+0.0					
		+0.0	+0.0							
23 2125.000M	44.0	+0.0	+0.5	+2.6	-34.5	+0.0	41.4	54.0	-12.6	Horiz
		+0.2	+28.2	+0.4	+0.0					
		+0.0	+0.0							
24 56.200M	41.7	+0.0	+0.1	+0.4	+0.0	+0.0	27.3	40.0	-12.7	Horiz
		+0.0	+0.0	+0.0	-27.8					
		+0.5	+12.4							
25 2780.470M	41.4	+0.0	+0.5	+2.9	-34.1	+0.0	40.8	54.0	-13.2	Horiz
		+0.5	+29.3	+0.3	+0.0			Y 926.8		
		+0.0	+0.0							
26 2748.010M	41.1	+0.0	+0.5	+2.9	-34.1	+0.0	40.5	54.0	-13.5	Horiz
		+0.5	+29.3	+0.3	+0.0			Y 916		
		+0.0	+0.0							
27 2709.100M	40.9	+0.0	+0.5	+2.9	-34.1	+0.0	40.4	54.0	-13.6	Horiz
		+0.5	+29.5	+0.2	+0.0			Y 903		
		+0.0	+0.0							
28 109.500M	41.7	+0.0	+0.1	+0.5	+0.0	+0.0	29.5	43.5	-14.0	Vert
		+0.0	+0.0	+0.0	-27.7					
		+0.7	+14.2							
29 266.700M	37.1	+0.0	+0.2	+0.9	+0.0	+0.0	31.7	46.0	-14.3	Vert
		+0.0	+0.0	+0.0	-27.0					
		+1.1	+19.4							
30 332.600M	36.4	+0.0	+0.2	+0.9	+0.0	+0.0	31.3	46.0	-14.7	Vert
		+0.0	+0.0	+0.0	-27.0					
		+1.2	+19.6							

31 1135.000M	46.7	+0.0	+0.3	+1.8	-36.4	+0.0	39.0	54.0	-15.0	Horiz
		+0.2	+24.9	+1.5	+0.0					
		+0.0	+0.0							
32 798.200M	24.5	+0.0	+0.3	+1.5	+0.0	+0.0	29.9	46.0	-16.1	Horiz
QP		+0.0	+0.0	+0.0	-27.7					
		+2.2	+29.1							
^ 798.200M	35.9	+0.0	+0.3	+1.5	+0.0	+0.0	41.3	46.0	-4.7	Horiz
		+0.0	+0.0	+0.0	-27.7					
		+2.2	+29.1							
34 1853.530M	41.1	+0.0	+0.4	+2.4	-34.7	+0.0	37.8	54.0	-16.2	Vert
		+0.3	+27.7	+0.6	+0.0			X 926.8		
		+0.0	+0.0							
35 1806.000M	41.2	+0.0	+0.4	+2.3	-34.7	+0.0	37.4	54.0	-16.6	Vert
		+0.3	+27.3	+0.6	+0.0			X 903		
		+0.0	+0.0							
36 660.500M	26.4	+0.0	+0.3	+1.3	+0.0	+0.0	29.0	46.0	-17.0	Horiz
QP		+0.0	+0.0	+0.0	-28.1					
		+2.1	+27.0							
^ 660.500M	37.4	+0.0	+0.3	+1.3	+0.0	+0.0	40.0	46.0	-6.0	Horiz
		+0.0	+0.0	+0.0	-28.1					
		+2.1	+27.0							
38 1832.060M	40.2	+0.0	+0.4	+2.4	-34.7	+0.0	36.7	54.0	-17.3	Vert
		+0.3	+27.5	+0.6	+0.0			X 916		
		+0.0	+0.0							
39 1333.000M	42.8	+0.0	+0.3	+2.0	-35.6	+0.0	35.8	54.0	-18.2	Horiz
		+0.2	+25.4	+0.7	+0.0					
		+0.0	+0.0							
40 106.600M	37.3	+0.0	+0.1	+0.5	+0.0	+0.0	25.0	43.5	-18.5	Horiz
		+0.0	+0.0	+0.0	-27.7		•			
		+0.6	+14.2							
41 209.400M	30.1	+0.0	+0.1	+0.7	+0.0	+0.0	21.1	43.5	-22.4	Horiz
QP		+0.0	+0.0	+0.0	-27.2					
		+0.9	+16.5							
^ 209.400M	45.9	+0.0	+0.1	+0.7	+0.0	+0.0	36.9	43.5	-6.6	Horiz
		+0.0	+0.0	+0.0	-27.2					
		+0.9	+16.5							
L										


Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC (4362)					
Customer:	Itron, Inc.					
Specification:	15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)					
Work Order #:	106617	Date:	3/18/2022			
Test Type:	Maximized Emissions	Time:	19:24:28			
Tested By:	Michael Atkinson	Sequence#:	9			
Software:	EMITest 5.03.20					

Equipment Tested:

Device	Manufacturer	Model #	S/N						
Configuration 1									
Support Equipment:									
Device	Manufacturer	Model #	S/N						
Configuration 1									
Test Conditions / No	Test Conditions / Notes:								
Environmental Cond	itions:								
Temperature: 21°C									
Humidity: 40%									
Pressure: 102.5kPa									
Method: ANSI C63.10 (2013)									
Frequency: 30MHz to 10GHz									
Modulation: 12.5k FSK									
Setup:									
EUT is on foam table	2.								
EUT is connected to support laptop.									
EUT is transmitting using test software on support tablet to control EUT.									
XYZ axes investigated, worst case reported.									
Horizontal and vertical antenna polarities investigated, worst case reported.									

Itron, Inc. WO#: 106617 Sequence#: 9 Date: 3/18/2022 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Vert

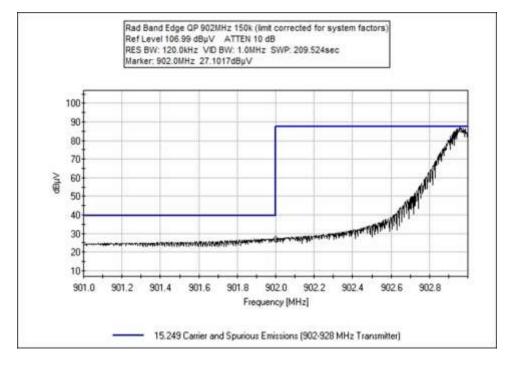
Test Equipment:

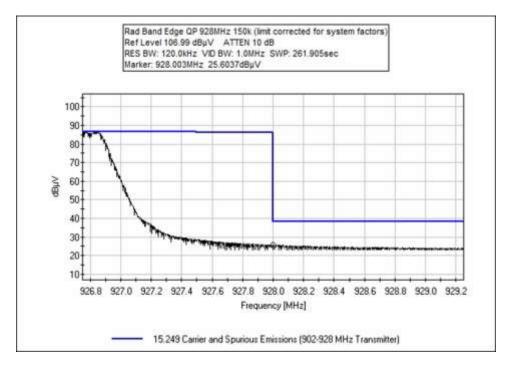
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T5	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
Т6	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Τ7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
Т8	AN02307	Preamp	8447D	1/6/2022	1/6/2024
Т9	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T10	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

#	trement Data:			ted by ma	*	T4			e: 3 Meters		Polar
#	Freq	Rdng	T1 T5	T2 T6	T3	14 T8	Dist	Corr	Spec	Margin	Polar
				T6	Τ7	18					
	MHz	dBµV	T9 dB	T10 dB	dB	dB	Tabla	dBµV/m	dBuV/m	dB	Ant
1	724.500M	33.8	+0.0	+0.3	+1.4	+0.0	+0.0	37.9	46.0	-8.1	Vert
1	724.300M	55.8		+0.3 +0.0			+0.0	57.9	40.0	-8.1	ven
			+0.0		+0.0	-27.9					
2	654.700M	35.0	+2.1 +0.0	+28.2 +0.3	+1.3	+0.0	+0.0	37.5	46.0	-8.5	Vert
Z	034.700M	55.0	+0.0 +0.0	+0.3 +0.0	+1.5 +0.0	+0.0 -28.1	+0.0	57.5	40.0	-8.3	ven
			+0.0 +2.0	+0.0 +27.0	+0.0	-20.1					
3	784.700M	32.2	+2.0 +0.0	+27.0 +0.3	+1.5	+0.0	+0.0	37.4	46.0	-8.6	Horiz
5	QP	52.2	+0.0 +0.0	+0.3 +0.0	+1.3 +0.0	-27.7	± 0.0	57.4	40.0	-8.0	110112
	QI		+0.0 +2.2	+28.9	± 0.0	-27.7					
^	784.700M	41.1	+0.0	+0.3	+1.5	+0.0	+0.0	46.3	46.0	+0.3	Horiz
	/04./00101	41.1	+0.0 $+0.0$	+0.3 +0.0	+1.3 +0.0	-27.7	+0.0	40.5	40.0	+0.5	110112
			+0.0 +2.2	+28.9	± 0.0	-27.7					
5	168.700M	44.8	+0.0	+0.1	+0.7	+0.0	+0.0	34.3	43.5	-9.2	Horiz
5	100.700101	0	+0.0	+0.1	+0.0	-27.5	10.0	54.5	чэ.э	-9.2	110112
			+0.9	+15.3	10.0	21.5					
6	220.100M	45.3	+0.0	+10.1	+0.8	+0.0	+0.0	36.7	46.0	-9.3	Vert
0	220.100101	чэ.э	+0.0	+0.1	+0.0	-27.1	10.0	50.7	+0.0	-7.5	ven
			+1.0	+16.6	10.0	27.1					
7	53.300M	44.8	+0.0	+0.1	+0.4	+0.0	+0.0	30.3	40.0	-9.7	Vert
,	QP	11.0	+0.0	+0.0	+0.0	-27.8	10.0	50.5	10.0	2.1	vert
	Q1		+0.5	+12.3	10.0	27.0					
۸	53.300M	59.9	+0.0	+0.1	+0.4	+0.0	+0.0	45.4	40.0	+5.4	Vert
	001000111	0,1,1	+0.0	+0.0	+0.0	-27.8					
			+0.5	+12.3	1010	_/.0					
9	2134.000M	46.7	+0.0	+0.5	+2.6	-34.5	+0.0	44.1	54.0	-9.9	Vert
	210		+0.2	+28.2	+0.4	+0.0			0 110		
			+0.0	+0.0							
10	4258.000M	40.2	+0.0	+0.6	+3.5	-33.4	+0.0	43.9	54.0	-10.1	Vert
			+0.5	+32.1	+0.4	+0.0					
			+0.0	+0.0							
11	169.700M	43.1	+0.0	+0.1	+0.7	+0.0	+0.0	32.7	43.5	-10.8	Vert
			+0.0	+0.0	+0.0	-27.5					
			+0.9	+15.4							
12	1090.000M	46.7	+0.0	+0.3	+1.8	-36.6	+0.0	42.8	54.0	-11.2	Horiz
			+0.2	+24.5	+5.9	+0.0					
			+0.0	+0.0							
13	613.000M	32.1	+0.0	+0.3	+1.3	+0.0	+0.0	34.6	46.0	-11.4	Horiz
			+0.0	+0.0	+0.0	-28.1					
			+1.9	+27.1							
14	2395.000M	44.2	+0.0	+0.5	+2.7	-34.3	+0.0	42.5	54.0	-11.5	Vert
			+0.3	+28.8	+0.3	+0.0					
			+0.0	+0.0							

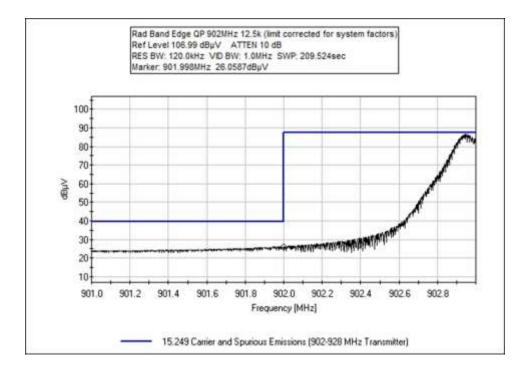
15 3196.000	M 40.9	+0.0	+0.5	+3.2	-33.9	+0.0	42.1	54.0	-11.9	Vert
		+0.3	+30.9	+0.2	+0.0					
		+0.0	+0.0							
16 271.500	M 39.5	+0.0	+0.2	+0.9	+0.0	+0.0	33.8	46.0	-12.2	Horiz
		+0.0	+0.0	+0.0	-27.0					
		+1.1	+19.1							
17 361.700	M 36.9	+0.0	+0.2	+1.0	+0.0	+0.0	33.7	46.0	-12.3	Vert
		+0.0	+0.0	+0.0	-27.3					
		+1.3	+21.6							
18 452.900	M 35.5	+0.0	+0.2	+1.1	+0.0	+0.0	33.7	46.0	-12.3	Horiz
		+0.0	+0.0	+0.0	-27.9					
		+1.5	+23.3							
19 361.700	M 36.6	+0.0	+0.2	+1.0	+0.0	+0.0	33.4	46.0	-12.6	Horiz
		+0.0	+0.0	+0.0	-27.3					
00 100 000		+1.3	+21.6			0.0		1 < 0	10.7	
20 483.000	M 34.5	+0.0	+0.2	+1.2	+0.0	+0.0	33.3	46.0	-12.7	Horiz
		+0.0	+0.0	+0.0	-28.0					
01 100 500	12.0	+1.6	+23.8	.0.5		.0.0	20.0	42.5	10.7	X7 ·
21 109.500	M 43.0	+0.0	+0.1	+0.5	+0.0	+0.0	30.8	43.5	-12.7	Vert
		+0.0	+0.0	+0.0	-27.7					
22 2124 000	N 42.6	+0.7	+14.2	.0.6	24.5	. 0. 0	41.0	54.0	12.0	TT '
22 2134.000	M 43.6	+0.0	+0.5	+2.6	-34.5	+0.0	41.0	54.0	-13.0	Horiz
		+0.2	+28.2	+0.4	+0.0					
22 40 7001	20.1	+0.0	+0.0	0.2			26.9	40.0	12.0	Vart
23 40.7001	M 38.1	+0.0	+0.1	+0.3	+0.0	+0.0	26.8	40.0	-13.2	Vert
QP		+0.0	+0.0	+0.0	-27.8					
^ 40 700	A 540	+0.5	+15.6	0.2			40.7	40.0	107	Vart
^ 40.7001	M 54.0	$^{+0.0}_{+0.0}$	$^{+0.1}_{+0.0}$	+0.3 +0.0	+0.0 -27.8	+0.0	42.7	40.0	+2.7	Vert
		+0.0 +0.5	+0.0 +15.6	+0.0	-27.8					
25 452.900	M 34.2	+0.0	+13.0 +0.2	+1.1	+0.0	+0.0	32.4	46.0	-13.6	Vert
25 452.900. QP	WI 54.2	+0.0 +0.0	+0.2 +0.0	$^{+1.1}_{+0.0}$	-27.9	+0.0	32.4	40.0	-15.0	ven
Qſ		+0.0 $+1.5$	+0.0 +23.3	± 0.0	-21.7					
^ 452.900	M 39.7	+1.3 +0.0	+23.3 +0.2	+1.1	+0.0	+0.0	37.9	46.0	-8.1	Vert
+52.700	J7./	+0.0 +0.0	+0.2 +0.0	$^{+1.1}_{+0.0}$	-27.9	± 0.0	51.7	+0.0	-0.1	vert
		+0.0 $+1.5$	+0.0 +23.3	± 0.0	-21.7					
27 2780.290	M 40.9	+1.3 +0.0	+23.3 +0.5	+2.9	-34.1	+0.0	40.3	54.0	-13.7	Horiz
21 2160.290	40.7		+0.3 +29.3	+2.9 +0.3	+0.0	± 0.0	40.5	Y Horz	-13.7	TIOUZ
		+0.3 +0.0	+29.3 +0.0	10.5	10.0			1 11012		
28 2683.000	M 40.8	+0.0	+0.0	+2.9	-34.2	+0.0	40.3	54.0	-13.7	Horiz
20 2005.000	40.0	+0.0 +0.4	+0.3 +29.6	+2.9 +0.3	+0.0	10.0	-U.J	54.0	-13.7	TIOUT
		+0.4 +0.0	+29.0 +0.0	10.5	10.0					
29 2708.960	M 40.6	+0.0	+0.0	+2.9	-34.1	+0.0	40.1	54.0	-13.9	Horiz
27 2100.900	40.0	+0.0 +0.5	+0.5 +29.5	+2.9 +0.2	+0.0	10.0	-10.1	Y Horz	-13.7	TIOUZ
		+0.3 +0.0	+29.3 +0.0	10.2	10.0			1 11012		
30 300.600	M 38.2	+0.0 +0.0	+0.0 +0.2	+0.9	+0.0	+0.0	32.1	46.0	-13.9	Horiz
50 500.000	50.2	+0.0 +0.0	+0.2 +0.0	+0.9 +0.0	-27.0	10.0	52.1	-0.0	-13.7	TIOUT
		+0.0 +1.2	+18.6	10.0	27.0					
		11.4	110.0							

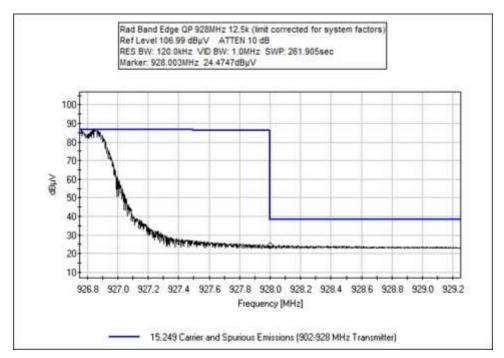
31 2747.930M	40.7	+0.0	+0.5	+2.9	-34.1	+0.0	40.1	54.0	-13.9	Horiz
51 2747.550141	-0.7	+0.5	+29.3	+0.3	+0.0	10.0	40.1	Y Horz	-15.7	HOHZ
		+0.0	+0.0	10.5	10.0			1 11012		
32 298.700M	37.5	+0.0	+0.0	+0.9	+0.0	+0.0	31.3	46.0	-14.7	Vert
32 290.700W	57.5	+0.0	+0.2 $+0.0$	+0.0	-27.0	10.0	51.5	40.0	14.7	ven
		+1.2	+18.5	10.0	27.0					
33 336.500M	35.0	+0.0	+0.2	+1.0	+0.0	+0.0	30.2	46.0	-15.8	Horiz
55 550.500101	55.0	+0.0	+0.2 $+0.0$	+0.0	-27.1	10.0	50.2	10.0	15.0	HOHE
		+1.2	+19.9		_,,,,					
34 1324.000M	45.3	+0.0	+0.3	+2.0	-35.7	+0.0	38.2	54.0	-15.8	Horiz
		+0.2	+25.4	+0.7	+0.0					
		+0.0	+0.0							
35 1831.940M	41.0	+0.0	+0.4	+2.4	-34.7	+0.0	37.5	54.0	-16.5	Horiz
		+0.3	+27.5	+0.6	+0.0			X Vert		
		+0.0	+0.0							
36 1853.600M	40.8	+0.0	+0.4	+2.4	-34.7	+0.0	37.5	54.0	-16.5	Horiz
		+0.3	+27.7	+0.6	+0.0			X Vert		
		+0.0	+0.0							
37 213.300M	35.8	+0.0	+0.1	+0.8	+0.0	+0.0	26.9	43.5	-16.6	Horiz
QP		+0.0	+0.0	+0.0	-27.2					
		+0.9	+16.5							
^ 213.300M	46.1	+0.0	+0.1	+0.8	+0.0	+0.0	37.2	43.5	-6.3	Horiz
		+0.0	+0.0	+0.0	-27.2					
		+0.9	+16.5							
39 1806.080M	40.7	+0.0	+0.4	+2.3	-34.7	+0.0	36.9		-17.1	Vert
		+0.3	+27.3	+0.6	+0.0			X Vert		
		+0.0	+0.0							
40 56.200M	36.2	+0.0	+0.1	+0.4	+0.0	+0.0	21.8	40.0	-18.2	Horiz
		+0.0	+0.0	+0.0	-27.8					
		+0.5	+12.4							
41 573.200M	27.0	+0.0	+0.2	+1.3	+0.0	+0.0	27.7	46.0	-18.3	Vert
QP		+0.0	+0.0	+0.0	-28.2					
		+1.8	+25.6							
42 573.200M	26.6	+0.0	+0.2	+1.3	+0.0	+0.0	27.3	46.0	-18.7	Vert
QP		+0.0	+0.0	+0.0	-28.2					
		+1.8	+25.6							
^ 573.200M	38.1	+0.0	+0.2	+1.3	+0.0	+0.0	38.8	46.0	-7.2	Vert
		+0.0	+0.0	+0.0	-28.2					
		+1.8	+25.6							




Band Edge

	Band Edge Summary												
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results								
902MHz	FSK 150k	Trace	33.5	<46	Pass								
928MHz	FSK 150k	Trace	33.2	<46	Pass								
902MHz	FSK 12.5k	Trace	32.5	<46	Pass								
928MHz	FSK 12.5k	Trace	32.1	<46	Pass								




Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23rd	Drive SE, Suite A • Bothell,	WA. 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.249 Carrier and Spurious	Emissions (902-928 MHz T	Fransmitter)
Work Order #:	106617	Date:	3/16/2022
Test Type:	Maximized Emissions	Time:	13:36:36
Tested By:	Michael Atkinson	Sequence#:	4
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Environmental Conditions: Temperature: 21°C Humidity: 40% Pressure: 102.5kPa

Method: ANSI C63.10 (2013)

Frequency: Band Edge

Setup:

EUT is on foam table.

EUT is connected to support laptop.

EUT is transmitting using test software on support tablet to control EUT.

XYZ axes investigated, horizontal and vertical antenna polarities investigated, worst case reported.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	AN02307	Preamp	8447D	1/6/2022	1/6/2024
T5	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T6	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	902.000M	27.1	+0.0	+0.3	+1.6	-27.4	+0.0	33.5	46.0	-12.5	Vert
	QP		+2.3	+29.6					150k		
2	928.003M	25.6	+0.0	+0.3	+1.6	-27.3	+0.0	33.2	46.0	-12.8	Vert
	QP		+2.4	+30.6					150k		
3	901.998M	26.1	+0.0	+0.3	+1.6	-27.4	+0.0	32.5	46.0	-13.5	Vert
	QP		+2.3	+29.6					12.5k		
4	928.003M	24.5	+0.0	+0.3	+1.6	-27.3	+0.0	32.1	46.0	-13.9	Vert
	QP		+2.4	+30.6					12.5k		

Test Setup Photo(s)

Below 1GHz

Below 1GHz

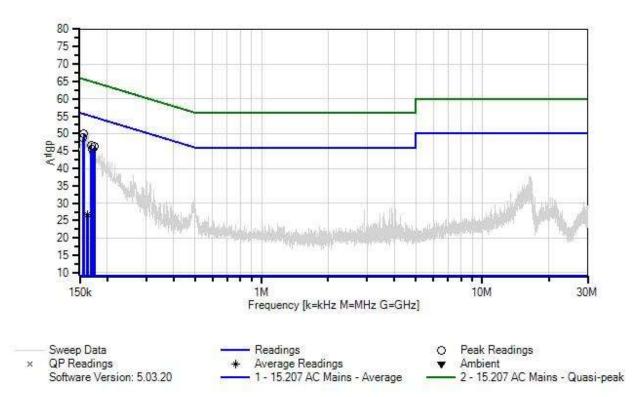
X-Axis

Y-Axis

Z-Axis

15.207 AC Conducted Emissions

Test Setup / Conditions / Data


Test Location:	CKC Laboratories • 22116 23rd E	Drive SE, Suite A • Bothell, W	WA. 98021 • 1-800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	106617	Date:	3/21/2022
Test Type:	Conducted Emissions	Time:	16:28:39
Tested By:	Michael Atkinson	Sequence#:	14
Software:	EMITest 5.03.20		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / Note	25:		
Environmental Conditi	ons:		
Temperature: 22°C			
Humidity: 42%			
Pressure: 102.4kPa			
Method: ANSI C63.10	(2013)		
Frequency: 150kHz-30	MHz		
	apport laptop. ing test software on support sentative host device connec		measurement LISN.
12.5k and 150k modula	ations investigated, worst cas	se reported.	

Itron, Inc. WO#: 106617 Sequence#: 14 Date: 3/21/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	1/5/2022	1/5/2024
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	1: Line		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	156.497k	40.1	+0.7 +0.1	+0.1	+0.0	+9.1	+0.0	50.1	55.6	-5.5	Line
2	155.135k	38.8	+0.7 +0.1	+0.1	+0.0	+9.1	+0.0	48.8	55.7	-6.9	Line
3	174.837k	36.8	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	46.4	54.7	-8.3	Line
4	169.178k	36.9	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	46.5	55.0	-8.5	Line
5	171.693k	35.9	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	45.5	54.9	-9.4	Line
6	162.995k Ave	17.0	+0.4 +0.1	+0.1	+0.0	+9.1	+0.0	26.7	55.3	-28.6	Line
7	161.947k Ave	16.8	+0.5 +0.1	+0.1	+0.0	+9.1	+0.0	26.6	55.4	-28.8	Line
^	161.946k	40.8	+0.5 +0.1	+0.1	+0.0	+9.1	+0.0	50.6	55.4	-4.8	Line
^	162.994k	40.8	+0.4 +0.1	+0.1	+0.0	+9.1	+0.0	50.5	55.3	-4.8	Line
^	158.383k	39.8	+0.6 +0.1	+0.1	+0.0	+9.1	+0.0	49.7	55.5	-5.8	Line
^	165.405k	37.9	+0.4 +0.1	+0.1	+0.0	+9.1	+0.0	47.6	55.2	-7.6	Line
^	166.872k	36.4	+0.4 +0.1	+0.1	+0.0	+9.1	+0.0	46.1	55.1	-9.0	Line

Test Location:	CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC (4362)				
Customer:	Itron, Inc.				
Specification:	15.207 AC Mains - Average				
Work Order #:	106617	Date:	3/21/2022		
Test Type:	Conducted Emissions	Time:	16:32:02		
Tested By:	Michael Atkinson	Sequence#:	15		
Software:	EMITest 5.03.20		120V 60Hz		

Equipment Tested:

Device	Manufacturer	Model #	S/N				
Configuration 1							
Support Equipment:	Support Equipment:						
Device	Manufacturer	Model #	S/N				
Configuration 1							
Test Conditions / Not	es:						
Environmental Condit	ions:						
Temperature: 22°C							
Humidity: 42%							
Pressure: 102.4kPa							
Method: ANSI C63.10	Method: ANSI C63.10 (2013)						
Frequency: 150kHz-3	OMHz						
Setup:							
EUT is on foam table.							
EUT is connected to support laptop.							
EUT is transmitting using test software on support tablet to control EUT.							
Support laptop is representative host device connected to AC mains through measurement LISN.							
12.5k and 150k modulations investigated, worst case reported.							

Itron, Inc. WO#: 106617 Sequence#: 15 Date: 3/21/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/3/2021	2/3/2023
T1	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

Measur	rement Data:	Re	ading lis	ted by ma	argin.			Test Lead	1: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	169.910k	38.6	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	48.2	55.0	-6.8	Neutr
2	171.272k	38.3	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	47.9	54.9	-7.0	Neutr
3	180.390k	37.8	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	47.4	54.5	-7.1	Neutr
4	176.932k	37.4	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	47.0	54.6	-7.6	Neutr
5	178.294k	36.7	+0.3 +0.1	+0.1	+0.0	+9.1	+0.0	46.3	54.6	-8.3	Neutr
6	203.131k	34.3	+0.1 +0.1	+0.1	+0.0	+9.1	+0.0	43.7	53.5	-9.8	Neutr
7	211.725k	33.6	+0.1 +0.1	+0.1	+0.0	+9.1	+0.0	43.0	53.1	-10.1	Neutr
8	150.628k Ave	16.6	+1.8 +0.1	+0.1	+0.0	+9.1	+0.0	27.7	56.0	-28.3	Neutr
9	152.829k Ave	16.7	+0.7 +0.1	+0.1	+0.0	+9.1	+0.0	26.7	55.8	-29.1	Neutr
^	152.828k	42.5	+0.7 +0.1	+0.1	+0.0	+9.1	+0.0	52.5	55.8	-3.3	Neutr
^	150.627k	41.3	+1.8 +0.1	+0.1	+0.0	+9.1	+0.0	52.4	56.0	-3.6	Neutr
^	156.810k	40.0	+0.6 +0.1	+0.1	+0.0	+9.1	+0.0	49.9	55.6	-5.7	Neutr

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading (dBµV)				
+	Antenna Factor	(dB/m)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBµV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.