Itron, Inc.

REVISED TEST REPORT TO 105379-14

Itron Cellular 500G Module Model: 500GAC

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (DTS 2400-2483.5MHz)

Report No.: 105379-14A

Date of issue: August 18, 2021

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 42 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	9
15.247(a)(2) 6dB Bandwidth	9
15.247(b)(3) Output Power	13
15.247(d) RF Conducted Emissions & Band Edge	18
15.247(d) Radiated Emissions & Band Edge	25
15.247(e) Power Spectral Density	36
Supplemental Information	41
Measurement Uncertainty	41
Emissions Test Details	//1

Page 2 of 42 Report No.: 105379-14A

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc. Terri Rayle

2111 N. Molter Road CKC Laboratories, Inc.
Liberty Lake, WA 99019 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Jay Holcomb Project Number: 105379

Customer Reference Number: 236177

DATE OF EQUIPMENT RECEIPT: May 11, 2021

DATE(S) OF TESTING: May 11, 13, 14, 25, and 26, 2021

Revision History

Original: Testing of the Itron Cellular 500G Module, Model: 500GAC to FCC Part 15 Subpart C Section(s) 15.247 (DTS 2400-2483.5MHz).

Revision A: Added statement to the Conditions During Test table to clarify the orientation of the EUT during testing.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 2 B

Page 3 of 42 Report No.: 105379-14A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 42 Report No.: 105379-14A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	PASS
15.247(b)(3)	Output Power	NA	PASS
15.247(e)	Power Spectral Density	NA	PASS
15.247(d)	RF Conducted Emissions & Band Edge	NA	PASS
15.247(d)	Radiated Emissions & Band Edge	NA	PASS
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable

NA1 = Not applicable because the manufacturer declares the EUT is battery operated.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

The manufacturer declares the equipment is only installed in one orientation and was tested in that orientation.

Page 5 of 42 Report No.: 105379-14A

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Itron Cellular 500G Module	Itron, Inc.	500GAC	CON1

Support Equipment:

Device	Manufacturer	Model #	S/N
USB to Serial Interface	Itron, Inc.	NA	NA
Laptop Computer	Dell	Latitude E6410	46TXXNI

Configuration 2

Equipment Tested:

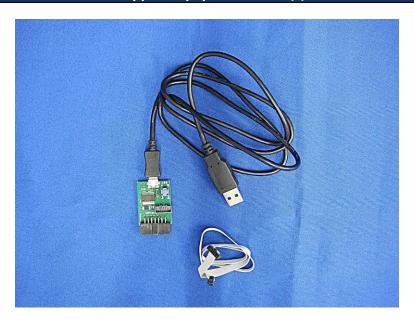
Device	Manufacturer	Model #	S/N
Itron Cellular 500G Module	Itron, Inc.	500GAC	005

Support Equipment:

Device	Manufacturer	Model #	S/N
USB to Serial Interface	Itron, Inc.	NA	NA
Laptop Computer	Dell	Latitude E6410	46TXXNI


General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	BLE
Operating Frequency Range:	2402MHz to 2480MHz
Modulation Type(s):	GFSK
Maximum Duty Cycle:	12.5%
Number of TX Chains:	1
Antenna Type(s) and Gain:	PCB Trace/ -0.5 dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	3.6V Battery
Eirmware / Software used for	App Version: 0.0.33.0
Firmware / Software used for Test:	CSL version: 8.1.17.0
rest.	Hardware Rev: 4

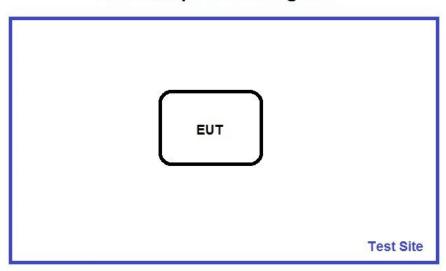

Page 6 of 42 Report No.: 105379-14A

EUT Photo(s)

Support Equipment Photo(s)

USB to Serial Interface

Page 7 of 42 Report No.: 105379-14A



Laptop and Power Supply

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Page 8 of 42 Report No.: 105379-14A

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

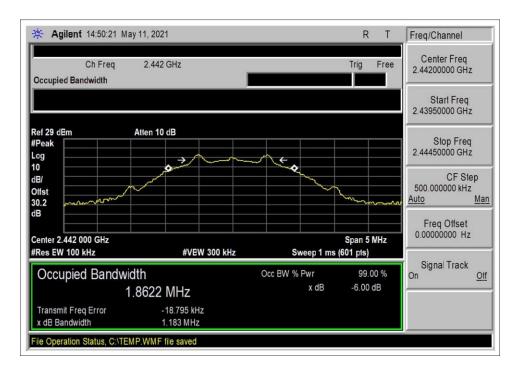
	Test Setup,	Conditions			
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto		
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	5/11/2021		
Configuration:	1				
Test Setup:	The equipment under test (EUT)	is connected to a la	ptop computer via USB to serial		
	interface board. The laptop is run	ning Command Line In	terface (CLI) Tool. This software is		
	used to run the scripts for setting	the EUT parameters.			
	output is connected to the spectru	um analyzer using a co	output with sma connector. The axial cable and power attenuator.		
	Frequency range of test: 24202MF	tz to 2480MHz.			
	BLE GFSK Power Level 3				
	Low channel 2402MHz				
	Middle channel 2442MHz				
	High channel 2480MHz				
	Temperature: 21°C Humidity: 50% Pressure: 99kPa				
	Site D				
	Reference 558074 D01 15.247 Me	as Guidance v05r02 ar	nd ANSI C63.10-2013		

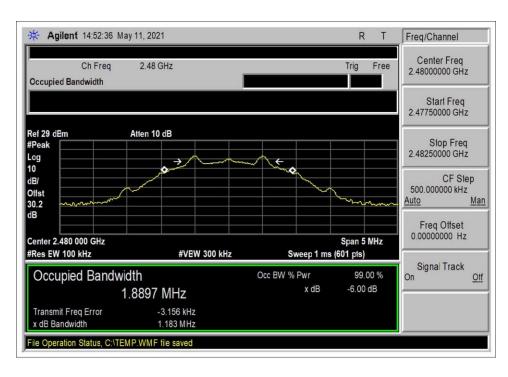
Environmental Conditions				
Temperature (ºC) 21 Relative Humidity (%):				

Test Equipment					
Asset#	Cal Date	Cal Due			
02869	Spectrum Analyzer	Agilent	E4440A	8/3/2020	8/3/2021
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/22/2019	10/22/2021
P07656	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022

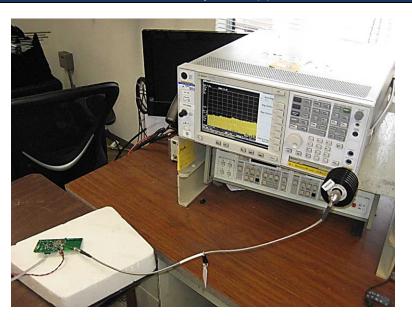
Page 9 of 42 Report No.: 105379-14A

	Test Data Summary											
Frequency Antenna Modulation Measured Limit Results												
2402	1	GFSK (PL3)	1180	≥500	Pass							
2442	1	GFSK (PL3)	1183	≥500	Pass							
2480	1	GFSK (PL3)	1183	≥500	Pass							


Plot(s)


Low Channel

Page 10 of 42 Report No.: 105379-14A


Middle Channel

High Channel

Test Setup Photo(s)

Page 12 of 42 Report No.: 105379-14A

15.247(b)(3) Output Power

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

Work Order #: 105379 Date: 5/11/2021
Test Type: Conducted Emissions Time: 12:24:39
Tested By: S. Yamamoto Sequence#: 5

Software: EMITest 5.03.19 3.6Vdc

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is connected to a laptop computer via USB to serial interface board. The laptop is running Command Line Interface (CLI) Tool. This software is used to run the scripts for setting the EUT parameters.

The RF output has been configured to a coaxial cable output with sma connector. The output is connected to the spectrum analyzer using a coaxial cable and power attenuator.

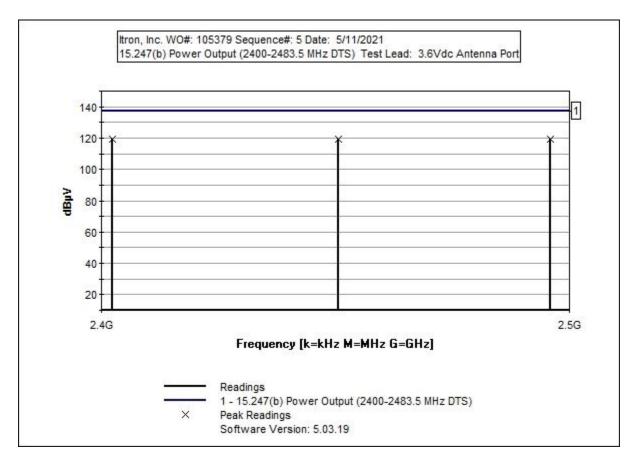
Frequency range of test: 2402MHz to 2480MHz.

Low Channel 2402MHz Middle Channel 2442MHz High Channel 2480MHz

RBW=1.5MHz, VBW=5MHz

Output level 3 BLE

Test Environment Conditions:


Temperature: 21°C Humidity: 50% Pressure: 99kPa

Site D

Reference 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10-2013

Page 13 of 42 Report No.: 105379-14A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
T3	ANP07656	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Antenna	Port	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2442.000M	89.4	+0.0	+29.7	+0.5		+0.0	119.6	137.0	-17.4	Anten
2	2480.000M	89.4	+0.0	+29.7	+0.5		+0.0	119.6	137.0	-17.4	Anten
3	2402.000M	89.2	+0.0	+29.7	+0.5		+0.0	119.4	137.0	-17.6	Anten

Page 14 of 42 Report No.: 105379-14A

Parameter Definitions:

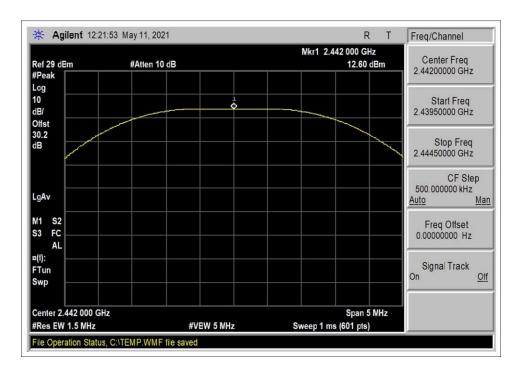
Measurements performed at input voltage according to manufacturer specification.

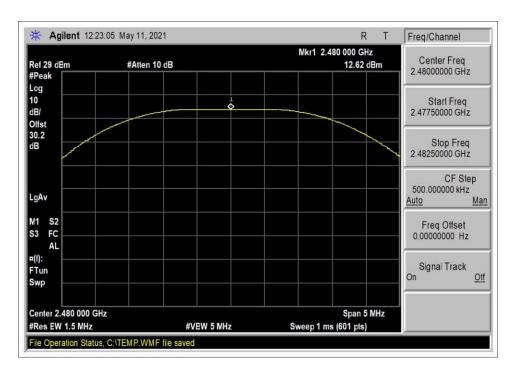
Parameter	Value
V _{Nominal} :	3.6Vdc
V _{Minimum} :	NA
V _{Maximum} :	NA

Test Data Summary - Voltage Variations

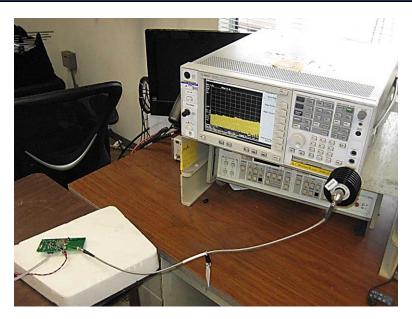
This equipment is battery powered. Power output tests were performed using a power supply simulating a brand new battery.

Measuremen	Test Data Summary - RF Conducted Measurement Measurement Option: RBW > DTS Bandwidth									
Frequency (MHz)	' ' Modulation '' '									
2402	GFSK (PL3)	PCB Trace/ -0.5	12.41	≤ 30	Pass					
2442	GFSK (PL3)	PCB Trace/ -0.5	12.60	≤ 30	Pass					
2480										


Plots


Low Channel

Page 15 of 42 Report No.: 105379-14A


Middle Channel

High Channel

Test Setup Photo(s)

Page 17 of 42 Report No.: 105379-14A

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 105379 Date: 5/14/2021
Test Type: Conducted Emissions Time: 09:10:24
Tested By: S. Yamamoto Sequence#: 15
Software: EMITest 5.03.19 3.6Vdc

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The equipment under test (EUT) is connected to a laptop computer via USB to serial interface board. The laptop is running Command Line Interface (CLI) Tool. This software is used to run the scripts for setting the EUT parameters.

The RF output has been configured to a coaxial cable output with sma connector. The output is connected to the spectrum analyzer using a coaxial cable and power attenuator.

Frequency range of test: 9kHz to 24.80GHz.

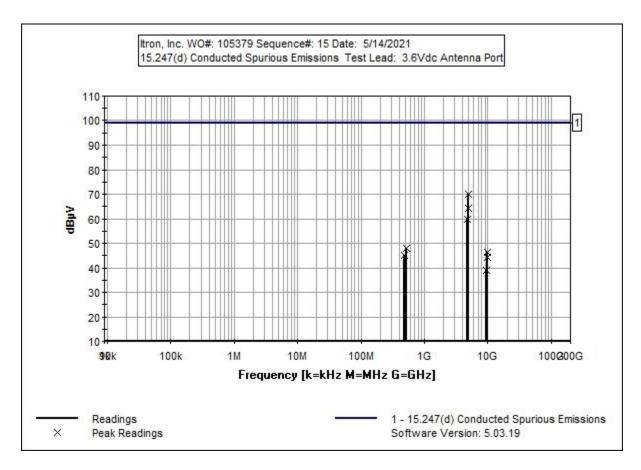
Test Channels

Low Channel 2402MHz Middle Channel 2442MHz High Channel 2480MHz

RBW=100kHz, VBW=300kHz

Output level 3 BLE

Test Environment Conditions:


Temperature: 20°C Humidity: 53% Pressure: 99kPa

Site D

Reference 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10-2013

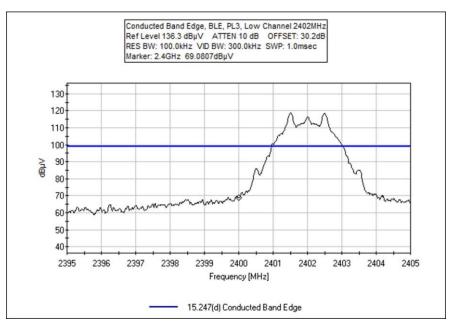
Page 18 of 42 Report No.: 105379-14A

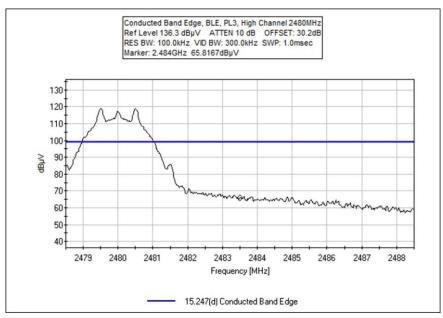
Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
T1	ANP07656	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
T2	AN03430	Attenuator	75A-10-12	12/20/2019	12/20/2021

Page 19 of 42 Report No.: 105379-14A

Measi	ırement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	ı Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	4961.017M	59.3	+0.7	+10.1			+0.0	70.1	99.0	-28.9	Anten
2	4885.000M	53.4	+0.7	+10.1			+0.0	64.2	99.0	-34.8	Anten
3	4803.000M	48.9	+0.7	+10.2			+0.0	59.8	99.0	-39.2	Anten
4	519.800M	37.9	+0.2	+10.0			+0.0	48.1	99.0	-50.9	Anten
5	9922.033M	35.8	+0.8	+9.8			+0.0	46.4	99.0	-52.6	Anten
6	480.783M	35.1	+0.2	+10.0			+0.0	45.3	99.0	-53.7	Anten
7	9766.000M	33.6	+0.8	+9.8			+0.0	44.2	99.0	-54.8	Anten
8	9605.900M	28.5	+0.8	+9.7			+0.0	39.0	99.0	-60.0	Anten


Page 20 of 42 Report No.: 105379-14A



Band Edge

	Band Edge Summary									
Limit applied:	Limit applied: Max Power/100kHz - 20dB.									
Frequency (MHz)	· ' Modulation Results									
2400.0 GFSK (PL3) -37.28 <-7.38 Pass										
2483.5 GFSK (PL3) -40.48 <-7.38 Pass										

Band Edge Plots

Page 21 of 42 Report No.: 105379-14A

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(d) Conducted Band Edge

Work Order #: 105379 Date: 5/13/2021
Test Type: Conducted Emissions Time: 10:51:17
Tested By: S. Yamamoto Sequence#: 10
Software: EMITest 5.03.19 3.6Vdc

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The equipment under test (EUT) is connected to a laptop computer via USB to serial interface board. The laptop is running Command Line Interface (CLI) Tool. This software is used to run the scripts for setting the EUT parameters.

The RF output has been configured to a coaxial cable output with sma connector. The output is connected to the spectrum analyzer using a coaxial cable and power attenuator.

Frequency range of test: 2395MHz to 2488.5MHz.

Low Channel 2402MHz High Channel 2480MHz

RBW=100kHz, VBW=300kHz

Output level 3 BLE

Test Environment Conditions:

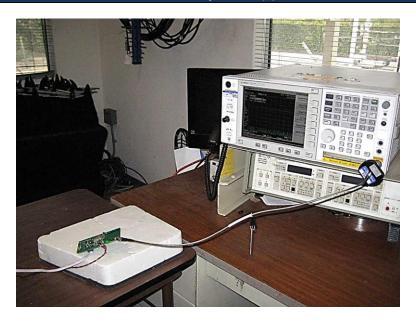
Temperature: 20°C Humidity: 53% Pressure: 99kPa

Site D

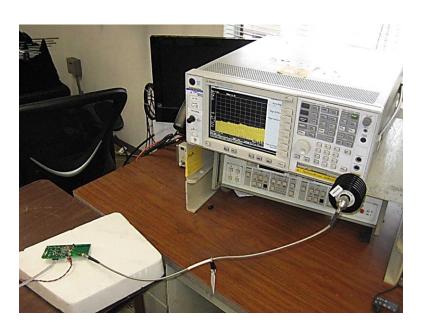
Reference 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10-2013

Page 22 of 42 Report No.: 105379-14A

Test Equipment:


ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
T3	ANP07656	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		

Measi	ırement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	ı Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2400.000M	38.9	+0.0	+29.7	+0.5		+0.0	69.1	99.0	-29.9	Anten
2	2483.500M	35.6	+0.0	+29.7	+0.5		+0.0	65.8	99.0	-33.2	Anten


Page 23 of 42 Report No.: 105379-14A

Test Setup Photo(s)

Conducted Spurious Emissions

Band Edge

Page 24 of 42 Report No.: 105379-14A

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 105379 Date: 5/25/2021
Test Type: Maximized Emissions Time: 16:34:07
Tested By: S. Yamamoto Sequence#: 22

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is connected to a laptop computer via USB to serial interface board. The laptop is running Command Line Interface (CLI) Tool. This software is used to run the scripts for setting the EUT parameters.

Once the parameters have been set, the support equipment is removed from the EUT.

Frequency range of test: 9kHz to 24.835GHz.

Test Channels:

Low channel 2402MHz Middle channel 2442MHz High channel 2480MHz

RBW=1MHz, VBW=3MHz

Output level 3 BLE

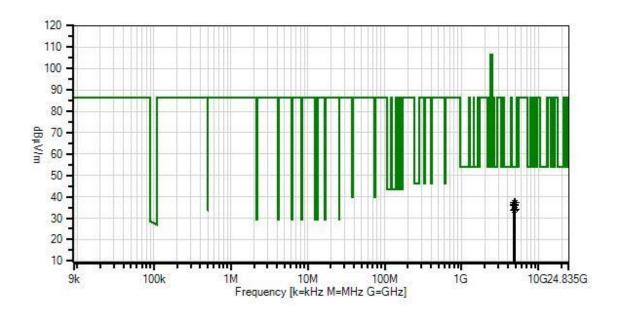
The manufacturer declares the worst case duty cycle is 12.5ms per 100ms. The duty cycle correction factor is 20 log (12.5/100)=-18.06dB. The average reading in the restricted bands is calculated from the peak reading with the duty cycle correction factor.

Test Environment Conditions:

Temperature: 23°C Relative Humidity: 43%

Pressure: 99kPa

Site D


The EUT is powered from a new 3.6V lithium battery

Test Method: ANSI C63.10-2013

Page 25 of 42 Report No.: 105379-14A

Itron, Inc. WO#: 105379 Sequence#: 22 Date: 5/25/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings
 QP Readings
- ▼ Ambient
 - 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.19

Page 26 of 42 Report No.: 105379-14A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	ANP04382	Cable	LDF-50	5/15/2020	5/15/2022
T3	ANP07138	Cable	ANDL1-	3/30/2021	3/30/2023
			PNMNM-60		
T4	AN00787	Preamp	83017A	5/31/2019	5/31/2021
T5	ANP07657	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
Т6	AN01646	Horn Antenna	3115	3/17/2020	3/17/2022
T7	AN03385	High Pass Filter	11SH10-	5/17/2021	5/17/2023
			3000/T10000-		
			0/0		
	AN03367	Horn Antenna	62-GH-62-25.	8/1/2019	8/1/2021
	AN01413	Horn Antenna	84125-80008	10/19/2020	10/19/2022
	AN00010	Preamp	8447D	1/2/2020	1/2/2022
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022
	AN01994	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
	ANP05283	Attenuator	ATT-0218-06-	3/26/2020	3/26/2022
			NNN-02		
	ANP05569	Cable-Amplitude	RG-214/U	12/14/2020	12/14/2022
		+15C to +45C (dB)			
	ANP06978	Cable	Sucoflex 104A	3/26/2020	3/26/2022

Page 27 of 42 Report No.: 105379-14A

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4958.955M	27.9	+0.0	+8.6	+5.9	-39.9	+0.0	37.3	54.0	-16.7	Horiz
	Ave		+0.7	+33.8	+0.3						
^	4958.955M	46.0	+0.0	+8.6	+5.9	-39.9	+0.0	55.4	54.0	+1.4	Horiz
			+0.7	+33.8	+0.3						
3	4882.850M	28.0	+0.0	+8.6	+5.8	-39.9	+0.0	37.2	54.0	-16.8	Horiz
	Ave		+0.7	+33.7	+0.3						
^	4882.850M	46.1	+0.0	+8.6	+5.8	-39.9	+0.0	55.3	54.0	+1.3	Horiz
			+0.7	+33.7	+0.3						
5	4803.048M	27.9	+0.0	+8.5	+5.7	-40.0	+0.0	36.6	54.0	-17.4	Horiz
	Ave		+0.7	+33.5	+0.3						
^	4803.048M	46.0	+0.0	+8.5	+5.7	-40.0	+0.0	54.7	54.0	+0.7	Horiz
			+0.7	+33.5	+0.3						
7	4882.900M	26.7	+0.0	+8.6	+5.8	-39.9	+0.0	35.9	54.0	-18.1	Vert
	Ave		+0.7	+33.7	+0.3						
^	4882.900M	44.8	+0.0	+8.6	+5.8	-39.9	+0.0	54.0	54.0	+0.0	Vert
			+0.7	+33.7	+0.3						
9	4959.090M	24.5	+0.0	+8.6	+5.9	-39.9	+0.0	33.9	54.0	-20.1	Vert
	Ave		+0.7	+33.8	+0.3						
^	4959.090M	42.6	+0.0	+8.6	+5.9	-39.9	+0.0	52.0	54.0	-2.0	Vert
			+0.7	+33.8	+0.3						
11	4802.965M	25.0	+0.0	+8.5	+5.7	-40.0	+0.0	33.7	54.0	-20.3	Vert
	Ave		+0.7	+33.5	+0.3						
^	4802.965M	43.1	+0.0	+8.5	+5.7	-40.0	+0.0	51.8	54.0	-2.2	Vert
			+0.7	+33.5	+0.3						

Page 28 of 42 Report No.: 105379-14A

Band Edge

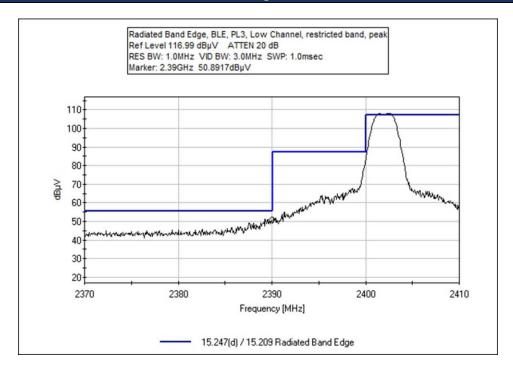
	Band Edge Summary							
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
2390.0	GFSK (PL3)	PCB trace	49.4 pk	<54 avg	Pass			
2400.0	GFSK (PL3)	PCB trace	56.7 pk	<85.8 pk	Pass			
2483.5	GFSK (PL3)	PCB trace	62.3 pk	<72.06 avg *	Pass			

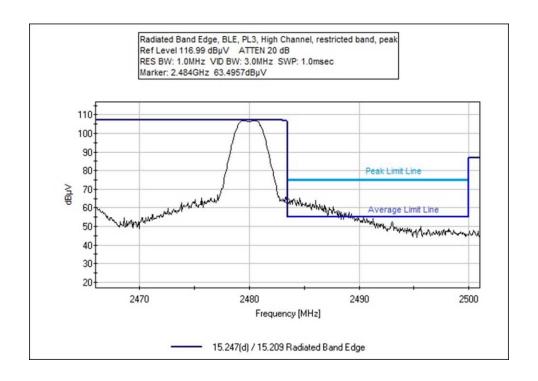
^{*}Limit is calculated using DCCF.

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

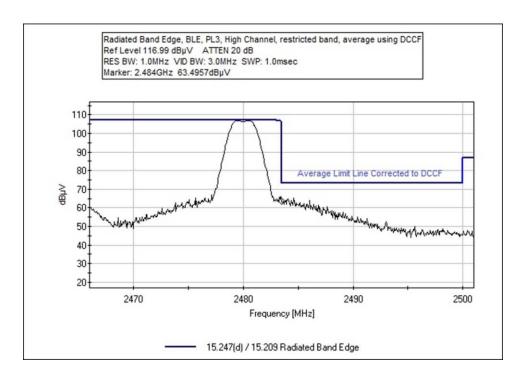
$$DCCF = 20 \cdot Log\left(\frac{On\ Time}{P_{obs}}\right)$$

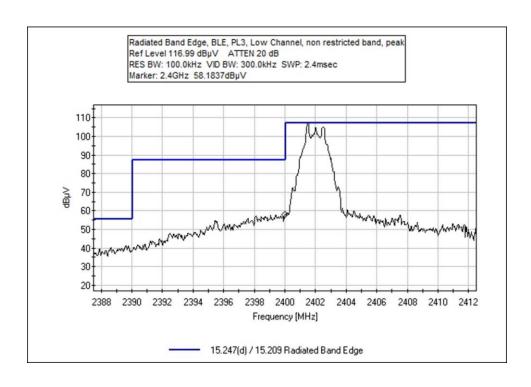
where P_{obs} = 100ms, $On\ Time$ = 12.5ms (Manufacturer declaration)


$$DCCF = 20 \cdot Log\left(\frac{12.5}{100}\right) = -18.06$$


Note: The duty cycle of the test sample transmission was not measured however the Manufacturer declares it to be 12.5%.

Page 29 of 42 Report No.: 105379-14A


Band Edge Plots



Page 30 of 42 Report No.: 105379-14A

Page 31 of 42 Report No.: 105379-14A

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Band Edge

Work Order #: 105379 Date: 5/26/2021
Test Type: Maximized Emissions Time: 09:47:02
Tested By: S. Yamamoto Sequence#: 23

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The equipment under test (EUT) is connected to a laptop computer via USB to serial interface board. The laptop is running Command Line Interface (CLI) Tool. This software is used to run the scripts for setting the EUT parameters.

Once the parameters have been set, the support equipment is removed from the EUT.

Frequency range of test: 2370MHz to 2501MHz.

Test Channels

Low Channel 2402MHz High Channel 2480MHz

RBW=1MHz, VBW=3MHz

Output level 3 BLE

Test Environment Conditions:

Temperature: 20°C Humidity: 49% Pressure: 99kPa

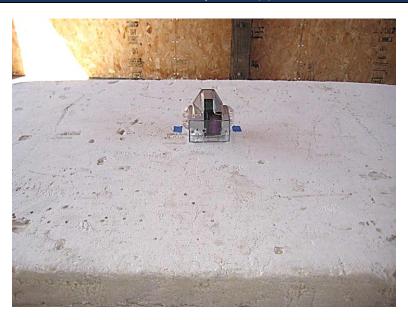
Site D

The EUT is powered from a new 3.6V lithium battery

Test Method: ANSI C63.10-2013

Page 32 of 42 Report No.: 105379-14A

Test Equipment:


ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	ANP04382	Cable	LDF-50	5/15/2020	5/15/2022
T3	ANP07138	Cable	ANDL1-	3/30/2021	3/30/2023
			PNMNM-60		
T4	AN00787	Preamp	83017A	5/31/2019	5/31/2021
T5	ANP07657	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
Т6	AN01646	Horn Antenna	3115	3/17/2020	3/17/2022

Measi	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	2390.000M	50.9	+0.0	+5.6	+4.0	-39.8	+0.0	49.4	54.0	-4.6	Vert
			+0.4	+28.3							
2	2483.500M	63.5	+0.0	+5.7	+4.3	-39.9	+0.0	62.3	72.1	-9.8	Vert
	Ave		+0.5	+28.2							
3	2400.000M	58.2	+0.0	+5.6	+4.0	-39.8	+0.0	56.7	85.8	-29.1	Vert
			+0.4	+28.3							

Page 33 of 42 Report No.: 105379-14A

Test Setup Photo(s)

Below 1GHz, Front View

Below 1GHz, Back View

Page 34 of 42 Report No.: 105379-14A

Above 1GHz

Page 35 of 42 Report No.: 105379-14A

15.247(e) Power Spectral Density

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(e) Power Spectral Density

Work Order #: 105379 Date: 5/13/2021
Test Type: Conducted Emissions Time: 10:12:55
Tested By: S. Yamamoto Sequence#: 10
Software: EMITest 5.03.19 3.6Vdc

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is connected to a laptop computer via USB to serial interface board. The laptop is running Command Line Interface (CLI) Tool. This software is used to run the scripts for setting the EUT parameters.

The RF output has been configured to a coaxial cable output with sma connector. The output is connected to the spectrum analyzer using a coaxial cable and power attenuator.

Frequency range of test: 2402MHz to 2480MHz.

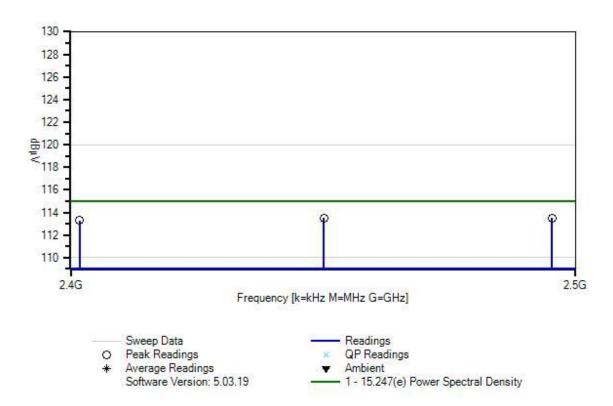
Low Channel 2402MHz Middle Channel 2442MHz High Channel 2480MHz

RBW=3kHz, VBW=10kHz

Output level 3 BLE

Test Environment Conditions:

Temperature: 20°C Humidity: 53% Pressure: 99kPa


Site D

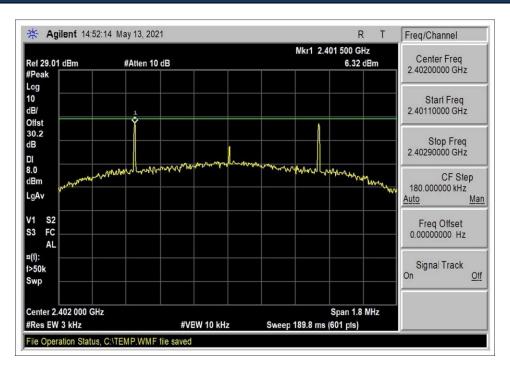
Reference 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10-2013

Page 36 of 42 Report No.: 105379-14A

Itron, Inc. WO#: 105379 Sequence#: 10 Date: 5/13/2021 15.247(e) Power Spectral Density Test Lead: 3.6Vdc Antenna Port

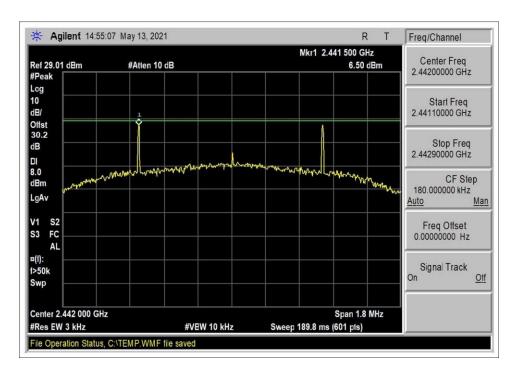
Test Equipment:

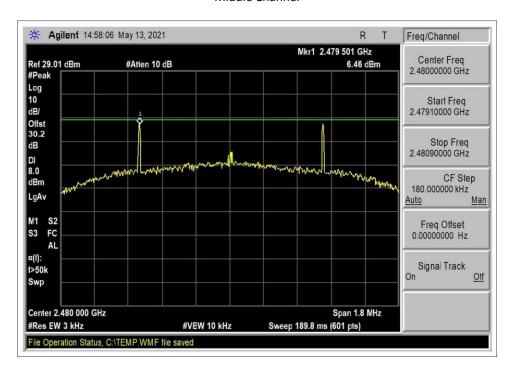
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
Т3	ANP07656	Cable	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022


Meast	urement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Antenna	Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2479.501M	83.3	+0.0	+29.7	+0.5		+0.0	113.5	115.0	-1.5	Anten
2	2441.500M	83.3	+0.0	+29.7	+0.5		+0.0	113.5	115.0	-1.5	Anten
3	2401.500M	83.1	+0.0	+29.7	+0.5		+0.0	113.3	115.0	-1.7	Anten

Page 37 of 42 Report No.: 105379-14A

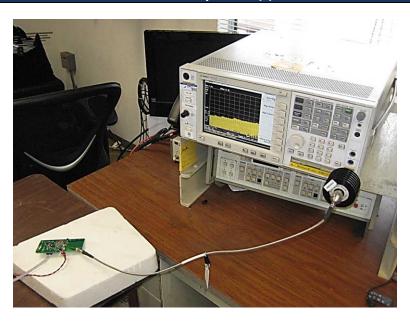
Test Data Summary - RF Conducted Measurement								
Measurement N	Measurement Method: PKPSD							
Frequency (MHz)								
2401.5	GFSK (PL3)	6.32	≤8	Pass				
2441.5	GFSK (PL3)	6.50	≤8	Pass				
2479.501	GFSK (PL3)	6.46	≤8	Pass				


Plots


Low Channel

Page 38 of 42 Report No.: 105379-14A

Middle Channel



High Channel

Page 39 of 42 Report No.: 105379-14A

Test Setup Photo(s)

Page 40 of 42 Report No.: 105379-14A

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS								
	Meter reading (dBμV)							
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

Page 41 of 42

Report No.: 105379-14A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 42 of 42 Report No.: 105379-14A