Itron, Inc.

TEST REPORT FOR

Gas Endpoint Model: 500GR

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (FHSS 902-928 MHz)

Report No.: 103181-36

Date of issue: December 6, 2019

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 63 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	8
15.247(a) Transmitter Characteristics	8
15.247(a)(1)(i) 20 dB Bandwidth	8
15.247(a)(1) Carrier Separation	12
15.247(a)(1)(ii) Number of Hopping Channels	14
15.247(a)(1)(i) Time of Occupancy	23
15.247(b)(2) Output Power	24
15.247(d) RF Conducted Emissions & Band Edge	29
15.247(d) Radiated Emissions & Band Edge	39
Supplemental Information	62
Measurement Uncertainty	62
Emissions Test Details	62

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc. 2111 N. Molter Road Liberty Lake WA 99019 **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Jay Holcomb Customer Reference Number: 191348

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 103181

October 7, 2019 October 7-31, 2019 and November 26-27, 2019

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.12

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Japan
Canyon Park, Bothell, WA	US0081	US1022	A-0136
Brea, CA	US0060	US1025	A-0136
Fremont, CA	US0082	US1023	A-0136
Mariposa, CA	US0103	US1024	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable

NA1 = Not applicable because the EUT operates on battery power.

NP = CKC Laboratories was not contracted to perform test. See Manufacturer Declaration in Average Time of Occupancy section.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
Gas Endpoint	ltron, Inc.	500GR	103181-rmt-cond1
Support Equipment:			
Device	Manufacturer	Model #	S/N
USB to Serial Adapter	ltron, Inc.	PCB-TEMP-0007	NA
DC Power Supply	Topward	6306D	988614
Laptop AC/DC Adapter	Dell	PA-1900-02D	NA
Laptop	Dell	Latitude E6420	8P954R1

Configuration 2

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Gas Endpoint	ltron, Inc.	500GR	280101436320	

Support Equipment:				
Device	Manufacturer	Model #	S/N	
USB to Serial Adapter	ltron, Inc.	PCB-TEMP-0007	NA	
Laptop AC/DC Adapter	Dell	PA-1900-02D	NA	
Laptop	Dell	Latitude E6420	8P954R1	

General Product Information:

Product Information	Manufacturer-Provided Details	
Equipment Type:	Stand-Alone Equipment	
Type of Wideband System:	Proprietary Low power and FHSS	
	902.2 – 927.75MHz, GFSK 25kbps, power level 3, 512 channels, 50kHz	
Operating Frequency Pange:	spacing	
Operating Frequency Range.	902.2 – 927.80MHz, GFSK,50kbps, power level 3, 129 channels, 200kHz	
	spacing	
Number of Hopping Channels:	512 (25kbps) and 129 (50kbps)	
Receiver Bandwidth and	The manufacturer declares the receiver input bandwidth matches the	
Synchronization:	transmit channel bandwidth and shifts frequencies in synchronization with	
Synem onization.	the transmitter.	
Modulation Type(s):	25kbps GFSK, 50kbps GFSK	
Maximum Duty Cycle:	100%	
Number of TX Chains:	1	
Antenna Type(s) and Gain:	PCB Trace, 3.8dBi	
Beamforming Type:	NA	
Antenna Connection Type:	Integral (External connector provided to facilitate testing)	
Nominal Input Voltage:	6Vdc battery	
Firmware / Software used for Test	App Version: 5.0.4.0, CSL version: 16.0.5.0	
Filliware / Soltware used for Test.	Hardware Rev: 5	

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions					
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/14-23/2019		
Configuration:	1				
Test Setup:	The EUT is placed on test bench. The serial port is connected to a support laptop via serial to USB adapter. The laptop is running software Command Line Interface Tool to turn on TX. The EUT is powered from 6Vdc power supply to simulate fresh battery. Frequency of measurement: 902.2 to 927.8MHz				
	RBW=1kHz, 3kHz, 4.7kHz, 10kHz, 2 VBW=3kHz, 9.1kHz, 15kHz, 30kHz,	20kHz , 62kHz			

Environmental Conditions						
Temperature (^o C)	Temperature (^o C) 25.4 Relative Humidity (%): 30					

Test Equipment							
Asset#	Cal Date	Cal Due					
02672	Spectrum Analyzer	Agilent	E4446A	3/13/2019	3/13/2021		
03431	Attenuator	Aeroflex/Weinschel	89-20-21	12/19/2017	12/19/2019		
P07243	Cable	H&S	32022-29094K- 29094K-24TC	7/5/2018	7/5/2020		

15.247(a)(1)(i) 20 dB Bandwidth

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
902.2	1	25kbps GFSK Level 3	29.477	≤500	Pass
915.0	1	25kbps GFSK Level 3	29.249	≤500	Pass
927.75	1	25kbps GFSK Level 3	29.121	≤500	Pass
902.2	1	50kbps GFSK Level 3	98.421	≤500	Pass
915.0	1	50kbps GFSK Level 3	96.182	≤500	Pass
927.8	1	50kbps GFSK Level 3	97.356	≤500	Pass

Plot(s)

Low Channel, 25kbps

Middle Channel, 25kbsp

High Channel, 25kbps

Low Channel, 50kbps

Middle Channel, 50kbps

High Channel, 50kbps

15.247(a)(1) Carrier Separation

Test Data Summary								
Limit applied	Limit applied: 20dB bandwidth of the hopping channel.							
Antenna Port	Operational Mode	Modulation	Measured (kHz)	Limit (kHz)	Results			
1	Hopping	25kbps GFSK Level 3	50	>29.477	Pass			
1	Hopping	50kbps GFSK Level 3	200	>98.421	Pass			

Plot(s)

25kbsp

50kbps

15.247(a)(1)(i) Number of Hopping Channels

Test Data Summary								
$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW \ < 250 kHz \\ 25 \ Channels \ 20 \ dB \ BW \ \ge 250 kHz \end{cases}$								
Antenna Port	nna Operational Mode Modulation		Measured (Channels)	Limit (Channels)	Results			
1	Hopping	25kbps GFSK Level 3	512	≥50	Pass			
1	Hopping	50kbps GFSK Level 3	129	≥50	Pass			

Plot(s)

50kHz spacing_25k_902.2 to 903.95MHz

50kHz spacing_25k_904 to 905.95MHz

50kHz spacing_25k_906 to 907.95MHz

50kHz spacing_25k_908 to 909.95MHz

50kHz spacing_25k_910 to 911.95MHz

50kHz spacing_25k_912 to 913.95MHz

50kHz spacing_25k_914 to 915.95MHz

50kHz spacing_25k_916 to 917.95MHz

50kHz spacing_25k_918 to 919.95MHz

50kHz spacing_25k_920 to 921.95MHz

50kHz spacing_25k_922 to 923.95MHz

50kHz spacing_25k_924 to 925.95MHz

50kHz spacing_25k_926 to 927.75MHz

200kHz spacing_50k_902.2 to 910.8MHz

200kHz spacing_50k_911 to 919.8MHz

200kHz spacing_50k_920 to 927.8MHz

Test Setup Photo(s)

15.247(a)(1)(i) Time of Occupancy

CKC laboratories was not contracted to perform the testing due to the required equipment and firmware to exercise the EUT's multiple pseudo-random hopping sequences was not available and that the complexity of the different modulations and modes depend on the device to be in a fully operating network environment.

Therefore, the manufacturer declares the following:

With the multiple modulations, modes and hop tables, the mode with the worst-case Time of Occupancy to demonstrate 400mS compliance is 399.9 mS in 20 seconds, since this modulation is less than 250kHz Occupied Band Width. Each session of multiple short transmissions takes place on channels out of a minimum of 50 channels in a pseudorandom sequence. The algorithm that determines the pseudo-random hop sequence ensures all active channels are used equally on the average.

Itron Inc. employs hopping patterns based on pseudo-random sequence generators or pseudo-random hop tables.

The firmware uses the channels in the prescribed pseudo random order, therefore it maintains equal channel usage.

The system has receiver channel bandwidths that match the transmitter's modulation bandwidth that is enabled.

With the transmitter and receiver in synchronization within the network, transmitters switch frequencies in synchronization with the receiver.

When the transmitter needs to send a continuous or long data stream, total time of the packet transmissions is monitored to comply with dwell time requirement of 400ms in the appropriate 10s or 20s window depending on the modulation/mode enabled.

This device does not employ any hopping avoidance techniques.

15.247(b)(2) Output Power

Test Setup/Conditions							
Test Location:	Brea Lab A	Don Nguyen					
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/23/2019				
Configuration:	1						
Test Setup:	The EUT is placed on test bench. T to USB adapter. The laptop is runr TX. The EUT is powered from 6Vdc po Frequency of measurement: 902.2 RBW=100kHz, 200kHz VBW=300kHz, 620kHz	he serial port is conne ing software Comman wer supply to simulate to 927.8MHz	cted to a support laptop via serial d Line Interface Tool to turn on e fresh battery.				

Environmental Conditions					
Temperature (°C) 22.6 Relative Humidity (%): 47.					

Test Equipment								
Asset#	Description	Model	Cal Date	Cal Due				
02672	Spectrum Analyzer	Agilent	E4446A	3/13/2019	3/13/2021			
03431	Attenuator	Aeroflex/Weinschel	89-20-21	12/19/2017	12/19/2019			
P07243	207243 Cable H&S		32022-29094K- 29094K-24TC	7/5/2018	7/5/2020			

Test Data Summary - Voltage Variations

This equipment is battery powered. Power output tests were performed using external power supply to simulate fresh battery.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

Parameter	Value
V _{Nominal} :	6Vdc
V _{Minimum} :	6Vdc
V _{Maximum} :	6Vdc

	Test Data Summary - RF Conducted Measurement								
$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \ge 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min \ 25) \end{cases}$									
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results				
902.2	25kbps GFSK Level 3	PCB Trace, 3.8dBi	26.69	≤30	Pass				
915.0	25kbps GFSK Level 3	PCB Trace, 3.8dBi	26.80	≤30	Pass				
927.75	25kbps GFSK Level 3	PCB Trace, 3.8dBi	26.73	≤30	Pass				
902.2	50kbps GFSK Level 3	PCB Trace, 3.8dBi	26.66	≤30	Pass				
915.0	50kbps GFSK Level 3	PCB Trace, 3.8dBi	26.78	≤30	Pass				
927.8	50kbps GFSK Level 3	PCB Trace, 3.8dBi	26.73	≤30	Pass				

Plots

Low Channel, 25kbps

Middle Channel, 25kbps

High Channel, 25kbps

Low Channel, 50kbps

Middle Channel, 50kbps

High Channel, 50kbps

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Plac	e • Brea, CA 928	823 • 714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	103181	Date:	10/15/2019
Test Type:	Conducted Emissions	Time:	14:09:57
Tested By:	Don Nguyen	Sequence#:	1
Software:	EMITest 5.03.12	-	6.0Vdc

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench. The serial port is connected to a support laptop via serial to USB adapter. The laptop is running software Command Line Interface Tool to turn on TX. The EUT is powered from 6Vdc power supply to simulate fresh battery. Modulation: 25kbps GFSK Level 3 Frequency of measurement: 9kHz-9280MHz RBW=100kHz, VBW=300kHz Test Location: Brea Lab A Temperature (°C): 24.4 Relative Humidity (%): 48.0

Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T1	AN03431	Attenuator	89-20-21	12/19/2017	12/19/2019
T2	ANP07243	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		

Measu	rement Data:	Re	Reading listed by margin.				Test Lead: Antenna Port				
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1829.983M	72.1	+19.3	+0.2			+0.0	91.6	113.8	-22.2	Anten
2	1855.497M	72.0	+19.3	+0.2			+0.0	91.5	113.8	-22.3	Anten
3	1803.428M	41.2	+19.3	+0.2			+0.0	60.7	113.8	-53.1	Anten

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Place	Brea, CA 928	23 • 714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	103181	Date:	10/15/2019
Test Type:	Conducted Emissions	Time:	14:12:08
Tested By:	Don Nguyen	Sequence#:	2
Software:	EMITest 5.03.12		6.0Vdc

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench. The serial port is connected to a support laptop via serial to USB adapter. The laptop is running software Command Line Interface Tool to turn on TX. The EUT is powered from 6Vdc power supply to simulate fresh battery. Modulation: 50kbps GFSK Level 3 Frequency of measurement: 9kHz-9280MHz RBW=100kHz, VBW=300kHz Test Location: Brea Lab A Temperature (°C): 24.4 Relative Humidity (%): 48.0 Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T2	AN03431	Attenuator	89-20-21	12/19/2017	12/19/2019
T3	ANP07243	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	l Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1830.044M	72.1	+0.0	+19.3	+0.2		+0.0	91.6	113.8	-22.2	Anten
2	1855.600M	72.0	+0.0	+19.3	+0.2		+0.0	91.5	113.8	-22.3	Anten
3	1804.444M	71.5	+0.0	+19.3	+0.2		+0.0	91.0	113.8	-22.8	Anten

Band Edge

Band Edge Summary								
Limit applied:	Limit applied: Max Power/100kHz - 20dB.							
Operating Mo	ode: Single Channel (Low and High)							
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results				
902	25kbps GFSK Level 3	-15.22	<6.80	Pass				
928	25kbps GFSK Level 3	-24.06	<6.80	Pass				
902	50kbps GFSK Level 3	-2.10	<6.78	Pass				
928	50kbps GFSK Level 3	-27.44	<6.78	Pass				

|--|

Limit applied: Max Power/100kHz - 20dB.

Operating Mode: Hopping

1 0				
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results
902	25kbps GFSK Level 3	-14.90	<6.80	Pass
928	25kbps GFSK Level 3	-19.36	<6.80	Pass
902	50kbps GFSK Level 3	-2.77	<6.78	Pass
928	50kbps GFSK Level 3	-22.00	<6.78	Pass

Band Edge Plots

Low Channel, 25kbps

High Channel, 25kbps

Low Channel Hopping, 25kbps

High Channel Hopping, 25kbps

Low Channel, 50kbps

High Channel, 50kbps

Low Channel Hopping, 50kbps

High Channel Hopping, 50kbps

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N. C	Olinda Place • Brea, CA 92823	3 • 714-993-6112
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spu	rious Emissions	
Work Order #:	103181	Date: 1	0/31/2019
Test Type:	Maximized Emissions	Time: 1	1:35:58
Tested By:	Don Nguyen	Sequence#: 8	3
Software:	EMITest 5.03.12		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The EUT is placed on Styrofoam platform. The serial port is connected to a support laptop via serial to USB adapter. The laptop is running software Command Line Interface Tool to turn on TX. The EUT is powered from fresh battery 6.0Vdc. Manufacturer declares that the EUT has fixed installation orientation. Modulation: 25kbps GFSK Level 3 Frequency of measurement: 9kHz-9280MHz 9 kHz -150 kHz;RBW=200 Hz,VBW=600 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=27 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=360 kHz, 1000 MHz-9280MHz;RBW=1 MHz,VBW=3 MHz. RBW=100kHz, VBW=300kHz (-20dbc limit) Site A Test Location: Brea Lab A Temperature (°C): 24 Relative Humidity (%): 31 Test Method: ANSI C63.10 (2013)

Itron, Inc. WO#: 103181 Sequence#: 8 Date: 10/31/2019 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	5/13/2018	5/13/2020
T1	AN01995	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
T2	ANP05275	Attenuator	1W	4/5/2018	4/5/2020
Т3	ANP05198	Cable-Amplitude	8268	12/4/2018	12/4/2020
		+15C to +45C (dB)			
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T4	AN00786	Preamp	83017A	5/12/2018	5/12/2020
T5	AN00849	Horn Antenna	3115	3/14/2018	3/14/2020
T6	ANP07139	Cable	ANDL1-	3/4/2019	3/4/2021
			PNMNM-48		
T7	ANP07244	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		
Т8	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021
	AN00309	Preamp	8447D	2/19/2018	2/19/2020
	ANP05050	Cable	RG223/U	12/24/2018	12/24/2020

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	168.040M	23.4	+10.0	+6.0	+2.4	+0.0	+0.0	41.8	43.5	-1.7	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
^	168.040M	24.9	+10.0	+6.0	+2.4	+0.0	+0.0	43.3	43.5	-0.2	Vert
			+0.0	+0.0	+0.0	+0.0					
3	252.060M	22.2	+12.9	+6.0	+2.9	+0.0	+0.0	44.0	46.0	-2.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
4	172.910M	23.3	+9.7	+6.0	+2.4	+0.0	+0.0	41.4	43.5	-2.1	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
^	172.910M	25.3	+9.7	+6.0	+2.4	+0.0	+0.0	43.4	43.5	-0.1	Vert
			+0.0	+0.0	+0.0	+0.0					
6	163.165M	22.6	+10.4	+6.0	+2.3	+0.0	+0.0	41.3	43.5	-2.2	Horiz
	QP		+0.0	+0.0	+0.0	+0.0					
^	163.165M	27.1	+10.4	+6.0	+2.3	+0.0	+0.0	45.8	43.5	+2.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
8	4511.000M	51.2	+0.0	+0.0	+0.0	-37.8	+0.0	51.7	54.0	-2.3	Vert
			+32.9	+4.5	+0.7	+0.2					
9	241.110M	21.8	+12.3	+6.0	+2.9	+0.0	+0.0	43.0	46.0	-3.0	Vert
			+0.0	+0.0	+0.0	+0.0					
10	172.915M	22.3	+9.7	+6.0	+2.4	+0.0	+0.0	40.4	43.5	-3.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
11	4575.000M	49.8	+0.0	+0.0	+0.0	-37.8	+0.0	50.5	54.0	-3.5	Horiz
			+33.0	+4.6	+0.7	+0.2					
12	4511.000M	50.0	+0.0	+0.0	+0.0	-37.8	+0.0	50.5	54.0	-3.5	Horiz
			+32.9	+4.5	+0.7	+0.2					
13	4575.000M	49.8	+0.0	+0.0	+0.0	-37.8	+0.0	50.5	54.0	-3.5	Vert
			+33.0	+4.6	+0.7	+0.2					

14	243.565M	20.9	+12.5	+6.0	+2.9	+0.0	+0.0	42.3	46.0	-3.7	Horiz
	QP		+0.0	+0.0	+0.0	+0.0					
^	243.565M	24.8	+12.5	+6.0	+2.9	+0.0	+0.0	46.2	46.0	+0.2	Horiz
			+0.0	+0.0	+0.0	+0.0					
16	4638.750M	49.7	+0.0	+0.0	+0.0	-37.7	+0.0	50.3	54.0	-3.7	Vert
			+32.8	+4.7	+0.6	+0.2					
17	4638.750M	49.1	+0.0	+0.0	+0.0	-37.7	+0.0	49.7	54.0	-4.3	Horiz
			+32.8	+4.7	+0.6	+0.2					
18	269.110M	18.4	+13.1	+6.0	+3.0	+0.0	+0.0	40.5	46.0	-5.5	Vert
			+0.0	+0.0	+0.0	+0.0					
19	247.185M	18.7	+12.7	+6.0	+2.9	+0.0	+0.0	40.3	46.0	-5.7	Vert
			+0.0	+0.0	+0.0	+0.0					
20	2745.000M	51.9	+0.0	+0.0	+0.0	-38.6	+0.0	46.7	54.0	-7.3	Vert
			+29.4	+3.4	+0.4	+0.2					
21	2783.250M	51.7	+0.0	+0.0	+0.0	-38.6	+0.0	46.7	54.0	-7.3	Horiz
			+29.5	+3.5	+0.4	+0.2					
22	2745.000M	51.3	+0.0	+0.0	+0.0	-38.6	+0.0	46.1	54.0	-7.9	Horiz
			+29.4	+3.4	+0.4	+0.2					
23	2706.600M	51.1	+0.0	+0.0	+0.0	-38.6	+0.0	45.6	54.0	-8.4	Vert
			+29.1	+3.4	+0.4	+0.2					
24	2706.600M	50.3	+0.0	+0.0	+0.0	-38.6	+0.0	44.8	54.0	-9.2	Horiz
			+29.1	+3.4	+0.4	+0.2					
25	3711.000M	44.9	+0.0	+0.0	+0.0	-38.3	+0.0	43.3	54.0	-10.7	Vert
			+31.9	+4.1	+0.5	+0.2					
26	3660.000M	44.4	+0.0	+0.0	+0.0	-38.3	+0.0	42.5	54.0	-11.5	Horiz
			+31.6	+4.1	+0.5	+0.2					
27	3711.000M	44.0	+0.0	+0.0	+0.0	-38.3	+0.0	42.4	54.0	-11.6	Horiz
			+31.9	+4.1	+0.5	+0.2					
28	3660.000M	44.2	+0.0	+0.0	+0.0	-38.3	+0.0	42.3	54.0	-11.7	Vert
			+31.6	+4.1	+0.5	+0.2					
29	2783.250M	47.1	+0.0	+0.0	+0.0	-38.6	+0.0	42.1	54.0	-11.9	Vert
	Ave		+29.5	+3.5	+0.4	+0.2					
^	2783.250M	56.4	+0.0	+0.0	+0.0	-38.6	+0.0	51.4	54.0	-2.6	Vert
			+29.5	+3.5	+0.4	+0.2					
31	3608.800M	44.0	+0.0	+0.0	+0.0	-38.4	+0.0	41.5	54.0	-12.5	Vert
			+31.1	+4.1	+0.6	+0.1					
32	3608.800M	43.7	+0.0	+0.0	+0.0	-38.4	+0.0	41.2	54.0	-12.8	Horiz
			+31.1	+4.1	+0.6	+0.1					
33	1855.500M	71.5	+0.0	+0.0	+0.0	-38.9	+0.0	63.0	105.8	-42.8	Vert
			+27.3	+2.7	+0.2	+0.2					
34	1830.000M	70.3	+0.0	+0.0	+0.0	-38.9	+0.0	61.5	105.8	-44.3	Vert
			+27.1	+2.6	+0.2	+0.2					
35	1855.500M	67.8	+0.0	+0.0	+0.0	-38.9	+0.0	59.3	105.8	-46.5	Horiz
			+27.3	+2.7	+0.2	+0.2					
36	1804.400M	67.9	+0.0	+0.0	+0.0	-38.9	+0.0	59.0	105.8	-46.8	Vert
			+27.0	+2.6	+0.2	+0.2					
37	1830.000M	65.3	+0.0	+0.0	+0.0	-38.9	+0.0	56.5	105.8	-49.3	Horiz
			+27.1	+2.6	+0.2	+0.2					
38	1804.400M	62.8	+0.0	+0.0	+0.0	-38.9	+0.0	53.9	105.8	-51.9	Horiz
			+27.0	+2.6	+0.2	+0.2					

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112						
Customer:	Itron, Inc.						
Specification:	15.247(d) / 15.209 Radiated Spurio	ous Emissions					
Work Order #:	103181	Date:	10/23/2019				
Test Type:	Maximized Emissions	Time:	14:02:54				
Tested By:	Don Nguyen	Sequence#:	9				
Software:	EMITest 5.03.12						

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The EUT is placed on Styrofoam platform. The serial port is connected to a support laptop via serial to USB adapter. The laptop is running software Command Line Interface Tool to turn on TX. The EUT is powered from fresh battery 6.0Vdc. Manufacturer declares that the EUT has fixed installation orientation. Modulation: 50kbps GFSK Level 3 Frequency of measurement: 9kHz-9280MHz 9 kHz -150 kHz;RBW=200 Hz,VBW=600 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=27 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=360 kHz, 1000 MHz-9280MHz;RBW=1 MHz,VBW=3 MHz. RBW=100kHz, VBW=300kHz (-20dbc limit) Site A Brea Lab A Temperature (°C): 24 Test Location: Relative Humidity (%): 31 ANSI C63.10 (2013) Test Method:

Itron, Inc. WO#: 103181 Sequence#: 9 Date: 10/23/2019 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	5/13/2018	5/13/2020
T1	AN01995	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
T2	ANP05275	Attenuator	1W	4/5/2018	4/5/2020
Т3	ANP05198	Cable-Amplitude	8268	12/4/2018	12/4/2020
		+15C to +45C (dB)			
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T4	AN00786	Preamp	83017A	5/12/2018	5/12/2020
T5	AN00849	Horn Antenna	3115	3/14/2018	3/14/2020
T6	ANP07139	Cable	ANDL1-	3/4/2019	3/4/2021
			PNMNM-48		
T7	ANP07244	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		
Т8	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021
	AN00309	Preamp	8447D	2/19/2018	2/19/2020
	ANP05050	Cable	RG223/U	12/24/2018	12/24/2020

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	168.040M	23.4	+10.0	+6.0	+2.4	+0.0	+0.0	41.8	43.5	-1.7	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
^	168.040M	24.9	+10.0	+6.0	+2.4	+0.0	+0.0	43.3	43.5	-0.2	Vert
			+0.0	+0.0	+0.0	+0.0					
3	252.060M	22.2	+12.9	+6.0	+2.9	+0.0	+0.0	44.0	46.0	-2.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
4	172.910M	23.3	+9.7	+6.0	+2.4	+0.0	+0.0	41.4	43.5	-2.1	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
^	172.910M	25.3	+9.7	+6.0	+2.4	+0.0	+0.0	43.4	43.5	-0.1	Vert
			+0.0	+0.0	+0.0	+0.0					
6	163.165M	22.6	+10.4	+6.0	+2.3	+0.0	+0.0	41.3	43.5	-2.2	Horiz
	QP		+0.0	+0.0	+0.0	+0.0					
^	163.165M	27.1	+10.4	+6.0	+2.3	+0.0	+0.0	45.8	43.5	+2.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
8	4511.025M	51.0	+0.0	+0.0	+0.0	-37.8	+0.0	51.5	54.0	-2.5	Vert
			+32.9	+4.5	+0.7	+0.2					
9	241.110M	21.8	+12.3	+6.0	+2.9	+0.0	+0.0	43.0	46.0	-3.0	Vert
			+0.0	+0.0	+0.0	+0.0					
10	172.915M	22.3	+9.7	+6.0	+2.4	+0.0	+0.0	40.4	43.5	-3.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
11	4511.000M	50.1	+0.0	+0.0	+0.0	-37.8	+0.0	50.6	54.0	-3.4	Horiz
			+32.9	+4.5	+0.7	+0.2					
12	4639.000M	49.8	+0.0	+0.0	+0.0	-37.7	+0.0	50.4	54.0	-3.6	Horiz
			+32.8	+4.7	+0.6	+0.2					
13	4575.000M	49.6	+0.0	+0.0	+0.0	-37.8	+0.0	50.3	54.0	-3.7	Vert
			+33.0	+4.6	+0.7	+0.2					

14 243 565	M 20.9	+12.5	+6.0	+2.9	+0.0	+0.0	42.3	46.0	-37	Horiz
OP	20.9	+0.0	+0.0	+0.0	+0.0	10.0	72.5	40.0	5.7	TIOUTZ
^ 243 565	M 24.8	+12.5	+6.0	+2.9	+0.0	+0.0	46.2	46.0	+0.2	Horiz
243.303	NI 24.0	+0.0	+0.0	+0.0	+0.0	10.0	40.2	+0.0	10.2	HOLL
16 4575 000	M 494	+0.0	+0.0	+0.0	-37.8	+0.0	50.1	54.0	-39	Horiz
10 10/0.000		+33.0	+4.6	+0.0	+0.2	10.0	50.1	2110	5.7	HOLE
17 4639.000	M 49.4	+0.0	+0.0	+0.0	-37.7	+0.0	50.0	54.0	-4.0	Vert
		+32.8	+4.7	+0.6	+0.2					
18 2783.400	M 54.1	+0.0	+0.0	+0.0	-38.6	+0.0	49.1	54.0	-4.9	Vert
		+29.5	+3.5	+0.4	+0.2					
19 269.110	M 18.4	+13.1	+6.0	+3.0	+0.0	+0.0	40.5	46.0	-5.5	Vert
		+0.0	+0.0	+0.0	+0.0					
20 247.185	M 18.7	+12.7	+6.0	+2.9	+0.0	+0.0	40.3	46.0	-5.7	Vert
		+0.0	+0.0	+0.0	+0.0					
21 2706.625	M 53.6	+0.0	+0.0	+0.0	-38.6	+0.0	48.1	54.0	-5.9	Vert
		+29.1	+3.4	+0.4	+0.2					
22 2783.400	M 52.2	+0.0	+0.0	+0.0	-38.6	+0.0	47.2	54.0	-6.8	Horiz
		+29.5	+3.5	+0.4	+0.2					
23 2745.000	M 51.8	+0.0	+0.0	+0.0	-38.6	+0.0	46.6	54.0	-7.4	Vert
		+29.4	+3.4	+0.4	+0.2					
24 2745.000	M 51.3	+0.0	+0.0	+0.0	-38.6	+0.0	46.1	54.0	-7.9	Horiz
		+29.4	+3.4	+0.4	+0.2					
25 2706.600	M 50.7	+0.0	+0.0	+0.0	-38.6	+0.0	45.2	54.0	-8.8	Horiz
		+29.1	+3.4	+0.4	+0.2					
26 3711.200	M 45.5	+0.0	+0.0	+0.0	-38.3	+0.0	43.9	54.0	-10.1	Horiz
		+31.9	+4.1	+0.5	+0.2					
27 3711.200	M 44.6	+0.0	+0.0	+0.0	-38.3	+0.0	43.0	54.0	-11.0	Vert
		+31.9	+4.1	+0.5	+0.2					
28 3660.000	M 44.9	+0.0	+0.0	+0.0	-38.3	+0.0	43.0	54.0	-11.0	Horiz
		+31.6	+4.1	+0.5	+0.2					
29 3660.000	M 43.9	+0.0	+0.0	+0.0	-38.3	+0.0	42.0	54.0	-12.0	Vert
		+31.6	+4.1	+0.5	+0.2					
30 3608.825	M 43.8	+0.0	+0.0	+0.0	-38.4	+0.0	41.3	54.0	-12.7	Vert
		+31.1	+4.1	+0.6	+0.1					
31 3608.800	M 43.5	+0.0	+0.0	+0.0	-38.4	+0.0	41.0	54.0	-13.0	Horiz
		+31.1	+4.1	+0.6	+0.1			1070		
32 1855.600	M 70.8	+0.0	+0.0	+0.0	-38.9	+0.0	62.3	105.8	-43.5	Vert
22 1020 000		+27.3	+2.7	+0.2	+0.2		<i>c1 1</i>	1050		
33 1830.000	M 70.2	+0.0	+0.0	+0.0	-38.9	+0.0	61.4	105.8	-44.4	Vert
24 1055 (00		+27.1	+2.6	+0.2	+0.2	.0.0	50.0	105.0	16.6	
34 1855.600	IVI 67.7	+0.0	+0.0	+0.0	-38.9	+0.0	59.2	105.8	-46.6	Horiz
25 1004 125	M (7.2	+21.3	+2.1	+0.2	+0.2	.0.0	E0.4	105.0	47 4	X 7 ·
35 1804.425	M 67.3	+0.0	+0.0	+0.0	-38.9	+0.0	58.4	105.8	-47.4	vert
26 1020.000	M (4.9	+27.0	+2.0	+0.2	+0.2		500	105.0	40.0	II.
30 1830.000	04.8	+0.0	+0.0	+0.0	-38.9	+0.0	30.0	105.8	-49.8	HOPIZ
27 1904 400	M 620	+2/.1	+2.0	+0.2	+0.2		54.0	105.9	50.0	Homia
57 1804.400	03.8	+0.0	+0.0	+0.0	-38.9	+0.0	54.9	105.8	-30.9	HOLIZ
		+21.0	+2.6	+0.2	+0.2					

Band Edge

	Band Edge Summary							
Operating Mode: Single Channel (Low and High)								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	25kbps GFSK Level 3	PCB Trace	39.9	<46	Pass			
902	25kbps GFSK Level 3	PCB Trace	82.2	<105.8	Pass			
928	25kbps GFSK Level 3	PCB Trace	76.8	<105.8	Pass			
960	25kbps GFSK Level 3	PCB Trace	46.8	<54	Pass			
614	50kbps GFSK Level 3	PCB Trace	40.3	<46	Pass			
902	50kbps GFSK Level 3	PCB Trace	89.3	<105.8	Pass			
928	50kbps GFSK Level 3	PCB Trace	80.0	<105.8	Pass			
960	50kbps GFSK Level 3	PCB Trace	44.9	<54	Pass			

Band Edge Summary								
Operating Mo	Operating Mode: Hopping							
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	25kbps GFSK Level 3	PCB Trace	40.0	<46	Pass			
902	25kbps GFSK Level 3	PCB Trace	82.9	<105.8	Pass			
928	25kbps GFSK Level 3	PCB Trace	79.9	<105.8	Pass			
960	25kbps GFSK Level 3	PCB Trace	50.0	<54	Pass			
614	50kbps GFSK Level 3	PCB Trace	41.8	<46	Pass			
902	50kbps GFSK Level 3	PCB Trace	90.3	<105.8	Pass			
928	50kbps GFSK Level 3	PCB Trace	81.3	<105.8	Pass			
960	50kbps GFSK Level 3	PCB Trace	47.4	<54	Pass			

Band Edge Plots

Page 52 of 63 Report No.: 103181-36

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112						
Customer:	Itron, Inc.						
Specification:	15.247(d) / 15.209 Radiated Spur	ious Emissions					
Work Order #:	103181	Date: 10/22/2019					
Test Type:	Maximized Emissions	Time: 11:06:21					
Tested By:	Don Nguyen	Sequence#: 7					
Software:	EMITest 5.03.12	-					

Equipment Tested:

1 1				
Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Equipment:				

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The EUT is placed on Styrofoam platform. The serial port is connected to a support laptop via serial to USB adapter. The laptop is running software Command Line Interface Tool to turn on TX. The EUT is powered from fresh battery 6.0Vdc. Modulation: 25kbps GFSK Level 3

Frequency of measurement: 614MHz-960MHz RBW=100kHz, VBW=300kHz (-20dBc limit) RBW=120kHz, VBW=360kHz (restricted band limit)

Test Location:Brea Lab ATemperature (°C):24Relative Humidity (%):31Test Method:ANSI C63.10 (2013)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01995	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
T2	ANP05275	Attenuator	1W	4/5/2018	4/5/2020
T3	ANP05198	Cable-Amplitude	8268	12/4/2018	12/4/2020
		+15C to +45C (dB)			
T4	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021

Measu	rement Data:	Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	960.000M	14.1	+23.7	+6.1	+6.1	+0.0	+0.0	50.0	54.0	-4.0	Vert
									hopping		
2	614.000M	9.3	+20.0	+6.0	+4.7	+0.0	+0.0	40.0	46.0	-6.0	Vert
									hopping		
3	614.000M	9.2	+20.0	+6.0	+4.7	+0.0	+0.0	39.9	46.0	-6.1	Vert
4	960.000M	10.9	+23.7	+6.1	+6.1	+0.0	+0.0	46.8	54.0	-7.2	Vert
5	902.000M	48.1	+22.8	+6.1	+5.9	+0.0	+0.0	82.9	105.8	-22.9	Vert
									hopping		
6	902.000M	47.4	+22.8	+6.1	+5.9	+0.0	+0.0	82.2	105.8	-23.6	Vert
7	928.000M	44.6	+23.2	+6.1	+6.0	+0.0	+0.0	79.9	105.8	-25.9	Vert
									hopping		
8	928.000M	41.5	+23.2	+6.1	+6.0	+0.0	+0.0	76.8	105.8	-29.0	Vert

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112					
Customer:	Itron, Inc.					
Specification:	15.247(d) / 15.209 Radiated Spurious Emiss	sions				
Work Order #:	103181	Date:	10/22/2019			
Test Type:	Maximized Emissions	Time:	11:02:15			
Tested By:	Don Nguyen	Sequence#:	8			
Software:	EMITest 5.03.12					

Equipment Tested:

Device	Manufacturer	Model #	S/N			
Configuration 2						
Support Equipment:						
Device	Manufacturer	Model #	S/N			
Configuration 2						
Test Conditions / Notes:						
The EUT is placed on St	tyrofoam platform. The	e serial port is connected	to a support laptop via serial to USB			
adapter. The laptop is running software Command Line Interface Tool to turn on TX.						
The EUT is powered from	fresh battery 6.0Vdc.					
Modulation: 50kbps GFSK	Level 3					

Frequency of measurement: 614MHz-960MHz RBW=100kHz, VBW=300kHz (-20dBc limit) RBW=120kHz, VBW=360kHz (restricted band limit)

Test Location:Brea Lab ATemperature (°C):24Relative Humidity (%):31Test Method:ANSI C63.10 (2013)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01995	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
T2	ANP05275	Attenuator	1W	4/5/2018	4/5/2020
T3	ANP05198	Cable-Amplitude	8268	12/4/2018	12/4/2020
		+15C to +45C (dB)			
T4	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021

Measur	rement Data:	Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	614.000M	11.1	+20.0	+6.0	+4.7	+0.0	+0.0	41.8	46.0	-4.2	Vert
									hopping		
2	614.000M	9.6	+20.0	+6.0	+4.7	+0.0	+0.0	40.3	46.0	-5.7	Vert
3	960.000M	11.5	+23.7	+6.1	+6.1	+0.0	+0.0	47.4	54.0	-6.6	Vert
									hopping		
4	960.000M	9.0	+23.7	+6.1	+6.1	+0.0	+0.0	44.9	54.0	-9.1	Vert
5	902.000M	55.5	+22.8	+6.1	+5.9	+0.0	+0.0	90.3	105.8	-15.5	Vert
									hopping		
6	902.000M	54.5	+22.8	+6.1	+5.9	+0.0	+0.0	89.3	105.8	-16.5	Vert
7	928.000M	46.0	+23.2	+6.1	+6.0	+0.0	+0.0	81.3	105.8	-24.5	Vert
									hopping		
8	928.000M	44.7	+23.2	+6.1	+6.0	+0.0	+0.0	80.0	105.8	-25.8	Vert

Test Setup Photo(s)

Below 1GHz

Below 1GHz

Above 1GHz

Above 1GHz

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
Meter reading (dBµV)							
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBµV/m)					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.