Itron, Inc.

ADDENDUM TEST REPORT TO 99315-4

Gas Endpoint
Model: 500GA

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s)
15.247
(FHSS 902-928 MHz)

Report No.: 99315-4A

Date of issue: March 27, 2017

Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 7
FCC Part 15 Subpart C 8
15.247(d) Radiated Emissions \& Band Edge 8
Appendix A: Customer Provided Information 48
15.35(c) Duty Cycle Correction Factor 48
Supplemental Information 50
Measurement Uncertainty 50
Emissions Test Details 50

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Iron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 110651

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 99315

December 7, 2016
December 7-16, 2016 and January 31, 2017

Revision History

Original: Testing of the Gas Endpoint, Model: 500GA to FCC Part 15 Subpart C Section 15.247.
Addendum A: To correct antenna gain numbers throughout the report.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .02

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Canyon Park, Bothell, WA	US0081	SL2-IN-E- $1145 R$	$3082 \mathrm{C}-1$	US1022	A-0148

- Testing the Future LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	NP
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	NP
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	NP
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NP

NA = Not Applicable
NP = CKC Laboratories was not contracted to perform test.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gas Endpoint	Itron, Inc.	500GA	0100001729

Support Equipment:

Device	Manufacturer	Model \#
None		S/N

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gas Endpoint	Itron, Inc.	500 GA	0100001738
Support Equipment:			
Device	Manufacturer	Model \#	S/N
None			

Configuration 3

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gas Endpoint	Itron, Inc.	500GA	0100001737
Support Equipment:			
Device	Manufacturer	Model \#	S/N
None			

Configuration 4
Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gas Endpoint	Itron, Inc.	500 GA	0100001736
Support Equipment:			
Device	Manufacturer	Model \#	S/N
None			

LABORATORIES, INC.

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
	$903-926.8 \mathrm{MHz}$ (OOK)
Operating Frequency Range:	$902.4-927.6 \mathrm{MHz}$ (FSK 150kbps)
	902.2 to 927.75 MHz (FSK 10kbps)
Number of Hopping Channels:	See supplemental report
Modulation Type(s):	OOK and FSK
Maximum Duty Cycle:	See supplemental report
Number of TX Chains:	2
Antenna Type(s) and Gain:	See supplemental report
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery
Firmware / Software used for Test:	See supplemental report

FCC Part 15 Subpart C

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

99315 Date: 12/16/2016
Maximized Emissions Time: 19:49:09
Steven Pittsford
EMITest 5.03.02

Sequence\#: 9

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: $902.4-927.6 \mathrm{MHz}$
Modulation: FSK 150kbps
Firmware Power Level: 3
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 8.02 dBi
Duty Cycle: Max
Test Method: ANSI C63.10 (2013)

The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports. Parallel, Perpendicular, Ground parallel antenna polarities investigated below 30MHz, Horizontal and Vertical antenna polarities investigated above 30 MHz , only worst case reported.
The EUT orientation selected as worst case based on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ investigation as well as previous engineering data.
Hopping operation selected as worst case based on previously collected data.

Itron, Inc. WO\#: 99315 Sequence\#: 9 Date: 12/16/2016
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp

- Readings
\times QP Readings
\times Ambient
$1-15.247$ (d) / 15.209 Radiated Spurious Emissions
- Peak Readings
* Average Readings

Software Version: 5.03 .02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$10 / 12 / 2015$	$10 / 12 / 2017$
T2	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T3	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T4	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$2 / 15 / 2018$
T5	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T6	AN01467	Horn Antenna- 	ANSI C63.5 Calibration	3115	$8 / 12 / 2015$
	Cable		$8 / 12 / 2017$		
T7	ANP06935	Spectrum Analyzer	E4440A	$8 / 25 / 2015$	$8 / 25 / 2017$
T8	AN02871	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T9	ANP05963	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T10	ANP05360	Log Periodic	3146	$1 / 8 / 2016$	$1 / 8 / 2018$
T11	AN01816	Antenna-ANSI 63.5			
T12	AN02372	Bicon Antenna-	$3104 C$	$5 / 27 / 2015$	$5 / 27 / 2017$
T13	AN00052	ANSI 63.5			$3 / 11 / 2018$

$\begin{aligned} & 7 \quad 979.600 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	22.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.1	54.0	-2.9	Horiz
$\wedge 979.600 \mathrm{M}$	22.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.8	54.0	-2.2	Horiz
$\begin{aligned} & 9 \text { 4637.977M } \\ & \text { Ave } \end{aligned}$	46.4	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.1	54.0	-2.9	Horiz
$\wedge ~ 4638.010 \mathrm{M}$	47.4	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.1	54.0	-1.9	Horiz
$\begin{aligned} & 11 \text { 4576.089M } \\ & \text { Ave } \end{aligned}$	46.6	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.0	54.0	-3.0	Horiz
$\wedge 4576.000 \mathrm{M}$	48.8	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	53.2	54.0	-0.8	Horiz
$\begin{gathered} 13962.016 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	22.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	50.7	54.0	-3.3	Horiz
$\wedge 962.000 \mathrm{M}$	22.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.7	54.0	-3.3	Horiz
$15 \quad 2745.600 \mathrm{M}$	51.9	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.7	54.0	-3.3	Horiz
$\begin{gathered} 16967.195 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	22.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.4	54.0	-3.6	Horiz
$\wedge 967.100 \mathrm{M}$	22.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.4	54.0	-3.6	Horiz

$\begin{aligned} & 182745.470 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.3	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.1	54.0	-3.9	Horiz
$\begin{aligned} & 192782.849 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.1	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +28.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.0	54.0	-4.0	Horiz
$\wedge 2782.800 \mathrm{M}$	51.7	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +28.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.6	54.0	-3.4	Horiz
$\begin{aligned} & 218352.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	38.2	$\begin{array}{r} +0.0 \\ -35.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.3 \\ +36.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	47.7	54.0	-6.3	Horiz
$\wedge 8352.000 \mathrm{M}$	39.3	$\begin{array}{r} +0.0 \\ -35.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.3 \\ +36.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	48.8	54.0	-5.2	Horiz
$\begin{aligned} & 23 \text { 8192.000M } \\ & \text { Ave } \end{aligned}$	38.1	$\begin{array}{r} +0.0 \\ -35.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	47.3	54.0	-6.7	Horiz
$\wedge 8192.000 \mathrm{M}$	39.3	$\begin{array}{r} +0.0 \\ -35.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	48.5	54.0	-5.5	Horiz
$25 \quad 995.300 \mathrm{M}$	17.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	47.0	54.0	-7.0	Horiz
$\begin{aligned} & 262707.204 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.2	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	46.9	54.0	-7.1	Horiz
$\wedge 2707.204 \mathrm{M}$	48.7	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	47.4	54.0	-6.6	Horiz
$\begin{aligned} & 282730.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.0	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	46.8	54.0	-7.2	Horiz
$\wedge 2730.000 \mathrm{M}$	48.6	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	47.4	54.0	-6.6	Horiz
$30 \quad 1075.000 \mathrm{M}$	46.4	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +8.2 \\ +24.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	44.1	54.0	-9.9	Horiz

Page 12 of 51

31	974.200M	8.1	+0.0	+0.0	+0.4	+0.0	+0.0	36.9	54.0	-17.1	Horiz
	QP		+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$					
			+2.5	+2.2	+23.7						
			+0.0								
\wedge	974.200M	23.1	+0.0	+0.0	+0.4	+0.0	+0.0	51.9	54.0	-2.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+2.5	+2.2	+23.7	+0.0					
			+0.0								
33	1804.500M	77.1	+0.0	+0.4	+0.5	+2.5	+0.0	72.5	109.5	-37.0	Horiz
			-35.1	+26.8	+0.3	+0.0					
			+0.0	+0.0	+0.0	$+0.0$					
			+0.0								
34	1820.000M	73.9	+0.0	+0.4	+0.5	+2.5	+0.0	69.4	109.5	-40.1	Horiz
			-35.1	+26.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
35	1830.500M	71.6	+0.0	+0.4	+0.5	+2.5	+0.0	67.1	109.5	-42.4	Horiz
			-35.1	+26.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
36	1855.000M	65.0	+0.0	+0.3	+0.5	+2.5	+0.0	60.5	109.5	-49.0	Horiz
			-35.1	+27.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
37	897.200M	27.8	+0.0	+0.0	+0.3	+0.0	+0.0	55.2	109.5	-54.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+2.4	+2.1	+22.6	+0.0					
			+0.0								
38	6679.000M	39.9	+0.0	+0.2	+1.2	+4.5	+0.0	46.8	109.5	-62.7	Horiz
			-34.2	+34.6	+0.6	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
39	593.400M	14.9	+0.0	+0.0	+0.3	+0.0	+0.0	37.0	109.5	-72.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+2.1	+1.6	+18.1	+0.0					
			+0.0								

40	416.300 M	13.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +15.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	32.4	109.5	-77.1	Horiz
41	157.160M	14.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +14.6 \end{array}$	+0.0	31.4	109.5	-78.1	Horiz
42	228.700M	13.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +10.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	26.3	109.5	-83.2	Horiz
43	67.570 M	11.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.6 \end{aligned}$	+0.0	22.1	109.5	-87.4	Horiz
44	7.927M	13.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-16.6	109.5	-126.1	Perp
45	10.470k	45.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +17.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-17.4	109.5	-126.9	Perp

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#: 99315 Date: 12/16/2016
Test Type: Maximized Emissions
Time: 19:49:27
Tested By: Michael Atkinson
Sequence\#: 11
Software: EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: $903-926.8 \mathrm{MHz}$
Modulation: OOK
Firmware Power Level: 3
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 8.02 dBi
Duty Cycle: Max

Test Method: ANSI C63.10 (2013)
The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports. Parallel, Perpendicular, Ground parallel antenna polarities investigated below 30MHz, Horizontal and Vertical antenna polarities investigated above 30 MHz , only worst case reported.
The EUT orientation selected as worst case based on X, Y, Z investigation as well as previous engineering data. Hopping operation selected as worst case based on previously collected data.

Itron, Inc. WO\#: 99315 Sequence\#: 11 Date: 12/16/2016
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp

[^0]O Peak Readings

* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$10 / 12 / 2015$	$10 / 12 / 2017$
T2	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T3	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T4	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$2 / 15 / 2018$
T5	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T6	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
		Cable			
T7	ANP06935	Spectrum Analyzer	E4440A	$8 / 25 / 2015$	$8 / 25 / 2017$
T8	AN02871	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T9	ANP05963	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T10	ANP05360	Log Periodic	3146	$1 / 8 / 2016$	$1 / 8 / 2018$
T11	AN01816	Antenna-ANSI 63.5		$5 / 11 / 2018$	
T12	AN02372	Bicon Antenna-	$3104 C$	$5 / 27 / 2015$	$5 / 27 / 2017$
T13	AN00052	ANSI 63.5			

$\wedge ~ 4515.041 \mathrm{M}$	44.1	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	48.5	54.0	-5.5	Horiz
7 2728.000M	45.5	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	44.3	54.0	-9.7	Horiz
84550.000 M	39.6	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.3 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	43.9	54.0	-10.1	Horiz
92744.000 M	44.6	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	43.4	54.0	-10.6	Horiz
$10 \quad 2708.000 \mathrm{M}$	44.2	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	42.9	54.0	-11.1	Horiz
11 4633.700M	38.0	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	42.7	54.0	-11.3	Horiz
12 165.490M	14.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +15.6 \end{array}$	$+0.0$	32.2	43.5	-11.3	Horiz
$\begin{aligned} & 13974.600 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	13.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	42.5	54.0	-11.5	Horiz
$\wedge 974.600 \mathrm{M}$	23.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.8	54.0	-1.2	Horiz
15 2732.000M	42.9	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	41.7	54.0	-12.3	Horiz
16 1576.000M	45.1	$\begin{array}{r} \hline+0.0 \\ -35.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +25.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	39.0	54.0	-15.0	Horiz
17 1806.000M	70.0	$\begin{array}{r} +0.0 \\ -35.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +26.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	65.4	107.0	-41.6	Horiz
$18 \quad 1820.000 \mathrm{M}$	65.4	$\begin{array}{r} +0.0 \\ -35.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	60.9	107.0	-46.1	Horiz

Page 18 of 51

19	1830.000M	61.5	$\begin{array}{r} +0.0 \\ -35.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	57.0	107.0	-50.0	Horiz
20	1853.500M	58.6	$\begin{array}{r} +0.0 \\ -35.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.3 \\ +27.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	54.1	107.0	-52.9	Horiz
21	791.600M	20.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.9 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +20.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	45.5	107.0	-61.5	Horiz
22	2628.000M	42.1	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.3 \\ +28.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	40.3	107.0	-66.7	Horiz
23	387.600M	13.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +14.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	31.5	107.0	-75.5	Horiz
24	336.200M	13.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +13.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	30.7	107.0	-76.3	Horiz
25	222.400 M	14.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +10.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	27.4	107.0	-79.6	Horiz
26	39.010 M	13.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.4 \end{array}$	$+0.0$	25.5	107.0	-81.5	Horiz
27	77.260M	12.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +7.0 \end{aligned}$	$+0.0$	21.0	107.0	-86.0	Horiz
28	9.996M	13.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +9.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-17.5	107.0	-124.5	Perp
29	17.470k	44.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +14.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-20.9	107.0	-127.9	Perp

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
Test Type:
Tested By: 99315
Maximized Emissions
Date: 12/16/2016

Michael Atkinson
Time: 19:49:02

Software:
EMITest 5.03.02
Sequence\#: 12

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: $903-926.8 \mathrm{MHz}$
Modulation: OOK
Firmware Power Level: 1
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 7.19 dBi
Duty Cycle: Max
Test Method: ANSI C63.10 (2013)
The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports. Parallel, Perpendicular, Ground parallel antenna polarities investigated below 30MHz,
Horizontal and Vertical antenna polarities investigated above 30 MHz , only worst case reported.
The EUT orientation selected as worst case based on X, Y, Z investigation as well as previous engineering data.
Hopping operation selected as worst case based on previously collected data.

Itron, Inc. WO\#: 99315 Sequencef: 12 Date: 12/16/2016
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp

[^1]O Peak Readings

* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	$10 / 12 / 2015$	$10 / 12 / 2017$
T1	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T2	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T3	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$2 / 15 / 2018$
T4	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T5	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
T6	ANP06935	Cable			
T7	AN02871	Spectrum Analyzer	E4440A	$8 / 25 / 2015$	$8 / 25 / 2017$
T8	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T9	ANP05360	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T10	AN01816	Log Periodic	3146	$1 / 8 / 2016$	$1 / 8 / 2018$
T11	AN02372	Antenna-ANSI 63.5			
T12	Aicon Antenna-	$3104 C$	$5 / 27 / 2015$	$5 / 27 / 2017$	
T13	AN00052	ANSI 63.5			

$6 \quad 987.300 \mathrm{M}$	13.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$+0.0$	42.5	54.0	-11.5	Horiz
$\begin{aligned} & 7 \text { 2745.030M } \\ & \text { Ave } \end{aligned}$	58.5	$\begin{array}{r} +0.4 \\ +28.8 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	39.1	54.0	-14.9	Horiz
$\wedge 2745.000 \mathrm{M}$	60.4	$\begin{array}{r} +0.4 \\ +28.8 \\ +0.0 \\ -18.2 \\ \hline \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	41.0	54.0	-13.0	Horiz
$\begin{aligned} & 98340.939 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.6	$\begin{array}{r} +0.3 \\ +36.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	38.8	54.0	-15.2	Horiz
$\wedge 8341.000 \mathrm{M}$	50.0	$\begin{array}{r} +0.3 \\ +36.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline-35.0 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	41.2	54.0	-12.8	Horiz
11 1165.000M	46.6	$\begin{array}{r} +1.3 \\ +24.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-36.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	38.1	54.0	-15.9	Horiz
$\begin{aligned} & 12 \text { 8190.000M } \\ & \text { Ave } \end{aligned}$	47.1	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	38.1	54.0	-15.9	Horiz
$\wedge 8190.000 \mathrm{M}$	48.4	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	39.4	54.0	-14.6	Horiz
$\begin{aligned} & 142709.017 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.3	$\begin{array}{r} +0.5 \\ +28.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	37.8	54.0	-16.2	Horiz
$\wedge 2709.017 \mathrm{M}$	59.5	$\begin{array}{r} +0.5 \\ +28.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	40.0	54.0	-14.0	Horiz
$\begin{aligned} & 162728.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.1	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	37.7	54.0	-16.3	Horiz
$\wedge 2728.000 \mathrm{M}$	58.1	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	38.7	54.0	-15.3	Horiz

$\begin{gathered} 18 \text { 8235.000M } \\ \text { Ave } \end{gathered}$	46.1	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	37.1	54.0	-16.9	Horiz
$\wedge 8235.000 \mathrm{M}$	47.9	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	38.9	54.0	-15.1	Horiz
$\begin{aligned} & 208127.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.0	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	37.0	54.0	-17.0	Horiz
$\wedge 8127.000 \mathrm{M}$	48.5	$\begin{array}{r} +0.3 \\ +36.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	39.5	54.0	-14.5	Horiz
22 4636.000M	44.3	$\begin{array}{r} +0.5 \\ +32.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	30.8	54.0	-23.2	Horiz
23 4634.000M	42.4	$\begin{array}{r} +0.5 \\ +32.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	28.9	54.0	-25.1	Horiz
243709.000 M	45.4	$\begin{array}{r} +0.3 \\ +30.1 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	28.5	54.0	-25.5	Horiz
254550.000 M	42.4	$\begin{array}{r} +0.3 \\ +32.5 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	28.5	54.0	-25.5	Horiz
264516.000 M	42.1	$\begin{array}{r} +0.4 \\ +32.5 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	28.3	54.0	-25.7	Horiz
$\begin{aligned} & 27 \text { 4576.000M } \\ & \text { Ave } \end{aligned}$	40.5	$\begin{array}{r} +0.4 \\ +32.5 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	26.7	54.0	-27.3	Horiz
$\wedge 4576.000 \mathrm{M}$	44.7	$\begin{array}{r} \hline+0.4 \\ +32.5 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	30.9	54.0	-23.1	Horiz
293660.000 M	43.5	$\begin{array}{r} +0.3 \\ +29.9 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	26.2	54.0	-27.8	Horiz
$30 \quad 3706.000 \mathrm{M}$	41.9	$\begin{array}{r} +0.3 \\ +30.1 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	24.9	54.0	-29.1	Horiz

Page 24 of 51

31	3612.000 M	42.1	$\begin{array}{r} +0.4 \\ +29.8 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	24.7	54.0	-29.3	Horiz
32	3640.000 M	41.1	$\begin{array}{r} +0.4 \\ +29.9 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	23.9	54.0	-30.1	Horiz
33	859.400M	15.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +22.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.0 \end{aligned}$	+0.0	42.5	89.3	-46.8	Horiz
34	680.900M	12.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +20.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.1 \\ & +0.0 \end{aligned}$	+0.0	37.4	89.3	-51.9	Horiz
35	6373.000M	45.3	$\begin{array}{r} +0.3 \\ +34.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & +1.3 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	34.5	89.3	-54.8	Horiz
36	6373.000M	45.3	$\begin{array}{r} +0.3 \\ +34.7 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	34.5	89.3	-54.8	Horiz
37	428.900M	14.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +15.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \\ & +0.0 \end{aligned}$	+0.0	33.2	89.3	-56.1	Horiz
38	174.840M	13.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +16.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.0 \end{aligned}$	$+0.0$	32.6	89.3	-56.7	Horiz
39	6409.000 M	39.8	$\begin{array}{r} +0.3 \\ +34.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	28.8	89.3	-60.5	Horiz
40	37.480M	16.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	+0.0	28.6	89.3	-60.7	Horiz
41	6688.000M	38.7	$\begin{array}{r} +0.2 \\ +34.6 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	27.4	89.3	-61.9	Horiz
42	230.800M	14.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +10.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.4 \\ & +0.0 \end{aligned}$	+0.0	27.2	89.3	-62.1	Horiz
43	88.310 M	11.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \end{aligned}$	+0.0	25.2	89.3	-64.1	Horiz

Page 25 of 51

44	1825.000M	44.9	$\begin{array}{r} \hline+0.4 \\ +26.9 \\ +0.0 \\ -18.2 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	22.2	89.3	-67.1	Horiz
45	11.770k	45.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +16.6 \end{array}$	-80.0	-18.0	89.3	-107.3	Perp
46	13.445M	12.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & ++0.0 \\ & +0.0 \\ & +8.8 \end{aligned}$	-40.0	-18.4	89.3	-107.7	Perp

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Software: EMITest 5.03.02
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 4		S/N

Test Conditions / Notes:
Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Transmitter Frequency: 902.2 to 927.75 MHz
Modulation: FSK 10kbps
Firmware Power Level: 3
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 8.02 dBi
Duty Cycle: Max

Test Method: ANSI C63.10 (2013)
The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports. Parallel, Perpendicular, Ground parallel antenna polarities investigated below 30 MHz , Horizontal and Vertical antenna polarities investigated above 30 MHz , only worst case reported.
The EUT orientation selected as worst case based on X, Y, Z investigation as well as previous engineering data. Hopping operation selected as worst case based on previously collected data.

Itron, Inc. WO\#: 99315 Sequencef: 10 Date: 12/16/2016
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp

[^2]O Peak Readings
* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	$10 / 12 / 2015$	$10 / 12 / 2017$
T2	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T3	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T4	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$2 / 15 / 2018$
T5	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T6	AN01467	Horn Antenna- 	ANSI C63.5 Calibration	3115	$8 / 12 / 2015$
	Cable		$8 / 12 / 2017$		
T7	ANP06935	Spectrum Analyzer	E4440A	$8 / 25 / 2015$	$8 / 25 / 2017$
T8	AN02871	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T9	ANP05963	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T10	ANP05360	Log Periodic	3146	$1 / 8 / 2016$	$1 / 8 / 2018$
T11	AN01816	Antenna-ANSI 63.5			
T12	AN02372	Bicon Antenna-	$3104 C$	$5 / 27 / 2015$	$5 / 27 / 2017$
T13	AN00052	ANSI 63.5			$3 / 11 / 2018$

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
		T9	T10	T11	T12					
MHz	$\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \mathrm{T} 13 \\ \mathrm{~dB} \end{gathered}$	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
$\begin{aligned} & 12783.277 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.9	+0.0	+0.4	+0.7	+3.0	+0.0	51.8	54.0	-2.2	Horiz
		-34.5	+28.9	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
$\wedge 2783.277 \mathrm{M}$	54.7	+0.0	+0.4	+0.7	+3.0	+0.0	53.6	54.0	-0.4	Horiz
		-34.5	+28.9	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
$\begin{aligned} & 34574.962 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.1	+0.0	+0.4	+0.9	+4.2	+0.0	51.5	54.0	-2.5	Horiz
		-34.1	+32.5	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
$\wedge 4575.000 \mathrm{M}$	48.6	+0.0	+0.4	+0.9	+4.2	+0.0	53.0	54.0	-1.0	Horiz
		-34.1	+32.5	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
$\begin{aligned} & 5 \text { 4549.969M } \\ & \text { Ave } \end{aligned}$	47.1	+0.0	+0.3	+0.9	+4.2	+0.0	51.4	54.0	-2.6	Horiz
		-34.1	+32.5	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
$\wedge 4550.000 \mathrm{M}$	48.3	+0.0	+0.3	+0.9	+4.2	+0.0	52.6	54.0	-1.4	Horiz
		-34.1	+32.5	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

$\begin{aligned} & 7 \text { 4511.007M } \\ & \text { Ave } \end{aligned}$	46.9	$\begin{array}{r} \hline+0.0 \\ -34.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.3	54.0	-2.7	Horiz
$\wedge 4511.000 \mathrm{M}$	47.9	$\begin{array}{r} +0.0 \\ \hline+34.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.3	54.0	-1.7	Horiz
$\begin{aligned} & 9 \text { 2706.888M } \\ & \text { Ave } \end{aligned}$	52.5	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.2	54.0	-2.8	Horiz
102745.000 M	52.3	$\begin{array}{r} \hline+0.0 \\ -34.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.1	54.0	-2.9	Horiz
$\begin{gathered} 11 \quad 988.000 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	21.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.1	54.0	-2.9	Horiz
$\wedge 988.000 \mathrm{M}$	22.3	$\begin{aligned} & +0.0 \\ & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.7	54.0	-2.3	Horiz
$\begin{gathered} 133_{\mathrm{QP}}^{962.000 \mathrm{M}} \\ \hline \end{gathered}$	22.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.0	54.0	-3.0	Horiz
^ 962.000M	22.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.9	54.0	-3.1	Horiz
$\begin{aligned} & 15 \text { 4638.738M } \\ & \text { Ave } \end{aligned}$	46.2	$\begin{array}{r} \hline+0.0 \\ -34.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.5 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.9	54.0	-3.1	Horiz
^ 4638.738M	47.5	$\begin{array}{r} \hline+0.0 \\ -34.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.5 \\ +32.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.2	54.0	-1.8	Horiz
$\begin{gathered} 17 \\ \mathrm{QP} \end{gathered}$		$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.8	54.0	-3.2	Horiz
^ 967.100M	23.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	51.9	54.0	-2.1	Horiz

$\begin{gathered} 19 \quad 993.024 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	20.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	50.3	54.0	-3.7	Horiz
$\wedge 993.000 \mathrm{M}$	20.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.0	54.0	-4.0	Horiz
$\begin{aligned} & 212729.953 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.4	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	50.2	54.0	-3.8	Horiz
$\wedge 2730.000 \mathrm{M}$	50.0	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	48.8	54.0	-5.2	Horiz
23 2707.000M	51.4	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.5 \\ +28.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	50.1	54.0	-3.9	Horiz
$\begin{aligned} & 24 \text { 2744.500M } \\ & \text { Ave } \end{aligned}$	50.2	$\begin{array}{r} +0.0 \\ -34.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +28.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	49.0	54.0	-5.0	Horiz
$\begin{gathered} 25979.754 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	19.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	48.1	54.0	-5.9	Horiz
$\wedge 979.700 \mathrm{M}$	22.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +24.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	51.6	54.0	-2.4	Horiz
$\begin{gathered} 27968.800 \mathrm{M} \\ \mathrm{QP} \end{gathered}$		$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	46.6	54.0	-7.4	Horiz
$\wedge 968.800 \mathrm{M}$	24.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +23.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	53.4	54.0	-0.6	Horiz
29 1081.000M	45.1	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +7.0 \\ +24.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	41.6	54.0	-12.4	Horiz
$30 \quad 118.570 \mathrm{M}$	12.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +13.9 \end{array}$	$+0.0$	28.5	43.5	-15.0	Horiz
$31 \quad 265.100 \mathrm{M}$	13.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +12.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	28.4	46.0	-17.6	Horiz

Page 31 of 51

32	1804.400M	76.9	$\begin{array}{r} +0.0 \\ -35.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +26.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	72.3	109.5	-37.2	Horiz
33	1820.000M	72.6	$\begin{array}{r} +3.0 \\ \hline+3.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	68.1	109.5	-41.4	Horiz
34	1830.000M	70.1	$\begin{array}{r} \hline+0.0 \\ -35.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +26.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	65.6	109.5	-43.9	Horiz
35	1855.600M	63.1	$\begin{array}{r} +0.0 \\ \hline+3.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.3 \\ +27.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	58.7	109.5	-50.8	Horiz
36	896.500M	28.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +22.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	55.7	109.5	-53.8	Horiz
37	652.200M	24.5	$\begin{aligned} & +0.0 \\ & \hline+0.0 \\ & +0.0 \\ & +2.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.7 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +20.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	48.6	109.5	-60.9	Horiz
38	3304.000M	41.3	$\begin{array}{r} +0.0 \\ -34.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.3 \\ +29.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	41.3	109.5	-68.2	Horiz
39	494.000M	13.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +17.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	34.6	109.5	-74.9	Horiz
40	198.640M	13.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +1.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +16.2 \end{array}$	$+0.0$	32.2	109.5	-77.3	Horiz
41	342.100M	14.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.2 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +13.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	31.4	109.5	-78.1	Horiz
42	295.900M	12.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \end{aligned}$	$\begin{array}{r} +0.2 \\ +0.0 \\ +13.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	28.7	109.5	-80.8	Horiz

43	38.330M	13.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.5 \end{array}$	+0.0	25.7	109.5	-83.8	Horiz
44	7.987M	14.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-16.3	109.5	-125.8	Perp
45	12.230k	44.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +16.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-19.3	109.5	-128.8	Perp
46	279.000k	16.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +9.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-54.2	109.5	-163.7	Perp

Band Edge

Frequency (MHz)							Modulation	Antenna Type	Field Strength $(\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m})$	Limit $(\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m})$	Results
614	Worst Case	Integral	$39.2(\mathrm{QP)}$	<46	Pass						
902	FSK 150kbps Power Level 3	Integral	$80.2(\mathrm{QP)}$	109.5	Pass						
902	OOK Power level 3	Integral	$96.3($ Peak)	107	Pass						
902	OOK Power Level 1	Integral	$78.5($ Peak)	89.3	Pass						
902	FSK 10kbps Power Level 3	Integral	$84.4(\mathrm{QP)}$	109.5	Pass						
928	FSK 150kbps Power Level 3	Integral	$79.6(\mathrm{QP})$	109.5	Pass						
928	OOK Power level 3	Integral	$93.2($ Peak)	107	Pass						
928	OOK Power Level 1	Integral	$77.5($ Peak)	89.3	Pass						
928	FSK 10kbps Power Level 3	Integral	$86.3(\mathrm{QP)}$	109.5	Pass						
960	Worst Case	Integral	$45.5(\mathrm{QP)}$	<54	Pass						

[^3]
Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

99315 Date: $1 / 31 / 2017$
Maximized Emissions Time: 17:53:19
Steven Pittsford
EMITest 5.03.02

Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: Band Edge
Transmitter Frequency: $902.4-927.6 \mathrm{MHz}$
Modulation: FSK 150kbps
Firmware Power Level: 3
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 8.02 dBi
Duty Cycle: Max
Test Method: ANSI C63.10 (2013)
The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports.
The EUT orientation selected as worst case based on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ investigation as well as previous engineering data. Hopping operation selected as worst case based on previously collected data.

Itron. Inc. WO\#: 99315 Sequence\#: 1 Date: 1/31/2017
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

- Readings
$\times \quad$ QP Readings
\times Ambient
$1-15.247(\mathrm{~d}) / 15.209$ Radiated Spurious Emissions
O Peak Readings
* Average Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN01991	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T2	ANP05657	Attenuator	PE7004-6	$12 / 22 / 2015$	$12 / 22 / 2017$
T3	ANP05360	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T4	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T5	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
	AN02673	Spectrum Analyzer	E4446A	$10 / 12 / 2015$	$10 / 12 / 2017$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
15.247(d) / 15.209 Radiated Spurious Emissions

Work Order \#:
Test Type:
Tested By:

99315
Maximized Emissions
Steven Pittsford
EMITest 5.03.02

Date: $12 / 16 / 2016$
Time: 18:23:49
Sequence\#: 3

Software:
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#	S/N
Configuration 2			

Test Conditions / Notes:
Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: Band Edge
Transmitter Frequency: $903-926.8 \mathrm{MHz}$
Modulation: OOK
Firmware Power Level: 3
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 8.02 dBi
Duty Cycle: Max
Test Method: ANSI C63.10 (2013)
The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports.
The EUT orientation selected as worst case based on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ investigation as well as previous engineering data. Hopping operation selected as worst case based on previously collected data.

```
Itron, Inc. WO#: 99315 Sequence#: 3 Date: 12/16/2016
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz
```


_ Readings	O
\times Peak Readings	
\times QP Readings	Average Readings
Ambient	
$1-15.247($ (d) $/ 15.209$ Radiated Spurious Emissions	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN01991	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
	ANP05657	Attenuator	PE7004-6	$12 / 22 / 2015$	$12 / 22 / 2017$
T1	ANP05360	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T2	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T3	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T4	AN02871	Spectrum Analyzer	E4440A	$8 / 25 / 2015$	$8 / 25 / 2017$
T5	AN01816	Log Periodic	3146	$1 / 8 / 2016$	$1 / 8 / 2018$
		Antenna-ANSI 63.5			

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	T2 dB	T3 dB	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	960.000 M	15.5	$\begin{array}{r} +2.2 \\ +22.8 \end{array}$	+2.5	+0.4	+0.0	+0.0	43.4	54.0	-10.6	Horiz
2	902.000 M	68.9	$\begin{array}{r} +2.1 \\ +22.6 \end{array}$	+2.4	+0.3	+0.0	+0.0	96.3	107.0	-10.7	Horiz
3	928.000 M	65.9	$\begin{array}{r} +2.1 \\ +22.4 \end{array}$	+2.4	+0.4	+0.0	+0.0	93.2	107.0	-13.8	Horiz
4	$\begin{aligned} & \text { 614.000M } \\ & \text { QP } \end{aligned}$	8.1	$\begin{array}{r} +1.6 \\ +18.5 \end{array}$	+2.1	+0.3	+0.0	+0.0	30.6	46.0	-15.4	Horiz

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
Work Order \#:
Test Type:
Tested By:
15.247(d) / 15.209 Radiated Spurious Emissions

99315
Maximized Emissions
Date: 12/7/2016
Steven Pittsford
Time: 15:48:34

Software:
EMITest 5.03.02
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:
Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: Band Edge
Transmitter Frequency: $903-926.8 \mathrm{MHz}$
Modulation: OOK
Firmware Power Level: 1
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 7.19 dBi
Duty Cycle: Max
Test Method: ANSI C63.10 (2013)
The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports.
The EUT orientation selected as worst case based on X, Y, Z investigation as well as previous engineering data. Hopping operation selected as worst case based on previously collected data.

Itron, Inc. WO\#: 99315 Sequence\#: 2 Date: 12/7/2016
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

_ Readings	O	Peak Readings
\times QP Readings	Average Readings	
Ambient		Software Version: 5.03 .02
$1-15.247(d) / 15.209$	Radiated Spurious Emissions	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN01991	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T2	ANP05657	Attenuator	PE7004-6	$12 / 22 / 2015$	$12 / 22 / 2017$
T3	ANP05360	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T4	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T5	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T6	AN02673	Spectrum Analyzer	E4446A	$10 / 12 / 2015$	$10 / 12 / 2017$
T7	AN02307	Preamp	8447D	$2 / 15 / 2016$	$2 / 15 / 2018$

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Itron, Inc.
Specification:
Work Order \#:
Test Type:
Tested By:
15.247(d) / 15.209 Radiated Spurious Emissions

99315 Date: 12/7/2016
Maximized Emissions
Time: 12:07:38

Software:
Steven Pittsford
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4		S/N

Support Equipment:

Device	Manufacturer	Model \#	S/N
Configuration 4			

Test Conditions / Notes:

Temperature: $20-22^{\circ} \mathrm{C}$
Relative Humidity: 21-35\%
Frequency range investigated: Band Edge
Transmitter Frequency: 902.2 to 927.75 MHz
Modulation: FSK 10kbps
Firmware Power Level: 3
EUT Firmware: App Version: 1.18.3.0, CSL Version: 2.22.1.0
Antenna Type: Internal Trace
Antenna Gain: 8.02 dBi
Duty Cycle: Max

Test Method: ANSI C63.10 (2013)
The EUT is a transmitter operating hopping in band. The EUT is battery operated, fresh batteries installed.
The EUT has no IO ports.
The EUT orientation selected as worst case based on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ investigation as well as previous engineering data. Hopping operation selected as worst case based on previously collected data.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN01991	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T2	ANP05657	Attenuator	PE7004-6	$12 / 22 / 2015$	$12 / 22 / 2017$
T3	ANP05360	Cable	RG214	$11 / 30 / 2016$	$11 / 30 / 2018$
T4	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T5	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T6	AN02673	Spectrum Analyzer	E4446A	$10 / 12 / 2015$	$10 / 12 / 2017$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Band Edge Plots

Configuration 1

Configuration 2

Configuration 3

Configuration 4

Test Setup Photos

Below 1GHz

Above 1 GHz

APPENDIX A: CUSTOMER PROVIDED INFORMATION

15.35(c) Duty Cycle Correction Factor

Applies to OOK Power Level 1 Only

Test Data Summary			
Antenna Port	Operational Mode	Measured On Time $(\mathrm{mS} /$ Pobs $)$	Calculated DCCF (dB)
Integral	OOK Power Level 1	12.2	18.2

Observation Period, $\mathrm{P}_{\text {obs }}$ is the duration of the pulse train or maximum 100 mS

Measured results are calculated as follows:

$$
\text { On Time }=\left.\left(\sum_{\text {Bursts }} R F \text { Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{\text {obs }(\max 100 \mathrm{~ms})}}
$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100
Number of RF Bursts / Pobs::	1
On time of RF Burst:	12.2
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	12.2

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$
D C C F=20 \cdot \log \left(\frac{\text { On Time }}{P_{o b s}}\right)
$$

Plots

DCCF Zoom In

DCCF Zoom out

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QPReadings
 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

[^1]: - Readings
 \times QPReadings
 - Ambient
 _1-15.247(d) / 15.209 Radiated Spurious Emissions

[^2]: -_Readings
 \times QPReadings

 - Ambient

 1-15.247(d) / 15.209 Radiated Spurious Emissions

[^3]: Worst case: FSK 150kbps Power Level 3
 Emissions limits outside of restricted bands are 20 dB from maximum measured inband emissions in 100 kHz .

