

REGULATORY COMPLIANCE REPORT

TITLE: FCC & IC Test Report for MPE

Telemetry FCC ID: EWQ100GTHONA IC: 864D-100GTHONA IC Model: HONA

AUTHOR: Mark Kvamme

REV	ССО	DESCRIPTION OF CHANGE	DATE	APPROVALS	
004		INITIAL DELEACE		Engineering	
001	001 INITIAL RELEASE			Regulatory	

REVISION HISTORY

а		initial upload	21jul13	Engineering	
				Regulatory	
				Engineering	
				Regulatory	
				Engineering	
				Regulatory	

NOTICE OF PROPRIETARY INFORMATION

Information contained herein is proprietary and is property of ITRON, Inc. where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer it shall be used solely for the purposes of inspection, installation or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted for this company. The information shall not be used or disclosed by the recipient for any other purpose, whatsoever.

Test Data Summary

FCC 15.247 / IC RSS-210; Frequency Hopping Transmitter; 100GTHONA – Honeywell, 903MHz – 926.85 MHz for EUT

FCC ID: EWQ100GTHONA IC: 864D-100GTHONA IC Device Models: HONA

Serial Numbers 31,30,5

OATS Registration Number: FCC 90716, IC 864D-1

		Spec		Pass/
Rule	Description	Limit	Max. Reading	Fail
			Power level 1	
			$= 0.0023 \text{ mW} / \text{cm}^2 @ 20 \text{ cm}$	
			$= 0.023 \text{ W/M}^2 \oplus 0.2 \text{ M}$	
			Power level 2	
Parts 1.1310 &			$= 0.0482 \text{ mW} / \text{cm}^2 @ 20 \text{ cm}$	
2.1091(mobile) or 2.1093			$= 0.482 \text{ W/M}^2 \oplus 0.2 \text{ M}$	
(portable) / RSS-102 Sec 4.2-	Limits for Maximum		Power level 3	
" Canada Safety Code 6;	Permissible Exposure		= 0.0801 mW/cm ² @ 20 cm	
Table 5	(MPE)	formula	$= 0.801 W/M^2 @ 0.2 M$	Pass

Rule versions: FCC Part 1; FCC Part 2; FCC Part 15, RSS-102 Issue 4 (03-2010); RSS-210 Issue 8 (12-2010); RSS-Gen Issue 3 (12-2010).

Reference docs: ANSI C63.4-2003; DA 00-705 (03-30-2000); OET65 (08-1997); OET65C (06-2001); IEEE C95.3-2002.

Cognizant Personnel					
<u>Name</u>	<u>Title</u>				
Mark Kvamme	Test Technician				
<u>Name</u>	<u>Title</u>				
Jay Holcomb	Regulatory Manager				
<u>Name</u>	<u>Title</u>				
Johann De Jager	Project Lead				

CONDITIONS DURING TESTING

No Modifications to the EUT were necessary during the testing.

FCC 15.31(m) - IC _n/a_; Number of Channels

This device was tested on three channels.

ANSI C63.4 - Temperature and Humidity During Testing

The temperature during testing was within +10° C and +40° C.

The Relative humidity was between 10% and 90%.

RSS-Gen 4.3 (g): Tests shall be performed at ambient temperature

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Itron declares that the EUT tested was representative of a production unit.

EQUIPMENT UNDER TEST

EUT Module

Manuf: Itron, Inc.
Itron p/n: TEL-1000-002
Serial Number(s) Listed Below

Power source Fresh Batteries were used

Plot Information

In the zero span measurements, the line in the display is the trigger level.

Peripheral Devices

None

1.1310 & 2.1091(mobile) or 2.1093(portable) / RSS-102 Sec 4.2-Canada Safety Code 6; Table 5

Maximum Permissible Exposure (MPE)

Radiofrequency radiation exposure limits. - The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

1.1307 (b) In addition to the actions listed in paragraph (a) of this section, Commission actions granting construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities, require the preparation of an Environmental Assessment (EA) if the particular facility, operation or transmitter would cause human exposure to levels of radiofrequency radiation in excess of the limits in §§1.1310 and 2.1093 of this chapter.

Power level	Frequency (Mhz)	unit 5 Field strength (dBuV/m)	EIRP (dbm)	unit 30 conducted power (dbm)	conducted power (watts)	antenna gain (dbi)	antenna gain numeric
3	926.8	120.042	26.042	23.98	0.25	2.062	1.61
2	926.8	117.852	23.852	19.79	0.0953	4.062	2.54
1	915	104.016	10.016	5.33	0.004	4.686	2.94

Determine the maximum power density for the general / uncontrolled population minimum separation distance of 20 cm. (f_{MHz} / 1500 mW/cm² == f_{MHz} / 150 W/M²)

Frequency (Mhz)	FCC Limits: (mW / cm2 @ 20cm)	IC Limits: (W / M2 @ 0.2M)
903	0.602	6.020
915	0.610	6.100
926.8	0.618	6.179

The power density is calculated as:

 P_d = power density in mW/cm^2

P_t = transmit power in milliwatts

 $P_d = \frac{P_t \times G}{4 \times \pi \times r^2}$

G = numeric antenna gain

r = distance between body and transmitter in centimeters.

Power level 3

Max antenna gain = 2.062 dBi = 1.61 numeric

Max TX power = 23.91 dBm = 246 milliwatts results: $P_D = (250 \times 1.61) / (4 \times pi \times 20)$

 $P_D = (250 \text{ x } 1.61) / (4 \text{ x pi x } 20 \text{cm}^2) = 0.0801 \text{ mW} / \text{cm}^2 @ 20 \text{ cm}$ $W/m2 = 10 \text{ times mW/cm}^2 = 0.801 \text{ W/M}^2 @ 0.2 \text{ M}$

Power level 2

Max antenna gain = 4.062 dBi = 2.54 numericMax TX power = 19.79 dBm = 0.0953 milliwatts

results: $P_D = (95.3 \times 2.54) / (4 \times \text{pi x} 20 \text{cm}^2) = 0.0482 \text{ mW} / \text{cm}^2 @ 20 \text{ cm}$

 $W/m2 = 10 \text{ times mW/cm}^2 = 0.482 W/M^2 @ 0.2 M$

Power level 1

Max antenna gain = 4.686 dBi = 2.94 numeric

Max TX power = 5.33 dBm = 4 milliwatts

results: $P_D = (4 \times 2.94) / (4 \times pi \times 20 \text{cm}^2) = 0.0023 \text{ mW} / \text{cm}^2 @ 20 \text{ cm}$

 $W/m2 = 10 \text{ times mW/cm}^2$ = 0.023 W/M^2 @ 0.2 M