Itron, Inc.

TEST REPORT FOR

Gas Endpoint Model: 500GA

Tested to The Following Standards:

FCC Part 15 Subpart C Section: 15.247 (FHSS 902-928 MHz)

Report No.: 98804-17

Date of issue: August 3, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business. esting the Future Ш Ľ 0 4 Ľ 0 m

This report contains a total of 38 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information
Test Report Information
Report Authorization
Test Facility Information4
Software Versions4
Site Registration & Accreditation Information4
Summary of Results
Modifications During Testing5
Conditions During Testing5
Equipment Under Test6
General Product Information7
FCC Part 15 Subpart C8
15.247(d) Radiated Emissions & Band Edge8
Supplemental Information
Measurement Uncertainty
Emissions Test Details

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019 **REPORT PREPARED BY:**

Dianne Dudley CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Jay Holcomb Customer Reference Number: 103450

Project Number: 98804

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: July 26, 2016 July 26-27, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Bothell	US0081	SL2-IN-E-1145R	3082C-1	318736	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NP
15.247(a)(1)	Carrier Separation	NA	NP
15.247(a)(1)(i)	Number of Hopping Channels	NA	NP
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	NP
15.247(d)	RF Conducted Emissions & Band Edge	NA	NP
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NP

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform test.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Note: The equipment was evaluated during preliminary testing in three orthogonal axis. The orientation selected represents that which provides worst case emissions.

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Gas Endpoint	ltron, Inc.	500GA	1	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
None				
Configuration 2				
Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Gas Endpoint	ltron, Inc.	500GA	2	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
None				
Configuration 3				
Equipment Tested:				
Device	Manufacturer	Model #	S/N	

Device	Manufacturer	Model #	S/N	
Gas Endpoint	ltron, Inc.	500GA	3	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
None				

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	902-928 MHz
Number of Hopping Channels:	See supplemental report
Modulation Type(s):	OOK
Maximum Duty Cycle:	See supplemental report
Number of TX Chains:	1
Antenna Type(s) and Gain:	See supplemental report
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery
Firmware / Software used for Test:	App Version:1.9.13.174 CSL Version:2.9.1.1

FCC Part 15 Subpart C

15.247(d) Radiated Emissions & Band Edge

Test Setup/Conditions				
Test Location:	Canyon Park C3	Test Engineer:	Randal Clark	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	7/26/2016-7/27/206	
Configuration:				

Environmental Conditions			
Temperature (^o C)	24	Relative Humidity (%):	36

See data sheets for test setup and test equipment.

Test Data

CKC Laboratories, Inc. • 22116 23rd Drive SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362) Test Location: Customer: Itron, Inc. Specification: 15.247(d) / 15.209 Radiated Spurious Emissions Work Order #: 98804 Date: 7/27/2016 Time: 19:14:33 Test Type: **Maximized Emissions** Tested by: Randal Clark Sequence#: 10 Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

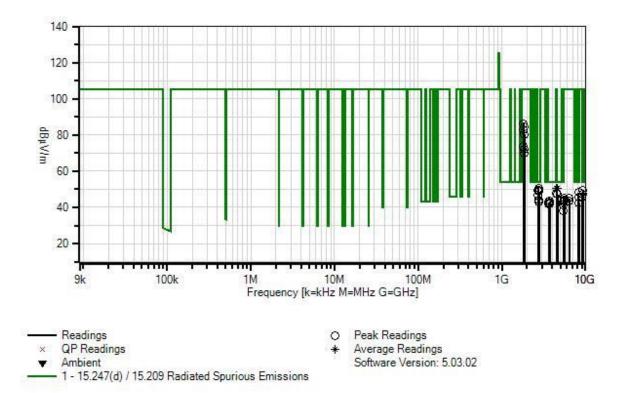
Support Equipment:

Device	Manufacturer	Model #	S/N

Test Conditions / Notes:

The EUT is a transmitter operating within 902-928 MHz. The EUT is battery operated, fresh batteries installed. The EUT has no IO ports. Equipment installed according to manufacturer specifications. Equipment is configured for maximum output power with no modulation. Measurements include spurious emissions from hopping sequence on listed channels.

Test procedure: ANSI C63.10 (2013)


Frequency range investigated: 9kHz - 10GHz Transmitter Frequency: 902.2, 910, 915 and 927.75 MHz.

No emissions detected within 20dB of the limit at frequencies <600MHz. See band edge emissions data for emissions near transmit band.

Temperature: 24°C Relative Humidity: 36%

Itron, Inc. WO#: 98804 Sequence#: 10 Date: 7/27/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T1	AN03540	Preamp	83017A	4/30/2015	4/30/2017
	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
	ANP05505	Attenuator	NAT-6	3/31/2016	3/31/2018
	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T2	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	8/12/2015	8/12/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
	ANP05360	Cable	RG214	12/1/2014	12/1/2016
	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
	ANP05503	Attenuator	766-10	6/18/2015	6/18/2017
	ANP05660	Attenuator	766-3	6/15/2015	6/15/2017
	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T5	AN03170	High Pass Filter	HM1155-11SS	12/17/2015	12/17/2017
T6	ANP06935	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018

Meası	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant
1	4550.000M	46.4	-34.1	+32.5	+4.2	+0.9	+0.0	50.7	54.0	-3.3	Horiz
	Ave		+0.3	+0.5							
^	4550.000M	48.0	-34.1	+32.5	+4.2	+0.9	+0.0	52.3	54.0	-1.7	Horiz
			+0.3	+0.5							
3	2730.000M	51.9	-34.5	+28.7	+3.0	+0.7	+0.0	50.7	54.0	-3.3	Vert
			+0.5	+0.4							
4	4511.000M	46.2	-34.1	+32.5	+4.2	+0.9	+0.0	50.6	54.0	-3.4	Horiz
	Ave		+0.4	+0.5							
^	4511.000M	48.3	-34.1	+32.5	+4.2	+0.9	+0.0	52.7	54.0	-1.3	Horiz
			+0.4	+0.5							
6	2745.000M	51.7	-34.5	+28.8	+3.0	+0.7	+0.0	50.5	54.0	-3.5	Horiz
			+0.4	+0.4							
7	2706.600M	51.0	-34.5	+28.6	+3.0	+0.7	+0.0	49.7	54.0	-4.3	Horiz
			+0.5	+0.4							
8	2730.000M	50.6	-34.5	+28.7	+3.0	+0.7	+0.0	49.4	54.0	-4.6	Horiz
			+0.5	+0.4							
9	2783.250M	50.0	-34.5	+28.9	+3.0	+0.7	+0.0	48.9	54.0	-5.1	Horiz
			+0.4	+0.4							
10	8190.000M	38.9	-35.1	+36.7	+5.3	+1.3	+0.0	48.1	54.0	-5.9	Horiz
			+0.3	+0.7							
11	4510.990M	43.7	-34.1	+32.5	+4.2	+0.9	+0.0	48.1	54.0	-5.9	Vert
			+0.4	+0.5							
12	9150.000M	36.1	-34.7	+37.7	+6.1	+1.4	+0.0	47.5	54.0	-6.5	Vert
			+0.2	+0.7							
13	4638.750M	42.4	-34.1	+32.6	+4.3	+0.9	+0.0	47.1	54.0	-6.9	Horiz
			+0.5	+0.5							

14 2706.590M	47.8	-34.5 +0.5	+28.6 +0.4	+3.0	+0.7	+0.0	46.5	54.0	-7.5	Vert
15 9100.000M	34.4	-34.7	+37.7	+6.1	+1.3	+0.0	45.7	54.0	-8.3	Horiz
13 9100.000101	54.4	+0.2	+37.7	+0.1	+1.5	+0.0	43.7	54.0	-0.5	HOUL
16 8235.000M	36.2	-35.1	+36.7	+5.3	+1.3	+0.0	45.4	54.0	-8.6	Horiz
10 0200.000101	50.2	+0.3	+0.7	. 5.5	110	. 0.0	13.1	5 110	0.0	TIOTIL
17 2745.000M	45.0	-34.5	+28.8	+3.0	+0.7	+0.0	43.8	54.0	-10.2	Vert
		+0.4	+0.4							
18 3711.000M	42.2	-34.1	+30.1	+3.8	+0.7	+0.0	43.5	54.0	-10.5	Horiz
		+0.3	+0.5							
19 5460.000M	37.7	-34.2	+33.1	+4.5	+1.0	+0.0	43.0	54.0	-11.0	Horiz
		+0.3	+0.6							
20 2783.260M	43.9	-34.5	+28.9	+3.0	+0.7	+0.0	42.8	54.0	-11.2	Vert
		+0.4	+0.4							
21 3640.000M	41.8	-34.2	+29.9	+3.7	+0.7	+0.0	42.8	54.0	-11.2	Vert
		+0.4	+0.5							
22 8349.750M	33.0	-35.0	+36.6	+5.4	+1.5	+0.0	42.5	54.0	-11.5	Vert
		+0.3	+0.7							
23 3660.000M	41.5	-34.2	+29.9	+3.7	+0.7	+0.0	42.4	54.0	-11.6	Horiz
20 000000000		+0.3	+0.5					0.110	1110	TIOTIE
24 3608.800M	41.2	-34.2	+29.8	+3.6	+0.8	+0.0	42.0	54.0	-12.0	Horiz
21 5000.00011	11.2	+0.4	+0.4	13.0	.0.0	.0.0	12.0	51.0	12.0	HOLE
25 3711.000M	40.7	-34.1	+30.1	+3.8	+0.7	+0.0	42.0	54.0	-12.0	Vert
25 5711.000141	40.7	+0.3	+0.5	13.0	10.7	10.0	42.0	54.0	12.0	vert
26 5413.190M	36.1	-34.2	+33.0	+4.5	+1.0	+0.0	41.3	54.0	-12.7	Vert
20 5415.1701	50.1	+0.3	+0.6	17.5	11.0	10.0	41.5	54.0	-12.7	ven
27 5460.000M	32.6	-34.2	+33.1	+4.5	+1.0	+0.0	37.9	54.0	-16.1	Vert
27 5400.000101	52.0	+0.3	+0.6	14.5	+1.0	10.0	51.9	54.0	-10.1	ven
28 1820.000M	90.8	-35.1	+26.9	+2.5	+0.5	+0.0	86.3	105.3	-19.0	Horiz
28 1820.0001	90.0	+0.4	+0.3	12.5	10.5	10.0	80.5	105.5	-19.0	TIOTIZ
29 1830.000M	89.1	-35.1	+0.3 +26.9	+2.5	+0.5	+0.0	84.6	105.3	-20.7	Horiz
29 1850.000M	89.1			+2.3	+0.3	+0.0	84.0	105.5	-20.7	HOLIZ
20 1004 40014	074	+0.4	+0.3	12.5	+0.5	10.0	02.0	105.2	20 <i>F</i>	II!
30 1804.400M	87.4	-35.1	+26.8	+2.5	+0.5	+0.0	82.8	105.3	-22.5	Horiz
21 1055 50014	04.0	+0.4	+0.3	12.5	.0.5	.0.0	00.4	105.2	24.0	TT ·
31 1855.500M	84.8	-35.1	+27.1	+2.5	+0.5	+0.0	80.4	105.3	-24.9	Horiz
22 1010 00014	=0.0	+0.3	+0.3		0.5	0.0	53 0	105.0	21.5	
32 1819.980M	78.3	-35.1	+26.9	+2.5	+0.5	+0.0	73.8	105.3	-31.5	Vert
22	F a a	+0.4	+0.3					407-	• • =	
33 1804.400M	78.2	-35.1	+26.8	+2.5	+0.5	+0.0	73.6	105.3	-31.7	Vert
		+0.4	+0.3							
34 1830.000M	76.4	-35.1	+26.9	+2.5	+0.5	+0.0	71.9	105.3	-33.4	Vert
		+0.4	+0.3							
35 1855.510M	74.1	-35.1	+27.1	+2.5	+0.5	+0.0	69.7	105.3	-35.6	Vert
		+0.3	+0.3							
36 9277.500M	38.4	-34.8	+37.6	+6.2	+1.4	+0.0	49.7	105.3	-55.6	Horiz
		+0.2	+0.7							
37 9277.500M	35.8	-34.8	+37.6	+6.2	+1.4	+0.0	47.1	105.3	-58.2	Vert
		+0.2	+0.7							

38	5490.000M	39.9	-34.1	+33.1	+4.5	+1.0	+0.0	45.3	105.3	-60.0	Horiz
			+0.3	+0.6							
39	6405.000M	37.9	-34.2	+34.6	+4.7	+1.2	+0.0	45.1	105.3	-60.2	Horiz
			+0.3	+0.6							
40	5490.000M	38.7	-34.1	+33.1	+4.5	+1.0	+0.0	44.1	105.3	-61.2	Vert
			+0.3	+0.6							
41	6370.000M	36.2	-34.2	+34.7	+4.7	+1.3	+0.0	43.6	105.3	-61.7	Horiz
			+0.3	+0.6							
42	5566.500M	37.8	-34.1	+33.4	+4.5	+1.0	+0.0	43.5	105.3	-61.8	Horiz
			+0.3	+0.6							
43	5566.500M	37.6	-34.1	+33.4	+4.5	+1.0	+0.0	43.3	105.3	-62.0	Vert
			+0.3	+0.6							

Test Location:	CKC Laboratories, Inc. • 221	16 23rd Drive SE Suite A • Bot	hell, WA 98021 • 800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	Spurious Emissions	
Work Order #:	98804	Date:	7/27/2016
Test Type:	Maximized Emissions	Time:	21:18:38
Tested by:	Randal Clark	Sequence#:	12
Software:	EMITest 5.03.02		

Equipment Tested:

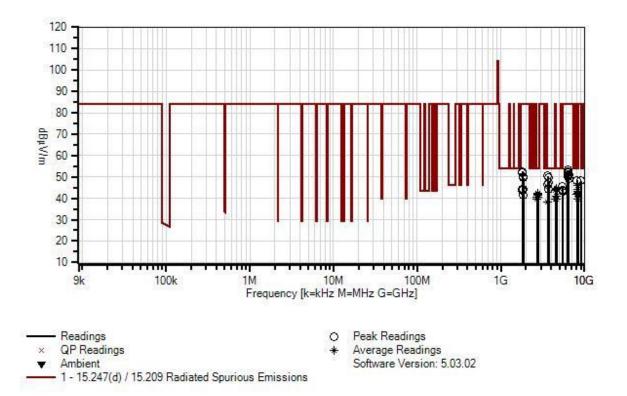
Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Equipment:				

Device	Manufacturer	Model #	S/N	

Test Conditions / Notes:

The EUT is a transmitter operating within 902-928 MHz. The EUT is battery operated, fresh batteries installed. The EUT has no IO ports. Equipment installed according to manufacturer specifications. Equipment is configured for 10dBm output power with OOK modulation. Measurements include spurious emissions from hopping sequence on listed channels.

Test procedure: ANSI C63.10 (2013)


Frequency range investigated: 9kHz - 10GHz Transmitter Frequency: 903, 909.8, 915 and 926.8 MHz.

No emissions detected within 20dB of the limit at frequencies <600MHz. See band edge emissions data for emissions near transmit band.

Temperature: 24°C Relative Humidity: 36%

Itron, Inc. WO#: 98804 Sequence#: 12 Date: 7/27/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T1	AN03540	Preamp	83017A	4/30/2015	4/30/2017
	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
	ANP05505	Attenuator	NAT-6	3/31/2016	3/31/2018
	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T2	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	8/12/2015	8/12/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
	ANP05360	Cable	RG214	12/1/2014	12/1/2016
	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
	ANP05503	Attenuator	766-10	6/18/2015	6/18/2017
	ANP05660	Attenuator	766-3	6/15/2015	6/15/2017
	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T5	AN03170	High Pass Filter	HM1155-11SS	12/17/2015	12/17/2017
T6	ANP06935	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	3612.000M	49.6	-34.2	+29.8	+3.6	+0.8	+0.0	50.4	54.0	-3.6	Vert
			+0.4	+0.4							
2	3660.000M	48.6	-34.2	+29.9	+3.7	+0.7	+0.0	49.5	54.0	-4.5	Horiz
			+0.3	+0.5							
3	8127.000M	39.2	-35.1	+36.7	+5.3	+1.3	+0.0	48.4	54.0	-5.6	Vert
			+0.3	+0.7							
4	9030.000M	36.8	-34.6	+37.8	+6.0	+1.3	+0.0	48.2	54.0	-5.8	Horiz
			+0.2	+0.7							
5	3707.200M	46.2	-34.1	+30.1	+3.8	+0.7	+0.0	47.5	54.0	-6.5	Horiz
			+0.3	+0.5							
6	3639.200M	45.2	-34.2	+29.9	+3.7	+0.7	+0.0	46.2	54.0	-7.8	Vert
			+0.4	+0.5							
7	8341.200M	36.4	-35.0	+36.6	+5.4	+1.4	+0.0	45.8	54.0	-8.2	Horiz
	Ave		+0.3	+0.7							
^	8341.200M	51.1	-35.0	+36.6	+5.4	+1.4	+0.0	60.5	54.0	+6.5	Horiz
			+0.3	+0.7							
9	5418.000M	40.4	-34.2	+33.1	+4.5	+1.0	+0.0	45.7	54.0	-8.3	Vert
			+0.3	+0.6							
10	4575.000M	40.1	-34.1	+32.5	+4.2	+0.9	+0.0	44.5	54.0	-9.5	Vert
	Ave		+0.4	+0.5							
^	4575.000M	57.0	-34.1	+32.5	+4.2	+0.9	+0.0	61.4	54.0	+7.4	Vert
			+0.4	+0.5							

12 8235.000M	35.2	-35.1	+36.7	+5.3	+1.3	+0.0	44.4	54.0	-9.6	Horiz
Ave		+0.3	+0.7							
^ 8235.000M	50.3	-35.1	+36.7	+5.3	+1.3	+0.0	59.5	54.0	+5.5	Horiz
14 4624 00014	20.6	+0.3	+0.7	. 1.2	. 0. 0	.0.0	44.0	54.0	0.7	X 7 .
14 4634.000M	39.6	-34.1	+32.6	+4.3	+0.9	+0.0	44.3	54.0	-9.7	Vert
Ave	5(7	+0.5	+0.5	+ 4 2	10.0	10.0	(1.4	54.0	17.4	X7
^ 4634.000M	56.7	-34.1 +0.5	+32.6 +0.5	+4.3	+0.9	+0.0	61.4	54.0	+7.4	Vert
16 3660.000M	43.3	-34.2	+0.3 +29.9	+3.7	+0.7	+0.0	44.2	54.0	-9.8	Vert
10 5000.000M	45.5	+0.3	+29.9	+3.7	+0.7	+0.0	44.2	54.0	-9.0	ven
17 3707.200M	42.7	-34.1	+30.1	+3.8	+0.7	+0.0	44.0	54.0	-10.0	Vert
17 07071200111	,	+0.3	+0.5					0 110	1010	
18 4549.000M	39.7	-34.1	+32.5	+4.2	+0.9	+0.0	44.0	54.0	-10.0	Vert
Ave		+0.3	+0.5							
^ 4549.000M	56.3	-34.1	+32.5	+4.2	+0.9	+0.0	60.6	54.0	+6.6	Vert
		+0.3	+0.5							
20 5458.800M	38.6	-34.2	+33.1	+4.5	+1.0	+0.0	43.9	54.0	-10.1	Horiz
		+0.3	+0.6							
21 5418.000M	38.3	-34.2	+33.1	+4.5	+1.0	+0.0	43.6	54.0	-10.4	Horiz
		+0.3	+0.6							
22 4515.000M	39.1	-34.1	+32.5	+4.2	+0.9	+0.0	43.5	54.0	-10.5	Vert
Ave		+0.4	+0.5							
^ 4515.000M	55.8	-34.1	+32.5	+4.2	+0.9	+0.0	60.2	54.0	+6.2	Vert
		+0.4	+0.5							
24 5458.800M	38.2	-34.2	+33.1	+4.5	+1.0	+0.0	43.5	54.0	-10.5	Vert
05 0241 2003 6	22.0	+0.3	+0.6		.1.4	.0.0	12.0	54.0	10.0	X 7
25 8341.200M	33.8	-35.0	+36.6	+5.4	+1.4	+0.0	43.2	54.0	-10.8	Vert
Ave ^ 8341.200M	47.5	+0.3	+0.7	15 4	+1.4		56.9	54.0	12.0	Mart
* 8341.200M	47.5	-35.0 +0.3	+36.6 +0.7	+5.4	+1.4	+0.0	30.9	54.0	+2.9	Vert
27 2745.000M	43.7	-34.5	+0.7 +28.8	+3.0	+0.7	+0.0	42.5	54.0	-11.5	Vert
Ave	43.7	+0.4	+28.8	+3.0	+0.7	+0.0	42.5	54.0	-11.5	ven
^ 2745.000M	60.7	-34.5	+28.8	+3.0	+0.7	+0.0	59.5	54.0	+5.5	Vert
2745.000141	00.7	+0.4	+0.4	15.0	10.7	10.0	57.5	54.0	10.0	Vert
29 8188.200M	33.3	-35.1	+36.7	+5.3	+1.3	+0.0	42.5	54.0	-11.5	Horiz
Ave	55.5	+0.3	+0.7	10.0	11.5	.0.0	12.5	51.0	11.5	HOLE
^ 8188.200M	47.5	-35.1	+36.7	+5.3	+1.3	+0.0	56.7	54.0	+2.7	Horiz
		+0.3	+0.7							
31 2745.000M	43.4	-34.5	+28.8	+3.0	+0.7	+0.0	42.2	54.0	-11.8	Horiz
Ave		+0.4	+0.4							
^ 2745.000M	60.5	-34.5	+28.8	+3.0	+0.7	+0.0	59.3	54.0	+5.3	Horiz
		+0.4	+0.4							
33 2780.400M	43.1	-34.5	+28.9	+3.0	+0.7	+0.0	42.0	54.0	-12.0	Horiz
Ave		+0.4	+0.4							
^ 2780.400M	60.6	-34.5	+28.9	+3.0	+0.7	+0.0	59.5	54.0	+5.5	Horiz
		+0.4	+0.4							
35 2780.400M	43.1	-34.5	+28.9	+3.0	+0.7	+0.0	42.0	54.0	-12.0	Vert
Ave		+0.4	+0.4	<i>a</i> -		0.5	7 0 ·	.		
^ 2780.400M	60.2	-34.5	+28.9	+3.0	+0.7	+0.0	59.1	54.0	+5.1	Vert
		+0.4	+0.4							

27 8127 00014	32.7	25 1	1267	15 2	+1.2	10.0	41.9	54.0	10.1	Uoria
37 8127.000M Ave	32.1	-35.1 +0.3	+36.7 +0.7	+5.3	+1.3	+0.0	41.9	54.0	-12.1	Horiz
^ 8127.000M	47.7	-35.1	+36.7	+5.3	+1.3	+0.0	56.9	54.0	+2.9	Horiz
0127.00011	+/./	+0.3	+30.7	10.0	1.5	10.0	50.9	54.0	12.7	TIOUZ
39 8235.000M	32.7	-35.1	+36.7	+5.3	+1.3	+0.0	41.9	54.0	-12.1	Vert
Ave	52.1	+0.3	+0.7	0.0	1.5	.0.0	71.7	54.0	12.1	v 011
^ 8235.000M	45.1	-35.1	+36.7	+5.3	+1.3	+0.0	54.3	54.0	+0.3	Vert
0200.000141	12.1	+0.3	+0.7	. 5.5	. 1.5	. 0.0	0 1.0	21.0	. 0.5	, 011
41 2729.400M	42.5	-34.5	+28.7	+3.0	+0.7	+0.0	41.3	54.0	-12.7	Horiz
Ave		+0.5	+0.4							
^ 2729.400M	59.1	-34.5	+28.7	+3.0	+0.7	+0.0	57.9	54.0	+3.9	Horiz
		+0.5	+0.4							
43 4575.000M	36.7	-34.1	+32.5	+4.2	+0.9	+0.0	41.1	54.0	-12.9	Horiz
Ave		+0.4	+0.5							
^ 4575.000M	48.2	-34.1	+32.5	+4.2	+0.9	+0.0	52.6	54.0	-1.4	Horiz
		+0.4	+0.5							
45 4634.000M	36.1	-34.1	+32.6	+4.3	+0.9	+0.0	40.8	54.0	-13.2	Horiz
Ave		+0.5	+0.5							
^ 4634.000M	48.6	-34.1	+32.6	+4.3	+0.9	+0.0	53.3	54.0	-0.7	Horiz
		+0.5	+0.5							
47 2729.400M	41.9	-34.5	+28.7	+3.0	+0.7	+0.0	40.7	54.0	-13.3	Vert
Ave		+0.5	+0.4							
^ 2729.400M	59.2	-34.5	+28.7	+3.0	+0.7	+0.0	58.0	54.0	+4.0	Vert
		+0.5	+0.4							
49 2709.000M	41.9	-34.5	+28.6	+3.0	+0.7	+0.0	40.6	54.0	-13.4	Horiz
Ave		+0.5	+0.4							
^ 2709.000M	58.3	-34.5	+28.6	+3.0	+0.7	+0.0	57.0	54.0	+3.0	Horiz
		+0.5	+0.4				a a -	.		
51 2709.000M	41.1	-34.5	+28.6	+3.0	+0.7	+0.0	39.8	54.0	-14.2	Vert
Ave		+0.5	+0.4					.		
^ 2709.000M	58.3	-34.5	+28.6	+3.0	+0.7	+0.0	57.0	54.0	+3.0	Vert
50 4540 00015	25.4	+0.5	+0.4		.0.0	.0.0	20.7	54.0	14.0	TT ·
53 4549.000M	35.4	-34.1	+32.5	+4.2	+0.9	+0.0	39.7	54.0	-14.3	Horiz
Ave	47 4	+0.3	+0.5		.0.0	.0.0	51 7	54.0	0.0	
^ 4549.000M	47.4	-34.1	+32.5	+4.2	+0.9	+0.0	51.7	54.0	-2.3	Horiz
55 0100 0001 5	20.2	+0.3	+0.5	15.2	+1.0	10.0	20.5	540	145	Vert
55 8188.200M	30.3	-35.1	+36.7	+5.3	+1.3	+0.0	39.5	54.0	-14.5	Vert
Ave	42.0	+0.3	+0.7	15.2	+1.2	10.0	50.1	54.0	1.0	Vert
^ 8188.200M	42.9	-35.1	+36.7	+5.3	+1.3	+0.0	52.1	54.0	-1.9	Vert
57 4515.000M	35.0	+0.3 -34.1	+0.7 +32.5	+4.2	+0.9	+0.0	39.4	54.0	-14.6	Horiz
37 4315.000M Ave	55.0	-34.1 +0.4	+32.5 +0.5	⊤4. ∠	±0.9	±0.0	37.4	54.0	-14.0	Horiz
^ 4515.000M	47.2	-34.1	+0.3 +32.5	+4.2	+0.9	+0.0	51.6	54.0	-2.4	Uoria
4515.000M	41.2	-34.1 +0.4	+32.5 +0.5	⊤4. ∠	±0.9	±0.0	51.0	54.0	-2.4	Horiz
59 3639.200M	37.4	-34.2	+0.3 +29.9	+3.7	+0.7	+0.0	38.4	54.0	-15.6	Horiz
Ave	57.4	-34.2 +0.4	+29.9 +0.5	+3.7	+0.7	+0.0	30.4	54.0	-13.0	TIOUZ
^ 3639.200M	51.2	-34.2	+0.3 +29.9	+3.7	+0.7	+0.0	52.2	54.0	-1.8	Horiz
5059.200M	51.2	-34.2 +0.4	+29.9 +0.5	+3.7	+0.7	+0.0	34.4	54.0	-1.0	TIOUZ
		+0.4	+0.5							

61	6405.000M	46.1	-34.2	+34.6	+4.7	+1.2	+0.0	53.3	84.2	-30.9	Horiz
			+0.3	+0.6							
62	1806.000M	57.2	-35.1	+26.8	+2.5	+0.5	+0.0	52.6	84.2	-31.6	Vert
			+0.4	+0.3							
63	6321.000M	44.9	-34.2	+34.8	+4.7	+1.3	+0.0	52.5	84.2	-31.7	Vert
			+0.4	+0.6							
64	6368.600M	44.7	-34.2	+34.7	+4.7	+1.3	+0.0	52.1	84.2	-32.1	Horiz
			+0.3	+0.6							
65	1819.600M	56.2	-35.1	+26.9	+2.5	+0.5	+0.0	51.7	84.2	-32.5	Vert
			+0.4	+0.3							
66	6487.600M	44.2	-34.2	+34.4	+4.6	+1.2	+0.0	51.1	84.2	-33.1	Horiz
			+0.3	+0.6							
67	6321.000M	43.4	-34.2	+34.8	+4.7	+1.3	+0.0	51.0	84.2	-33.2	Horiz
			+0.4	+0.6							
68	6368.600M	43.3	-34.2	+34.7	+4.7	+1.3	+0.0	50.7	84.2	-33.5	Vert
			+0.3	+0.6							
69	1830.000M	54.8	-35.1	+26.9	+2.5	+0.5	+0.0	50.3	84.2	-33.9	Vert
			+0.4	+0.3							
70	6405.000M	42.9	-34.2	+34.6	+4.7	+1.2	+0.0	50.1	84.2	-34.1	Vert
			+0.3	+0.6		~ ~		10.6			
71	1853.600M	54.1	-35.1	+27.0	+2.5	+0.5	+0.0	49.6	84.2	-34.6	Vert
= = =	(107 (00) (10.5	+0.3	+0.3	1.6		0.0	10.1	04.0	24.0	T T
72	6487.600M	42.5	-34.2	+34.4	+4.6	+1.2	+0.0	49.4	84.2	-34.8	Vert
= 0			+0.3	+0.6		~ ~					
73	1819.600M	48.9	-35.1	+26.9	+2.5	+0.5	+0.0	44.4	84.2	-39.8	Horiz
	1000 00014	10.7	+0.4	+0.3	. 0. 5	.0.5	. 0. 0	44.0	04.0	40.0	
74	1830.000M	48.7	-35.1	+26.9	+2.5	+0.5	+0.0	44.2	84.2	-40.0	Horiz
75	5400.00014	20.2	+0.4	+0.3	. 4 . 7	.1.0	.0.0	42.7	04.0	40.5	
75	5490.000M	38.3	-34.1	+33.1	+4.5	+1.0	+0.0	43.7	84.2	-40.5	Horiz
76	1000 000	40.0	+0.3	+0.6	12.5	105		42.6	04.2	10.0	II
/6	1806.000M	48.2	-35.1	+26.8	+2.5	+0.5	+0.0	43.6	84.2	-40.6	Horiz
77	5 400 000 F	27.0	+0.4	+0.3	115	+1.0	10.0	42.2	04.0	40.0	X 7
//	5490.000M	37.9	-34.1	+33.1	+4.5	+1.0	+0.0	43.3	84.2	-40.9	Vert
70	1952 (00) 5	46.0	+0.3	+0.6	12.5	10.5	+0.0	41 5	04.0	40.7	II
/8	1853.600M	46.0	-35.1	+27.0	+2.5	+0.5	+0.0	41.5	84.2	-42.7	Horiz
			+0.3	+0.3							

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE Suite A • Bot	hell, WA 98021 • 800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	purious Emissions	
Work Order #:	98804	Date:	7/27/2016
Test Type:	Maximized Emissions	Time:	18:57:20
Tested by:	Randal Clark	Sequence#:	11
Software:	EMITest 5.03.02		

Equipment Tested:

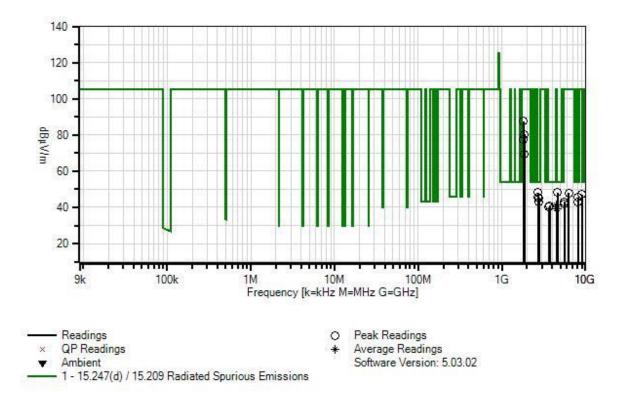
Device	Manufacturer	Model #	S/N	
Configuration 3				
Support Equipment:				

Device	Manufacturer	Model #	S/N

Test Conditions / Notes:

The EUT is a transmitter operating within 902-928 MHz. The EUT is battery operated, fresh batteries installed. The EUT has no IO ports. Equipment installed according to manufacturer specifications. Equipment is configured for maximum output power with OOK modulation. Measurements include spurious emissions from hopping sequence on listed channels.

Test procedure: ANSI C63.10 (2013)


Frequency range investigated: 9kHz - 10GHz Transmitter Frequency: 903 and 926.8 MHz.

No emissions detected within 20dB of the limit at frequencies <600MHz. See band edge emissions data for emissions near transmit band.

Temperature: 24°C Relative Humidity: 36%

Itron, Inc. WO#: 98804 Sequence#: 11 Date: 7/27/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equ	ipment:				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T1	AN03540	Preamp	83017A	4/30/2015	4/30/2017
	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
	ANP05505	Attenuator	NAT-6	3/31/2016	3/31/2018
	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T2	AN01467	Horn Antenna-	3115	8/12/2015	8/12/2017
		ANSI C63.5 Calibration			
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
	ANP05360	Cable	RG214	12/1/2014	12/1/2016
	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
	ANP05503	Attenuator	766-10	6/18/2015	6/18/2017
	ANP05660	Attenuator	766-3	6/15/2015	6/15/2017
	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T5	AN03170	High Pass Filter	HM1155-11SS	12/17/2015	12/17/2017
T6	ANP06935	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2709.000M	49.5	-34.5	+28.6	+3.0	+0.7	+0.0	48.2	54.0	-5.8	Horiz
			+0.5	+0.4							
2	4634.000M	43.5	-34.1	+32.6	+4.3	+0.9	+0.0	48.2	54.0	-5.8	Vert
			+0.5	+0.5							
3	9030.000M	35.6	-34.6	+37.8	+6.0	+1.3	+0.0	47.0	54.0	-7.0	Vert
			+0.2	+0.7							
4	2709.000M	47.2	-34.5	+28.6	+3.0	+0.7	+0.0	45.9	54.0	-8.1	Vert
			+0.5	+0.4							
5	8127.000M	36.4	-35.1	+36.7	+5.3	+1.3	+0.0	45.6	54.0	-8.4	Horiz
			+0.3	+0.7							
6	2780.400M	46.2	-34.5	+28.9	+3.0	+0.7	+0.0	45.1	54.0	-8.9	Horiz
			+0.4	+0.4							
7	8127.000M	34.0	-35.1	+36.7	+5.3	+1.3	+0.0	43.2	54.0	-10.8	Vert
			+0.3	+0.7							
8	2780.400M	44.1	-34.5	+28.9	+3.0	+0.7	+0.0	43.0	54.0	-11.0	Vert
			+0.4	+0.4							
9	4515.000M	37.1	-34.1	+32.5	+4.2	+0.9	+0.0	41.5	54.0	-12.5	Horiz
	Ave		+0.4	+0.5							
^	4515.000M	48.2	-34.1	+32.5	+4.2	+0.9	+0.0	52.6	54.0	-1.4	Horiz
			+0.4	+0.5							
11	3707.200M	39.7	-34.1	+30.1	+3.8	+0.7	+0.0	41.0	54.0	-13.0	Horiz
			+0.3	+0.5							

12 3612.00	00M 39.2	-34.2	+29.8	+3.6	+0.8	+0.0	40.0	54.0	-14.0	Vert
		+0.4	+0.4							
13 4634.00	00M 34.6	-34.1	+32.6	+4.3	+0.9	+0.0	39.3	54.0	-14.7	Horiz
Ave		+0.5	+0.5							
^ 4634.00	00M 46.7	-34.1	+32.6	+4.3	+0.9	+0.0	51.4	54.0	-2.6	Horiz
		+0.5	+0.5							
15 4515.00	00M 34.8	-34.1	+32.5	+4.2	+0.9	+0.0	39.2	54.0	-14.8	Vert
Ave		+0.4	+0.5							
^ 4515.00	00M 47.6	-34.1	+32.5	+4.2	+0.9	+0.0	52.0	54.0	-2.0	Vert
		+0.4	+0.5							
17 1806.00	00M 92.2	-35.1	+26.8	+2.5	+0.5	+0.0	87.6	105.3	-17.7	Horiz
		+0.4	+0.3							
18 1853.60	00M 84.7	-35.1	+27.0	+2.5	+0.5	+0.0	80.2	105.3	-25.1	Horiz
		+0.3	+0.3							
19 1806.00	00M 82.2	-35.1	+26.8	+2.5	+0.5	+0.0	77.6	105.3	-27.7	Vert
		+0.4	+0.3							
20 1853.60	00M 74.0	-35.1	+27.0	+2.5	+0.5	+0.0	69.5	105.3	-35.8	Vert
		+0.3	+0.3							
21 6321.00	00M 40.3	-34.2	+34.8	+4.7	+1.3	+0.0	47.9	105.3	-57.4	Vert
		+0.4	+0.6							
22 5560.80	00M 37.3	-34.1	+33.4	+4.5	+1.0	+0.0	43.0	105.3	-62.3	Horiz
		+0.3	+0.6							
23 5560.80	00M 36.3	-34.1	+33.4	+4.5	+1.0	+0.0	42.0	105.3	-63.3	Vert
		+0.3	+0.6							

	Band Edge Summary									
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results					
614	Worst Case	Integral	37.7	<54	Pass					
902	CW	Integral	74 (QP)	<105.3	Pass					
902	OOK (10dBm)	Integral	68.4	<84.2	Pass					
902	OOK Max Power	Integral	89.8	<105.3	Pass					
928	CW	Integral	72.3 (QP)	<105.3	Pass					
928	OOK (10dBm)	Integral	67.5	<84.2	Pass					
928	OOK Max Power	Integral	87.0	< 105.3	Pass					
960	Worst Case	Integral	52.5 (QP)	<54	Pass					

Worst case: Max power with OOK modulation.

Emissions limits outside of restricted bands are 20dB from maximum measured inband emissions in 100kHz.

Band Edge Test Setup / Test Conditions / Test Data

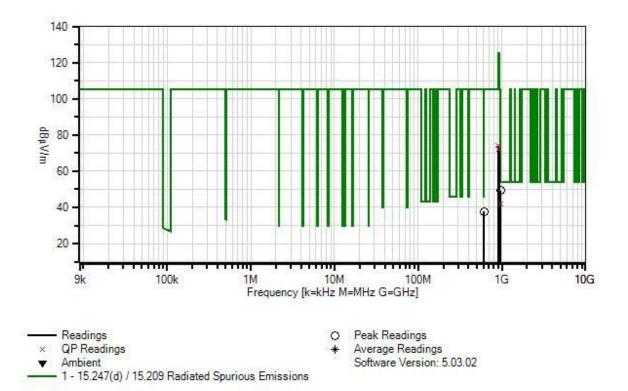
Test Location:	CKC Laboratories, Inc. • 22116 23rd D	orive SE Suite A • Bot	hell, WA 98021 • 800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious	s Emissions	
Work Order #:	98804	Date:	7/26/2016
Test Type:	Maximized Emissions	Time:	17:30:56
Tested by:	Randal Clark	Sequence#:	6
Software:	EMITest 5.03.02		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Test Conditions / Notes:

The EUT is a transmitter operating within 902-928 MHz. The EUT is battery operated, fresh batteries installed. The EUT has no IO ports. Equipment installed according to manufacturer specifications. Equipment is configured for maximum output power without modulation. Measurements include spurious emissions from hopping sequence on listed channels.

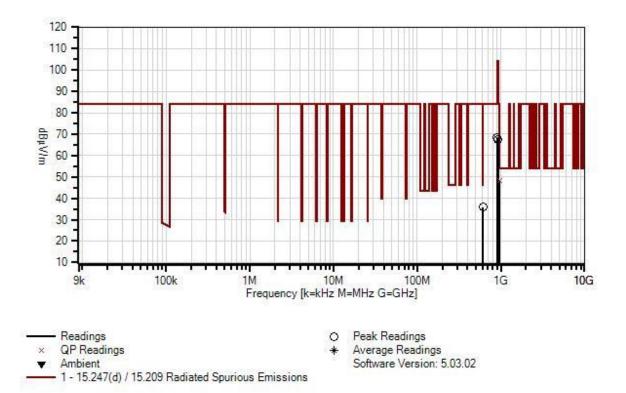

Test procedure: ANSI C63.10 (2013)

Frequency range investigated: Band Edges Transmitter Frequency: 902.2, 910, 915, and 927.75.

Temperature: 24°C Relative Humidity: 36%

Itron, Inc. WO#: 98804 Sequence#: 6 Date: 7/26/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	¥	Descr	iption	Μ	lodel		Calibrati	on Date	Cal Due I	Date
T1	AN023	307	Pream	ıp	84	147D		2/15/2016	5	2/15/2018	
T2	AN019	994	Biconilog Antenna		enna C	CBL6111C		3/11/2016		3/11/2018	
Т3	ANP05	5505	Attenuator		N	AT-6		3/31/2016		3/31/2018	
T4	ANP05360		Cable		R	G214		12/1/2014	1	12/1/2016	
T5	ANP05	5963	Cable		R	G-214		2/15/2016	5	2/15/2018	
T6	ANP06540		Cable		Н	eliax		10/29/201	5	10/29/201	7
T7	ANP05503		Atten	uator	76	66-10		6/18/2015		6/18/2017	
	ANP05	5660	Atten	uator	76	56-3		6/15/2015	5	6/15/2017	
	ANP06	5219	Atten	uator	76	58-10		4/12/2016	5	4/12/2018	
loggum	ement Data:	. D	ading lie	ted by ma	rain		Т	et Dictoro	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Pola
	Incq	Rung	T5	T6	T7	14	Dist	Coll	opee	Margin	1 014
	MHz	dBµV	dB	dB	dB	dB	Table	dBuV/m	dBµV/m	dB	Ant
1	960.000M	30.2	-27.1	+24.8	+6.3	+2.1	+0.0	49.4	54.0	-4.6	Vert
-	,	00.2	+2.5	+0.4	+10.2			.,,	No Modul		
									Max outpu	,	
2	614.000M	24.6	-28.1	+20.8	+6.2	+1.6	+0.0	37.6	46.0	-8.4	Horiz
			+2.1	+0.3	+10.1				No Modul	ation,	
									Max outpu	it power	
3	960.001M	22.7	-27.1	+24.8	+6.3	+2.1	+0.0	41.9	54.0	-12.1	Horiz
Q)P		+2.5	+0.4	+10.2				No Modul	ation,	
									Max outpu		
^	960.000M	37.2	-27.1	+24.8	+6.3	+2.1	+0.0	56.4	54.0	+2.4	Horiz
			+2.5	+0.4	+10.2				No Modul	,	
									Max outpu	it power	
	902.000M	39.0	+0.0	+24.1	+6.2	+2.0	+0.0	74.0	105.3	-31.3	Horiz
Q)P		+2.4	+0.3	+0.0				No Modul	,	
									Max outpu		
^	902.000M	70.6	+0.0	+24.1	+6.2	+2.0	+0.0	105.6	105.3	+0.3	Horiz
			+2.4	+0.3	+0.0				No Modul	,	
		260						= 2 2	Max outpu		
	928.000M	36.8	+0.0	+24.4	+6.2	+2.1	+0.0	72.3	105.3	-33.0	Horiz
Q)P		+2.4	+0.4	+0.0				No Modul	,	
^	000 0051 5	(0.0	.0.0	. 0.1. 1			. 0. 0	102 5	Max outpu	1	
Λ	928.005M	68.0	+0.0	+24.4	+6.2	+2.1	+0.0	103.5	105.3	-1.8	Horiz
			+2.4	+0.4	+0.0				No Modul	,	
									Max outpu	n power	

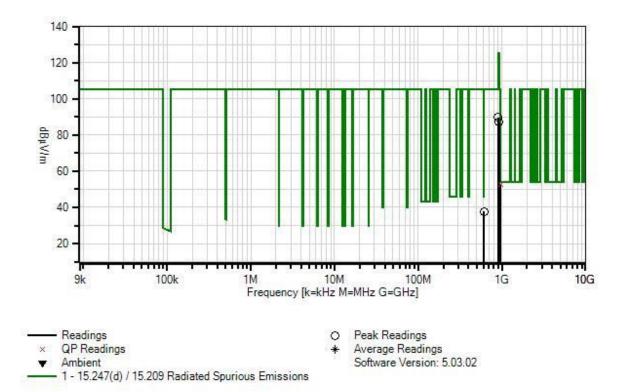

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE Suite A • Bot	hell, WA 98021 • 800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	Spurious Emissions	
Work Order #:	98804	Date:	7/26/2016
Test Type:	Maximized Emissions	Time:	17:30:56
Tested by:	Randal Clark	Sequence#:	7
Software:	EMITest 5.03.02		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipmen	<i>t:</i>		
Device	Manufacturer	Model #	S/N
Test Conditions / N	lotes:		
The EUT is a trans	mitter operating within 902-92	8 MHz. The EUT is ba	ttery operated, fresh batteries installed.
The EUT has no IO	ports. Equipment installed acco	ording to manufacturer s	pecifications.
Equipment is config	gured for 10dBm rated output j	ower with OOK modul	lation. Measurements include spurious
emissions from hop	bing sequence on listed channels	5.	
Test procedure: AN	SI C63.10 (2013)		
-			
Frequency range inv	estigated: Band Edges		
	cy: 903, 910, 915 and 926.8 MI	Hz	
	• • •		
Temperature: 24°C			
Relative Humidity:	36%		

Itron, Inc. WO#: 98804 Sequence#: 7 Date: 7/26/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

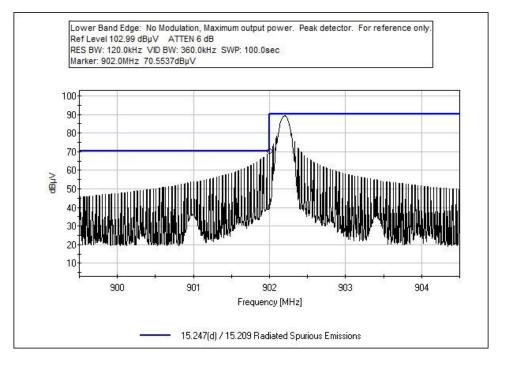
ID	Asset #	ŧ	Descr	iption	M	lodel		Calibrati	on Date	Cal Due I	Date
T1	AN023		Pream	-		147D		2/15/2016		2/15/2018	
T2	AN019			ilog Ante	enna CBL6111C		3/11/2016		3/11/2018		
T3	ANP05	505	Atten		NAT-6			3/31/2016)	3/31/2018	
T4	ANP05	5360	Cable		R	G214		12/1/2014		12/1/2016	
T5	ANP05963		Cable		R	G-214		2/15/2016		2/15/2018	
T6	ANP06	540	Cable		Н	eliax		10/29/201	5	10/29/201	7
T7	ANP05	503	Atten	uator	76	66-10		6/18/2015		6/18/2017	
	ANP05	5660	Atten	uator	76	56-3		6/15/2015		6/15/2017	
	ANP06	5219	Atten	uator	76	58-10		4/12/2016		4/12/2018	
		D	1. 1.	. 11			т		234		
	rement Data:			ted by ma		TT 4			e: 3 Meter	-	D 1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	\mathbf{JD} . \mathbf{V}	T5 dB	T6 dB	T7 dB	ЧĿ	T-1-1-	JD. V/m	JD. V/m	ЛĿ	A
1	960.010M	dBμV 29.0	-27.1	+24.8	+6.3	dB +2.1	$\frac{\text{Table}}{+0.0}$	48.2	dBµV/m 54.0	<u>dB</u> -5.8	Ant Horiz
-	QP		+2.5	+24.8	+0.3 $+10.2$	± 2.1	+0.0	40.2	OOK Mod		HOUZ
,	QI		12.5	2.5 10.4 110.2					10dBm ou	· · · · · · · · · · · · · · · · · · ·	
									power	npui	
۸	960.000M	32.1	-27.1	+24.8	+6.3	+2.1	+0.0	51.3	54.0	-2.7	Horiz
			+2.5	+0.4	+10.2				OOK Mod	lulation,	
									10dBm ou	tput	
									power		
3	614.000M	22.8	-28.1	+20.8	+6.2	+1.6	+0.0	35.8	46.0	-10.2	Vert
			+2.1	+0.3	+10.1				OOK Mod		
									10dBm ou	tput	
									power		
4	902.000M	60.8	-27.4	+24.1	+6.2	+2.0	+0.0	68.4	84.2	-15.8	Horiz
			+2.4	+0.3	+0.0 OOK Modulatio						
_	000 000 5	50.2	07.0	101.1		10.1	.0.0	(7.5	10dBm ou		
5	928.000M	59.3	-27.3 +2.4	+24.4 +0.4	+6.2 +0.0	+2.1	+0.0	67.5	84.2 OOK Mod	-16.7	Horiz
			+ 1/4	+11/4	+()()					111011011	

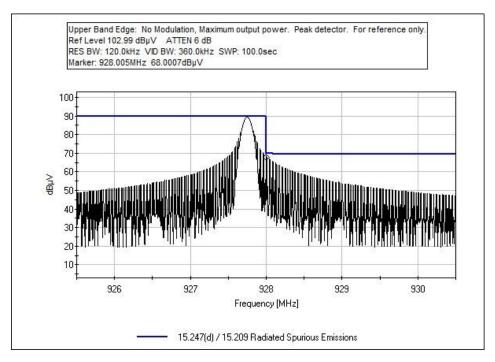

Test Location:	CKC Laboratories, Inc. • 22116 23rd	d Drive SE Suite A • Bot	thell, WA 98021 • 800-500-4EMC (4362)
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurie	ous Emissions	
Work Order #:	98804	Date:	7/26/2016
Test Type:	Maximized Emissions	Time:	17:30:56
Tested by:	Randal Clark	Sequence#:	5
Software:	EMITest 5.03.02		

Equipment Tested:

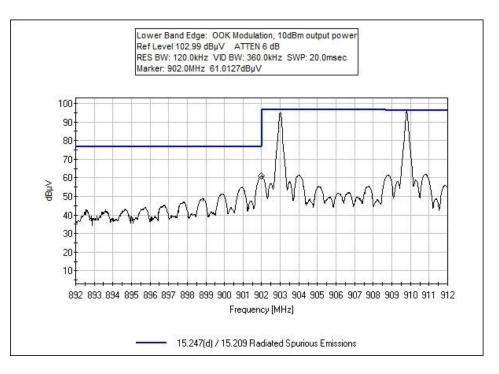
Device	Manufacturer	Model #	S/N				
Configuration 3							
Support Equipmen	t:						
Device	Manufacturer	Model #	S/N				
Test Conditions / N	Notes:						
The EUT is a trans	mitter operating within 902-928	8 MHz. The EUT is ba	attery operated, fresh batteries installed.				
The EUT has no IO	The EUT has no IO ports. Equipment installed according to manufacturer specifications.						
Equipment is confi	gured for maximum output po	ower with OOK modu	lation. Measurements include spurious				
emissions from hop	ping sequence on listed channels		_				
Test procedure: AN	Test procedure: ANSI C63.10 (2013)						
Frequency range inv	vestigated: Band Edges						
Transmitter Frequency: 903 and 926.8 MHz.							
Temperature: 24°C							
Relative Humidity:	36%						

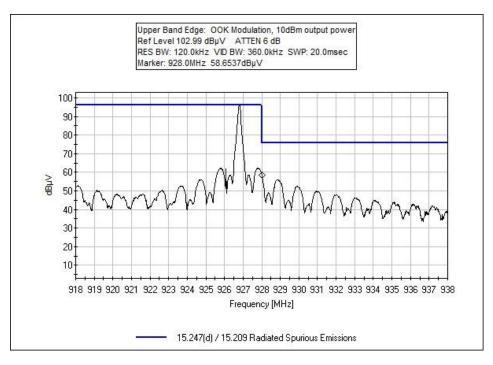
Itron, Inc. WO#: 98804 Sequence#: 5 Date: 7/26/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

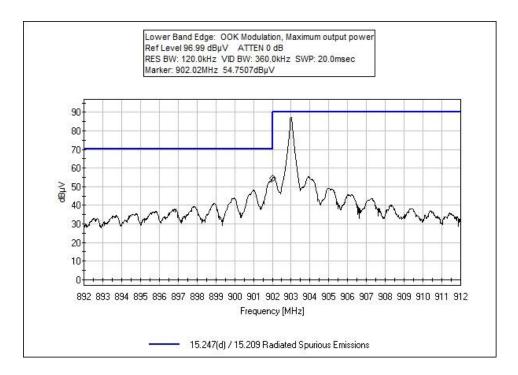


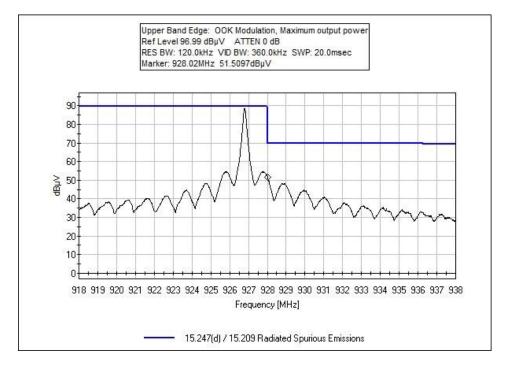


	Equipment:	L	D	• •		r. J.1		C.P	D .4.	CID T	
ID				iption		lodel		Calibrati		Cal Due I	Date
T1			Pream			147D	~	2/15/2016		2/15/2018	
T2				ilog Ante		BL61110		3/11/2016		3/11/2018	
T3			Attenu			AT-6		3/31/2016		3/31/2018	
T4			Cable			G214		12/1/2014		12/1/2016	
T5			Cable			G-214		2/15/2016		2/15/2018	
T6			Cable			eliax		10/29/201		10/29/201	7
T7	ANP05	503	Attenu	uator		56-10		6/18/2015		6/18/2017	
	ANP05		Attenu	uator		56-3		6/15/2015		6/15/2017	
	ANP06	5219	Attenu	uator	70	58-10		4/12/2016	5	4/12/2018	
Moasu	rement Data:	P	eading lis	ted by m	orain		Te	et Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
π	rieq	Kung	T5	T2 T6	13 T7	14	Dist	Coll	spec	Margin	FOIAI
	MHz	dBµV	dB	dB	dB	dB	Table	dBuV/m	dBµV/m	dB	Ant
1	960.017M	33.3	-27.1	+24.8	+6.3	+2.1	+0.0	52.5	<u>54.0</u>	-1.5	Horiz
-	QP	55.5	+2.5	+0.4	+10.2	• 2.1	.0.0	52.5	OOK Mod		HOLL
	X.		. 2.3	. 0. 1	. 10.2				Max outpu		
۸	960.000M	38.2	-27.1	+24.8	+6.3	+2.1	+0.0	57.4	54.0	+3.4	Horiz
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0012	+2.5	+0.4	+10.2			0,11	OOK Mod		110112
									Max outpu	,	
3	614.000M	24.7	-28.1	+20.8	+6.2	+1.6	+0.0	37.7	46.0	-8.3	Horiz
			+2.1	+0.3	+10.1				OOK Mod	ulation.	
									Max outpu	,	
4	928.020M	51.5	+0.0	+24.4	+6.2	+2.1	+0.0	87.0	105.3	-18.3	Horiz
			+2.4	+0.4	+0.0				OOK Mod	ulation,	
									Max outpu	,	
5	902.020M	54.8	+0.0	+24.1	+6.2	+2.0	+0.0	89.8	125.3	-35.5	Horiz
			+2.4	+0.3	+0.0				OOK Mod	ulation,	
									Max outpu		




Band Edge Plots





Test Setup Photo(s)

500G lt 30 parallel

Page 35 of 38 Report No.: 98804-17

500G lt 1000 setup

500G gt 1000 setup

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

<u>Average</u>

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.