Itron, Inc.

TEST REPORT FOR

Gas Endpoint
Model: 500GC

Tested To The Following Standards:
 FCC Part 15 Subpart C Section(s)

15.247
(FHSS 902-928 MHz)

Report No.: 98972-4

Date of issue: September 6, 2016

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 6
FCC Part 15 Subpart C 7
15.247(d) Radiated Emissions \& Band Edge 7
Supplemental Information 27
Measurement Uncertainty 27
Emissions Test Details 27

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Iron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

REPRESENTATIVE: Jay Holcomb
Customer Reference Number: 104538

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Terri Rayle
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 98971

August 24, 2016
August 24-26, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .02

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Brea D	USO060	SL2-IN-E-1146R	$3082 D-2$	100638	A-0147

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	NP
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	NP
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	NP
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable
NA1 = Not applicable because the EUT only operates on battery power.
NP = CKC Laboratories was not contracted to perform test.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

LABORATORIES, INC.

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gas Endpoint	Itron, Inc.	500 GC	NA

Support Equipment:

Device	Manufacturer	Model \#
None		S/N

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	$902-928 \mathrm{MHz}$
Number of Hopping Channels:	See supplemental report
Modulation Type(s):	CW, OOK
Maximum Duty Cycle:	See supplemental report.
Number of TX Chains:	1
Antenna Type(s) and Gain:	See supplemental report
Beamforming Type:	None
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery, 6.3Vdc
Firmware / Software used for Test:	App Version: 1.9.13.174

FCC Part 15 Subpart C

15.247(d) Radiated Emissions \& Band Edge

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d)/ 15.209 Radiated Spurious Emissions

98972
Maximized Emissions
Don Nguyen
EMITest 5.03.02

Date: 8/26/2016
Time: 14:18:19
Sequence\#: 7

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

The EUT is placed on a Styrofoam platform at 0.8 m in height for measurement below 1 GHz and 1.5 m in height for measurement above 1 GHz . The EUT is turned on and set in transmitting mode.
The EUT has fresh battery installed. Nominal input voltage is 6.3 Vdc .
The EUT is tested in preferred orientation declared by the manufacturer.
Operating frequency: $903,910,915$, and 926.8 MHz . Modulation: OOK
Rated power output: +10 dBm
Frequency range of measurement $=9 \mathrm{kHz}-9.28 \mathrm{GHz}$
$9 \mathrm{kHz}-150 \mathrm{kHz}, \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=600 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=27 \mathrm{kHz}$
$30 \mathrm{MHz}-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$ (peak detector), $\mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=1 \mathrm{MHz}(\mathrm{QP}$ detector) $1000 \mathrm{MHz}-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$

Test environment conditions:
Temperature: $26^{\circ} \mathrm{C}$
Relative Humidity: 46\%
Pressure: 100 kPa

Site D
Test Method: ANSI C63.10 (2013)

Note: The highest fundamental power is measured at $102.4 \mathrm{dBuV} / \mathrm{m}$.

Itron, Inc WO\#: 98972 Sequence\#f: 7 Date: 8/26/2016
15.247(d)/ 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

[^0]O Peak Readings

* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$5 / 20 / 2016$	$5 / 20 / 2018$
	AN00010	Preamp	8447D	$3 / 14 / 2016$	$3 / 14 / 2018$
	AN01992	Biconilog Antenna	CBL6111C	$12 / 4 / 2014$	$12 / 4 / 2016$
	ANP05283	Attenuator	ATT-0218-06-	$5 / 5 / 2016$	$5 / 5 / 2018$
			NNN-02		
	ANP05555	Cable	RG223/U	$4 / 5 / 2016$	$4 / 5 / 2018$
	ANP05569	Cable	RG-214/U	$4 / 4 / 2016$	$4 / 4 / 2018$
T1	AN02467	Spectrum Analyzer	E7405A	$5 / 10 / 2016$	$5 / 10 / 2017$
T2	ANP04382	Cable	LDF-50	$6 / 6 / 2016$	$6 / 6 / 2018$
T3	AN00787	Preamp	$83017 A$	$6 / 10 / 2015$	$6 / 10 / 2017$
T4	AN01646	Horn Antenna	3115	$3 / 4 / 2016$	$3 / 4 / 2018$
T5	ANP05563	Cable	ANDL-1-PNMN-	$6 / 6 / 2016$	$6 / 6 / 2018$
			Cable	PHASEFLEX	$4 / 5 / 2016$
T6	ANP06977		High Pass Filter	HM1155-11SS	$6 / 24 / 2015$
T7	AN03169			$4 / 5 / 2018$	

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { T7 } \\ & \text { dB } \\ & \hline \end{aligned}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	2709.000M	56.1	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -39.9 \\ +0.2 \end{array}$	+26.3	+0.0	52.1	$54.0{ }^{-1.9}$ OOK, 10 dBm, 903 MHz	Horiz
2	4575.004M	49.9	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +8.6 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-40.2 \\ +0.1 \end{array}$	+29.9	+0.0	52.1	$\quad 54.0 \quad-1.9$ OOK, 10 dBm, 915 MHz	Vert
3	3707.192M	53.2	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	$\begin{aligned} & \hline+7.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -40.4 \\ +0.1 \end{array}$	+28.0	+0.0	52.0	$\quad 54.0 \quad-2.0$ OOK, 10 dBm, 926.8 MHz	Horiz
4	3707.221M	52.9	$\begin{aligned} & \hline+0.0 \\ & +3.1 \end{aligned}$	$\begin{aligned} & \hline+7.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -40.4 \\ +0.1 \end{array}$	+28.0	+0.0	51.7	$\quad 54.0 \quad-2.3$ OOK, 10 dBm, 926.8 MHz	Vert
5	5458.827M	44.1	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +9.5 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-40.1 \\ +0.2 \end{array}$	+31.4	+0.0	49.5	$54.0{ }^{-4.5}$ OOK, 10 dBm, 910 MHz	Vert
6	4575.016M	47.0	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +8.6 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -40.2 \\ +0.1 \end{array}$	+29.9	+0.0	49.2	$54.0{ }^{-4.8}$ OOK, 10 dBm, 915 MHz	Horiz
7	4549.020M	47.1	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & +8.5 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-40.2 \\ +0.1 \end{array}$	+29.9	+0.0	49.1	$\quad 54.0 \quad-4.9$ OOK, 10 dBm, 910 MHz	Horiz
8	4633.992M	46.7	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+8.6 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline-40.2 \\ +0.1 \end{array}$	+29.9	+0.0	49.0	$54.0{ }^{-5.0}$ OOK, 10 dBm, 926.8 MHz	Horiz
9	5417.996M	43.8	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +9.4 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-40.1 \\ +0.2 \end{array}$	+31.3	+0.0	49.0	$\quad 54.0 \quad-5.0$ OOK, 10 dBm, 903 MHz	Vert

$10 \quad 5458.869 \mathrm{M}$	42.5	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +9.5 \\ & +0.7 \end{aligned}$	$\begin{gathered} -40.1 \\ +0.2 \end{gathered}$	+31.4	+0.0	47.9	$\quad 54.0 \quad{ }^{-6.1}$ OOK, 10 dBm, 910 MHz	Horiz
115418.013 M	42.4	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & \hline+9.4 \\ & +0.7 \end{aligned}$	$\begin{aligned} & -40.1 \\ & +0.2 \end{aligned}$	+31.3	$+0.0$	47.6	$\quad 54.0 \quad-6.4$ OOK, 10 dBm, 903 MHz	Horiz
124515.013 M	45.1	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & +8.5 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -40.2 \\ +0.1 \end{array}$	+29.9	$+0.0$	47.1	$54.0 \quad-6.9$ OOK, 10 dBm, 903 MHz	Horiz
$\begin{aligned} & 138127.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.4	$\begin{array}{r} +0.0 \\ +5.4 \end{array}$	$\begin{array}{r} \hline+11.9 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+34.1	$+0.0$	39.8	$54.0 \quad-14.2$ OOK, 10 dBm, 903 MHz	Vert
$\wedge 8127.000 \mathrm{M}$	43.7	$\begin{aligned} & +0.0 \\ & +5.4 \end{aligned}$	$\begin{array}{r} \hline+11.9 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+34.1	+0.0	56.1	$54.0 \quad+2.1$ OOK, 10 dBm, 903 MHz	Vert
$\begin{aligned} & 15 \text { 8341.192M } \\ & \text { Ave } \end{aligned}$	22.9	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.2 \\ +0.8 \end{array}$	$\begin{array}{r} \hline-39.9 \\ +0.3 \end{array}$	+34.8	$+0.0$	36.7	$\quad 54.0{ }^{-17.3}$ OOK, 10 dBm, 926.8 MHz	Horiz
^ 8341.192M	42.8	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.2 \\ +0.8 \end{array}$	$\begin{array}{r} -39.9 \\ +0.3 \end{array}$	+34.8	$+0.0$	56.6	$\quad 54.0 \quad+2.6$ $00 K, 10 \mathrm{dBm}$, 926.8 MHz	Horiz
$\begin{aligned} & 17 \text { 8235.012M } \\ & \text { Ave } \end{aligned}$	23.4	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.1 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.3 \end{array}$	+34.5	$+0.0$	36.7	$54.0 \quad-17.3$ OOK, 10 dBm, 915 MHz	Horiz
^ 8235.012M	42.7	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.1 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.3 \end{array}$	+34.5	$+0.0$	56.0	$54.0 \quad+2.0$ OOK, 10 dBm, 915 MHz	Horiz
$\begin{aligned} & 19 \text { 8188.252M } \\ & \text { Ave } \end{aligned}$	22.8	$\begin{aligned} & +0.0 \\ & +5.5 \end{aligned}$	$\begin{array}{r} \hline+12.0 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.3 \end{array}$	+34.3	$+0.0$	35.7	$54.0 \quad-18.3$ OOK, 10 dBm, 910 MHz	Horiz
^ 8188.252M	44.4	$\begin{array}{r} +0.0 \\ +5.5 \end{array}$	$\begin{array}{r} \hline+12.0 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.3 \end{array}$	+34.3	$+0.0$	57.3	$54.0 \quad{ }^{+3.3}$ OOK, 10 dBm, 910 MHz	Horiz
$\begin{aligned} & 21 \text { 8235.012M } \\ & \text { Ave } \end{aligned}$	22.3	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.1 \\ +0.8 \end{array}$	$\begin{array}{r} \hline-40.0 \\ +0.3 \end{array}$	+34.5	$+0.0$	35.6	$\quad 54.0 \quad-18.4$ OOK, 10 dBm, 915 MHz	Vert
^ 8235.012M	42.3	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.1 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.3 \end{array}$	+34.5	+0.0	55.6	$\begin{aligned} & 54.0 \quad+1.6 \\ & \mathrm{OOK}, 10 \mathrm{dBm}, \\ & 915 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
$\begin{aligned} & 238127.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$		$\begin{aligned} & +0.0 \\ & +5.4 \end{aligned}$	$\begin{array}{r} \hline+11.9 \\ +0.8 \end{array}$	$\begin{array}{r} \hline-40.0 \\ +0.2 \end{array}$	+34.1	$+0.0$	34.2	$\quad 54.0 \quad-19.8$ OOK, 10 dBm, 903MHz	Horiz
^ 8127.000M	44.9	$\begin{aligned} & \hline+0.0 \\ & +5.4 \end{aligned}$	$\begin{array}{r} \hline+11.9 \\ +0.8 \end{array}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+34.1	$+0.0$	57.3	$54.0 \quad{ }^{+3.3}$ OOK, 10 dBm, 903 MHz	Horiz
$\begin{aligned} & 258341.246 \mathrm{M} \\ & \text { Ave } \end{aligned}$		$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.2 \\ +0.8 \end{array}$	$\begin{array}{r} -39.9 \\ +0.3 \end{array}$	+34.8	$+0.0$	33.3	$54.0{ }^{-20.7}$ OOK, 10 dBm, 926.8 MHz	Vert
^ 8341.246M	42.7	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$\begin{array}{r} \hline+12.2 \\ +0.8 \end{array}$	$\begin{array}{r} -39.9 \\ +0.3 \end{array}$	+34.8	+0.0	56.5	$\quad 54.0 \quad+2.5$ OOK, 10 dBm, 926.8 MHz	Vert

$\begin{aligned} & 274548.990 \mathrm{M} \\ & \text { Ave } \end{aligned}$	30.6	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & +8.5 \\ & +0.5 \end{aligned}$	$\begin{gathered} \hline-40.2 \\ +0.1 \end{gathered}$	+29.9	$+0.0$	32.6	$\begin{aligned} & 54.0 \quad-21.4 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \end{aligned}$	Vert
^ 4548.990 M	52.4	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & +8.5 \\ & +0.5 \end{aligned}$	$\begin{array}{r} \hline-40.2 \\ +0.1 \end{array}$	+29.9	$+0.0$	54.4	$\begin{aligned} & \quad 54.0 \quad{ }^{+0.4} \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \end{aligned}$	Vert
$\begin{aligned} & 29 \text { 4514.996M } \\ & \text { Ave } \end{aligned}$	30.3	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & \hline+8.5 \\ & +0.5 \end{aligned}$	$\begin{gathered} \hline-40.2 \\ +0.1 \end{gathered}$	+29.9	$+0.0$	32.3	$\begin{aligned} & \text { 54.0 } \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \end{aligned}$	Vert
^ 4514.996M	52.7	$\begin{aligned} & \hline+0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & \hline+8.5 \\ & +0.5 \end{aligned}$	$\begin{gathered} \hline-40.2 \\ +0.1 \end{gathered}$	+29.9	$+0.0$	54.7	$\begin{aligned} & 54.0 \quad{ }^{+0.7} \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \end{aligned}$	Vert
$\begin{aligned} & 31 \text { 4634.000M } \\ & \text { Ave } \end{aligned}$	29.0	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +8.6 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline-40.2 \\ +0.1 \end{array}$	+29.9	+0.0	31.3	$\begin{aligned} & 54.0 \quad-22.7 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 926.8 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
^ 4634.021M	51.6	$\begin{aligned} & \hline+0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+8.6 \\ & +0.6 \end{aligned}$	$\begin{gathered} \hline-40.2 \\ +0.1 \end{gathered}$	+29.9	$+0.0$	53.9	$\begin{aligned} & 54.0 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & \text { } 926.8 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
$\begin{gathered} 33 \text { 3639.211M } \\ \text { Ave } \end{gathered}$	32.7	$\begin{aligned} & \hline+0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \hline+7.3 \\ & +0.6 \end{aligned}$	$\begin{gathered} \hline-40.4 \\ +0.1 \end{gathered}$	+27.8	$+0.0$	31.1	$\begin{aligned} & 54.0 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \end{aligned}$	Vert
^ 3639.211M	56.0	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & +7.3 \\ & +0.6 \end{aligned}$	$\begin{gathered} \hline-40.4 \\ +0.1 \end{gathered}$	+27.8	$+0.0$	54.4	$\begin{aligned} & 54.0 \quad+0.4 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
$\begin{aligned} & 353612.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	32.5	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \hline+7.3 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline-40.4 \\ +0.2 \end{array}$	+27.8	$+0.0$	31.0	$\begin{aligned} & 54.0 \quad-23.0 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
^ 3612.000M	57.9	$\begin{aligned} & \hline+0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & +7.3 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline-40.4 \\ +0.2 \end{array}$	+27.8	$+0.0$	56.4	$\begin{aligned} & 54.0 \quad+2.4 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
$\begin{aligned} & 373612.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	32.2	$\begin{aligned} & \hline+0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & +7.3 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline-40.4 \\ +0.2 \end{array}$	+27.8	$+0.0$	30.7	$\begin{aligned} & 54.0 \\ & \text { OOK, } 10 \mathrm{dBm} \text {, } \\ & \text { 903MHz } \end{aligned}$	Horiz
^ 3612.000M	58.1	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & +7.3 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline-40.4 \\ +0.2 \end{array}$	+27.8	$+0.0$	56.6	$\begin{aligned} & 54.0 \quad+2.6 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \\ & \hline \end{aligned}$	Horiz
$\begin{aligned} & 39 \text { 2709.000M } \\ & \text { Ave } \end{aligned}$	34.7	$\begin{aligned} & \hline+0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -39.9 \\ +0.2 \end{array}$	+26.3	$+0.0$	30.7	$\begin{aligned} & 54.0 \quad-23.3 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \end{aligned}$	Vert
^ 2709.000M	58.3	$\begin{aligned} & \hline+0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +6.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline-39.9 \\ +0.2 \end{array}$	+26.3	$+0.0$	54.3	$\begin{aligned} & 54.0 \quad{ }^{+0.3} \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \end{aligned}$	Vert
$\begin{aligned} & 41 \text { 3639.203M } \\ & \text { Ave } \end{aligned}$	31.7	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \hline+7.3 \\ & +0.6 \end{aligned}$	$\begin{gathered} \hline-40.4 \\ +0.1 \end{gathered}$	+27.8	$+0.0$	30.1	$\begin{aligned} & 54.0 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \end{aligned}$	Horiz
^ 3639.203M	57.8	$\begin{aligned} & \hline+0.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \hline+7.3 \\ & +0.6 \end{aligned}$	$\begin{gathered} \hline-40.4 \\ +0.1 \end{gathered}$	+27.8	+0.0	56.2	$\begin{aligned} & 54.0 \quad+2.2 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \end{aligned}$	Horiz
$\begin{aligned} & 432780.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	33.7	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +6.6 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline-40.0 \\ +0.2 \end{array}$	+26.6	$+0.0$	30.1	$\begin{aligned} & 54.0 \quad-23.9 \\ & \text { OOK, } 10 \mathrm{dBm}, \\ & 926.8 \mathrm{MHz} \end{aligned}$	Vert

$\wedge 2780.400 \mathrm{M}$	60.8	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.6 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.6	$+0.0$	57.2	$\quad 54.0 \quad{ }^{+3.2}$ OOK, 10 dBm, 926.8 MHz	Vert
$\begin{aligned} & 45 \text { 3659.983M } \\ & \text { Ave } \end{aligned}$	31.3	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	$\begin{aligned} & \hline+7.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -40.4 \\ +0.1 \end{array}$	+27.9	+0.0	30.0	$\quad 54.0 \quad-24.0$ OOK, 10 dBm, 915 MHz	Horiz
$\wedge 3659.983 \mathrm{M}$	56.9	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	$\begin{aligned} & \hline+7.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -40.4 \\ +0.1 \end{array}$	+27.9	+0.0	55.6	$54.0 \quad{ }^{+1.6}$ OOK, 10 dBm, 915 MHz	Horiz
$\begin{aligned} & 47 \text { 2729.399M } \\ & \text { Ave } \end{aligned}$	33.5	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	$+0.0$	29.6	$54.0 \quad-24.4$ OOK, 10 dBm, 910 MHz	Vert
^ 2729.399M	59.7	$\begin{aligned} & \hline+0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	+0.0	55.8	$\quad 54.0 \quad+1.8$ OOK, 10 dBm, 910 MHz	Vert
$\begin{aligned} & 49 \text { 2744.991M } \\ & \text { Ave } \end{aligned}$	33.0	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	$+0.0$	29.1	$54.0 \quad-24.9$ OOK, 10 dBm, 915 MHz	Vert
^ 2744.991M	59.4	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	$+0.0$	55.5	$\quad 54.0 \quad+1.5$ OOK, 10 dBm, 915 MHz	Vert
$\begin{aligned} & 51 \text { 2780.392M } \\ & \text { Ave } \end{aligned}$	32.4	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.6 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.6	+0.0	28.8	$\quad 54.0{ }^{-25.2}$ OOK, 10 dBm, 926.8 MHz	Horiz
^ 2780.392M	58.5	$\begin{aligned} & \hline+0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.6 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.6	$+0.0$	54.9	$\quad 54.0 \quad{ }^{+0.9}$ OOK, 10 dBm, 926.8 MHz	Horiz
$\begin{aligned} & 53 \quad 2729.412 \mathrm{M} \\ & \text { Ave } \end{aligned}$	32.2	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	$+0.0$	28.3	$54.0 \quad-25.7$ OOK, 10 dBm, 910 MHz	Horiz
$\wedge 2729.412 \mathrm{M}$	58.1	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	$+0.0$	54.2	$54.0 \quad{ }^{+0.2}$ OOK, 10 dBm, 910 MHz	Horiz
$\begin{aligned} & 552744.983 \mathrm{M} \\ & \text { Ave } \end{aligned}$	31.5	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	$+0.0$	27.6	$\quad 54.0 \quad-26.4$ OOK, 10 dBm, 915 MHz	Horiz
^ 2744.983M	57.3	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +6.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} -40.0 \\ +0.2 \end{array}$	+26.4	$+0.0$	53.4	$54.0 \quad-0.6$ OOK, 10 dBm, 915 MHz	Horiz
57 6368.619M	48.9	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.7 \end{array}$	$\begin{array}{r} \hline-39.8 \\ +0.3 \end{array}$	+31.2	$+0.0$	55.4	$82.4 \quad-27.0$ OOK, 10 dBm, 910 MHz	Vert
586321.000 M	48.5	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.7 \end{array}$	$\begin{array}{r} -39.9 \\ +0.3 \end{array}$	+31.2	$+0.0$	54.9	$82.4 \quad-27.5$ OOK, 10 dBm, 903 MHz	Vert
$\begin{aligned} & 593659.991 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.3	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	$\begin{aligned} & \hline+7.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -40.4 \\ +0.1 \end{array}$	+27.9	$+0.0$	26.0	$54.0 \quad-28.0$ OOK, 10 dBm, 915 MHz	Vert
^ 3659.991M	55.8	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	$\begin{aligned} & \hline+7.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -40.4 \\ +0.1 \end{array}$	+27.9	+0.0	54.5	$54.0 \quad{ }^{+0.5}$ OOK, 10 dBm, 915 MHz	Vert

61	6405.012M	47.8	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.1 \\ +0.7 \end{array}$	$\begin{array}{r} \hline-39.8 \\ +0.3 \end{array}$	+31.1	$+0.0$	54.3	$82.4{ }^{-28.1}$ OOK, 10 dBm, 915 MHz	Vert
62	6487.621M	46.2	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.1 \\ +0.7 \end{array}$	$\begin{array}{r} -40.0 \\ +0.3 \end{array}$	+31.0	$+0.0$	52.4	$82.4 \quad-30.0$ OOK, 10 dBm, 926.8 MHz	Vert
63	6368.636M	45.5	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.7 \end{array}$	$\begin{array}{r} -39.8 \\ +0.3 \end{array}$	+31.2	$+0.0$	52.0	$82.4 \quad-30.4$ OOK, 10 dBm, 910 MHz	Horiz
64	6405.016M	44.9	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.1 \\ +0.7 \end{array}$	$\begin{array}{r} -39.8 \\ +0.3 \end{array}$	+31.1	$+0.0$	51.4	$82.4 \quad-31.0$ OOK, 10 dBm, 915 MHz	Horiz
65	6321.013M	44.4	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.7 \end{array}$	$\begin{array}{r} -39.9 \\ +0.3 \end{array}$	+31.2	+0.0	50.8	$82.4 \quad-31.6$ OOK, 10 dBm, 903MHz	Horiz
66	6487.592M	43.3	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+10.1 \\ +0.7 \end{array}$	$\begin{array}{r} -40.0 \\ +0.3 \end{array}$	+31.0	$+0.0$	49.5	$82.4 \quad-32.9$ OOK, 10 dBm, 926.8 MHz	Horiz
67	5490.016M	42.3	$\begin{aligned} & \hline+0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +9.5 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline-40.1 \\ +0.2 \end{array}$	+31.5	+0.0	47.8	$82.4 \quad-34.6$ OOK, 10 dBm, 915 MHz	Horiz
68	5490.012M	42.1	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +9.5 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -40.1 \\ +0.2 \end{array}$	+31.5	$+0.0$	47.6	$82.4 \quad-34.8$ OOK, 10 dBm, 915 MHz	Vert
69	5560.792M	41.5	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +9.5 \\ & +0.7 \end{aligned}$	$\begin{array}{r} -40.2 \\ +0.2 \end{array}$	+31.5	$+0.0$	46.9	$82.4 \quad-35.5$ OOK, 10 dBm, 926.8 MHz	Horiz
70	1805.996M	52.0	$\begin{aligned} & \hline+0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+5.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -39.4 \\ +0.3 \end{array}$	+23.8	+0.0	44.4	$82.4 \quad-38.0$ OOK, 10 dBm, 903 MHz	Vert
71	1830.004M	50.5	$\begin{aligned} & \hline+0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+5.1 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -39.4 \\ +0.3 \end{array}$	+23.8	+0.0	43.0	$82.4 \quad-39.4$ OOK, 10 dBm, 915 MHz	Vert
72	1830.016M	49.9	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+5.1 \\ & +0.5 \end{aligned}$	$\begin{gathered} -39.4 \\ +0.3 \end{gathered}$	+23.8	$+0.0$	42.4	$82.4 \quad-40.0$ OOK, 10 dBm, 915 MHz	Horiz
73	1819.607M	49.9	$\begin{aligned} & \hline+0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +5.1 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -39.4 \\ +0.3 \end{array}$	+23.8	$+0.0$	42.4	$\quad 82.4 \quad-40.0$ OOK, 10 dBm, 910 MHz	Vert
74	1806.013M	49.9	$\begin{aligned} & \hline+0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+5.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -39.4 \\ +0.3 \end{array}$	+23.8	+0.0	42.3	$82.4 \quad-40.1$ OOK, 10 dBm, 903 MHz	Horiz
75	1819.620M	49.8	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+5.1 \\ & +0.5 \end{aligned}$	$\begin{gathered} -39.4 \\ +0.3 \end{gathered}$	+23.8	$+0.0$	42.3	$82.4 \quad-40.1$ OOK, 10 dBm, 910 MHz	Horiz
76	1853.621M	47.3	$\begin{aligned} & +0.0 \\ & +2.3 \end{aligned}$	$\begin{aligned} & +5.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -39.5 \\ +0.3 \end{array}$	+23.9	$+0.0$	40.0	$82.4 \quad-42.4$ OOK, 10 dBm, 926.8 MHz	Vert
77	1853.658M	45.0	$\begin{aligned} & \hline+0.0 \\ & +2.3 \end{aligned}$	$\begin{aligned} & +5.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} -39.5 \\ +0.3 \end{array}$	+23.9	$+0.0$	37.7	$82.4{ }^{-44.7}$ OOK, 10 dBm, 926.8 MHz	Horiz

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Itron, Inc.
15.247(d)/ 15.209 Radiated Spurious Emissions

98972 Date: 8/25/2016
Maximized Emissions Time: 09:11:10
Don Nguyen
Sequence\#: 6
Software:
EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

The EUT is placed on a Styrofoam platform at 0.8 m in height for measurement below 1 GHz and 1.5 m in height for measurement above 1 GHz . The EUT is turned on and set in transmitting mode.
The EUT has fresh battery installed. Nominal input voltage is 6.3 Vdc .
The EUT is tested in preferred orientation declared by the manufacturer.
Operating frequency: $902.2,910,915$, and 927.75 MHz . Modulation: CW
Operating frequency: $903,926.8 \mathrm{MHz}$. Modulation: OOK
Rated power output: +27 dBm
Frequency range of measurement $=9 \mathrm{kHz}-9.28 \mathrm{GHz}$
$9 \mathrm{kHz}-150 \mathrm{kHz}, \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=600 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=27 \mathrm{kHz}$
$30 \mathrm{MHz}-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$ (peak detector), $\mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=1 \mathrm{MHz}$ (QP detector)
$1000 \mathrm{MHz}-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
Test environment conditions:
Temperature: $26^{\circ} \mathrm{C}$
Relative Humidity: 46\%
Pressure: 100 kPa
Site D
Test Method: ANSI C63.10 (2013)
Note: The highest fundamental power is measured at $123.3 \mathrm{dBuV} / \mathrm{m}$.

Itron, Inc WO\#: 98972 Sequence\#f: 6 Date: 8/25/2016
15.247(d)/ 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

[^1]O Peak Readings

* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$5 / 20 / 2016$	$5 / 20 / 2018$
T1	AN00010	Preamp	8447 D	$3 / 14 / 2016$	$3 / 14 / 2018$
T2	AN01992	Biconilog Antenna	CBL6111C	$12 / 4 / 2014$	$12 / 4 / 2016$
T3	ANP05555	Cable	RG223/U	$4 / 5 / 2016$	$4 / 5 / 2018$
T4	ANP05569	Cable	RG-214/U	$4 / 4 / 2016$	$4 / 4 / 2018$
T5	ANP05283	Attenuator	ATT-0218-06-	$5 / 5 / 2016$	$5 / 5 / 2018$
			NNN-02		
T6	ANP04382	Cable	LDF-50	$6 / 6 / 2016$	$6 / 6 / 2018$
T7	AN02467	Spectrum Analyzer	E7405A	$5 / 10 / 2016$	$5 / 10 / 2017$
T8	AN00787	Preamp	$83017 A$	$6 / 10 / 2015$	$6 / 10 / 2017$
T9	AN01646	Horn Antenna	3115	$3 / 4 / 2016$	$3 / 4 / 2018$
T10	ANP05563	Cable	ANDL-1-PNMN-	$6 / 6 / 2016$	$6 / 6 / 2018$
T11		ANP06977	Cable	48	
T12	AN03169	High Pass Filter	HM1155-11SS	$6 / 24 / 2015$	$6 / 24 / 2017$

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

Page 16 of 28

Page 17 of 28

27	2708.980M	47.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +26.3 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +6.4 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -39.9 \\ +0.2 \\ \hline \end{array}$	$+0.0$	43.4	$\begin{aligned} & 54.0 \quad-10.6 \\ & \text { OOK, } 27 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \end{aligned}$	Vert
28	961.987M	33.7	$\begin{gathered} -27.5 \\ +5.9 \\ +0.0 \end{gathered}$	$\begin{array}{r} +23.2 \\ +3.4 \\ +0.0 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	43.0	54.0 -11.0	Horiz
29	2780.396M	46.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +26.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +6.6 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{gathered} +0.0 \\ -40.0 \\ +0.2 \end{gathered}$	+0.0	42.4	$\begin{aligned} & 54.0 \quad-11.6 \\ & \text { OOK, } 27 \mathrm{dBm}, \\ & 926.8 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
30	3608.796M	43.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +7.3 \\ & +3.0 \\ & +\quad \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.2 \end{array}$	$+0.0$	42.3	$\begin{aligned} & 54.0 \\ & \text { CW, } 27 \mathrm{dBm}, \\ & 902.2 \mathrm{MHz} \end{aligned}$	Vert
31	3608.796M	43.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.3 \\ +3.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.2 \end{array}$	$+0.0$	41.8	$\begin{aligned} & 54.0 \\ & \mathrm{CW}, 27 \mathrm{dBm}, \\ & 902.2 \mathrm{MHz} \end{aligned}$	Horiz
32	3659.996M	42.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.4 \\ +3.1 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ -40.4 \\ +0.1 \\ \hline \end{array}$	+0.0	41.6	$\begin{aligned} & 54.0 \\ & \mathrm{CW}, 27 \mathrm{dBm}, \\ & 915 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
33	3611.980M	41.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +7.3 \\ & +3.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.2 \end{array}$	+0.0	40.3	$\begin{aligned} & 54.0 \\ & \text { OOK, } 27 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \end{aligned}$	Vert
34	3660.000M	41.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.4 \\ +3.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.1 \\ \hline \end{array}$	+0.0	40.1	$\begin{array}{ll} 54.0 & -13.9 \\ \mathrm{CW}, 27 \mathrm{dBm}, \\ 915 \mathrm{MHz} & \\ \hline \end{array}$	Horiz
35	3639.996M	41.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.3 \\ +3.0 \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.1 \\ \hline \end{array}$	$+0.0$	40.0	$\begin{aligned} & 54.0 \\ & \text { CW, } 27 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \\ & \hline \end{aligned}$	Horiz
36	3611.996M	41.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.3 \\ +3.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.2 \end{array}$	+0.0	39.8	$\begin{aligned} & 54.0 \quad-14.2 \\ & \text { OOK, } 27 \mathrm{dBm}, \\ & 903 \mathrm{MHz} \\ & \hline \end{aligned}$	Horiz
37	3639.996M	41.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +27.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.3 \\ +3.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.1 \\ \hline \end{array}$	$+0.0$	39.7	$\begin{aligned} & 54.0 \\ & \mathrm{CW}, 27 \mathrm{dBm}, \\ & 910 \mathrm{MHz} \\ & \hline \end{aligned}$	Vert
38	3710.996M	40.9	$\begin{array}{r} +0.0 \\ +0.0 \\ +28.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.4 \\ +3.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.1 \\ \hline \end{array}$	$+0.0$	39.7	$\begin{aligned} & 54.0 \\ & \mathrm{CW}, 27 \mathrm{dBm},^{-14.3} \\ & 927.75 \mathrm{MHz} \end{aligned}$	Vert
39	3711.000M	40.7	$\begin{array}{r} +0.0 \\ +0.0 \\ +28.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +7.4 \\ +3.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.1 \end{array}$	$+0.0$	39.5	$\begin{aligned} & 54.0 \\ & \mathrm{CW}, 27 \mathrm{dBm}, \\ & 927.75 \mathrm{MHz} \end{aligned}$	Horiz
40	3707.196M	40.1	$\begin{array}{r} +0.0 \\ +0.0 \\ +28.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +7.4 \\ & +3.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -40.4 \\ +0.1 \end{array}$	$+0.0$	38.9	$\begin{aligned} & 54.0 \quad{ }^{-15.1} \\ & \text { OOK, } 27 \mathrm{dBm}, \\ & 926.8 \mathrm{MHz} \end{aligned}$	Vert
41	3707.196M	40.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +28.0 \end{array}$	$\begin{array}{r} +0.0 \\ +7.4 \\ +3.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -40.4 \\ +0.1 \\ \hline \end{array}$	+0.0	38.8	$\begin{aligned} & 54.0 \quad{ }^{-15.2} \\ & \text { OOK, } 27 \mathrm{dBm}, \\ & 926.8 \mathrm{MHz} \end{aligned}$	Horiz
42	1804.396M	78.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +23.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -39.4 \\ +0.3 \end{array}$	+0.0	71.2	$\begin{aligned} & 103.3 \\ & \mathrm{CW}, 27 \mathrm{dBm},^{-32.1} \\ & 902.2 \mathrm{MHz} \end{aligned}$	Vert
43	1855.496M	78.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +23.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.2 \\ & +2.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -39.5 \\ +0.3 \end{array}$	+0.0	71.1	$\begin{aligned} & 103.3 \quad-32.2 \\ & \mathrm{CW}, 27 \mathrm{dBm}, \\ & 927.75 \mathrm{MHz} \end{aligned}$	Vert

Page 18 of 28

Band Edge

Band Edge Summary					
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathrm{dBuV} / \mathbf{m @ 3 m})$	Limit $(\mathrm{dBuV} / \mathrm{m} @ 3 m)$	Results
614	OOK	Integral	30.2	<46	Pass
902	OOK	Integral	88.8	<103.3	Pass
928	OOK	Integral	87.4	<103.3	Pass
960	OOK	Integral	49.7	<54	Pass

Note: The highest fundamental power is measured at $123.3 \mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m}$.

Test Setup / Conditions / Data

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112
Itron, Inc.
15.247(d) Band-edge Radiated Spurious Emissions

98972 Date: 8/24/2016
Maximized Emissions Time: 13:35:37
Don Nguyen
EMITest 5.03.02

Sequence\#: 7

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

The EUT is placed on a Styrofoam platform at 0.8 m in height for measurement below 1 GHz and 1.5 m in height for measurement above 1 GHz . The EUT is turned on and set in transmitting mode.
The EUT has fresh battery installed. Nominal input voltage is 6.3 Vdc .
The EUT is tested in preferred orientation declared by the manufacturer.
Operating frequency: 903 and 926.8 MHz
Modulation: OOK
Rated power output: +27 dBm
Frequency range of measurement $=9 \mathrm{kHz}-9.28 \mathrm{GHz}$
$9 \mathrm{kHz}-150 \mathrm{kHz}, \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=600 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$, RBW $=9 \mathrm{kHz}, \mathrm{VBW}=27 \mathrm{kHz}$
$30 \mathrm{MHz}-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$ (peak detector), $\mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=1 \mathrm{MHz}$ (QP detector) $1000 \mathrm{MHz}-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$

Test environment conditions:
Temperature: $26^{\circ} \mathrm{C}$
Relative Humidity: 46\%
Pressure: 100 kPa

Site D
Test Method: ANSI C63.10 (2013)
Note: The highest fundamental power is measured at $123.3 \mathrm{dBuV} / \mathrm{m}$.

Itron, Inc WO\#: 98972 Sequence\#: 7 Date: 8/24/2016
15.247(d) Band-edge Radiated Spurious Emissions Test Distance: 3 Meters Horiz

0 Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00010	Preamp	8447D	$3 / 14 / 2016$	$3 / 14 / 2018$
T2	AN01992	Biconilog Antenna	CBL6111C	$12 / 4 / 2014$	$12 / 4 / 2016$
T3	ANP04382	Cable	LDF-50	$6 / 6 / 2016$	$6 / 6 / 2018$
T4	ANP05555	Cable	RG223/U	$4 / 5 / 2016$	$4 / 5 / 2018$
T5	ANP05569	Cable	RG-214/U	$4 / 4 / 2016$	$4 / 4 / 2018$
T6	AN02467	Spectrum Analyzer	E7405A	$5 / 10 / 2016$	$5 / 10 / 2017$
T7	ANP05283	Attenuator	ATT-0218-06-NNN-02	$5 / 5 / 2016$	$5 / 5 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \text { T6 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { T7 } \\ & \text { dB } \end{aligned}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	960.000 M	40.4	-27.5	+23.2	+3.4	+0.6	+0.0	49.7	54.0	-4.3	Horiz
2	902.000 M	80.5	$\begin{array}{r} -27.6 \\ +3.6 \end{array}$	$\begin{array}{r} \hline+22.6 \\ +0.0 \end{array}$	$\begin{aligned} & +3.3 \\ & +5.9 \end{aligned}$	$+0.5$	+0.0	88.8	103.3	-14.5	Horiz
3	614.000M	26.6	$\begin{array}{r} \hline-28.1 \\ +2.8 \end{array}$	$\begin{array}{r} +19.9 \\ +0.0 \end{array}$	$\begin{aligned} & +2.7 \\ & +5.8 \end{aligned}$	+0.5	+0.0	30.2	46.0	-15.8	Horiz
4	928.000 M	78.4	$\begin{array}{r} -27.5 \\ +3.7 \end{array}$	$\begin{array}{r} \hline+22.9 \\ +0.0 \end{array}$	$\begin{aligned} & +3.4 \\ & +5.9 \end{aligned}$	+0.6	+0.0	87.4	103.3	-15.9	Horiz

Page 22 of 28

Band Edge Plots

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QPReadings
 - Ambient

 1-15.247(d)/ 15.209 Radiated Spurious Emissions

[^1]: - Readings
 \times QPReadings
 - Ambient

 1-15.247(d)/ 15.209 Radiated Spurious Emissions

