Itron, Inc.

TEST REPORT FOR

500C Models: WPITC, WRMTC, and GRMTC

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (HYBRID 902-928MHz)

Report No.: 105380-16

Date of issue: August 13, 2021

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 77 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	
FCC Part 15 Subpart C	14
15.247(a) Transmitter Characteristics	14
15.215(c) 20 dB Bandwidth	14
15.247(a)(1) Carrier Separation	
15.247(a)(1)(i) Number of Channels	18
15.247(b)(2) Output Power	20
15.35(c) Duty Cycle Correction Factor	25
15.247(d) RF Conducted Emissions & Band Edge	26
15.247(d) Radiated Emissions & Band Edge	32
15.247(f) Hybrid Power Spectral Density	71
Supplemental Information	76
Measurement Uncertainty	76
Emissions Test Details	76

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc. Kim Romero

2111 N. Molter Road CKC Laboratories, Inc.
Liberty Lake, WA 99019 5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Jay Holcomb Project Number: 105380

Customer Reference Number: 240357

DATE OF EQUIPMENT RECEIPT:May 21, 2021DATE(S) OF TESTING:May 21, 2021

June 7 and 9, 2021 July 13 and 19, 2021

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve J Bel

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 77 Report No.: 105380-16

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 77 Report No.: 105380-16

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (Hybrid 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NA1
15.247(a)(1)	Carrier Separation	NA	PASS
15.247(a)(1)(i)	Number of Hopping Channels	NA	NA1
15.247(a)(1)(i)	Average Time of Occupancy	NA	NA1
15.247(b)(2)	Output Power	NA	PASS
15.247(d)	RF Conducted Emissions & Band Edge	NA	PASS
15.247(d)	Radiated Emissions & Band Edge	NA	PASS
15.247 (f)	Hybrid Systems Time of Occupancy	NA	NP
15.247 (f)	Hybrid Systems Power Spectral Density	NA	PASS
15.207	AC Conducted Emissions	NA	NA2

NA = Not Applicable

NA1 = This test is not applicable under Hybrid System requirements section 15.247 (f).

NA2 = Not Applicable because the manufacturer declares the EUT is battery operated.

NP = CKC Laboratories was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

	nmary of Conditions
None	e

Page 5 of 77 Report No.: 105380-16

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
500C	Itron, Inc.	GRMTC	RAD2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Laptop	Dell	Latitude E6420	8P954R1	
Laptop Power Supply	Dell	ADP-65JB	NA	
Power Supply	Extech Instruments	382225	P99250026	

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
500C	Itron, Inc.	WRMTC	RAD2

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6420	8P954R1
Power Supply	Extech Instruments	382225	P99250026

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
500C	Itron, Inc.	WPITC	RAD2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Laptop	Dell	Latitude E6420	8P954R1	
Laptop Power Supply	Dell	ADP-65JB	NA	
Power Supply	Extech Instruments	382225	P99250026	

Configuration 4

Equipment Tested:

Device	Manufacturer	Model #	S/N
500C	Itron, Inc.	WPITC	CON2

Support Equipment:

Device	Manufacturer	Model #	S/N	
Power Supply	Extech Instruments	382225	P99250026	
Laptop	Dell	Latitude E6420	8P954R1	
Laptop Power Supply	Dell	ADP-65JB	NA	
Power Supply	Extech Instruments	382225	P99250026	

Page 6 of 77 Report No.: 105380-16

General Product Information:

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	Proprietary Low power and FHSS		
Operating Frequency Range:	902.4 – 927.6MHz, 400kHz steps, 64 channels, 300kbps GFSK LV2 Hybrid		
Number of Hopping Channels:	64 (GFSK)		
Modulation Type(s):	300kbps GFSK		
Maximum Duty Cycle:	45%		
Number of TX Chains:	1		
Antenna Type(s) and Gain:	PCB Trace/1.1dBi		
Beamforming Type:	NA		
Antenna Connection Type:	Integral (External connector provided to facilitate testing)		
Nominal Input Voltage:	3.6Vdc battery		
Firmware / Software used for	App Version: 0.0.25.0, CSL version: 8.1.3.0		
Test:	Hardware Rev: 12		
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer			

assumes full responsibility.

Page 7 of 77 Report No.: 105380-16

EUT Photo(s)

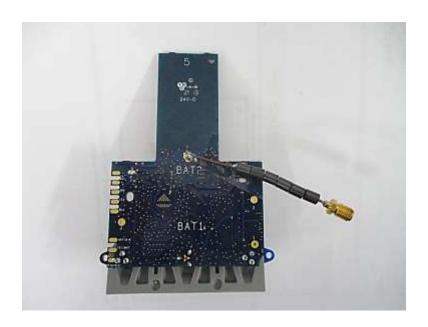
Configuration 1; View 1

Configuration 1; View 2

Configuration 2; View 1

Configuration 2; View 2

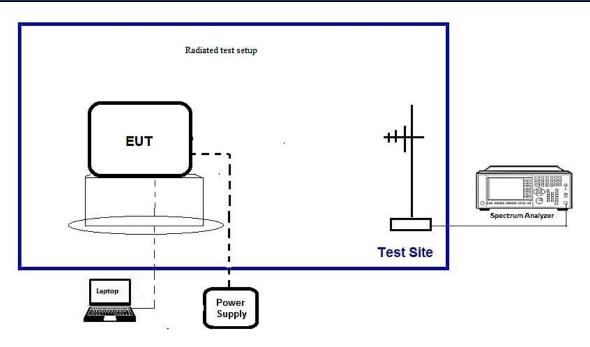
Configuration 3; View 1

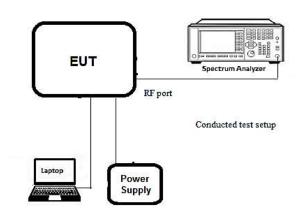


Configuration 3, View 2

Configuration 4, View 1

Configuration 4, View 2


Support Equipment Photo(s)



Block Diagram of Test Setup(s)

FCC Part 15 Subpart C

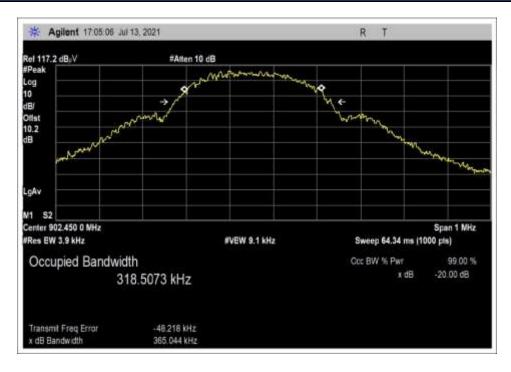
15.247(a) Transmitter Characteristics

	Test Setup/Conditions					
Test Location:	Brea Lab A	Test Engineer:	E. Wong			
Test Method:	ANSI C63.10 (2013)	Test Date(s):	7/13/2021			
Configuration:	Configuration 4					
Test Setup:	The EUT is placed on test bench and the Blue port receives power from remotely located support power supply set 3.6Vdc to simulate a fresh battery. The EUT's data port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable for configuration purposes.					
	Note: Three EUTs have the same internal hardware. Conducted data measured on one					
	EUT represents for all three EUTs.					

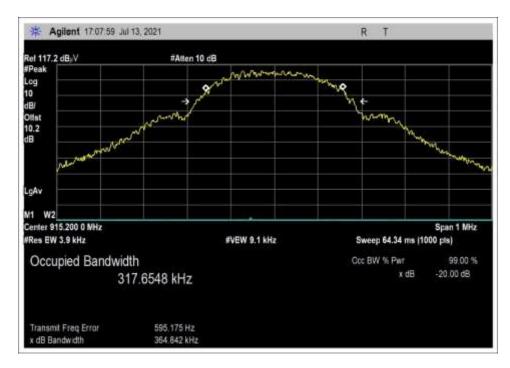
Environmental Conditions				
Temperature (°C)	28	Relative Humidity (%):	51	

	Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Du							
02672	Spectrum Analyzer	Agilent	E4446A	4/29/2020	4/29/2022		
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	12/20/2019	12/20/2021		
07659	Astrolab, Inc.	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022		

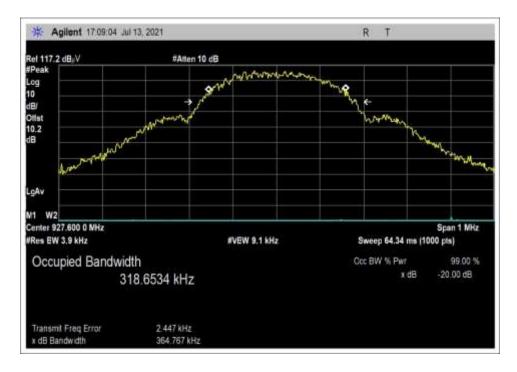
15.215(c) 20 dB Bandwidth 20dB Occupied Bandwidth


Test Data Summary					
Frequency (MHz)	Antenna Port	Limit (kHz)	Results		
902.4	1	300kbps GFSK LV2	365.04		
915.2	1	300kbps GFSK LV2	364.84	*See Note	NA
927.6	1	300kbps GFSK LV2	364.77		

^{*}For this Hybrid mode there is no requirement to meet the FHSS or DTS bandwidth limits.

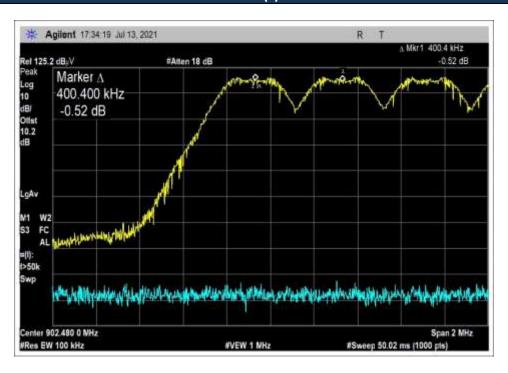

Page 14 of 77 Report No.: 105380-16

Plot(s)



Low Channel

Middle Channel

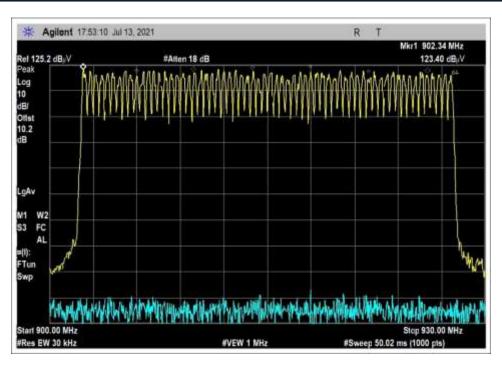

High Channel

15.247(a)(1) Carrier Separation

Test Data Summary				
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.			
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results
1	300kbps GFSK LV2	400	>364.84	Pass

Plot(s)

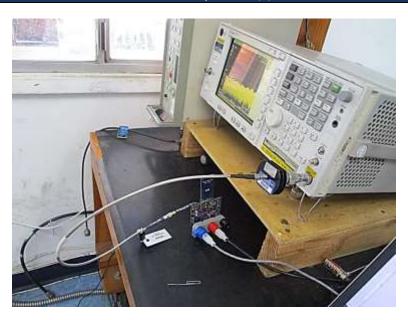
Page 17 of 77 Report No.: 105380-16



15.247(a)(1)(i) Number of Channels

	Test Data Summary				
$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW < 250kHz \\ 25 \ Channels \ 20 \ dB \ BW \ge 250kHz \end{cases}$					
Antenna Port	Antenna Operational Mode Measured Limit Results				
1	300kbps GFSK LV2	64	*See Note	NA	

^{*}For this Hybrid Mode there is no minimum number of hopping channels.


Plot(s)

Page 18 of 77 Report No.: 105380-16

Test Setup Photo(s)

15.247(b)(2) Output Power

	Test Setup/Conditions					
Test Location:	Brea Lab A	Test Engineer:	E. Wong			
Test Method:	ANSI C63.10 (2013)	Test Date(s):	7/13/2021			
Configuration:	4					
Test Setup:	The EUT is placed on test bench and the Blue port receives power from remotely located support power supply set 3.6Vdc to simulate a fresh battery. The EUT's data port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable for configuration purposes.					
	Note: Three EUTs have the same internal hardware. Conducted data measured on one EUT represents for all three EUTs.					
	Correction factor is compensated	for.				

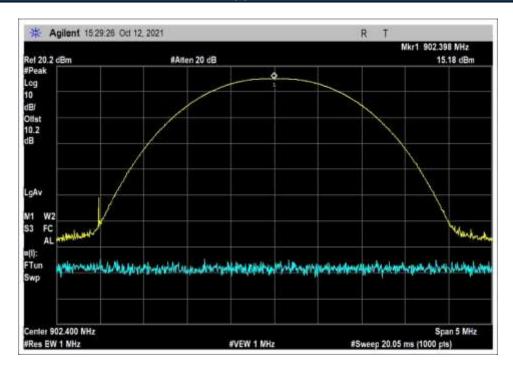
Environmental Conditions				
Temperature (°C) 25 Relative Humidity (%): 30				

	Test Equipment					
Asset# Description Manufacturer Model Cal Date Ca						
02672	Spectrum Analyzer	Agilent	E4446A	4/29/2020	4/29/2022	
03430	Attenuator	Aeroflex/ Weinschel	75A-10-12	12/20/2019	12/20/2021	
07659	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022	

Test Data Summary - Voltage Variations

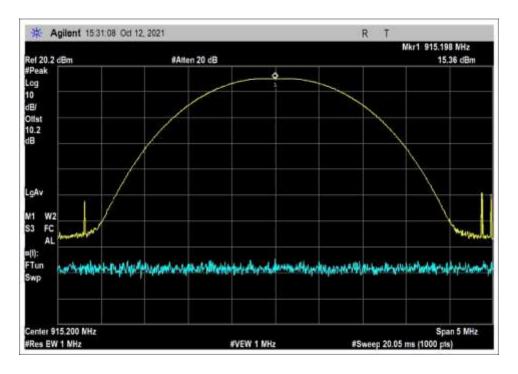
This equipment is battery powered. Power output tests were performed with a DC power supply set at 3.6V to simulate a fresh battery.

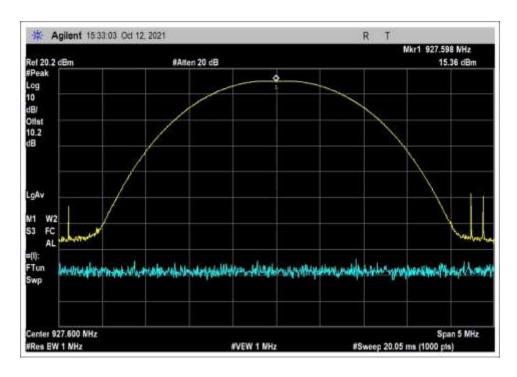
Limit = 30a	Test Data Summary - RF Conducted Measurement Limit = 30dBm Conducted/36dBm EIRP						
Frequency (MHz)	· · · Modulation · · · · Results						
902.4	300kbps GFSK LV2	PCB trace / 1.1 dB	15.2	≤ 30	Pass		
915.2	300kbps GFSK LV2	PCB trace / 1.1 dB	15.4	≤ 30	Pass		
927.6	927.6 300kbps GFSK LV2 PCB trace / 1.1 dB 15.4 ≤ 30 Pass						
	Folder 3						


Page 20 of 77 Report No.: 105380-16

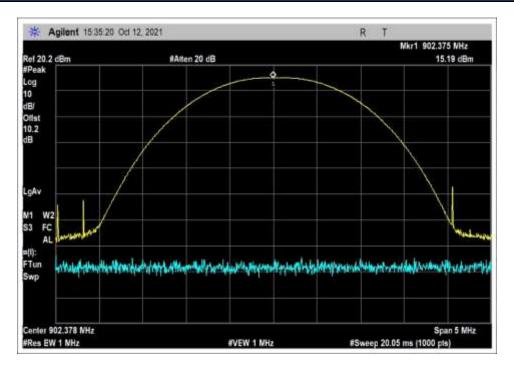
Test Data Summary - RF Conducted Measurement Limit = 30dBm Conducted/36dBm EIRP Ant. Type / Gain Measured Limit Frequency Modulation Results (MHz) (dBm) (dBm) (dBi) 902.4 300kbps GFSK LV2 PCB trace / 1.1 dB 15.2 ≤ 30 **Pass** 300kbps GFSK LV2 PCB trace / 1.1 dB 915.2 15.4 ≤ 30 Pass 300kbps GFSK LV2 927.6 PCB trace / 1.1 dB 15.4 ≤ 30 Pass

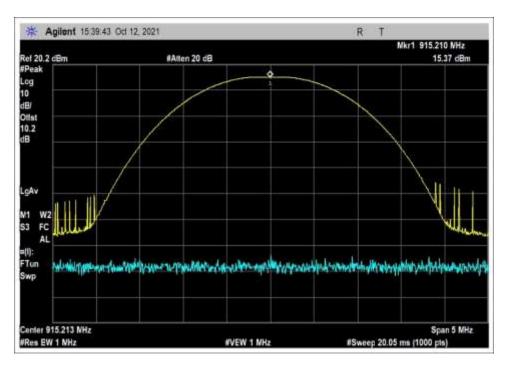
Folder 4


Plot(s) - Folder 3

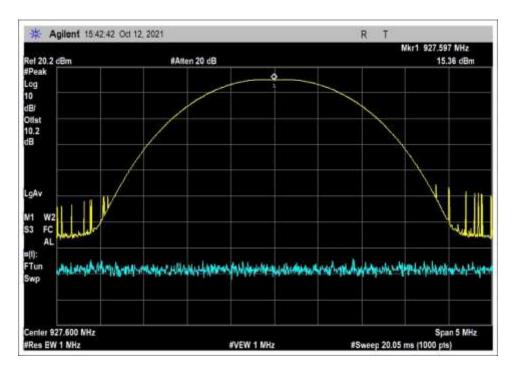

Low Channel

^{*}For this Hybrid Mode there is no minimum number of hopping channels required for the 1 Watt (30dBm) limit.

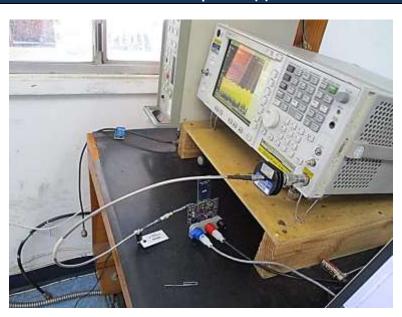

Middle Channel


High Channel

Plot(s) - Folder 4



Low Channel


Middle Channel

High Channel

Test Setup Photo(s)

15.35(c) Duty Cycle Correction Factor

Summary

300k GFSK LV2 _Hybrid

The manufacturer declares the worst-case duty cycle is 45ms per 100ms. Duty cycle correction factor= $20\log(45$ ms/100ms) = -6.9dB.

* The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 25 of 77 Report No.: 105380-16

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 105380 Date: 7/19/2021
Test Type: Conducted Emissions Time: 18:40:59
Tested By: E. Wong Sequence#: 44
Software: EMITest 5.03.19 3.6VDC

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

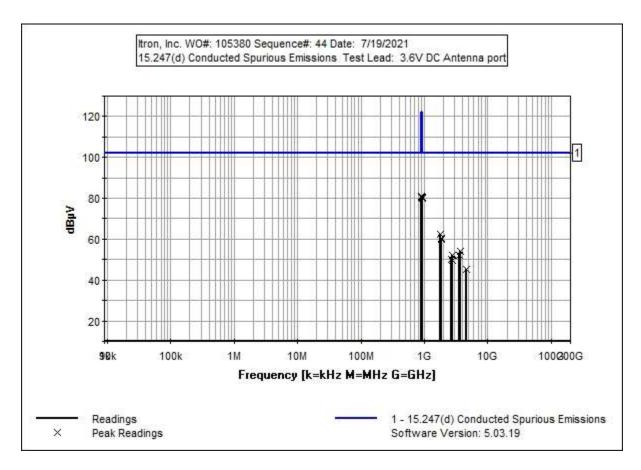
The EUT is placed on Styrofoam platform and the Blue port receives power from remotely located support power supply set 3.6Vdc to simulate a fresh battery. The EUT's red port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable. All port fill, black port is connected to a section of unterminated cable. EUT has fixed orientation per manufacture's specification.

Operating Frequency / Mode:

902.4 MHz, 915.2MHz, 927.6MHz, 400kHz steps, 64 channels, 300k GFSK LV2 Folder 3

Frequency of Measurement: 9k-9280MHz -20dBc limit, RBW=100kHz, VBW=300kHz

Test Environment Conditions:


Temperature: 22°C Relative Humidity: 54% Pressure: 100kPa

Site A

Test Method: ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

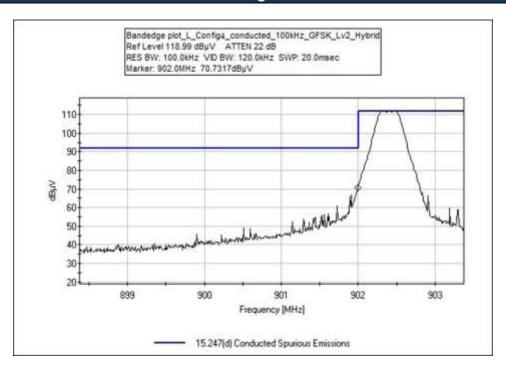
Page 26 of 77 Report No.: 105380-16

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	4/29/2020	4/29/2022
T2	AN03430	Attenuator	75A-10-12	12/20/2019	12/20/2021
T3	ANP07659	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		

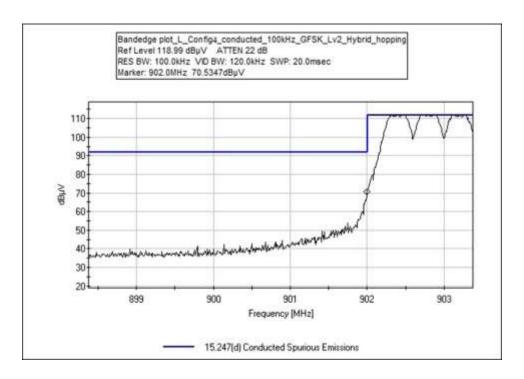
Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lea	ad: Antenna	port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	902.000M	70.7	+0.0	+10.0	+0.2		+0.0	80.9	102.0	-21.1	Anten
									Bandedge	L	
2	902.000M	70.5	+0.0	+10.0	+0.2		+0.0	80.7	102.0	-21.3	Anten
									bandedge_	_L_hoppi	
									ng		
3	928.000M	70.2	+0.0	+10.0	+0.2		+0.0	80.4	102.0	-21.6	Anten
									Bandedge		
4	928.000M	70.0	+0.0	+10.0	+0.2		+0.0	80.2	102.0	-21.8	Anten
									bandedge_	_H_hoppi	
									ng		
5	1804.650M	52.2	+0.0	+9.8	+0.3		+0.0	62.3	102.0	-39.7	Anten
									L		
6	1855.050M	50.3	+0.0	+9.8	+0.3		+0.0	60.4	102.0	-41.6	Anten
									Н		
7	1830.400M	50.1	+0.0	+9.8	+0.3		+0.0	60.2	102.0	-41.8	Anten
									M		
8	3661.083M	43.7	+0.0	+10.1	+0.5		+0.0	54.3	102.0	-47.7	Anten
									M		
9	3710.100M	43.3	+0.0	+10.1	+0.5		+0.0	53.9	102.0	-48.1	Anten
									Н		
10	3609.300M	41.6	+0.0	+10.1	+0.5		+0.0	52.2	102.0	-49.8	Anten
									L		
11	2745.367M	41.9	+0.0	+10.0	+0.3		+0.0	52.2	102.0	-49.8	Anten
									M		
12	2706.975M	40.1	+0.0	+10.0	+0.3		+0.0	50.4	102.0	-51.6	Anten
									L		
13	2782.575M	39.5	+0.0	+10.0	+0.3		+0.0	49.8	102.0	-52.2	Anten
									Н		
14	4637.625M	34.5	+0.0	+10.2	+0.5		+0.0	45.2	102.0	-56.8	Anten
									Н		

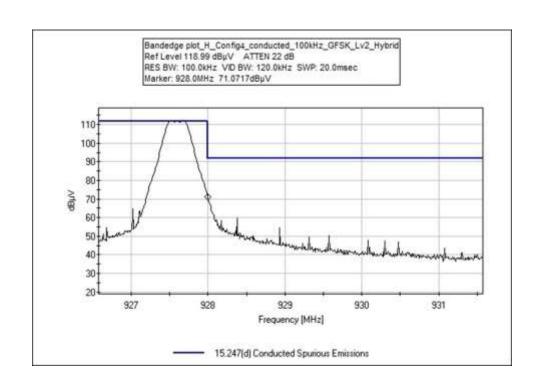
Band Edge

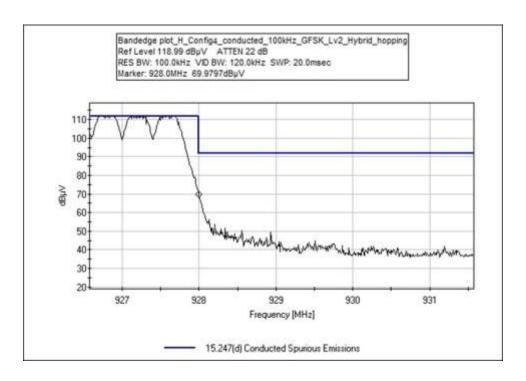

Band Edge Summary

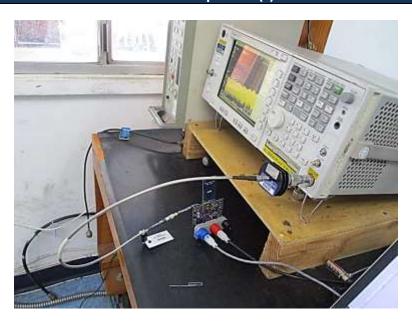
Limit applied: Max Power/100kHz - 20dB.

Worst Case Folder 3


Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results
902	300kbps GFSK LV2	-26.1	-5	Pass
928	(Single Channel)	-26.6	-5	Pass
902	300kbps GFSK LV2	-26.3	-5	Pass
928	(Hopping)	-26.8	-5	Pass


Band Edge Plots


Page 29 of 77 Report No.: 105380-16



Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 105380
 Date: 5/21/2021

 Test Type:
 Radiated Scan
 Time: 13:23:27

 Tested By:
 E. Wong
 Sequence#: 11

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on Styrofoam platform and the Blue port is connected to a section of wire with a shorting tip to activate internal battery. The EUT's data port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable for configuration purposes, once configured, the laptop is removed from remote connection during course of testing. Fresh battery is used.

EUT has fixed orientation per manufacture's specification.

Operating Frequency / Mode:

902.4MHz, 915.2MHz, 927.6MHz, 400kHz steps, 64 channels, 300k GFSK LV2_Hybrid. Folder 4

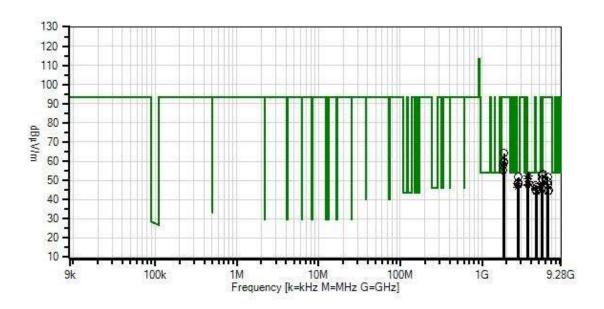
Frequency of Measurement: 9k-9280MHz 9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz 150kHz to 30MHz RBW=9kHz, VBW=27kHz 30-1000MHz, RBW=120kHz, VBW=360kHz 1000-9280MHz, RBW=1MHz, VBW=3MHz -20dBc limit, RBW=100kHz, VBW=300kHz

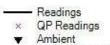
Note: The manufacturer declares the worst case duty cycle is 45ms per 100ms. Duty cycle correction factor= $20\log(45\text{ms}/100\text{ms}) = -6.9\text{dB}$. Average readings in restricted band are calculated from peak readings with duty cycle correction factor.

Test Environment Conditions:

Temperature: 22°C Relative Humidity: 54%

Pressure: 100kPa


Site A


Test Method: ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

Page 32 of 77 Report No.: 105380-16

Itron, Inc. WO#: 105380 Sequence#: 11 Date: 5/21/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03.19

Test Equipment:

i est Equipm	ent.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	4/29/2020	4/29/2022
T2	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
T3	ANP07659	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
T4	AN00786	Preamp	83017A	5/20/2020	5/20/2022
T5	ANP06360	Cable	L1-PNMNM-48	8/8/2019	8/8/2021
T6	AN02749	High Pass Filter	9SH10-	7/15/2019	7/15/2021
			1000/T10000-O/O		
T7	AN03385	High Pass Filter	11SH10-	5/17/2021	5/17/2023
			3000/T10000-O/O		
Т8	ANDCCF	Duty Cycle		1/1/2021	1/1/2025
		Correction Factor			
	AN00851	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
	ANP05505	Attenuator	NAT-6	5/26/2021	5/26/2023
	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
	AN00309	Preamp	8447D	12/24/2019	12/24/2021
	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022

Page 33 of 77 Report No.: 105380-16

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	3710.600M	60.0	+0.0	+32.2	+0.5	-38.1	+0.0	52.2	54.0	-1.8	Vert
	Ave		+4.0	+0.0	+0.5	-6.9	360		Н		223
٨	3710.600M	60.0	+0.0	+32.2	+0.5	-38.1	+0.0	59.1	54.0	+5.1	Vert
			+4.0	+0.0	+0.5	+0.0	360		H		223
3	3661.073M	60.0	+0.0	+32.0	+0.5	-38.1	+0.0	52.1	54.0	-1.9	Vert
	Ave		+4.0	+0.0	+0.6	-6.9			M		220
^	3661.073M	60.0	+0.0	+32.0	+0.5	-38.1	+0.0	59.0	54.0	+5.0	Vert
			+4.0	+0.0	+0.6	+0.0			M		220
5	2782.950M	50.4	+0.0	+29.8	+0.3	-38.5	+0.0	51.6	54.0	-2.4	Vert
			+3.5	+0.0	+6.1	+0.0	28		H		169
6	3609.767M	58.9	+0.0	+31.8	+0.5	-38.1	+0.0	50.8	54.0	-3.2	Vert
-	Ave		+4.0	+0.0	+0.6	-6.9			L		212
^	3609.767M	58.9	+0.0	+31.8	+0.5	-38.1	+0.0	57.7	54.0	+3.7	Vert
			+4.0	+0.0	+0.6	+0.0			L		212
	3709.933M	57.0	+0.0	+32.2	+0.5	-38.1	+0.0	49.2	54.0	-4.8	Horiz
	Ave		+4.0	+0.0	+0.5	-6.9	246		Н		100
^	3709.933M	57.0	+0.0	+32.2	+0.5	-38.1	+0.0	56.1	54.0	+2.1	Horiz
			+4.0	+0.0	+0.5	+0.0	246		Н		100
10	2745.780M	44.9	+0.0	+29.7	+0.3	-38.5	+0.0	48.9	54.0	-5.1	Horiz
			+3.4	+0.0	+9.1	+0.0	290		M		177
	5414.117M	52.4	+0.0	+34.0	+0.7	-37.2	+0.0	48.4	54.0	-5.6	Horiz
	Ave		+5.1	+0.0	+0.3	-6.9	10		L		219
^	5414.117M	52.4	+0.0	+34.0	+0.7	-37.2	+0.0	55.3	54.0	+1.3	Horiz
10	2707 1003 6	40.2	+5.1	+0.0	+0.3	+0.0	10	40.4	<u>L</u>	~ .	219
13	2707.100M	48.2	+0.0	+29.5	+0.3	-38.5	+0.0	48.4	54.0	-5.6	Horiz
	Ave	40.0	+3.4	+0.0	+12.4	-6.9	55	55.1	<u>L</u>	1.1	216
^	2707.100M	48.0	+0.0	+29.5	+0.3	-38.5	+0.0	55.1	54.0	+1.1	Horiz
1.5	2745 50034	44.2	+3.4	+0.0	+12.4	+0.0	55	40.2	<u>L</u>		216
15	2745.580M	44.3	+0.0	+29.7	+0.3	-38.5	+0.0	48.3	54.0	-5.7	Vert
1.0	£412 922M	51.0	+3.4	+0.0	+9.1	+0.0	207	47.0	<u> </u>	<i>C</i> 1	176
16	5413.833M	51.9	+0.0	+34.0	+0.7	-37.2	+0.0	47.9	54.0	-6.1	Vert
^	Ave 5413.833M	51.0	+5.1	+0.0	+0.3	-6.9	98	54.8	L 54.0	ι Λ Ω	211 Vort
	3413.833W	51.9	+0.0 +5.1	+34.0 +0.0	+0.7 +0.3	-37.2 +0.0	+0.0 98	34.8	54.0 L	+0.8	Vert 211
10	3609.383M	55.8	+0.0	+31.8	+0.5	-38.1	+0.0	47.7		-6.3	Horiz
		22.8	+0.0 +4.0	+31.8	+0.5 +0.6	-38.1 -6.9	+0.0 40		54.0 L	-0.3	нопz 111
	Ave 3609.383M	55.8	+0.0	+31.8	+0.5	-38.1	+0.0	54.6	54.0	+0.6	Horiz
	3009.303W	33.0	+4.0	+31.8 $+0.0$	+0.5	+0.0	+0.0 40		J4.0 L	±0.0	111
20	3660.813M	55.4	+0.0	+32.0	+0.5	-38.1	+0.0	47.5	54.0	-6.5	Horiz
	Ave	JJ. 4	+4.0	+32.0 $+0.0$	+0.5	-6.9	341	₹1.5	M 34.0	-0.5	142
	3660.813M	55.4	+0.0	+32.0	+0.5	-38.1	+0.0	54.4	54.0	+0.4	Horiz
	2000.013141	55.7	+4.0	+0.0	+0.6	+0.0	341		M	10.7	142
22	2782.950M	52.8	+0.0	+29.8	+0.3	-38.5	+0.0	47.1	54.0	-6.9	Horiz
	Ave	52.0	+3.5	+0.0	+6.1	-6.9	157		H 34.0	0.7	100
	2782.950M	52.5	+0.0	+29.8	+0.3	-38.5	+0.0	53.7		-0.3	Horiz
	2702.730141	52.5	+3.5	+0.0	+6.1	+0.0	157		Н	0.5	100
			1 3.3	10.0	10.1	10.0	131		**		100

24	4511.750M	46.7	+0.0	+32.5	+0.5	-37.4	+0.0	47.1	54.0	-6.9	Vert
			+4.5	+0.0	+0.3	+0.0	359		L		212
25	2707.100M	46.3	+0.0	+29.5	+0.3	-38.5	+0.0	46.5	54.0	-7.5	Vert
	Ave		+3.4	+0.0	+12.4	-6.9	220		L		204
^	2707.100M	46.3	+0.0	+29.5	+0.3	-38.5	+0.0	53.4	54.0	-0.6	Vert
			+3.4	+0.0	+12.4	+0.0	220		L		204
27	4638.250M	45.7	+0.0	+32.7	+0.5	-37.4	+0.0	46.3	54.0	-7.7	Vert
			+4.5	+0.0	+0.3	+0.0	228		H		203
28	4511.750M	45.0	+0.0	+32.5	+0.5	-37.4	+0.0	45.4	54.0	-8.6	Horiz
			+4.5	+0.0	+0.3	+0.0	245		L		200
29	4575.866M	44.6	+0.0	+32.6	+0.5	-37.4	+0.0	45.1	54.0	-8.9	Vert
			+4.5	+0.0	+0.3	+0.0	-1		M		185
30	4637.883M	44.4	+0.0	+32.7	+0.5	-37.4	+0.0	45.0	54.0	-9.0	Horiz
			+4.5	+0.0	+0.3	+0.0	246		H		186
31	4576.166M	44.0	+0.0	+32.6	+0.5	-37.4	+0.0	44.5	54.0	-9.5	Horiz
			+4.5	+0.0	+0.3	+0.0	127		M		142
32	1855.300M	72.3	+0.0	+27.0	+0.3	-38.8	+0.0	64.1	90.5	-26.4	Vert
			+2.9	+0.4	+0.0	+0.0	25		H		152
33	1830.387M	68.0	+0.0	+26.9	+0.3	-38.8	+0.0	59.6	90.5	-30.9	Horiz
			+2.8	+0.4	+0.0	+0.0	42		M		100
34	1830.387M	68.0	+0.0	+26.9	+0.3	-38.8	+0.0	59.6	90.5	-30.9	Vert
			+2.8	+0.4	+0.0	+0.0	360		M		100
35	1855.300M	67.7	+0.0	+27.0	+0.3	-38.8	+0.0	59.5	90.5	-31.0	Horiz
			+2.9	+0.4	+0.0	+0.0	226		Н		164
36	1804.733M	66.2	+0.0	+26.7	+0.3	-38.8	+0.0	57.6	90.5	-32.9	Horiz
			+2.8	+0.4	+0.0	+0.0	161		L		135
37	1804.733M	63.8	+0.0	+26.7	+0.3	-38.8	+0.0	55.2	90.5	-35.3	Vert
			+2.8	+0.4	+0.0	+0.0	358		L		135
38	5565.900M	50.4	+0.0	+34.1	+0.7	-37.3	+0.0	53.3	90.5	-37.2	Vert
			+5.1	+0.0	+0.3	+0.0	117		Н		161
39	5490.760M	49.6	+0.0	+34.1	+0.7	-37.2	+0.0	52.6	90.5	-37.9	Vert
			+5.1	+0.0	+0.3	+0.0	293		M		185
40	6316.483M	48.0	+0.0	+34.4	+0.7	-37.0	+0.0	52.0	90.5	-38.5	Horiz
			+5.7	+0.0	+0.2	+0.0	88		L		219
41	5491.360M	47.8	+0.0	+34.1	+0.7	-37.2	+0.0	50.8	90.5	-39.7	Horiz
		.,	+5.1	+0.0	+0.3	+0.0	296		M		152
42	5565.533M	47.3	+0.0	+34.1	+0.7	-37.3	+0.0	50.2	90.5	-40.3	Horiz
		.,	+5.1	+0.0	+0.3	+0.0	148		Н		204
43	6316.200M	45.2	+0.0	+34.4	+0.7	-37.0	+0.0	49.2	90.5	-41.3	Vert
.5			+5.7	+0.0	+0.2	+0.0	346	.,	L		211
44	6406.553M	43.9	+0.0	+34.4	+0.7	-37.1	+0.0	47.9	90.5	-42.6	Horiz
1	3.00.000111	,	+5.8	+0.0	+0.2	+0.0	153	.,,,	M	.2.0	152
45	6493.183M	41.1	+0.0	+34.4	+0.7	-37.2	+0.0	45.1	90.5	-45.4	Horiz
-3	5175.105141	11.1	+5.8	+0.0	+0.3	+0.0	115	13.1	Н	19.7	204
46	6493.550M	41.0	+0.0	+34.4	+0.7	-37.2	+0.0	45.0	90.5	-45.5	Vert
-0	01/3.33011	11.0	+5.8	+0.0	+0.3	+0.0	301	15.0	Н	13.3	161
47	6405.953M	40.2	+0.0	+34.4	+0.7	-37.1	+0.0	44.2	90.5	-46.3	Vert
	U-105.7551 v 1	70.2	+5.8	+0.0	+0.7	+0.0	103	77.2	M	70.5	162
			13.0	10.0	10.2	10.0	103		141		102

Page 35 of 77 Report No.: 105380-16

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: Date: 6/9/2021 105380 Test Type: **Radiated Scan** Time: 13:59:19 Tested By: E. Wong Sequence#: 23

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is placed on Styrofoam platform and the Blue port is connected to a section of wire with a shorting tip to activate internal battery. The EUT's data port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable for configuration purposes, once configured, the laptop is removed from remote connection during course of testing. Fresh battery is used.

EUT has fixed orientation per manufacture's specification.

Operating Frequency / Mode:

902.4MHz, 915.2MHz, 927.6MHz, 400kHz steps, 64 channels, 300k GFSK LV2 Hybrid Folder 4

Frequency of Measurement: 9k-9280MHz 9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz 150kHz to 30MHz RBW=9kHz, VBW=27kHz 30-1000MHz, RBW=120kHz, VBW=360kHz 1000-9280MHz, RBW=1MHz, VBW=3MHz -20dBc limit, RBW=100kHz, VBW=300kHz

Note: The manufacturer declares the worst case duty cycle is 45ms per 100ms. Duty cycle correction factor= 20log(45ms/100ms) = -6.9dB. Average readings in restricted band are calculated from peak readings with duty cycle correction factor.

Test Environment Conditions:

Temperature: 22°C Relative Humidity: 54% Pressure: 100kPa

Site A

Test Method: ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

Page 36 of 77 Report No.: 105380-16

Itron, Inc. WO#: 105380 Sequence#: 23 Date: 6/9/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ReadingsQP Readings

▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

Peak Readings

Average Readings Software Version: 5.03.19

Test Equipment:

rest Equipin					
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	4/29/2020	4/29/2022
T2	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
Т3	ANP07659	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
T4	AN00786	Preamp	83017A	5/20/2020	5/20/2022
T5	ANP06360	Cable	L1-PNMNM-48	8/8/2019	8/8/2021
T6	AN02749	High Pass Filter	9SH10-	7/15/2019	7/15/2021
			1000/T10000-O/O		
T7	AN03385	High Pass Filter	11SH10-	5/17/2021	5/17/2023
			3000/T10000-O/O		
Т8	ANDCCF	Duty Cycle Correction		1/1/2021	1/1/2025
		Factor			
	AN00851	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
	AN00309	Preamp	8447D	12/24/2019	12/24/2021
	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
	AN05505	Attenuator	·	5/26/2021	5/26/2023
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022

Page 37 of 77 Report No.: 105380-16

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	•	dBμV/m	dB	Ant
1	3660.800M	61.8	+0.0	+32.0	+0.5	-38.1	+0.0	53.9	54.0	-0.1	Vert
	Ave		+4.0	+0.0	+0.6	-6.9	1		M		219
^	3660.800M	61.8	+0.0	+32.0	+0.5	-38.1	+0.0	60.8	54.0	+6.8	Vert
			+4.0	+0.0	+0.6	+0.0	1		M		219
3	3710.067M	61.2	+0.0	+32.2	+0.5	-38.1	+0.0	53.4	54.0	-0.6	Vert
	Ave		+4.0	+0.0	+0.5	-6.9			Н		233
^	3710.067M	61.2	+0.0	+32.2	+0.5	-38.1	+0.0	60.3	54.0	+6.3	Vert
			+4.0	+0.0	+0.5	+0.0	364		Н		233
5	3609.600M	61.1	+0.0	+31.8	+0.5	-38.1	+0.0	53.0	54.0	-1.0	Vert
	Ave		+4.0	+0.0	+0.6	-6.9	-3		L		218
^	3609.600M	61.1	+0.0	+31.8	+0.5	-38.1	+0.0	59.9	54.0	+5.9	Vert
			+4.0	+0.0	+0.6	+0.0	-3		L		218
7		54.6	+0.0	+29.7	+0.3	-38.5	+0.0	51.7	54.0	-2.3	Vert
	Ave		+3.4	+0.0	+9.1	-6.9	37		M		158
^	2745.600M	54.6	+0.0	+29.7	+0.3	-38.5	+0.0	58.6	54.0	+4.6	Vert
			+3.4	+0.0	+9.1	+0.0	37		M		158
9		56.9	+0.0	+29.8	+0.3	-38.5	+0.0	51.2	54.0	-2.8	Vert
	Ave		+3.5	+0.0	+6.1	-6.9	216		Н		226
^	2782.483M	56.7	+0.0	+29.8	+0.3	-38.5	+0.0	57.9	54.0	+3.9	Vert
			+3.5	+0.0	+6.1	+0.0	216		Н		226
11	3710.450M	58.9	+0.0	+32.2	+0.5	-38.1	+0.0	51.1	54.0	-2.9	Horiz
	Ave		+4.0	+0.0	+0.5	-6.9	254		Н		235
^	3710.450M	58.7	+0.0	+32.2	+0.5	-38.1	+0.0	57.8	54.0	+3.8	Horiz
			+4.0	+0.0	+0.5	+0.0	254		H		235
13		58.8	+0.0	+31.8	+0.5	-38.1	+0.0	50.7	54.0	-3.3	Horiz
	Ave		+4.0	+0.0	+0.6	-6.9	360		L		180
^	3609.600M	58.8	+0.0	+31.8	+0.5	-38.1	+0.0	57.6	54.0	+3.6	Horiz
	2550 5003 5	70.0	+4.0	+0.0	+0.6	+0.0	360	~ 0.4	L	2.5	180
15	3660.600M	58.3	+0.0	+32.0	+0.5	-38.1	+0.0	50.4	54.0	-3.6	Horiz
	Ave	70.2	+4.0	+0.0	+0.6	-6.9	241	55.0	<u>M</u>	2.2	228
^	3660.600M	58.3	+0.0	+32.0	+0.5	-38.1	+0.0	57.3	54.0	+3.3	Horiz
1.7	2792 7223 7	55.0	+4.0	+0.0	+0.6	+0.0	241	50.2	<u>M</u>	2.0	228
	2782.733M	55.9	+0.0	+29.8	+0.3	-38.5	+0.0	50.2	54.0	-3.8	Horiz
	Ave	<i>55.</i> 0	+3.5	+0.0	+6.1	-6.9			H 540	. 2 1	231
^	2782.733M	55.9	+0.0	+29.8	+0.3	-38.5	+0.0	57.1		+3.1	Horiz
10	2707 2001 4	40.1	+3.5	+0.0	+6.1	+0.0	150	40.2	H 540	4 7	231 Vart
	2707.200M	49.1	+0.0	+29.5	+0.3	-38.5	+0.0	49.3	54.0	-4.7	Vert
	Ave 2707 200M	40.1	+3.4	+0.0	+12.4	-6.9	331		L 54.0	.00	144
	2707.200M	49.1	+0.0	+29.5 +0.0	+0.3	-38.5 +0.0	+0.0	56.2		+2.2	Vert
21	2745.400M	52.1	+3.4		+12.4		331	49.2	L 54.0	-4.8	144 Uoriz
		52.1	+0.0	+29.7	+0.3	-38.5	+0.0			-4.8	Horiz
	Ave 2745.400M	52.1	+3.4	+0.0	+9.1	-6.9	193	56.1	M 54.0	+2.1	217
	2743.400M	32.1	+0.0	+29.7 +0.0	+0.3 +9.1	-38.5	+0.0 193		54.0 M	+2.1	Horiz 217
22	4637.783M	48.4	+0.0		+9.1	+0.0	+0.0	49.0	54.0	-5.0	
23	4037.783W	48.4		+32.7		-37.4 +0.0				-3.0	Vert 156
L			+4.5	+0.0	+0.3	+0.0	173		Н		130

24 2707.200M	48.3	+0.0	+29.5	+0.3	-38.5	+0.0	48.5		54.0	-5.5	Horiz
Ave	40.0	+3.4	+0.0	+12.4	-6.9	214			~ 1 O		204
^ 2707.200M	48.3	+0.0 +3.4	+29.5 +0.0	+0.3 +12.4	-38.5 +0.0	+0.0 214	55.4	L	54.0	+1.4	Horiz 204
26 5414.400M	44.6	+0.0	+34.0	+0.7	-37.2	+0.0	47.5		54.0	-6.5	Horiz
20 311 10011	11.0	+5.1	+0.0	+0.3	+0.0	257	17.5	L	51.0	0.5	208
27 4576.350M	46.9	+0.0	+32.6	+0.5	-37.4	+0.0	47.4		54.0	-6.6	Vert
		+4.5	+0.0	+0.3	+0.0	246		M			193
28 4512.000M	46.0	+0.0	+32.5	+0.5	-37.4	+0.0	46.4		54.0	-7.6	Vert
		+4.5	+0.0	+0.3	+0.0	360		L			206
29 4512.000M	45.2	+0.0	+32.5	+0.5	-37.4	+0.0	45.6		54.0	-8.4	Horiz
		+4.5	+0.0	+0.3	+0.0	221		L			180
30 4638.167M	44.6	+0.0	+32.7	+0.5	-37.4	+0.0	45.2		54.0	-8.8	Horiz
		+4.5	+0.0	+0.3	+0.0	348		Η			235
31 5414.400M	47.9	+0.0	+34.0	+0.7	-37.2	+0.0	43.9		54.0	-10.1	Vert
Ave		+5.1	+0.0	+0.3	-6.9	155		L			166
^ 5414.400M	47.6	+0.0	+34.0	+0.7	-37.2	+0.0	50.5		54.0	-3.5	Vert
		+5.1	+0.0	+0.3	+0.0	155		L			166
33 4575.800M	43.0	+0.0	+32.6	+0.5	-37.4	+0.0	43.5		54.0	-10.5	Horiz
		+4.5	+0.0	+0.3	+0.0	291		M			228
34 1804.800M	75.7	+0.0	+26.7	+0.3	-38.8	+0.0	67.1		95.0	-27.9	Vert
		+2.8	+0.4	+0.0	+0.0	173		L			188
35 1830.400M	73.3	+0.0	+26.9	+0.3	-38.8	+0.0	64.9		95.0	-30.1	Vert
		+2.8	+0.4	+0.0	+0.0	170		M			155
36 1855.433M	71.6	+0.0	+27.0	+0.3	-38.8	+0.0	63.4		95.0	-31.6	Vert
		+2.9	+0.4	+0.0	+0.0	193		Η			172
37 1830.400M	68.3	+0.0	+26.9	+0.3	-38.8	+0.0	59.9		95.0	-35.1	Horiz
		+2.8	+0.4	+0.0	+0.0	108		M			150
38 1855.433M	66.3	+0.0	+27.0	+0.3	-38.8	+0.0	58.2		95.0	-36.9	Horiz
		+2.9	+0.4	+0.0	+0.0	326		Η			184
39 1804.800M	66.0	+0.0	+26.7	+0.3	-38.8	+0.0	57.4		95.0	-37.6	Horiz
		+2.8	+0.4	+0.0	+0.0	200		L			188
40 6316.800M	47.0	+0.0	+34.4	+0.7	-37.0	+0.0	51.0		95.0	-44.0	Vert
		+5.7	+0.0	+0.2	+0.0	284		L			166
41 5565.883M	48.0	+0.0	+34.1	+0.7	-37.3	+0.0	50.9		95.0	-44.1	Horiz
		+5.1	+0.0	+0.3	+0.0	229		Η			176
42 6316.800M	45.7	+0.0	+34.4	+0.7	-37.0	+0.0	49.7		95.0	-45.3	Horiz
		+5.7	+0.0	+0.2	+0.0	260		L			208
43 5565.500M	46.2	+0.0	+34.1	+0.7	-37.3	+0.0	49.1		95.0	-45.9	Vert
		+5.1	+0.0	+0.3	+0.0			Н			156
44 6406.750M	45.0	+0.0	+34.4	+0.7	-37.1	+0.0	49.0		95.0	-46.0	Vert
		+5.8	+0.0	+0.2	+0.0	6		M			193
45 5491.000M	45.7	+0.0	+34.1	+0.7	-37.2	+0.0	48.7		95.0	-46.3	Horiz
		+5.1	+0.0	+0.3	+0.0	113		M			198
46 5491.550M	45.4	+0.0	+34.1	+0.7	-37.2	+0.0	48.4		95.0	-46.6	Vert
		+5.1	+0.0	+0.3	+0.0	184		M			193
47 6406.200M	44.0	+0.0	+34.4	+0.7	-37.1	+0.0	48.0		95.0	-47.0	Horiz
		+5.8	+0.0	+0.2	+0.0	49		M			198
48 6493.217M	41.6	+0.0	+34.4	+0.7	-37.2	+0.0	45.6		95.0	-49.4	Vert
		+5.8	+0.0	+0.3	+0.0	59		Н			156
49 6493.600M	41.4	+0.0	+34.4	+0.7	-37.2	+0.0	45.4		95.0	-49.6	Horiz
		+5.8	+0.0	+0.3	+0.0	47		Н			141
	•										

Page 39 of 77 Report No.: 105380-16

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 105380
 Date:
 6/7/2021

 Test Type:
 Radiated Scan
 Time:
 10:45:23

Tested By: E. Wong Sequence#: 6

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

The EUT is placed on Styrofoam platform and the Blue port receives power from remotely located support power supply set 3.6Vdc to simulate a fresh battery. The EUT's red port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable. All port fill, black port is connected to a section of unterminated cable. EUT has fixed orientation per manufacture's specification.

Operating Frequency / Mode:

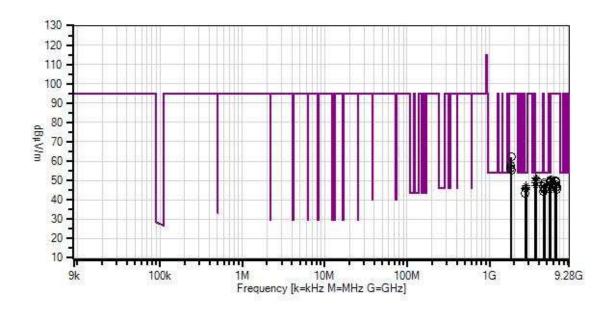
902.4MHz, 915.2MHz, 927.6MHz, 400kHz steps, 64 channels, 300k GFSK LV2 _Hybrid, folder 3

Frequency of Measurement: 9k-9280MHz 9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz 150kHz to 30MHz RBW=9kHz, VBW=27kHz 30-1000MHz, RBW=120kHz, VBW=360kHz 1000-9280MHz, RBW=1MHz, VBW=3MHz -20dBc limit, RBW=100kHz, VBW=300kHz

Note: The manufacturer declares the worst case duty cycle is 45ms per 100ms. Duty cycle correction factor= $20\log(45\text{ms}/100\text{ms}) = -6.9\text{dB}$. Average readings in restricted band are calculated from peak readings with duty cycle correction factor.

Test Environment Conditions:

Temperature: 22°C Relative Humidity: 54% Pressure: 100kPa


Site A

Test Method: ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

Page 40 of 77 Report No.: 105380-16

Itron, Inc. WO#: 105380 Sequence#: 6 Date: 6/7/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
 QP Readings

× QP Reading ▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.19

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	4/29/2020	4/29/2022
T2	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
T3	ANP07659	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
T4	AN00786	Preamp	83017A	5/20/2020	5/20/2022
T5	ANP06360	Cable	L1-PNMNM-48	8/8/2019	8/8/2021
Т6	AN02749	High Pass Filter	9SH10-	7/15/2019	7/15/2021
			1000/T10000-O/O		
T7	AN03385	High Pass Filter	11SH10-	5/17/2021	5/17/2023
			3000/T10000-O/O		
Т8	ANDCCF	Duty Cycle		1/1/2021	1/1/2025
		Correction Factor			
	AN00851	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
	AN00309	Preamp	8447D	12/24/2019	12/24/2021
	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
	AN05505	Attenuator		5/26/2021	5/26/2023
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	•	$dB\mu V/m$	dB	Ant
1	3660.800M	59.1	+0.0	+32.0	+0.5	-38.1	+0.0	51.2	54.0	-2.8	Vert
	Ave		+4.0	+0.0	+0.6	-6.9	335		M		168
^	3660.800M	58.7	+0.0	+32.0	+0.5	-38.1	+0.0	57.7	54.0	+3.7	Vert
			+4.0	+0.0	+0.6	+0.0	335		M		168
3	3710.400M	58.8	+0.0	+32.2	+0.5	-38.1	+0.0	51.0	54.0	-3.0	Vert
	Ave		+4.0	+0.0	+0.5	-6.9	330		H		215
^	3710.400M	58.8	+0.0	+32.2	+0.5	-38.1	+0.0	57.9	54.0	+3.9	Vert
			+4.0	+0.0	+0.5	+0.0	330		H		215
5	3710.400M	58.5	+0.0	+32.2	+0.5	-38.1	+0.0	50.7	54.0	-3.3	Horiz
	Ave		+4.0	+0.0	+0.5	-6.9	247		H		174
^	3710.400M	58.5	+0.0	+32.2	+0.5	-38.1	+0.0	57.6	54.0	+3.6	Horiz
			+4.0	+0.0	+0.5	+0.0	247		H		174
7	3609.940M	57.8	+0.0	+31.8	+0.5	-38.1	+0.0	49.7	54.0	-4.3	Vert
	Ave		+4.0	+0.0	+0.6	-6.9	331		L		131
^	3609.940M	57.8	+0.0	+31.8	+0.5	-38.1	+0.0	56.6	54.0	+2.6	Vert
			+4.0	+0.0	+0.6	+0.0	331		L		131
9	5414.060M	46.6	+0.0	+34.0	+0.7	-37.2	+0.0	49.5	54.0	-4.5	Horiz
			+5.1	+0.0	+0.3	+0.0	91		L		140
10	3660.800M	56.7	+0.0	+32.0	+0.5	-38.1	+0.0	48.8	54.0	-5.2	Horiz
	Ave		+4.0	+0.0	+0.6	-6.9	240		M		213
^	3660.800M	56.7	+0.0	+32.0	+0.5	-38.1	+0.0	55.7	54.0	+1.7	Horiz
		10.1	+4.0	+0.0	+0.6	+0.0	240		M		213
12	4637.950M	48.1	+0.0	+32.7	+0.5	-37.4	+0.0	48.7	54.0	-5.3	Vert
10	4556 000) 4	47.0	+4.5	+0.0	+0.3	+0.0	0.0	47.0	<u>H</u>		163
13	4576.000M	47.3	+0.0	+32.6	+0.5	-37.4	+0.0	47.8	54.0	-6.2	Vert
1.4	2600 26014	55.2	+4.5	+0.0	+0.3	+0.0	-1	47.0	<u>M</u>		170
14		55.3	+0.0	+31.8	+0.5	-38.1	+0.0	47.2	54.0	-6.8	Horiz
٨	Ave	55.2	+4.0	+0.0	+0.6	-6.9	241	<i>51</i> 1	L 540	. 0. 1	178
	3609.260M	55.3	+0.0	+31.8	+0.5	-38.1	+0.0	54.1	54.0	+0.1	Horiz
1.0	2792 750M	52.0	+4.0	+0.0	+0.6	+0.0	241	47.1	<u> </u>	(()	178
10	2782.750M	52.8	+0.0	+29.8	+0.3	-38.5	+0.0 49	47.1	54.0	-6.9	Vert
	Ave 2792 750M	50.7	+3.5	+0.0	+6.1	-6.9 -38.5	+0.0	52.0	H 54.0	Ω 1	163 Vort
	2782.750M	52.7	$+0.0 \\ +3.5$	+29.8 +0.0	+0.3 +6.1	-38.5 +0.0	+0.0 49	53.9	54.0 H	-0.1	Vert 163
10	4512 240M	46.5		+32.5	+0.1			46.9	54.0	-7.1	
18	4512.340M	40.3	$+0.0 \\ +4.5$	+32.5	+0.3	-37.4 +0.0	+0.0 30		54.0 L	-/.1	Vert 141
10	2745.600M	49.0	+4.5	+29.7	+0.3	-38.5	+0.0	46.1	54.0	-7.9	Vert
19	Ave	+7.0	+3.4	+29.7	+0.3 +9.1	-36.3 -6.9	+0.0 75	40.1	M 34.0	-1.7	166
^	2745.600M	48.5	+0.0	+29.7	+0.3	-38.5	+0.0	52.5	54.0	-1.5	Vert
	2773.000101	+0.5	+3.4	+0.0	+0.3 +9.1	+0.0	+0.0 75	J4.J	M 34.0	-1.5	166
21	2707.200M	45.5	+0.0	+29.5	+0.3	-38.5	+0.0	45.7	54.0	-8.3	Horiz
21	Ave	75.5	+3.4	+0.0	+12.4	-6.9	52		L 34.0	0.5	169
^	2707.200M	44.3	+0.0	+29.5	+0.3	-38.5	+0.0	51.4	54.0	-2.6	Horiz
	2707.200141	17.5	+3.4	+0.0	+12.4	+0.0	52		L 34.0	2.0	169
23	4637.950M	45.0	+0.0	+32.7	+0.5	-37.4	+0.0	45.6	54.0	-8.4	Horiz
	1037.730141	15.0	+4.5	+0.0	+0.3	+0.0	109		Н	0.4	127
L			17.5	10.0	10.5	10.0	107		**		141

24 4576.000M	44.9	+0.0	+32.6	+0.5	-37.4	+0.0	45.4	54.0	-8.6	Horiz
		+4.5	+0.0	+0.3	+0.0	274		M		186
25 2745.600M	48.2	+0.0	+29.7	+0.3	-38.5	+0.0	45.3	54.0	-8.7	Horiz
Ave		+3.4	+0.0	+9.1	-6.9	49		M		139
^ 2745.600M	47.7	+0.0	+29.7	+0.3	-38.5	+0.0	51.7	54.0	-2.3	Horiz
		+3.4	+0.0	+9.1	+0.0	49		M		139
27 2782.750M	51.0	+0.0	+29.8	+0.3	-38.5	+0.0	45.3	54.0	-8.7	Horiz
Ave	0110	+3.5	+0.0	+6.1	-6.9	224		Н	0.7	144
^ 2782.750M	51.0	+0.0	+29.8	+0.3	-38.5	+0.0	52.2	54.0	-1.8	Horiz
2702.730141	31.0	+3.5	+0.0	+6.1	+0.0	224	32.2	Н	1.0	144
29 5414.740M	48.7	+0.0	+34.0	+0.7	-37.2	+0.0	44.7	54.0	-9.3	Vert
Ave	70.7	+5.1	+0.0	+0.3	-6.9	10.0	77.7	34.0	-7.5	100
^ 5414.740M	48.7	+0.0	+34.0	+0.7	-37.2	+0.0	51.6	54.0	-2.4	Vert
~ 3414.740WI	40.7	+0.0 +5.1	+34.0	+0.7		+0.0 133	31.0	34.0 L	-2.4	141
21 4511 ((0))	12.0				+0.0		44.2		-9.7	
31 4511.660M	43.9	+0.0	+32.5	+0.5	-37.4	+0.0	44.3	54.0	-9.7	Horiz
22 2707 2003 5	17.6	+4.5	+0.0	+0.3	+0.0	137	42.2	L 540	10.0	178
32 2707.200M	47.6	+0.0	+29.5	+0.3	-38.5	+0.0	43.2	54.0	-10.8	Vert
22 4020 1005	-	+3.4	+0.9	+0.0	+0.0	282		L	• • •	152
33 1830.400M	70.5	+0.0	+26.9	+0.3	-38.8	+0.0	62.1	90.5	-28.4	Vert
		+2.8	+0.4	+0.0	+0.0	76		M		127
34 1804.800M	66.6	+0.0	+26.7	+0.3	-38.8	+0.0	58.0	90.5	-32.5	Horiz
		+2.8	+0.4	+0.0	+0.0	115		L		152
35 1804.800M	65.1	+0.0	+26.7	+0.3	-38.8	+0.0	56.5	90.5	-34.0	Vert
		+2.8	+0.4	+0.0	+0.0	229		L		152
36 1830.400M	63.5	+0.0	+26.9	+0.3	-38.8	+0.0	55.1	90.5	-35.4	Horiz
		+2.8	+0.4	+0.0	+0.0	300		M		146
37 5565.550M	47.6	+0.0	+34.1	+0.7	-37.3	+0.0	50.5	90.5	-40.0	Vert
		+5.1	+0.0	+0.3	+0.0	55		Н		163
38 5565.550M	47.4	+0.0	+34.1	+0.7	-37.3	+0.0	50.3	90.5	-40.2	Horiz
		+5.1	+0.0	+0.3	+0.0	234		Н		127
39 6317.140M	45.9	+0.0	+34.4	+0.7	-37.0	+0.0	49.9	90.5	-40.6	Vert
		+5.7	+0.0	+0.2	+0.0	355		L		143
40 5491.200M	46.8	+0.0	+34.1	+0.7	-37.2	+0.0	49.8	90.5	-40.7	Vert
		+5.1	+0.0	+0.3	+0.0	80	.,.0	M		170
41 6316.460M	45.2	+0.0	+34.4	+0.7	-37.0	+0.0	49.2	90.5	-41.3	Horiz
11 0310.40011	19.2	+5.7	+0.0	+0.2	+0.0	85	17.4	L 70.3	11.5	140
42 5491.200M	45.8	+0.0	+34.1	+0.7	-37.2	+0.0	48.8	90.5	-41.7	Horiz
+4 J+71.400WI	+J.0	+5.1	+34.1	+0.7	+0.0	+0.0 186	+0.0	90.3 M	-+1./	186
43 6406.400M	43.8	+0.0	+34.4	+0.7	-37.1	+0.0	47.8	90.5	-42.7	Vert
43 0400.400M	43.0	+5.8		+0.7		+0.0 226	47.0		-4 ∠./	170
44 6493.150M	12.6		+0.0		+0.0		166	90.5	-43.9	
44 0493.130M	42.6	+0.0	+34.4	+0.7	-37.2	+0.0	46.6		-43.9	Vert
45 (40(400) 5	12.5	+5.8	+0.0	+0.3	+0.0	297	46.5	H 00.5	44.0	163
45 6406.400M	42.5	+0.0	+34.4	+0.7	-37.1	+0.0	46.5	90.5	-44.0	Horiz
		+5.8	+0.0	+0.2	+0.0	223		M		152
46 6406.400M	42.1	+0.0	+34.4	+0.7	-37.1	+0.0	46.1	90.5	-44.4	Horiz
		+5.8	+0.0	+0.2	+0.0	223		M		186
47 6493.150M	41.4	+0.0	+34.4	+0.7	-37.2	+0.0	45.4	90.5	-45.1	Horiz
		+5.8	+0.0	+0.3	+0.0	351		Н		127

Band Edge

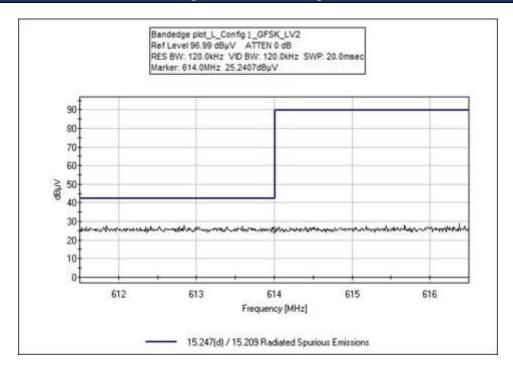
	Band Edge Summary Configuration 1 GRT										
Operating Mo	Operating Mode: Single Channel (Low and High)										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
614	GFSK Level2	PCB trace / 1.1 dB	28.6	<46	Pass						
902	GFSK Level2	PCB trace / 1.1 dB	75.3	<93.5	Pass						
928	GFSK Level2	PCB trace / 1.1 dB	73.2	< 93.5	Pass						
960	GFSK Level2	PCB trace / 1.1 dB	37.7	<54	Pass						

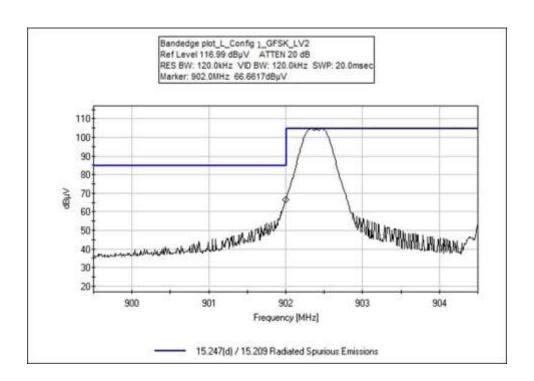
	Band Edge Summary Configuration 1 GRT										
Operating Mo	Operating Mode: Hopping										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
614	GFSK Level2	PCB trace / 1.1 dB	31.6	<46	Pass						
902	GFSK Level2	PCB trace / 1.1 dB	73.6	< 93.5	Pass						
928	GFSK Level2	PCB trace / 1.1 dB	71.3	< 93.5	Pass						
960	GFSK Level2	PCB trace / 1.1 dB	39.4	<54	Pass						

	Band Edge Summary Configuration 2 WRT										
Operating Mo	Operating Mode: Single Channel (Low and High)										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
614	GFSK Level2	PCB trace / 1.1 dB	31.1	<46	Pass						
902	GFSK Level2	PCB trace / 1.1 dB	76.3	<95	Pass						
928	GFSK Level2	PCB trace / 1.1 dB	75.7	< 95	Pass						
960	GFSK Level2	PCB trace / 1.1 dB	45.1	<54	Pass						

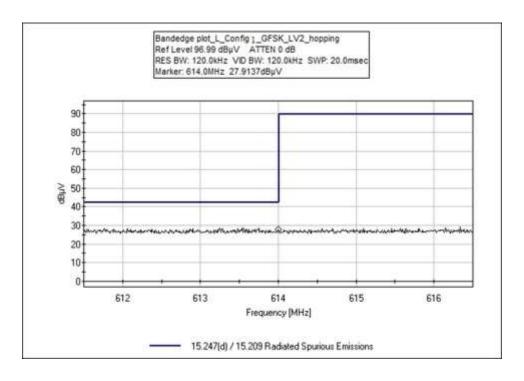
	Band Edge Summary Configuration 2 WRT										
Operating Mo	Operating Mode: Hopping										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
614	GFSK Level2	PCB trace / 1.1 dB	31.5	<46	Pass						
902	GFSK Level2	PCB trace / 1.1 dB	75.1	<95	Pass						
928	GFSK Level2	PCB trace / 1.1 dB	74.6	< 95	Pass						
960	GFSK Level2	PCB trace / 1.1 dB	45.0	<54	Pass						

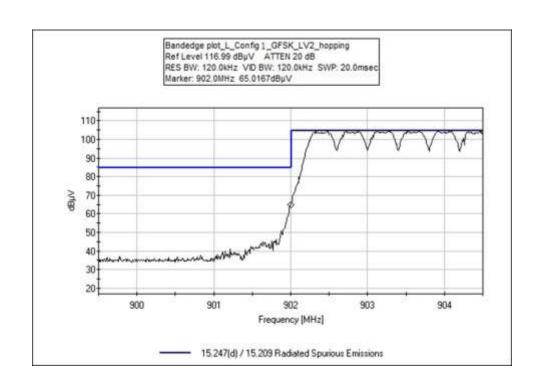
Page 44 of 77 Report No.: 105380-16

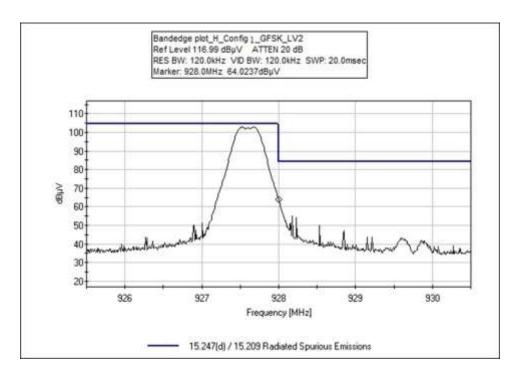

Band Edge Summary Configuration 3 PIT							
Operating Mo	ode: Single Channel	(Low and High)					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results		
614	GFSK Level2	PCB trace / 1.1 dB	30.9	<46	Pass		
902	GFSK Level2	PCB trace / 1.1 dB	76.4	<95	Pass		
928	GFSK Level2	PCB trace / 1.1 dB	74.9	< 95	Pass		
960	GFSK Level2	PCB trace / 1.1 dB	38.2	<54	Pass		

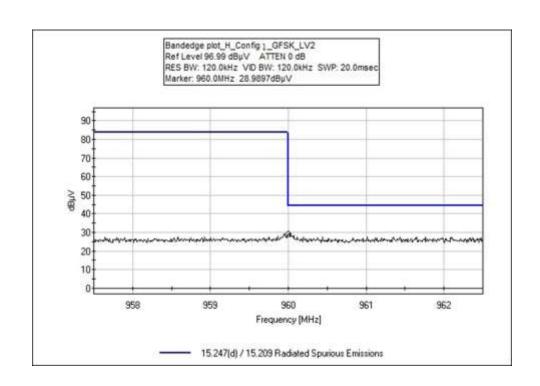

Band Edge Summary Configuration 3 PIT								
Operating Mo	Operating Mode: Hopping							
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	GFSK Level2	PCB trace / 1.1 dB	31.3	<46	Pass			
902	GFSK Level2	PCB trace / 1.1 dB	76.7	<95	Pass			
928	GFSK Level2	PCB trace / 1.1 dB	74.9	< 95	Pass			
960	GFSK Level2	PCB trace / 1.1 dB	38.4	<54	Pass			

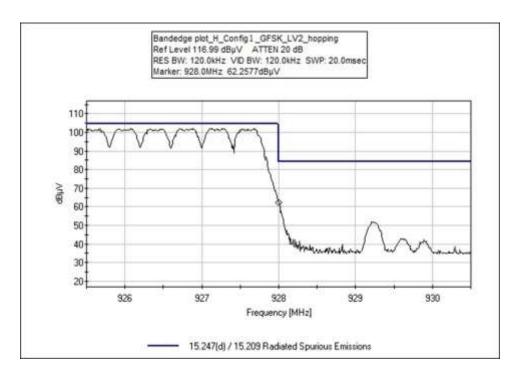
Page 45 of 77 Report No.: 105380-16

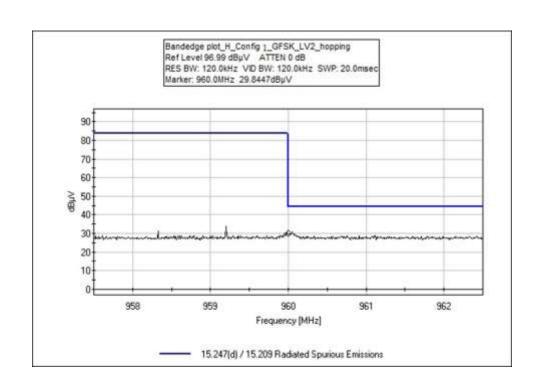


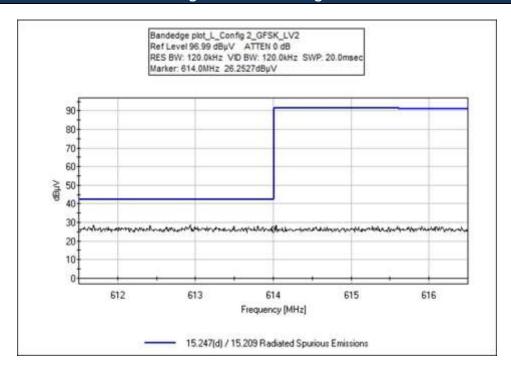

Configuration 1 Band Edge Plots

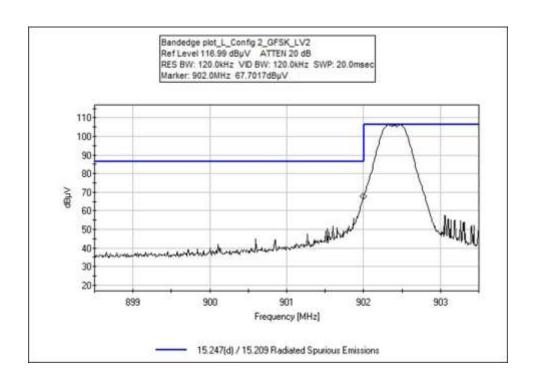


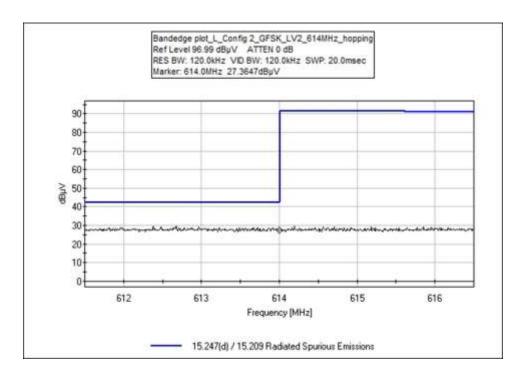


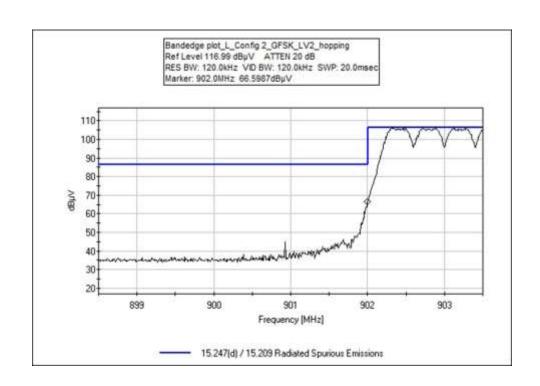


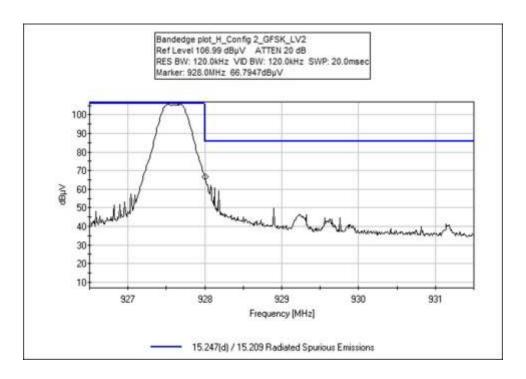


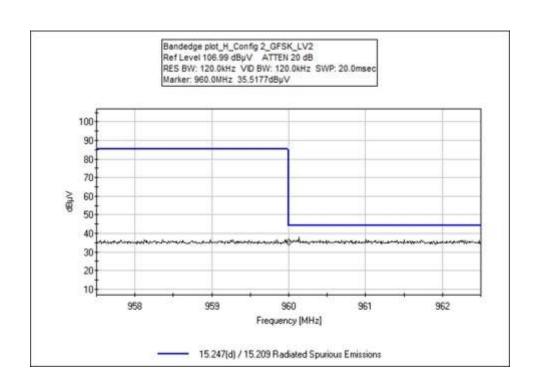


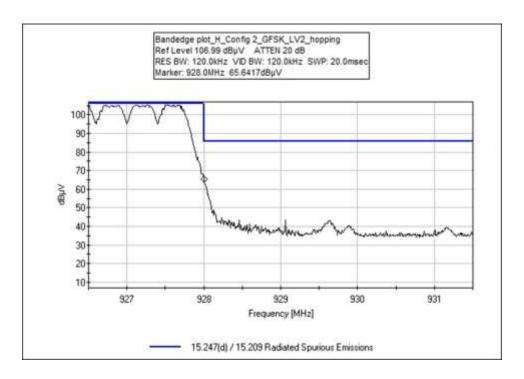


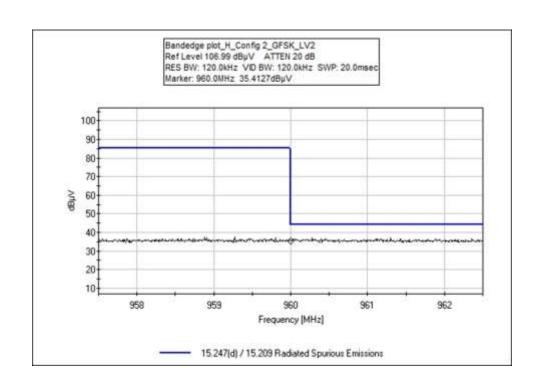


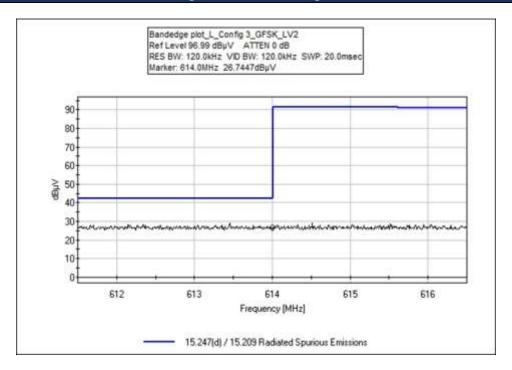

Configuration 3 Band Edge Plots

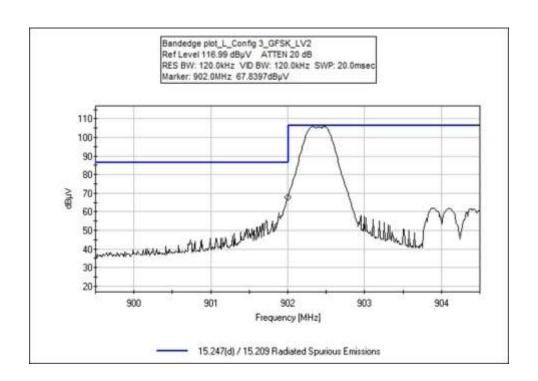


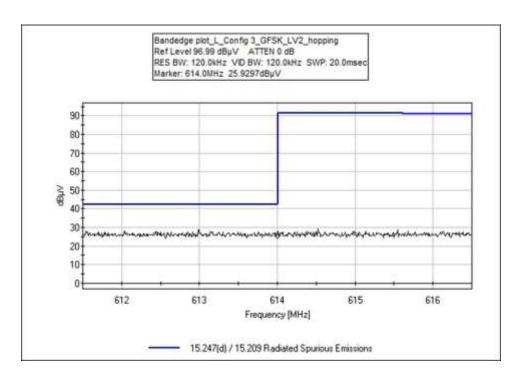


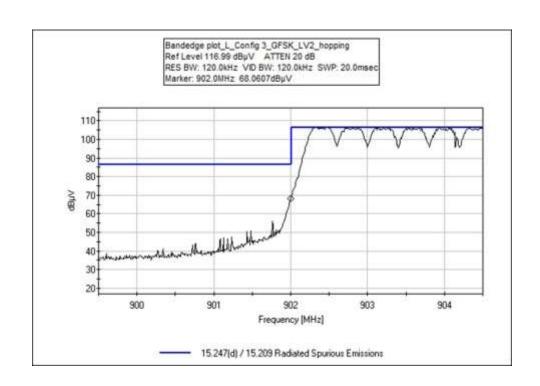


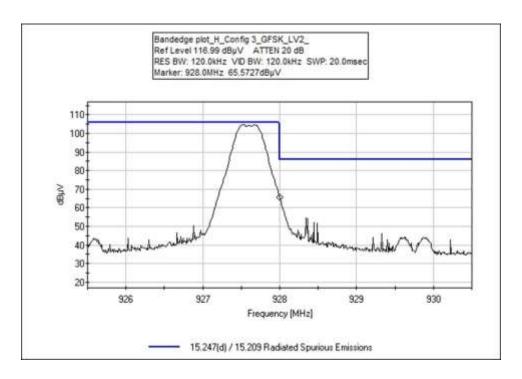


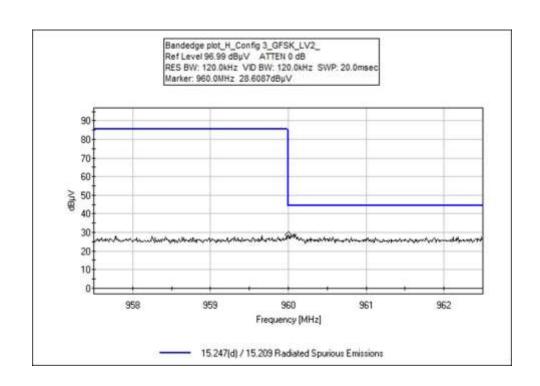


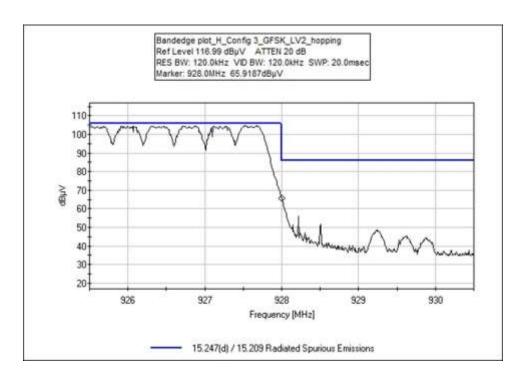


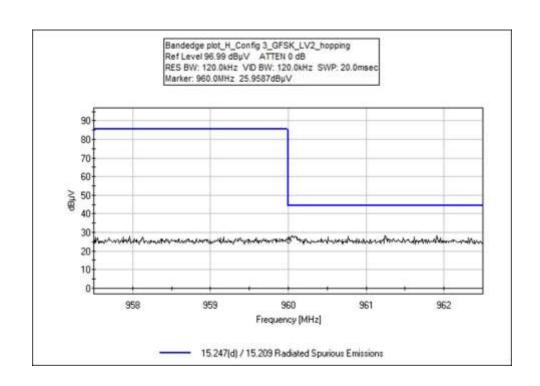



Configuration 3 Band Edge Plots









Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 105380
 Date:
 5/21/2021

 Test Type:
 Radiated Scan
 Time:
 13:23:27

 Tested By:
 E. Wong
 Sequence#:
 11

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The EUT is placed on Styrofoam platform and the Blue port is connected to a section of wire with a shorting tip to activate internal battery. The EUT's data port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable for configuration purposes, once configured, the laptop is removed from remote connection during course of testing. Fresh battery is used.

EUT has fixed orientation per manufacture's specification.

Operating Frequency / Mode:

902.4MHz, 915.2MHz, 927.6MHz, 400kHz steps, 64 channels, 300k GFSK LV2_Hybrid. Folder 4

Frequency of Measurement: 9k-9280MHz 9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz 150kHz to 30MHz RBW=9kHz, VBW=27kHz 30-1000MHz, RBW=120kHz, VBW=360kHz 1000-9280MHz, RBW=1MHz, VBW=3MHz -20dBc limit, RBW=100kHz, VBW=300kHz

Note: The manufacturer declares the worst case duty cycle is 45ms per 100ms. Duty cycle correction factor= $20\log(45\text{ms}/100\text{ms}) = -6.9\text{dB}$. Average readings in restricted band are calculated from peak readings with duty cycle correction factor.

Test Environment Conditions:

Temperature: 22°C Relative Humidity: 54% Pressure: 100kPa

Site A

Test Method: ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

Page 58 of 77 Report No.: 105380-16

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	4/29/2020	4/29/2022
	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
	ANP07659	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
	AN00786	Preamp	83017A	5/20/2020	5/20/2022
	ANP06360	Cable	L1-PNMNM-48	8/8/2019	8/8/2021
	AN02749	High Pass Filter	9SH10-	7/15/2019	7/15/2021
			1000/T10000-		
			0/0		
	AN03385	High Pass Filter	11SH10-	5/17/2021	5/17/2023
			3000/T10000-		
			0/0		
	ANDCCF	Duty Cycle		1/1/2021	1/1/2025
		Correction Factor			
T2	AN00851	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T3	ANP05505	Attenuator	NAT-6	5/26/2021	5/26/2023
T4	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
T5	AN00309	Preamp	8447D	12/24/2019	12/24/2021
Т6	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022

Measurement Data: Reading listed by margin. Test Distance: 3 Meters Freq Rdng T1 T2 T3 T4 Dist Corr Margin Spec Polar T5 T6 Table $dB\mu V/m$ $dB\mu V/m$ MHz $dB\mu V$ dB dB dB dB dB Ant 614.000M 27.9 +0.0+20.0+6.2+0.031.6 46.0 -14.4 Vert +4.6-27.4 +0.3109 Bandedge_L_hoppi 116 960.000M 29.8 +0.0+24.0 39.4 54.0 -14.6 Vert +6.3 +6.0+0.0-27.2 +0.5109 Bandedge_H_hoppi 116 +24.0 54.0 960.000M 28.1 +0.0+6.0+0.037.7 -16.3 3 +6.3Vert -27.2 +0.5109 Bandedge_H 116 24.9 +0.0+20.0 +0.046.0 -17.4 614.000M +6.2+4.628.6 Vert -27.4 +0.3109 $Bandedge_L$ 116 902.000M 75.3 93.5 66.7 +0.0+23.1+6.3 +5.8+0.0-18.2 Vert -27.1 +0.5109 Bandedge_L 116 902.000M +23.1 93.5 -19.9 65.0 +0.0+6.3 +5.8+0.073.6 Vert -27.1+0.5109 Bandedge_L_hoppi 116 +23.573.2 93.5 -20.3 928.000M 64.2 +0.0+6.3+5.9+0.0Vert -27.2 +0.5109 Bandedge_H 116 -22.2 928.000M 62.3 +0.0+23.5 +6.3+5.9+0.071.3 93.5 Vert -27.2 +0.5109 Bandedge_H_hoppi 116

> Page 59 of 77 Report No.: 105380-16

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 105380
 Date:
 6/9/2021

 Test Type:
 Radiated Scan
 Time:
 13:59:19

 Tested By:
 E. Wong
 Sequence#:
 23

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is placed on Styrofoam platform and the Blue port is connected to a section of wire with a shorting tip to activate internal battery. The EUT's data port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable for configuration purposes, once configured, the laptop is removed from remote connection during course of testing. Fresh battery is used.

EUT has fixed orientation per manufacture's specification.

Operating Frequency / Mode:

902.4 MHz, 915.2MHz, 927.6MHz, 400kHz steps, 64 channels, 300k GFSK LV2 _Hybrid Folder 4

Frequency of Measurement: 9k-9280MHz 9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz 150kHz to 30MHz RBW=9kHz, VBW=27kHz 30-1000MHz, RBW=120kHz, VBW=360kHz 1000-9280MHz, RBW=1MHz, VBW=3MHz -20dBc limit, RBW=100kHz, VBW=300kHz

Note: The manufacturer declares the worst case duty cycle is 45ms per 100ms. Duty cycle correction factor= $20\log(45\text{ms}/100\text{ms}) = -6.9\text{dB}$. Average readings in restricted band are calculated from peak readings with duty cycle correction factor.

Test Environment Conditions:

Temperature: 22°C Relative Humidity: 54%

Pressure: 100kPa

Site A

Test Method: ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

Page 60 of 77 Report No.: 105380-16

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	4/29/2020	4/29/2022
	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
	ANP07659	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
	AN00786	Preamp	83017A	5/20/2020	5/20/2022
	ANP06360	Cable	L1-PNMNM-48	8/8/2019	8/8/2021
	AN02749	High Pass Filter	9SH10-	7/15/2019	7/15/2021
			1000/T10000-		
			0/0		
	AN03385	High Pass Filter	11SH10-	5/17/2021	5/17/2023
			3000/T10000-		
			0/0		
	ANDCCF	Duty Cycle		1/1/2021	1/1/2025
		Correction Factor			
T2	AN00851	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T3	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
T4	AN00309	Preamp	8447D	12/24/2019	12/24/2021
T5	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
Т6	AN05505	Attenuator		5/26/2021	5/26/2023
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	902.317M	106.2	+0.0	+23.1	+5.8	-27.1	+0.0	114.8	115.0	-0.2	Vert
			+0.5	+6.3			334		Fundament	tal	130
2	960.000M	35.5	+0.0	+24.0	+6.0	-27.2	+0.0	45.1	54.0	-8.9	Vert
			+0.5	+6.3			75		Bandedge_	<u>.</u> H	130
3	960.000M	35.4	+0.0	+24.0	+6.0	-27.2	+0.0	45.0	54.0	-9.0	Vert
			+0.5	+6.3			75		Bandedge_	H_hoppi	130
									ng		
4	614.000M	27.8	+0.0	+20.0	+4.6	-27.4	+0.0	31.5	46.0	-14.5	Vert
			+0.3	+6.2			334		Bandedge_	L_hoppp	130
									ing		
5	614.000M	27.4	+0.0	+20.0	+4.6	-27.4	+0.0	31.1	46.0	-14.9	Vert
			+0.3	+6.2			334		Bandedge_	L	130
6	902.000M	67.7	+0.0	+23.1	+5.8	-27.1	+0.0	76.3	95.0	-18.7	Vert
			+0.5	+6.3			334		Bandedge_	L	130
7	928.000M	66.7	+0.0	+23.5	+5.9	-27.2	+0.0	75.7	95.0	-19.3	Vert
			+0.5	+6.3			75		Bandedge_	<u>H</u>	130
8	902.000M	66.5	+0.0	+23.1	+5.8	-27.1	+0.0	75.1	95.0	-19.9	Vert
			+0.5	+6.3			334		Bandedge_	_L_hoppi	130
									ng		
9	928.000M	65.6	+0.0	+23.5	+5.9	-27.2	+0.0	74.6	95.0	-20.4	Vert
			+0.5	+6.3			75		Bandedge_	_H_hoppi	130
									ng		

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 105380 Date: 6/7/2021
Test Type: Radiated Scan Time: 10:45:23
Tested By: E. Wong Sequence#: 6

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

The EUT is placed on Styrofoam platform and the Blue port receives power from remotely located support power supply set 3.6Vdc to simulate a fresh battery. The EUT's red port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable. All port fill, black port is connected to a section of unterminated cable. EUT has fixed orientation per manufacture's specification.

Operating Frequency / Mode:

902.4MHz, 915.2MHz, 927.6MHz, 400kHz steps, 64 channels, 300k GFSK LV2 _Hybrid, folder 3

Frequency of Measurement: 9k-9280MHz 9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz 150kHz to 30MHz RBW=9kHz, VBW=27kHz 30-1000MHz, RBW=120kHz, VBW=360kHz 1000-9280MHz, RBW=1MHz, VBW=3MHz -20dBc limit, RBW=100kHz, VBW=300kHz

Note: The manufacturer declares the worst case duty cycle is 45ms per 100ms. Duty cycle correction factor= $20\log(45\text{ms}/100\text{ms}) = -6.9\text{dB}$. Average readings in restricted band are calculated from peak readings with duty cycle correction factor.

Test Environment Conditions:

Temperature: 22°C Relative Humidity: 54% Pressure: 100kPa

Site A

Test Method: ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

Page 62 of 77 Report No.: 105380-16

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	4/29/2020	4/29/2022
	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
	ANP07659	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
	AN00786	Preamp	83017A	5/20/2020	5/20/2022
	ANP06360	Cable	L1-PNMNM-48	8/8/2019	8/8/2021
	AN02749	High Pass Filter	9SH10-	7/15/2019	7/15/2021
			1000/T10000-		
			0/0		
	AN03385	High Pass Filter	11SH10-	5/17/2021	5/17/2023
			3000/T10000-		
			0/0		
	ANDCCF	Duty Cycle		1/1/2021	1/1/2025
		Correction Factor			
T2	AN00851	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T3	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
T4	AN00309	Preamp	8447D	12/24/2019	12/24/2021
T5	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
Т6	AN05505	Attenuator		5/26/2021	5/26/2023
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	}	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	27.4	+0.0	+20.0	+4.6	-27.4	+0.0	31.1	46.0	-14.9	Vert
			+0.3	+6.2			187		Bandedge_	_L_hoppi	149
									ng		
2	614.000M	27.2	+0.0	+20.0	+4.6	-27.4	+0.0	30.9	46.0	-15.1	Vert
			+0.3	+6.2			185		Bandedge_	L	152
3	960.000M	28.8	+0.0	+24.0	+6.0	-27.2	+0.0	38.4	54.0	-15.6	Vert
			+0.5	+6.3			230		Bandedge_	_H_hoppi	149
									ng		
4	960.000M	28.6	+0.0	+24.0	+6.0	-27.2	+0.0	38.2	54.0	-15.8	Vert
			+0.5	+6.3			230		Bandedge_	_H	149
5	902.000M	68.1	+0.0	+23.1	+5.8	-27.1	+0.0	76.7	95.0	-18.3	Vert
			+0.5	+6.3			187		Bandedge_	_L_hoppi	149
									ng		
6	902.000M	67.8	+0.0	+23.1	+5.8	-27.1	+0.0	76.4	95.0	-18.6	Vert
			+0.5	+6.3			185		Bandedge_	L	152
7	928.000M	65.9	+0.0	+23.5	+5.9	-27.2	+0.0	74.9	95.0	-20.1	Vert
			+0.5	+6.3			230		Bandedge_	_H_hopp	149
									ping		
8	928.000M	65.6	+0.0	+23.5	+5.9	-27.2	+0.0	74.6	95.0	-20.4	Vert
			+0.5	+6.3			230		Bandedge_	_H	149

Page 63 of 77 Report No.: 105380-16

Test Setup Photo(s)

Configuration 1; Below 1GHz, View 1

Configuration 1; Below 1GHz, View 2

Configuration 1; Above 1GHz, View 1

Configuration 1; Above 1GHz, View 2

Configuration 2, Below 1GHz, View 1

Configuration 2, Below 1GHz, View 2

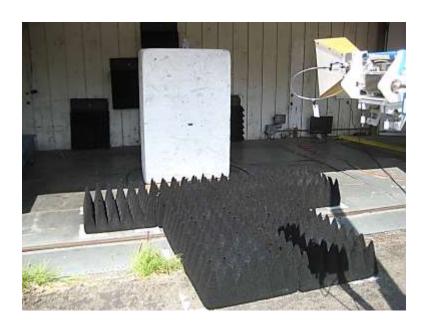
Configuration 2; Above 1GHz, View 1

Configuration 2; Above 1GHz, View 2

Configuration 3; Below 1GHz, View 1

Configuration 3; Below 1GHz, View 2

Configuration 3; Above 1GHz, View 1



Configuration 3; Above 1GHz, View 2

Above 1GHz; View 1

Above 1GHz; View 2

15.247(f) Hybrid Power Spectral Density

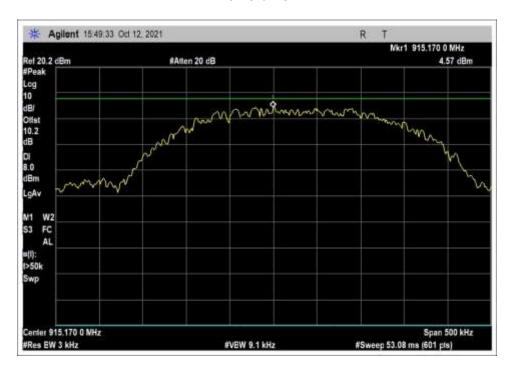
Test Setup/Conditions						
Test Location:	Brea Lab A	Test Engineer:	E. Wong			
Test Method:	ANSI C63.10 (2013)	Test Date(s):	7/13/2021			
Configuration:	4					
Test Setup:	The EUT is placed on test bench and the Blue port receives power from remotely located support power supply set 3.6Vdc to simulate a fresh battery. The EUT's data port is connected to a remote located laptop running CLI Tool ver.2.0.1.24 via USB cable for configuration purposes.					
	Note: Three EUTs have the same internal hardware. Conducted data measured on one EUT represents for all three EUTs.					
	Correction factor is compensated	for.				

Environmental Conditions					
Temperature (ºC)	25	Relative Humidity (%):	30		

Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due		
02672	Spectrum Analyzer	Agilent	E4446A	4/29/2020	4/29/2022		
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	12/20/2019	12/20/2021		
07659	Astrolab, Inc.	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022		

Test Data Summary - RF Conducted Measurement							
Measurement N	Measurement Method: PKPSD						
Frequency Modulation Measured Limit Results							
902.4	300kbps GFSK LV2	4.9	≤8	Pass			
915.2	300kbps GFSK LV2	4.6	≤8	Pass			
927.6	300kbps GFSK LV2	5.0	≤8	Pass			
	Folder 3						

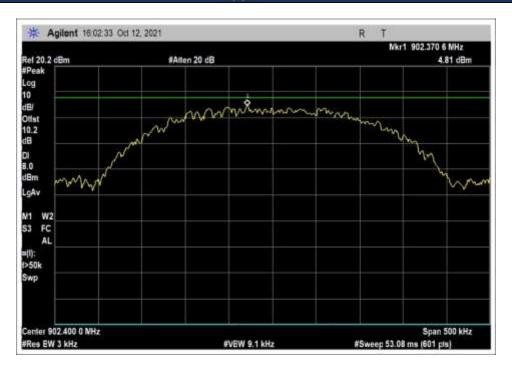
Test Data Summary - RF Conducted Measurement							
Measurement N	Measurement Method: PKPSD						
Frequency (MHz)	· · · Modulation						
902.4	300kbps GFSK LV2	4.8	≤8	Pass			
915.2	300kbps GFSK LV2	5.0	≤8	Pass			
927.6	300kbps GFSK LV2	5.0	≤8	Pass			
Folder 4							

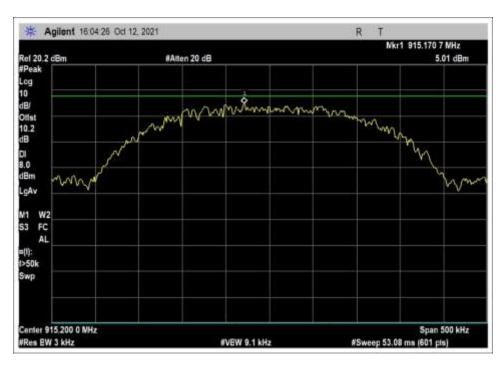

Page 71 of 77 Report No.: 105380-16

Plot(s) - Folder 3

Low Channel

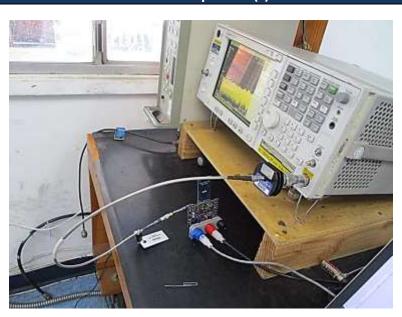
Middle Channel




High Channel

Plot(s) - Folder 4

Low Channel


Middle Channel

High Channel

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading (dBμV)				
+	Antenna Factor	(dB/m)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBμV/m)			

Page 76 of 77 Report No.: 105380-16

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz		
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 77 of 77 Report No.: 105380-16